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Abstract

Many species rely on olfaction to navigate towards food sources or mates. Olfactory
navigation is a challenging task since odor environments are typically turbulent. While
time-averaged odor concentration varies smoothly with the distance to the source,
instaneous concentrations are intermittent and obtaining stable averages takes longer
than the typical intervals between animals’ navigation decisions. How to effectively
sample from the odor distribution to determine sampling location is the focus in this
article.

To investigate which sampling strategies are most informative about the location of
an odor source, we recorded three naturalistic stimuli with planar lased-induced
fluorescence and used an information-theoretic approach to quantify the information
that different sampling strategies provide about sampling location. Specifically, we
compared multiple sampling strategies based on a fixed number of coding bits for
encoding the olfactory stimulus. When the coding bits were all allocated to representing
odor concentration at a single sensor, information rapidly saturated. Using the same
number of coding bits in two sensors provides more information, as does coding multiple
samples at different times. When accumulating multiple samples at a fixed location, the
temporal sequence does not yield a large amount of information and can be averaged
with minimal loss. Furthermore, we show that histogram-equalization is not the most
efficient way to use coding bits when using the olfactory sample to determine location.

Author Summary

Navigating towards a food source or mating partner based on an animals’ sense of smell
is a difficult task due to the complex spatiotemporal distribution of odor molecules. The
most basic aspect of this task is the acquisition of samples from the environment. It is
clear that odor concentration does not vary smoothly across space in many natural
foraging environments. Using data from three different naturalistic environments, we
compare different sampling strategies and assess their efficacy in determining the
sources’ location. Our findings show that coarsely encoding the concentration of
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samples at separate sensors and/or multiple times provides more information than
encoding fewer samples with higher resolution.

Furthermore, coding resources should be focused on discriminating rare
high-concentration odor samples, which are very informative about the sampling
location. Such a nonlinear transformation can be implemented biologically by the
receptor binding kinetics that bind odorants as a first stage of the sampling process. A
further implication is that animals as well as computational models of algorithms can
operate efficiently with a coarse representation of the odor concentration.

1 Introduction 1

Diverse species throughout the animal kingdom use olfactory cues for navigation tasks 2

critical to survival, including locating food sources and mating partners. However, 3

olfactory navigation is not simple: odorants are often volatile and carried on rapidly 4

changing currents, resulting in spatiotemporal distributions that are turbulent and 5

defeating simple strategies such as gradient detection. Consequently, recent efforts at 6

understanding olfactory navigation have focused on identifying the viable computational 7

strategies for making navigation decisions [1, 2]. 8

Here we focus on the most basic aspect of this process: how odor samples are 9

encoded in the first place. Since sensory resources are finite, tradeoffs are inevitable. 10

For example, resources may be allocated to encoding individual samples of odor 11

concentration at a fine level of detail, or alternatively, to encoding multiple samples, 12

either in space or in time, but at a coarser resolution for concentration. In this study, we 13

investigate the implications of these and related tradeoffs, using the tools of information 14

theory. Specifically, we compare an array of sampling and encoding strategies, asking to 15

what extent they capture information about location within an olfactory environment. 16

There are several aspects of the statistics of an odor plume that can give clues as to 17

the location of the source [3–7]. For example, the mean concentration varies smoothly in 18

lateral and longitudinal directions. However, animals do not base their navigation 19

decisions on mean concentration, as the time it takes to obtain stable estimates of mean 20

concentration exceeds the typical time taken by animals to make navigation 21

decisions [8–10]. Other olfactory features that have been proposed as useful for 22

navigation decisions include the time between odor encounters [11–13] and 23

intermittency (the probability of the odor concentration above threshold) [4]. However, 24

as for mean concentration, obtaining stable estimates of these quantities takes more 25

time than animals typically use for navigation decisions. Hence averaged quantities - 26

even if aided by other sensory inputs - are probably not used to guide navigation 27

decisions. These considerations motivate our focus on what can be learned from brief, 28

localized samples. We do not address the issue of how to integrate odor samples with 29

other sources of information. 30

A key starting point for our analysis is the explicit recognition that the resources 31

available for sampling and encoding an odor environment are finite, and that it is 32

natural to quantify these resources in terms of bits. This leads to the framework of 33

information theory, which has the advantage that it minimizes the assumptions about 34

the odor distribution. 35

As mentioned above, the sampling strategies we consider explore tradeoffs between 36

the number of bits allocated to resolving concentration, and to sampling in space and 37

time. The focus on these tradeoffs is motivated by the diversity of the sampling 38

strategies that animals use. With regard to spatial aspects, most animals have two 39

spatially separated antennae or nostrils which sample the olfactory environment, but 40

the sensor spacing ranges from less than a mm to several cm. With regard to temporal 41

aspects, insects’ olfactory receptors are continuously exposed to odorants, while rodents 42
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take periodic samples and adjust their sniff rate based on previous 43

measurements [14–16]. 44

In this article, we discuss sampling strategies based on local cues in light of how 45

much information they provide about sampling location. To compare different sampling 46

strategies, we computed the information that they conveyed about location, for three 47

realistic olfactory environments. In each environment, odor concentration was 48

empirically determined via physical measurements, planar laser-induced 49

fluorescence [17]. We chose to use physical measurements of actual plumes not only to 50

avoid the assumptions made by models of turbulence or the complexities of numerical 51

simulations, but also because the non-idealities of physical measurements take into 52

account the real-world issues that confront the olfactory navigator. 53

Although the three environments differed with regard to flow rate, turbulence, and 54

proximity to a boundary, a number of commonalities emerged. First, precise 55

measurement of odor concentration is generally not useful. That is, after allocating one 56

or two bits to a coarse representation of odor concentration, greater information about 57

location is gained by using additional bits for encoding concentrations at nearby 58

locations in space or time, than by using these bits to refine the representation of 59

concentration. We also demonstrate that using “histogram equalization” as a strategy to 60

discretize odor concentration – which is optimal to convey information about intensity 61

per se [18] – is not optimal when the goal is to determine location. That is, the optimal 62

strategy for low-level sensory encoding depends on the ultimate use of the information. 63

