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Abstract

We propose a method - Frequency extracted hierarchical decomposition (FEHD) -
for studying multivariate time series that identifies linear combinations of its compo-
nents that possess a causally hierarchical structure - the method orders the components
so that those at the ”top” of the hierarchy drive those below. The method shares many
of the features of the ”hierarchical decomposition” method of Repucci, et al. (2001) but
makes a crucial advance - the proposed method is capable of determining this causal hi-
erarchy over arbitrarily specified frequency bands. Additionally, a novel minimization
strategy is used to generate the decomposition resulting in an increase in stability, re-
liability, and an improvement in the sensitivity to model parameters. We demonstrate
the utility of the method by applying it to both artificial time series constructed to
have specific causal graphs, and to the EEG of healthy volunteers and patient subjects
who are recovering from a severe brain injury.

1 Introduction

The statistical examination of multivariate time series (which we will refer to as vector time
series - VT'S and the individual variable time series will be referred to as components) is
ubiquitous. Examples include stock prices, disease propagation, ecological populations, cel-
lular recordings, chemical reactions, and many more. Common methods used to decompose
these time series into (possibly) more useable forms include principal component analysis
(orthogonal projections chosen to maximize variance explained) and independent component
analysis (ICA) (projections chosen to minimize Gaussian-ness). In this paper, we present
a method that decomposes a VTS into components that form an ordered hierarchy. The
ordering of the hierarchy is one where the components at the end (we will refer to the end
of the hierarchy as the "bottom”) are the least causal, and those at the beginning ("top”)
Granger cause those below.

The method that we propose shares many features with the hierarchical decomposition
(HD) method described by Repucci et al. in [22]. Specifically, both methods are based on
the manipulation of a vector autoregressive model (VAR) by recombining components using



orthogonal rotation matrices. The hierarchy is determined by minimizing the amount of
Granger causality in one direction. HD takes all activity at all frequencies, zero to Nyquist,
into account. In other words, HD attempts to locate a global hierarchy, taking into account
all of the existing processes. It is in this regard that the method we propose provides a
major advance. Our method determines components with the desired hierarchical relation-
ship within user-defined frequency bands. We call this method the Frequency Extracted
Hierarchical Decomposition (FEHD).

For HD, the decomposition is accomplished by rotating the lag matrices of the VAR
model so that the resulting similar matrices are as lower triangular as possible (using the
sum of squares of the upper triangular elements as the quantity to be minimized). If it is
possible to simultaneously triangularize the lag matrices with a single rotation matrix, then
the rotated data will have the property that components near the bottom do not Granger
cause activity in those above. The method we propose shares this motivation, but attempts
to locate the hierarchy without explicitly trying to triangularize lag matrices, something that
is generally not possible.

At the core of FEHD is the machinery of Granger causality. However, the method, along
with HD, is distinct in that the goal is not to simply determine the causal relationships
between time series. Rather, the goal of FEHD is to recombine the components of a VTS
into one where there is (as close as possible to) a hierarchical relationship between the
components.

Our primary motivation for the development of this method is the study of the elec-
troencephalogram (EEG). The use of FEHD for the analysis of EEG is built around the
assumption that the recorded EEG is the concerted output of multiple generators, interact-
ing by superposition. We assume generators posses their own intrinsic dynamics, and that
the interactions between generators can be captured by linearly combining them. In choos-
ing a dynamic model, a multivariate autoregressive model with independent noise terms is a
natural choice. The purpose of FEHD is to extract, from recorded EEG, a set of generators
which interact in a hierarchical way.

In the brain, there are many different processes occurring simultaneously. In terms of
EEG, these processes can often be identified with features in the power spectral density
(PSD). It is unlikely that each of these,and other, processes with content at different fre-
quency bands obey the same causal hierarchy. In fact, several recent studies demonstrate
evidence for causal interactions within frequency specific activity across distributed cortical
networks. In the monkey visual cortex, rhythms in the gamma band have been shown to
originate in V1, and then to influence coherent gamma oscillations in V4, while feedback
from V4 to V1 is not via the gamma band [6]. Additional feed forward activity has been
shown to occur in the theta band (4 Hz.), while alpha and beta activity has been shown to
propagate in the feedback direction [4, 5, 15, 29]. In this context, a clear shortcoming of
HD is that it is incapable of isolating these individual networks. The ability to work within
specific frequency bands is crucial to determining the dynamics for these processes. The ad-
vance that FEHD provides over both HD and the methods used in the studies listed above is
that rather than simply determine the causality that one component exerts on another, the



method seeks to find generators - groups of channels that, collectively, drive other groups of
channels within a given frequency band. Unlike other analyses of the EEG, FEHD does not
treat channels as sources.