Finally, with regard to sampling in time, we find that the additional information gained 64

from multiple samples is preserved even if the temporal order of the samples is ignored, 65

and this provides a rationale for simple post-receptoral processing strategies. 66

2 Methods 67

2.1 Plume measurements 68

Odor plume data were obtained experimentally using a surrogate odor (acetone) 69

released in a turbulent flow within a benchtop low-speed wind tunnel. We imaged the 70

odor structure using planar laser-induced fluorescence (PLIF); images were subsequently 71

post-processed into calibrated matrices of normalized concentrations. We acquired three 72

separate datasets varying in mean flow rates and proximity to a lower boundary. 73

The wind tunnel has a test section measuring 1 m long, by 0.3 m tall, by 0.3 m wide. 74

We collected odor plume data at flow speeds of 5 cm/s and 10 cm/s. Ambient air enters 75

the tunnel through a contraction section and passes through a turbulence grid 76

consisting of 6.4 mm diameter rods with a 25.5 mm mesh spacing. Air exits the test 77

section through a 15 cm long honeycomb section used to isolate the test section from a 78

fan located in the downstream contraction. The odor surrogate was released 79

isokinetically through a 9.5 mm diameter tube on the tunnel centerline. The tube orifice 80

was located 10 cm downstream of the turbulence grid. For one dataset, named boundary 81

flow, a false floor spanning the length and width of the test section was placed directly 82

below the release tube. 83

Acetone vapor was used as a fluorescent odor surrogate. We generated the acetone 84

vapor by bubbling a carrier gas through liquid acetone. Because acetone is denser than 85

air, the carrier gas consisted of a mixture of air (59% v/v) and helium (41% v/v) such 86

that the odor surrogate mixture was neutrally buoyant in the wind tunnel. We used a 87

water bath to maintain the temperature of the odor mixture at ambient tunnel 88

conditions. 89

A 1 mm thick light sheet from a Nd:YAG 266 nm pulsed laser illuminated the odor 90

plume in the test section, causing acetone vapor in the odorant mixture to fluoresce 91
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dataset label vavg. [cm/s] region [cm] (pixels) boundary
fast flow A 10 30 × 16 (406 × 216) no
slow flow B 5 30 × 16 (406 × 216) no

boundary flow C 10 30 × 16 (406 × 216) yes

Table 1. Overview of different datasets.

with an intensity proportional to its concentration. The laser sheet enters and exits the 92

tunnel through longitudinal slits along the sides of the test section. Plume fluorescence 93

was imaged through a glass window in the tunnel using a high quantum efficiency 94

sCMOS camera, with a bit depth of 12 bit, at a framerate of 15 Hz synchronized with 95

the laser pulses. To enhance signal-to-noise, images were binned to (512x512) pixels 96

corresponding to a spatial resolution of 0.74 mm/pixel. Raw images were processed to 97

correct for background according to the equation 98

c(t, x, y) =
1

ac

I(t, x, y)

F (x, y)
, (1)

where c is the normalized concentration, I is the image from the camera (with 99

background signal subtracted) and F is the flatfield image (also with the background 100

signal subtracted). The calibration coefficient, ac, was used to normalize the 101

concentrations based on the source concentration at the tube exit. 102

Three datasets were collected, which had different combinations of wind tunnel flow 103

rates and false floor configurations (Table 1). The first condition, named fast flow, had 104

a mean free stream velocity of 10 cm/s, and the odor mixture was released into the 105

center of the tunnel without a false floor. The second condition, named slow flow, had a 106

free stream velocity of 5 cm/s, and acetone was also released into the center of the 107

tunnel without a false floor. The third condition (boundary flow) had a free stream 108

velocity of 10 cm/s, but in contrast to the first condition, acetone was released with the 109

false floor in place. All datasets were collected in segments of 4 minutes. We had a total 110

of 40 minutes (36000 frames) for the first and third condition, and 36 minutes (32400 111

frames) for the second dataset. 112

The matrices of normalized concentrations provide a natural coordinate system. 113

Time-averaged odor concentrations and two typical snapshots for the three conditions 114

are shown in Fig.2. To compare olfactory cues across different flow conditions, we chose 115

two grids of 16 locations in each olfactory landscape (Gnarrow and Gwide). Coordinates of 116

the locations for the grid choices (inlet location at the origin) are: 117

Gnarrow = {(x, y) | x = (2.2, 5.9, 9.6, 13.3) cm, y = (−4.4,−1.5, 1.5, 4.4) cm},
Gwide = {(x, y) | x = (5.6, 11.1, 16.7, 22.2) cm, y = (−2.6,−1.1, 1.1, 2.6) cm}.

(2)
The two grids were chosen to capture the environment close to the source and further 118

away from it above and below the centerline. The locations are indicated as blue circles 119

(Gnarrow) and green triangles (Gwide) in Fig.2. The distances between gridpoints and the 120

odor source are directly relevant to walking flies and other small insects. 121

Probability distributions of the odor concentrations of the upper half of all grid 122

points are shown in Fig.S1. 123

2.2 Mutual information 124

Our primary goal is to quantify the extent to which a small number of samples of odor 125

concentration within a plume provide information about the location of the sample. A 126

principled approach is to use Shannon’s mutual information (MI) [19] for this purpose. 127

That is, using entropy as a measure of uncertainty, we will determine the extent to 128
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which a given encoding scheme reduces the uncertainty about the location of the sample. 129

Thus, our two variables of interest are location (L) and discretized odor samples (M); 130

these are related in a complex statistical fashion. Specifically, this analysis quantifies 131

the ability to discriminate between the 16 locations of either Gnarrow or Gwide when the 132

only available information comes from odor intensity samples. 133

The choice of 16 locations per grid is somewhat arbitrary, however, in order to get 134

stable information estimates with a given amount of data one trades off the number of 135

locations with the number of bits using for odor coding. We settled on 16 locations as 136

they capture a good proportion of the environment while allowing the coding of odor 137

samples up to 10 bits. 138

As is well-known, the MI between two random variables L and M is [19, 20]: 139

I(L,M) = H(L)−
∑

m∈M
p(m)H(L|m), (3)

where H(L) is the (unconditional) entropy of L, and H(L|m) is the entropy of the 140

distribution of L conditional on m ∈M. 141

In our context, L is the set of sampling locations Gnarrow or Gwide and m ∈M is a 142

measurement of the normalized odor concentration c(t, x, y). The specific representation 143

of c as a (coarser) measurement m is an integral part of the encoding schemes we 144

consider. 145

We assume that the a priori probability of the locations l ∈ L are equal. It follows 146

that the unconditional entropy is 147

H(L) = −
∑
l∈L

p(l) log2 p(l) = log(|L|), (4)

where |L| is the number of sampling locations. Note that the MI (Eq.3) is a property of 148

the grid as a whole, not the individual points. Since all |L| grid points have the same a 149

priori probability, the upper bound of the MI is log2(|L|). If the navigator has log2(|L|) 150

bits of information then it knows its location on the grid unambigously. 151

Posterior (conditional) distributions p(l|m) were calculated by Bayes theorem. 152

Specifically, we binned the odor concentrations c at each location p(m|l) and then 153

normalized the likelihoods by p(m). The entropy of these conditional distributions are 154

given by 155

H(L|m) = −
∑
l∈L

p(l|m) log2 p(l|m). (5)

This quantity, weighted by the probability that sample m occurs p(m), is summed over 156

all m ∈M to determine the average conditional entropy in Eq.(3). 157

We used two contrasting strategies for representing the odor concentration as 158

discrete symbols (bins). In the first strategy, we divided the data into equal quantiles, 159

i.e. we chose boundaries such that the distribution p(m) is uniform. This 160

histogram-equalization procedure maximizes the information conveyed about the odor 161

concentration (i.e., M) [20, chap.2], but does not necessarily maximize the information 162

conveyed about sampling location. In the second strategy, we adjusted these bin 163

boundaries to increase the amount of information about location. Because finding the 164

bin boundaries that yield an absolute maximum is a multidimensional discrete 165

optimization problem, we used the following “greedy” iterative strategy to find an 166

approximate maximum. The first bin boundary is chosen to maximize I(L,M), and is 167

identified by an exhaustive search of the range of concentrations. Then, iteratively, the 168

k-th boundary is chosen to maximize I(L,M) while keeping the k − 1 bin boundaries 169

fixed. This is also a one-dimensional search over the range of concentrations, and leads 170

to a binary subdivision of one of the bins determined at the previous step. For analyses 171
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in which the odor at multiple temporal or spatial samples is encoded, we used the bin 172

boundaries determined from these single-sample optimizations. 173

The encoding strategies we considered are specified not only by the way that each 174

sample is encoded (i.e., the bin boundaries), but also by the number of spatial samples 175

rspat and the number of temporal samples rtemp. Specifically, 176

S(nbits; rspat, rtemp), (6)

denotes an encoding strategy that uses nbits to discretize odor intensity, applies this 177

discretization to rspat samples at nearby locations obtained at rtemp points in time. 178

Note that the number of bins used to discretize odor concentration is given by 2nbits . 179

When investigating strategies with two sensors (rspat = 2), we take two samples at a 180

distance of 0.3 cm (four pixels) centered around the locations specified in Eq.(2). 181

For sampling strategies specified by the notation of Eq.(6), bin boundaries are 182

obtained by histogram equalization. To indicate that the “greedy” strategy has been 183

used for obtaining bin boundaries, we use the symbol n∗bits. The total number of bits 184

used for encoding a sample m is given by nbits · rspat · rtemp (or n∗bits · rspat · rtemp ). 185

To ensure that our results do not reflect the idiosyncrasies of odor concentrations at 186

specific locations, all calculations were repeated after jittering the grid location. 187

Specifically, the grid was rigidly moved from its standard location (as given in Eq.(2)) 188

by 0.74 - 2.22 mm (1-3 pixels) in x and y directions, yielding a total of 49 placements. 189

In all figures of the results section, mutual information at these jittered locations are 190

shown as shaded blue and green regions. 191

Bias in the information estimates. As described above, we used the “plug-in” 192

estimator for entropy since this makes no assumptions about the nature of the 193

distributions. However this estimator (as well as any other entropy estimator) is subject 194

to bias due to finite sample size [21,22]. Since fewer samples are available for estimating 195

posterior distributions p(m|l) compared to p(m), H(L|M) is more biased than H(L), 196

and the estimate of mutual information I(L,M) is therefore upwardly biased. This 197

consideration, along with the need to keep the bias small, limited the range of coding 198

schemes that we considered. 199

To demonstrate that the bias was indeed small for the coding schemes considered, 200

we assessed it via the method of [23,24]. Here, mutual information is expanded as a 201

series in 1/N , where N is the number of samples. Within the range of validity of the 202

expansion, the 1/N -term of this series is the bias estimate. Fig.S6 in the Supporting 203

Information section demonstrates the validity of the asymptotic expansion for some 204

coding schemes used in our analyses (by estimating information from smaller subsets of 205

the full dataset). The bias-corrected information is the intercept with the ordinate. 206

Given that the slope of the 1/N -term is virtually identical for the jittered grid locations, 207

we computed similar asymptotic expansions for the centered locations of the narrow and 208

wide grid of all coding schemes and subtracted the bias estimate from all curves in 209