It is further well-established that the content of the EEG, specifically the various rhythms
that can be identified by the power spectrum, correlates with underlying brain function
[8]. For example, a consistently organized spatiotemporal pattern characterizes the wakeful
EEG with a predominance of high frequency rhythms present over the frontal regions and
a dominant alpha rhythm of 8-12Hz appearing over the occipital parietal EEG channels
[9]. Also, modulation of specific rhythms is seen in different sensorimotor contexts; e.g. a
suppression of high frequency 25Hz beta rhythms with movement [11], or suppression of
alpha rhythms with shifts of attention [31]. In the context of recovery of consciousness
after severe brain injuries, we have suggested that a sequence of changes in the shape of
the EEG spectrum can be expected to emerge over time during the recovery process [10,
23]; preliminary studies in patients recovering consciousness after post-cardiac arrest coma
support this model [21]. In specific contexts, low frequency oscillations may indicate the
presence of a cortical reserve of healthy, but under excited populations of neurons [10] or
evidence of thalamic deafferentation (see Section 3.2.1). Specific patterns of rhythms may
arise under different pathological conditions, for example, driven by the intrinsic properties
of cortical pyramidal cells [20], or originating from thalamic cells that are slowly bursting due
to low threshold calcium channel mechanisms [19]. These rhythms have been shown to have
distinct dynamical properties. Below we show how the unique features of FEHD analysis
allow us to explore the distinctions in resting EEG dynamics between healthy subjects and
patients with severe brain injuries. Though the focus of this paper is on EEG, the method
that we present can be used on any VTS that approximates a Gaussian time series. Most
notably is ECoG - a modality that is similar to EEG, but provides better-localized responses
because the electrodes are placed directly on the cortical surface.

The goal of this paper is to describe and demonstrate the FEHD method. The structure
of the paper is as follows - a brief description of linear auto-regression for multivariate time
series, with an emphasis on EEG, followed by a description of the FEHD algorithm. Using
synthetic time series, we demonstrate how the method resolves networks possessing different
graphical structures, including a VTS that is designed so that the Granger causal hierarchy
at one frequency is in the opposite direction as the Granger causal hierarchy at a second
frequency. We also demonstrate the method applied to the EEG of four healthy subjects, all
of whom have repeated recordings over six month time periods. We show that the method is
stable, in that the results are consistent both across subjects and across time. We also show
that the method is not overly sensitive to model parameters. Finally, we provide examples
of how the method can test hypotheses regarding the dynamics of an EEG recorded from
patient-subjects recovering from brain injury.



2 Methods

FEHD begins with an autoregressive model of data, Z(t),

L
E(t) = ApE(t — kAL) + & (1)
k=1
where
R - X =0
< W(t),w(t —7) >—{ 0 740 (2)
and where Y is the identity matrix and < -,- > indicates an average over t. We seek

generators such that the residuals do not covary. Thus, we require that &(¢) are independent
(orthogonal) white noise processes. Having orthogonal residuals allows us to calculate the
Granger causality between groups of components of the VT'S. We will describe a method to
convert an arbitrary AR model to one with independent white noise residuals.