Figures 3, 5, 6, 7 (the coding considered in Fig.4 only binarizes odor concentration and 210

has a negligible bias). 211

3 Results 212

A schematic overview of our analysis can be seen in Fig.1. We chose two grids of 16 213

locations for independent analyses of estimating information that sampling from the 214

odor field provides about the navigator’s sampling location. Distance to the odor source 215

is indicated in panel (A). Practical considerations restrict the experimental analysis to 216

distances in the cm range. These are directly relevant to small insects. 217
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Each of the 16 locations has a different distribution of odor probabilities as 218

diagrammed in Fig.1B. These were determined experimentally by PLIF, as described in 219

the methods section. 220

The approach of evaluating a sampling strategy based on the amount of information 221

it provides about location is cartooned in Fig.1C. A navigator starts with no knowledge 222

of its location, and hence assigns an equal probability to be in any of the 16 grid 223

locations (L). The navigator samples the environment and computes a posterior 224

distribution. Based on the odor sample, the posterior distribution weights the locations 225

unequally. It therefore has a lower entropy than the prior distribution. The average 226

reduction in entropy is, by definition, the MI, and this quantifies the partial knowledge 227

that an odor sample conveys about location. 228

The main theme of this analysis is that an observer does not have access to the raw 229

concentration, but only to a degraded version of it. In Fig.1, we diagram the scenario in 230

which the observer discretizes a single odor sample into a specific number of levels; this 231

discretized version of the odor, rather than the raw odor concentration itself, is used to 232

compute the posterior distribution. As described below, we compare the utility of this 233

sampling scheme to schemes in which several samples, in time or in space, are encoded. 234

In keeping with the laboratory setting, we describe the analysis in terms of a fixed 235

odor source and an unknown location. Since the relevant quantity is the displacement 236

between the navigator and the source, this formulation corresponds to an actual 237

navigation task, in which the navigator knows its location and attempts to infer the 238

location of the source. 239

3.1 Three ways to allocate coding resources 240

We considered encoding schemes that probed the three basic ways in which resources 241

could be allocated to encoding the odor measurements: for resolving concentration, for 242

sampling across space, and for sampling across time. 243

Here and in the other analyses below, parallel calculations were carried out for three 244

odor environments: fast flow (A), slow flow (B) and boundary flow (C), and for two sets 245

of locations (narrow grid (blue) and wide grid (green)) within each environment. The 246

fast flow and boundary flow conditions have the fastest inlet flow of 10 cm/s, but the 247

boundary flow dataset was taken near a boundary where the odor surrogate’s dynamics 248

are affected by boundary layer effects. Hence, boundary flow is the condition were 249

diffusion has the biggest impact; see Methods for details. As a consequence of the more 250

diffusive regime of the boundary flow condition the mutual information values we 251

obtained for this condition are somewhat higher than in the other two conditions. The 252

slow flow dataset has an inlet velocity of 5 cm/s. Except as noted, the analyses with 253

different datasets and different grid choices yielded similar results. 254

Fig.3 A1-C1 shows results for strategies that devote all bits to encoding 255

concentration at one point in space and time (S(nbits; 1, 1)). As the resolution for odor 256

concentration increases, so does MI, but only up to a point: once four bits are used to 257

resolving odor concentration, additional resolution yields only minimal increases in MI. 258

When measurements are made at two sensor locations (transversely separated by 0.3 259

cm), using additional bits for coding allows MI to increase beyond the plateau 260

encountered with a single sensor (Fig.3 A2-C2). The benefit of spatial sampling is not 261

merely the result of having two independent samples. Specifically, MI computed after 262

ignoring which sample corresponded to which sensor was smaller, by up to 0.1 to 0.2 263

bits (dashed curves in Fig.3 A2-C2), than the MI conveyed by a coding scheme that 264

keeps track of which sample is which. This indicates that sampling with two sensors 265

enables extraction of a spatial feature of the odor plume that varies along the vertical 266

axis. This trend is also true for different spacing between two sensors, as shown for half 267

intersensor distance and double intersensor distance in Fig.S5. Note that in the 268
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boundary flow condition, the curves continue to increase rapidly at the limits of 269

measurement, suggesting that MI is not close to saturation. 270

Encoding odor measurements at two consecutive times (separated by 1.6 s) also 271

increases MI beyond the plateau of a single sample, but not by as much as for two 272

spatial samples (Fig.3 A3-C3). While each additional bit used for resolving the 273

concentration of two consecutive samples provides greater MI, the increases become 274

progressively less, suggesting that MI has reached a plateau when five bits of resolution 275

are devoted to two samples separated in time. Virtually identical results are obtained 276

for longer intervals between samples; this is expected since MI reaches an asymptotic 277

value as a function of sampling interval (see Fig.6 below). 278

In the above analysis, we discretized the odor concentration into sub-intervals of 279

equal probability, as this histogram-equalization procedure provides the greatest amount 280

of information about the odor concentration itself [18, 20]. However, this does not yield 281

the maximal MI about location, so we carried out a further analysis that explored the 282

discretization strategy. 283

For the simple case of discretization into two levels, we show how the MI depends on 284

the binarization threshold in Fig.4. For the boundary flow condition (C) the information 285

curves are flat over a large range for the narrow grid, and has a maximum above the 286

median for the wide grid. For the fast flow (A) and slow flow (B) condition the 287

maximum of information is obtained when the threshold is above the median for both 288

grids. This suggests the most informative samples occur at high concentration. A 289

threshold above the median exploits this feature of the odor statistics and allows better 290

discriminability between locations. A comparison between the bin boundaries obtained 291

by histogram-equalization and the optimal bin boundary when binarizing odor can be 292

seen in Fig.S2. It is evident that the optimal bin boundary occurs at a higher 293

concentration than the median for all but the narrow grid of the most diffusive 294

condition. 295

To investigate how a different choice of bin boundaries affects the results of Fig.3, we 296

implemented a “greedy” partitioning scheme (see Methods) in which the first cutpoint 297

was chosen to yield the maximal MI about location, and then successive cutpoints were 298

chosen so that each maximized the MI about location, given the previous partitioning. 299