The FEHD method relies heavily on the machinery of Granger causality. A time series,
y(t), is said to Granger cause a second time series, x(t), if knowledge about past values of y
allows a better prediction of x. Suppose we have two auto-regressive models. One of these
models, M, makes predictions about x using past values of x. The other, model M, also
makes predictions about x, but uses the past values of both = and y. If the residual time
series corresponding to x for the model M, has less variance than the analogous residual
time series for model M; then the addition of y into the model allowed for a better fit of x.
We say that y Granger causes x. In terms of the AR model:

L
x(t) ) <x(t - At)) -
= A + W(t),
(3 ) =24 (e an) vao
if the (1,2) element of any Ay is non-zero, then past values of y(t) contribute to the prediction
of z(t) and so we say that y(t) Granger causes x(t).
Granger causality can also be determined in the frequency domain, over any band of
frequencies (between 0 and Nyquist). Given an AR model (7), one can obtain the Fourier

transform of the model time series. A calculation that needs to be performed repeatedly in
FEHD is to calculate the frequency response as

H(f) = (1 - ZAke‘ﬁ”f’““> - (3)

where Ay is the kth lag matrix of the AR model. This is a matrix whose elements model (as
a function of frequency) the transfer functions between the individual noise inputs and the
individual outputs. From this, we can compute the spectral density as

S(f) = H(N)ZH(f) (4)



where the superscript * indicates the conjugate-transpose, and ¥ is the covariance of the
residuals, the identity matrix.

The crux of FEHD lies in determining the amount of Granger causality that a single
component applies to the remaining components. To determine this, we organize the data
into two parts - the first part is the first M — 1 components, and the second part is the
remaining Mth component, i.e.

where 77 € RM~! and 2, € R. With this division, we can write the response function (3) as

blocks [7, 13],
ZQ(f) HZ2Z1 H2222 Wy (f)
From this we can write the spectral density matrix of 2" as
SZlZl (f) = Z_i(f)z_i<f)* = Hz121221H:121 + H2122222H:122'

This is the sum of an internal part and an external part. The Granger causality at frequency
f - the part of Z1(f) that is explained by z(f) - is

_ [z, ()]
Fzz—>z1<f) =1In (’H21z12z1H* ‘) (5)
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where | - | indicates a determinant [7]. To determine the Granger Causality over a range of
frequencies [f1, f2], we define

f2
G(3(t) = / Foyri (f)dF. (6)

The goal of FEHD is identification of the rotation matrix )y such that G is minimized
over all rotation matrices, i.e.

G(QuZ(t)) < G(QIL(t)) VQ st. Q"Q = I.

In the following section, we describe the construction of the AR model so that it satisfies
the requirements (2). Then we describe how the FEHD method utilizes (6) to determine a
hierarchical VTS in a specified frequency band.

2.1 Linear Vector Auto-Regression

In this section we describe our process for obtaining an AR model of the form (1), (2) from
the data. The linear AR model is a way to model the dependence of the current state of a
VTS on its past values. Given a VTS, Z(t_r), ..., (to), Z(t1), ..., Z(ty) € RM  the AR model
is 5
T = Z BTy, + wp; (7)
k=1



where Z; = Z(t;), and Bj, € RM*M_ The residuals, wp; = Jp(t;), consist of M white noise
processes with covariance matrix X g. It is of note that ¥ need not be diagonal, since the
residuals can be white noise sequences that covary. We will transform the model so that the
residuals are orthogonal later.

We compute the lag matrices of the model, By’s, using least squares. Since clean EEG
data is approximately Gaussian [26, 27, 22] the least squares method is equivalent to max-
imum likelihood estimation, to solving the Yule-Walker equations [28], and easier to imple-
ment.

There is debate on how to choose the proper order of an AR model, i.e, determining
the number of lags to include in the model. FEHD relies on the spectral quantities that
one can derive from an AR model (see previous section), and so it is reasonable to require
that the model be capable of producing a spectral matrix that is representative of the data.
Commonly used criterion for determining the ideal number of lags to use in an AR model
include the Bayes Information Criterion and the Akaike Information Criterion (AIC) [2,
1]. In this paper, we use 40 lags for all analyses. We choose 40 because it exceeds the
recommendation of the AIC for each data set tested, and the resulting AR models yield
estimates of the power spectra that closely match those obtained using conventional means.