Results (see Fig.S3) were very similar to the above analysis based on 300

histogram-equalized bins (Fig.3). Although one- and two-bit encoding schemes (two to 301

four partitions) yielded more MI than histogram equalization, the plateau seen in row 1 302

of Figure 2 was essentially unchanged. The advantage of encoding schemes based on two 303

spatial or two temporal samples persisted. 304

3.2 Comparing different encoding strategy based on two 305

sensors 306

The above findings show that overall, there is surprisingly little benefit to allocating 307

coding bits to resolving odor concentration, compared to allocating them to capture 308

several samples across space or time. We hypothesized that resolution of odor 309

concentration might become more important in regimes that were more diffusive, 310

especially when coupled with sampling at two locations. To investigate this hypothesis, 311

we compared coding schemes in which the same number of bits (four bits at each of two 312

spatial samples) were allocated to one, two, or four samples in time, and in which the 313

spatial sampling was across the flow axis (as in Fig.3), or along the flow axis. 314

Fig.5 shows that this hypothesis is supported. Considering first bin boundaries 315

based on histogram equalization, and sensor locations across the flow axis (unshaded 316

portions of plots in first row of Fig.5), two or more bits were only beneficial for the most 317

diffusive environment boundary flow (Fig.5C). Likewise, for sensor locations along the 318
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flow axis (shaded half of each subplot), more than one bit of resolution was only helpful 319

in this environment (boundary flow (Fig.5C)). 320

Similar conclusions are reached when bin boundaries are determined via the “greedy” 321

binning procedure: more than one bit of resolution for odor concentration is only useful 322

in the most diffusive environment (boundary flow (Fig.5C)), and has the greatest benefit 323

when the two sensors are across to the axis of flow. In the fast flow condition, increasing 324

resolution while decreasing the number of samples in time makes little difference 325

(Fig.5B), and for the slow flow condition (Fig.5B), increasing resolution while 326

decreasing the number of samples leads to a loss of information about location for either 327

sensor orientation. 328

In sum, the results of Fig.4C and Fig.5C1, C2 show that in a diffusive regime the 329

exact choice of bin boundaries is not important, but devoting up to four bits to 330

concentration resolution has a benefit over accumulating multiple temporal samples. 331

When the flow conditions are more turbulent, a navigator benefits from classifying 332

multiple odor samples at coarser resolution (Fig.5A, B), but the choice of the 333

discretization threshold becomes important (Fig.4A, B). Consistent across conditions, 334

sampling across the odor plume yielded more MI than sampling along the mean flow 335

direction (white vs. gray shaded regions in Fig.5). 336

3.3 Temporal encoding strategies 337

Optimal time interval between samples. The utility of multiple samples at 338

sequential times is likely to depend on how the sampling interval interacts with flow 339

conditions: for intervals at which odor concentrations are strongly correlated, multiple 340

samples are not likely to provide a substantial increase in MI. 341

This interdependence is investigated in Fig.6, which shows the MI for two samples 342

obtained across a range of time separations. As in the last data point of Fig.3 A3-C3, 343

all datasets have five bits assigned to each of two samples. 344

The arrow in Fig.6 indicates the time at which a single sample provides 80% of the 345

asymptotic value of information (τ80) of two samples. Relatively short values are seen 346

for the narrow grid of the fast flow dataset (τ80 ≈ 1.6 s blue curves in Fig.6A) and the 347

slow flow dataset for both grids (τ80 ≈ 1 s narrow grid, blue curves and τ80 ≈ 1.5 s wide 348

grid, green curves in Fig.6B). 349

For the boundary flow dataset τ80 is approximately 3.5 s (Fig.6B) for both grids. 350

Thus, MI rises more quickly in the conditions fast flow (Fig.6A) and slow flow (Fig.6B) 351

compared with the boundary flow condition. This finding is unsurprising, since diffusion 352

has the largest impact in the boundary flow conditions and likely accounts for the larger 353

value of τ80. However, the benefit of increasing the inter-sample interval reaches an 354

asymptote in all cases, as would be expected once the interval is sufficiently long so that 355

the samples are independent. 356

Information in the temporal sequence of measurements. To focus on the 357

interaction of concentration resolution and number of temporal samples, we compared 358

strategies that sampled at a single location, and traded off the number of bits allocated 359

to resolving concentration at each sample, with the number of samples. In each case, a 360

total of ten bits were used. 361

When using histogram-equalization, for almost all flow environments and grid 362

choices, devoting all bits to single measurements provides the lowest amount of 363

information (see Fig.7 A1-C1), and the most informative strategy is to assign two bits 364

to concentration resolution for five temporal samples (S(2; 1, 5)). However, for the fast 365

flow and slow flow environments, one bit of resolution provided even more information, 366

provided that the threshold was chosen in the optimal way (S(1∗; 1, 10)). 367
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Although encoding multiple samples provides greater information than a single 368

sample, keeping track of the specific sequence of the samples (i.e. their temporal order) 369

carries relatively little information. This is shown by the difference between the solid 370

black lines and the dashed lines in Fig.7 A1-C1. (For the optimized threshold 371

measurements of MI in Fig.7 A1 and B1 the MI seems larger when ignoring the 372

temporal order; this apparent anomaly is a consequence of data limitations and 373

debiasing, since the bias on MI estimates that make use of temporal order is higher than 374

bias of MI estimates that ignore temporal order.) 375

Compression of odor measurements Until now, we compared encoding strategies 376

based on the number of bits required for a “näıve” implementation, in which 377

nbitsrspatrtemp bits are used to represent each word of the code S(nbits; rspat, rtemp). 378