Once we have calculated an appropriate AR model, the next step is to linearly recombine
the M components so that the requirements on the covariance of residuals (2) are satis-
fied. This step is similar in purpose and function to the linear transformation of the model
described in [7], though we implement it as in [22] - we choose a matrix Ay such that

(Agws(t),w(t — ) TAT), = { % :;8 , (8)

where X is a diagonal M x M matrix - specifically, we choose Ay such that ¥ is the identity
matrix. This will allow us to obtain a model where the driving noise term has the same
variance for each of the components. The matrix, Ay, can always be obtained from the
singular value decomposition of the covariance matrix Xp. We let ¢(t;) = AoZ(t;) and
w(t;) = Agwp(t;) for all t;, and Ay = AgByA," for all k = 1..L. The model

L
Ji=> Aok + & 9)
k=1

will therefore have the desired properties - a sufficient number of lags to capture the inter-
actions of the data across components and across time, and independent noisy inputs (&)
with identical variance.

2.2 FEHD algorithm

In this section, we describe the Frequency Extracted Hierarchical Decomposition (FEHD).
The first step, taken to reduce the dimensionality of the problem and hence the computational
workload, is to compute the principal components and use the first M in the analysis. For



all analyses in this paper, we use 10 principal components. Across subjects, this number
accounts for over 85% of the total variance. This does not preclude the possibility that a
causal generator is left out of the data, but it does reduce the probability that this will
happen (See Discussion). The principal components are scaled to unit variance.

A step by step description of the method is as follows (a schematic is drawn as Figure
1).

1. Begin with an AR model (7) for the M-component set of principal components, X,
Transform the data Y; = A¢X:, where Ay satisfies (8) so that the condition (2) is
satisfied.

2. Divide tlie data into two groups - the first M — 1 components go into the first group
(called X(t)), and the last (Mth) component is the second group (called Xs(t)).

3. Find the rotation matrix, o, such that
G(QoX(t)) (10)

is minimal over the set of all rotation matrices of size M x M, where the function G
is defined as (6), the integral of causalities over the desired frequency band . One can
minimize this however one chooses. For the analysis, we employ gradient descent with
many initial conditions.

4. Once the optimal rotation matrix @)y is found and (10) is minimized, the component in
the Mth position will be the least causal component possible by rotating the VT'S. Once
this component is identified, it is marked as the least causal and removed. The resulting
data set has dimension M — 1. With this resultant, repeat the process beginning with
step 1, which will identify the least causal component of this data set. Continue to
repeat until only one component remains.

At the end of the procedure, the inferred hierarchy begins with the last remaining compo-
nent (was never the least causal), followed by the last removed component, then the second
to last component removed, and so on. In this way, a hierarchy is determined for which
those components at the bottom (the first to be removed) apply minimal Granger causal-
ity to those above, resulting in a multivariate time series where the causal influence of the
components at the bottom is minimal.

To perform the minimization of step 4, we use gradient descent. If there are M remaining
components, there are M — 1 rotations to consider. The net rotation can be written

Qnet = QIQZ-‘QMfl

where each @); is a rotation matrix that combines the ith and Mth component. Each of the
Q;’s are the identity matrix, except

Qi(i,i) = Qi(M,M) = cos(0;)

7
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Figure 1: Schematic of the FEHD method, as an iterative loop. In step 1, and AR model
is created. On the first pass, the model will be generated using the principal components
of the data (Step 0, not shown). On subsequent passes, the AR model is computed using
the time series determined in step 4. In step 2, the data is divided into two groups, the first
M — 1 components in one group and the last component in the second group. In step 3 the
rotation matrix is found such that the Granger causality from the single component group
onto the M — 1 component group is minimized, over the desired band of frequencies. The
function G is defined as (10). In step 4, the least causal component is set aside, and these
steps are repeated on the remaining components, until there is only one left.



Qi) = — Qi = sin(6;).
We seek values of 6; that minimize expression (10). Since gradient descent is susceptible to
getting trapped at local minima, we repeat the process with 2500 random initial conditions.
We iterate the gradient descent 50 times for each initial condition and take the minimum
value found as the minimum.
On output from the algorithm we obtain a transformation matrix, C, such that CX (1)
is the hierarchical time series. For each of the £ = 1..M — 1 minimizations, there will be an

optimal rotation matrix Qq, as well as the matrix used to ortho-normalize the residuals of
the AR model, Ay, (8). After the first time around the FEHD loop, set

C1 = Qo1 Ao

Since we remove the least causal component after identifying it, subsequent iterations of )y
and Ay will shrink one dimension each step, i.e. Qo will be M — 1 x M — 1, Qo5 will be
M —2x M — 2, etc. After each removal (j = 2..M — 1), we set

| QojA0; O A
C]_[ A [

where [; is the [ x [ identity matrix. When the algorithm is finished - M — 1 components
have been identified and removed - we let C' = C);_; and we have

H(t) = Cy_1 X (), (11)

the hierarchical time series we desire.

We note that the method cannot be applied to signals that consist of pure sinusoids. The
reason is that its starting point is a stationary VAR model. Stability of such models requires
that their poles are inside the unit circle. This means that pure sinusoidal inputs cannot be
fit, and Step 1 cannot be carried out. This makes sense, since with pure sinusoidal signals,
it should not be possible to make inferences about causal influence.

In the Results section, to demonstrate the effectiveness of the method and analyze the
output, we will use ”pairwise Granger causality”, the Granger causality between two compo-
nents (this differs from the method itself, which is a multivariate method where the cuasality
of one component on a group of others is minimized [16]). We compute this as in [7]. Specif-
ically, let H (t) be the hierarchical VTS and denote

0= [

where h,(t) is the zth component of H. We determine the Granger causality of the jth
component on the ¢th component as

f2
JRCEn (12)

where G is defined the same as in equation (6), with 2} = h; and 2z, = h;.

9
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Figure 2: Criterion for a causal generator. The left panel contains the heat-map determined
by the pairwise Granger causality for each pair of components. Each block represents, in
color scale, the amount of Granger causality exerted from one component (designated by
column) onto another (designated by row). Diagonal entries are set to zero. The down-
stream /upstream ratio is the ratio of the sum of squares of values below the diagonal to
the the SOS above the diagonal. In the right panel, we have plotted the column sums (of
squares). For each component, this quantity serves as an index of causality. The red line is
the criterion chosen for a component to be considered a causal generator. In this example,
we would include components 1,2, and 4 as generators.

2.3 Analysis of EEG

In this section we describe how we interpret and exposit the results of the FEHD method
on electroencephalogram data. Once the FEHD components have been determined, we con-
struct the pairwise Granger causality heat-map. This is an array that contains the magnitude
of the Granger causality over the given frequency range for all pairs of components, in both
directions. The columns correspond to the causal component and the rows correspond to
the caused component. The values are plotted on a color scale where blue is zero and red is
the highest value on the grid. If, for example, you wanted to determine how much Granger
causality from component N to component M, you would look at the color in the Nth
column and Mth row (see Figure 2).

The pairwise Granger causality heat-map is used to compute the downstream/upstream
ratio (D/U ratio) - the ratio of the sum of squares of the lower triangular portion of the
heat-map and the sum of squares of the upper triangular portion of the heat-map. This
index is identical in purpose to the ratio calculated in [22], used to determine how successful
the method was in finding a multivariate time series such that most of the causal intrac-
tions are feed-forward. There is more feed-forward connectivity than feedback whenever the
D/U-ratio is greater than one. A large D/U-ratio indicates that the method has determined
a transformation of the data such that the resulting time series is largely feed-forward, as

10



desired. To show that a given D /U-ratio is significant, and not probable for a randomly con-
nected network, we create surrogate data sets from the hierarchical components by applying
the Fourier transform, randomizing the phase at each frequency, and inverting the trans-
form. We obtain a multivariate time series where the auto-spectra of the hierarchical time
series are preserved, but the phase relationships between components are randomized. Since
Granger causality depends on these phase relationships, the drive between these components
is randomized. We compute the pairwise Granger causality matrix for 250 surrogate time
series to obtain a distribution of D/U ratios, with the mean of the logarithm of the D/U
ratios approximately zero. The level of significance of the D/U ratio for a hierarchical time
series is determined against its corresponding distribution.

We also use this heat-map to determine which FEHD components are causal generators
and which are not. To do this, we compute the sum of squares of each column of the heat-
map. Each column sum is a rough measure of causality of each corresponding component.
We plot these column sums in the right panel of figure 2. From the plot, we choose a
cutoff (red line) where those components that exceed the line are considered generators. We
do not use a statistically rigorous rationale for the choice of this cutoff. For our purposes
here, the difference between generator or not is not a sensitive one, and so we choose the
cutoff by eye. Figures 11 and 12 are constructed by displaying the line spectra and topoplot
for the components deemed causal generators, omitting those generators that appear to be
artifactual.