However, these näıve representations are typically compressible, since the words do not 379

occur with equal frequency. Specifically, the entropy of the distribution of code words 380

provides an estimate of the extent to which it may be compressed without 381

loss [19], [20, chap.5]. Further compression may be possible if correlations in the 382

sequence of code words are present, but we ignore any such correlations here. 383

These distribution entropies are shown by the filled symbols in Fig.7 A2-C2 for the 384

codes of Fig.7 A1-C1. As expected, when bin boundaries are chosen by histogram 385

equalization and there is only one temporal sample S(10; 1, 1), all code words are 386

equally likely and entropy is nbits. However, when a single code word encompasses two 387

temporal or more temporal samples, the words are unequally distributed, and lossless 388

compression is possible. The amount of lossless compression is strongest for the codes 389

with optimized binarization levels (S(1∗; 1, 10)). 390

Since temporal order of the samples that constitute a code word contributed only a 391

modest amount of information (solid vs. dotted lines in Fig.7 top row), we also 392

considered the extent to which ignoring temporal order would allow for further 393

compression. As shown by the hollow circles in Fig.7, this enables approximately a 394

factor of two of further compression, quite substantial compared to the minimal amount 395

of information lost when temporal order is neglected. 396

4 Discussion 397

In olfactory navigation, one of the main challenges is the complexity of the typical odor 398

environment. Typical environments are turbulent, and are characterized by short bursts 399

of high odor intensity interspersed with long durations of low odor intensity [7]. Thus, 400

simple strategies based on the gradient are likely to fail, and it is not obvious which 401

aspects of the environment - as sampled locally by a navigating organism - are most 402

useful in determining location. To address this question, without making specific 403

assumptions about the form of these statistics or the navigation strategy per se, we used 404

an information-theoretic approach: we compared different strategies for encoding odor 405

samples in terms of the information they carry about location. This 406

information-theoretic approach is similar in spirit to a study investigating the feasibility 407

of communication via modulated release of pheromones in idealized environments [25]. 408

Specifically, we examined encoding schemes with a fixed amount of coding resources 409

(bits), and evaluated codes that allocated these bits to encoding odor concentration in a 410

coarse vs. fine manner, or at one vs. two locations, or at one vs. multiple times. In the 411

three odor environments we considered, there was little benefit in resolving odor 412

concentration with high accuracy for single samples. The range where additional bits 413

stop improving the information significantly depends somewhat on the binning strategy. 414

If the bins are allocated according to histogram equalization, information plateaus when 415
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3 or 4 bits per sample are allocated to concentration. But with a “greedy” binning 416

procedure, this plateau is reached sooner. 417

Interestingly, a “greedy” binning strategy is effective in determining location even 418

when only using one or two bits to resolve odor concentration (binarizing or dividing 419

odor concentrations into four levels). Merely binarizing the odor concentration – i.e., 420

encoding odor concentration as either “low” or “high” – reveals more than half of the 421

maximal information in all conditions but the least turbulent. The binarizing cutpoint 422

that maximizes information about location is higher than the cutpoint that maximizes 423

information about odor itself, i.e., the median. For the more turbulent regimes, setting 424

the cutpoint at the optimal level for location yields almost double the amount of 425

information than would be yielded by a median cutpoint. The potential advantages of a 426

“greedy” binning strategy over histogram equalization are even greater when one 427

considers that for greedy strategies, the resulting distribution of encoded measurements 428

has lower entropy than for histogram equalization, and thus, is amenable to simple 429

non-lossy compression. 430

Sampling odor at two locations, or several times, breaks through the plateau that is 431

reached as further bits are allocated to odor resolution. These strategies are always 432

more informative than devoting all bits to encoding concentration at a single location 433

when more than four bits are available. In the three environments we examined, a 434

second sample separated in space carries more information than a second sample 435

separated in time. A considerable amount of information is gained by comparing which 436

sensor registers which sample. The amount of this increase depends on the sensor 437

spacing, with larger spacings yielding a larger increase in information (see Fig.S5). 438

Comparing samples in two sensors is advantageous in both diffusive and turbulent 439

environments. The advantage is to be expected in a diffusive environment, since this 440

comparison yields an estimate of the gradient, but interestingly, our findings show that 441

it persists in turbulent environments as well. 442

Allocating the same number of bits to multiple temporal samples also increases the 443

amount of information transmitted about location. Consistent across odor 444

environments, the sequence of samples, per se, matters very little. In contrast to the 445

benefit of keeping track of which spatial sample is which, we find little utility in 446

tracking the specific sequence of temporal samples. In other words, ignoring the 447

sequence of measurements across time is a form of lossy compression that results in only 448

a minimal loss of information about location. The effectiveness of this compression (i.e., 449

the ratio of the information about location to the output entropy) is greater for a greedy 450

binning strategy than for histogram-equalization. 451

Implications for odor coding systems. We now discuss the implications of our 452

findings, first with regard to sensation and then with regard to navigation algorithms. 453

As a starting point, we consider the simple scenario of a sensory system confronted with 454

a continuous and widely varying input, but limited in the number of symbols that it can 455

use for encoding. As is well-known, information is maximized when each of the symbols 456

is used equally often, i.e., histogram equalization. Histogram equalization can be 457

implemented as a nonlinearity applied to the input prior to producing a neural 458

output [18]. For a positively skewed distribution, such as light intensities or odor 459

intensities, the nonlinearity is a highly compressive one, so that it takes into account the 460

rarity of very large inputs. 461

Here, however, we consider the task of maximizing information not about the 462

sensory signal itself, but about location – which is related to odor concentration in a 463

complex, stochastic manner. As we showed, most of the available information about 464

location can be conveyed by a coarse discretization of the sensory range – in fact, by 465

binarization. However, this only holds if the cutpoint is properly chosen. In the two 466
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more turbulent odor environments considered here, the optimal cutpoint is substantially 467

higher than the median, which is the cutpoint associated with histogram equalization 468

(see Fig.4). That is, discriminations in the upper range of odor concentrations play a 469

disproportionately greater role in determining location, than in reconstructing the input 470

per se. Correspondingly, implementation of this encoding requires a nonlinearity that is 471

less compressive for higher intensities than histogram equalization. 472

Optimal adaptation strategies, in the sense of being maximally informative, under 473

naturalistic stimuli are (to our knowledge) unknown. The problem of optimally 474

discretizing a signal is not just an olfactory problem but applies to other sensory 475

modalities which face resource constraints as well (e.g. vision [26–28]). 476

While it is difficult to imagine a biologically-plausible mechanism that achieves the 477

precisely optimal nonlinearity for conveying information about location, there is a 478

simple and plausible mechanism that can achieve an approximation: ligand-receptor 479

binding in olfactory receptor neurons [29]. In steady-state, this mechanism generates a 480

nonlinear encoding described by the Hill equation [30]. This transformation compresses 481

signals at high concentrations, because receptors become occupied, and more ligand is 482

required to activate the remaining receptors [31]. Thus, the degree of compression 483

depends on the apparent dissocation constant Kd, the odorant concentration at which 484

half of the receptors are occupied. Setting Kd at the median odor concentration 485

corresponds to histogram equalization: half of the time the ligand binding will be below 486

the median, and half of the time it will be above. 487

Interestingly, setting Kd at the mean concentration, rather than the median, leads to 488

less compression than histogram equalization. This is because the measured odor 489

concentrations are positively skewed. Since the mean odor concentration is larger than 490

the median, this setting will produce a response that is less than half-maximal most of 491

the time. Such a coding strategy results in more information about location than 492

histogram equalization, as we have outlined above (see Fig.4). In order to implement 493

this strategy, olfactory receptors or receptor neurons would have to have an apparent 494

Kd close to the mean concentration in the environment. Adaptation of Kd to the mean 495

has been observed in olfactory receptor neurons of the fruitfly [32–34], and might serve 496

to increase the amount of information that the fly olfactory system can encode about its 497

location in a turbulent environment. 498

Implications for odor navigation algorithms. With regard to odor navigation 499

algorithms, we note that these fall into two categories: those that rely on local cues (e.g. 500

comparison of the concentration difference in two sensors [35], comparison of sample 501

arrival times in two sensors [13], the combination of local anemotactic and olfactory 502

cues [36,37]), and those algorithms that construct a cognitive map (like infotaxis [1] and 503

mapless [2]). We do not intend to argue for one kind of strategy over the other, but 504

rather to identify aspects of the odor navigation problem that apply to both, as both 505

begin with the acquisition of sensory samples. Our work suggests that these algorithms 506

can operate on a coarse representation of odor concentration since we find that a 507

four-bit representation of the odor intensity reveals almost the same amount of 508

information as finer odor concentration representation. We also found that sampling 509

using two sensors adds substantially to the amount of information about location, and 510

this improvement is not just due to obtaining two samples, but by comparing them in a 511

labelled fashion (as observed in the second row of Fig.3). While this is directly exploited 512

by comparison algorithms that use two sensors, we suggest that, navigation algorithms 513

that use an internal model of the odor distribution like infotaxis and mapless could also 514

be improved by incorporating measurements from two sensors. 515

Finally, an important caveat of our study is that animals have multi-sensory cues 516

available; here we only consider the single modality of odor and do not integrate 517
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information of other modalities, e.g visual or mechanosensory flow information, that 518

navigators have access to. In particular, it is crucial for moths and fruitflies to combine 519

flow information via mechanosensory input when walking and visual input when flying 520

for successful navigation [38–41]. For example, since the wind direction may meander 521

substantially, a simple upwind movement can lead a navigator out of the odor 522

plume [8, 42]. Simultaneously recording flow and odor concentration, and analysis along 523

the lines undertaken here, may shed light on useful sampling strategies for combining 524

both sources of information. 525

5 Conclusion 526

Determining the location of an odor source based on olfactory cues is a challenging 527

problem. We focused on how to optimally sample from the odor distribution when the 528

goal is to determine location with respect to the source. This study shows that the 529

sampling strategy that maximizes information about location under finite resources 530

utilizes two sensors, allowing for the comparison of spatially separated samples, while 531

representing odor concentration in no more than three to four bits. Furthermore, 532

temporal sequences of samples can be averaged to preserve resources while only 533

minimally affecting the amount of information that the sequence conveys. 534
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Fig 1. Overview of the analysis. (A) shows the distance to the odor source for each of
the locations of the two 16-location grid choices (green triangles and blue dots) and the
imaged area. (B) shows probability distributions of the normalized odor concentrations
(normalized by source concentration). The top panel shows the composite distribution,
using data of all 16 locations, for the wide grid in the fast flow condition. Below are
probability distributions for two selected locations (as indicated by solid green triangles
in the inset). (C) Schematic of the information-theoretic analysis. On the left is the
prior probability, which is equal for all 16 locations (depicted by equal height bars). The
second column shows the composite distribution (top) and the result of discretizing it
into M levels (bottom). The discretization recognizes that the observer has limited
coding resources available. A sample from the discretized distribution results in an
updated belief of where the observer is, represented by the posterior distribution. Two
example posterior distributions are shown, one for drawing the sample m1 (orange), and
one for drawing the sample m2 (red). Posterior distributions have lower entropy than
the prior distribution, since the locations are no longer equally likely. The difference of
the entropy of the prior and the weighted average of the posterior entropy is the
information a navigator can expect to learn about location with a given sampling
strategy. Note that this panel is a diagram for the analysis of encoding a single sample
at a single time (S(nbits; 1, 1)); an analogous strategy is used to analyze encoding in two
sensors and/or encoding of multiple samples in time (S(nbits; rspat, rtemp)).
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Fig 2. Snapshots of plume measurements. Three different flow conditions were
measured (A1−A3 fast flow, B1−B3 slow flow, and C1− C3 boundary flow, for
details see table 1). Top row shows the time-averaged odor concentration for each of the
conditions. All concentrations are shown relative to the source concentration. The green
triangles and blue dots correspond to the two 16-location grids. A scalebar indicating
5 cm is shown at bottom right corner of A1-C1. The middle and bottom rows (A2-C2,
A3-C3) show two typical snapshots of the instantaneous odor concentration for each of
the flow conditions .
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Fig 3. Mutual information between location (L) and measurement (M) for different
encoding strategies. The figure indices A, B and C correspond to the different flow
conditions (fast flow, slow flow and boundary flow); the rows 1-3 compare different
encoding strategies. In the first row the mutual information is calculated based on
single samples taken at either the narrow grid (blue curves correspond to blue circles in
Fig.2) or the wide grid (green curves correspond to green triangles in Fig.2). A2-C2:
Comparison of increasing number of bits assigned to two sensors. Two samples are
taken at a single time separated in space. Solid lines show information using knowledge
of which sample occurs in which sensor; dashed line shows information ignoring which of
two sensors measures which sample. A3-C3: Assigning bits to two temporal samples
taken at the same location with a delay of 1.6 s. In all panels, bold curves correspond to
estimates for the locations as given in Eq.(2) and shaded regions correspond to
information estimates for jittered locations (see methods).
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Fig 4. Mutual information based on binarization of single odor measurements
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median would provide most information (indicated as gray curves for comparison). In
condition A (fast flow) and B (slow flow) chosing a threshold above the median provides
more information. The information curve is flat for condition C (boundary flow). Color
coding as in Fig.3.
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Fig 5. Mutual information for different encoding strategies based on two sensors. Eight
bits are assigned in three different strategies to two sensors. The blue shaded region
marks the mutual information for the blue circles and the green shaded region marks
the mutual information for the green triangles (black lines for centered locations, shaded
regions for jittered locations). For each strategy, the left columns (white region)
correspond to a sensor alignment transversal to the centerline of the imaged area. The
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center line. The first row (A1 - C1) corresponds to chosing bins boundaries with
histogram equalization, the second row (A2 - C2) corresponds to chosing bin boundaries
according to the “greedy” method as explained in the methods section.
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Fig 7. Top row shows the mutual information for different strategies of assigning ten
bits into multiple consecutive samples for single sensors. The black solid lines correspond
to mutual information with knowledge of the temporal sequence in which samples occur.
The dashed black lines correspond to mutual information where the temporal sequence
is ignored. The blue and green shaded regions correspond to information for the jittered
locations of the narrow and wide grid. Second row (A2-C2) shows the entropy for the
corresponding strategies. The gray lines indicate the entropy of the incompressible odor
measurements (S(10; 1, 1)). Full blue and green circles represent the entropy of the
measurements at the narrow and wide grid locations. Hollow circles correspond to the
measured sequence where the temporal sequence is ignored.
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Fig S1. Probability distributions of concentrations at the sampling grids (only upper
half of locations shown). Columns (A), (B) and (C) correspond to the three conditions
fast flow, slow flow and boundary flow. Each row shows log probability distributions at
four of the grid points (as indicated by the colors in the inset, top two rows of the figure
for the narrow grid and bottom two rows for the wide grid).
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Fig S2. Optimal binarization threshold and bin boundaries for histogram equalization
(up to 8 bits). The optimal binarization threshold is shown at the bottom of each panel
and is labelled 1∗; above it are the bin boundaries of histogram equalization for up to 8
bits (256 bins). Each of the 49 grid placements contributes one stripe per bin boundary.
Blue corresponds to the narrow grid and green corresponds to the wide grid of sampling
locations. Columns (A), (B) and (C) correspond to the three different conditions fast
flow, slow flow and boundary flow respectively. Note that optimal binarization threshold
(row labelled 1∗) is higher than the histogram-equalization cutpoint (row labelled 1) in
all cases except (C1), the narrow grid boundary flow condition.
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Fig S3. Mutual information between location (L) and measurement (M) for different
encoding strategies using a “greedy” strategy to allocate bin boundaries. Blue curves
correspond to mutual information for the narrow grid and green curves correspond to
calculations for the wide grid. Solid curves represent locations as shown in Fig.2 and
shaded curves represent jittered locations. In A2− C2, solid lines show information,
using knowledge of which sample occurs at which sensor, dashed lines show information
ignoring which of two sensors measures which sample.
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Fig S4. Mutual information between location (L) and measurement (M) for encoding
strategies S(n; 1, 2) where the time between samples is τ80 for each condition as
indicated by the black arrow in Fig.6. Color code as in Fig.S3.
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Fig S5. Mutual information estimates for sampling at two sensors, as a function of the
spacing between them. The spacing used for all two sensor calculations in the main
body is shown as solid lines (regular spacing 2.96 mm), double spacing (5.92 mm) as
dashed lines and half spacing (1.48 mm) as dotted lines. Top row shows mutual
information using knowledge of which sample occurs in which sensor, bottom row shows
mutual information neglecting sensor identity. Conditions: fast flow A, slow flow B and
boundary flow C.
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Fig S6. Mutual information estimates with smaller subsets of the data. Plotted are the
mutual information estimates over inverse number of samples per location. Panels A, B
and C correspond to the conditions fast flow, slow flow and boundary flow; coding
strategy is indicated at the top of each panel. Hollow blue and green circles represent
mutual information for the narrow and wide grid. Solid lines represent least-squares fits.
The intercept with the ordinate represents the extrapolation of mutual information to
the limit of infinite data.
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