The EEG signals were recorded using the Natus XLTEK FS128 (San Carlos, CA) EEG
data acquisition system (sampling rate = 250 Hz., impedance < 5 kOhms). EEG used in
analysis was recorded from participants (4 healthy controls and 2 brain-injured patients) in
the awake, eyes-opened resting state. Artifact-free portions of the recordings were selected
via visual inspection, partitioned into 3-second segments, and montaged using a 19-channel
bipolar montage. The data were then detrended (first order) segment by segment.

3 Results

In this section we apply the FEHD method. First we apply to artificial time series that
are constructed specifically to test the capacity of the method to determine generators and
hierarchical networks for different graphs. We include an example that demonstrates how
FEHD can correctly determine hierarchical networks that are specific to a frequency band.
Then, we apply the method to EEG data recorded from four healthy controls and two
subjects who have suffered a severe brain injury.

3.1 Application of the method to synthetic time series.

We begin by demonstrating the FEHD method on synthetic time series. These time series
are generated by filtering white noise through an AR model designed to manifest a specific
graph. We use these synthetic time series to accomplish the following:

11



. Demonstrate that the method recovers a purely hierarchical time series from a random

combination of generators, over the entire bandwidth. For this we use the identical
time series used to validate the original method in [22].

Determine how independent components (components that are neither driven by nor
drive other components, in terms of Granger causality) are treated by the method. In
particular, we observe the non-uniqueness of hierarchical time series when there are
multiple non-causal components.

Characterize the behavior of the method on a synthetic time series that does not have
hierarchical structure. For this, we filter noise through an AR model designed to
correspond to a cyclical graph.

. Demonstrate that the method is effective at isolating frequency band-specific hierar-

chical time series.

Provide an example that will illustrate and demonstrate the process of choosing the
number of principal components to use in the analysis, as well as show that the method
is resilient to shared instantaneous noise.

The synthetic time series that we use correspond to the following graphs:

1.
2.
3.

A purely hierarchical causal chain,

a pair of independent generators that both influence a third component,
a pair of independent networks,

a cyclic network,

a network where the hierarchy at one frequency is opposite the hierarchy at another
frequency.

A network with a single causal generator driving multiple caused nodes. We execute
the method for two cases, one where there is no shared noise between components, and
one where there is substantial shared noise.

Each of the non-frequency dependent time series (1-4) are constructed the same way.
We construct an auto-regressive model with lag matrices that correspond to the graph in
question, i.e. if component 1 Granger causes component 2 then at least one lag matrix will
have a non-zero value for its (2,1) entry. For each example we use two lag matrices. We
use the AR model consisting of these lag matrices to generate a synthetic time series. To
do this we choose two values, the initial conditions ¥_; and 7y, and simulate a vector time
series of independent white noise, . We iterate the AR model (9) to obtain a synthetic
time series, Z(t). Next, we create sixteen random combinations of the components of ¥ (as
an example, see the upper right panel of figure 3), and compute the principal components
of these. We keep the first three (example time series 1,2,4) or four (example time series
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3) (lower left panel of Figure 3) principal components. The method is carried out on these
principal components, and the hierarchical components are computed (lower right panel of
figure 3).

It is important to note that because the synthetic time series have rank precisely 3 (or
4), choosing the number of principal components is trivial. For experimental data, choosing
the number of principal components is not trivial.

The first three examples that we provide are hierarchical networks that can be modeled
by an AR model with lower triangular lag matrices. The first of these is a purely hierarchical
network. In such a network, each component Granger causes each of the components beneath
it in the hierarchy (the downstream graph is dense), and no component Granger causes
any component above. The generating AR model consists of lag matrices that are lower
triangular, and no component will be independent (neither Granger caused nor Granger
causing).

The synthetic time series used in [22] possesses a purely hierarchical structure. We take
advantage of this and use the same synthetic data to test FEHD over the entire bandwidth.
Since there is a purely hierarchical structure, HD performs very well, and provides a ground
truth for comparison to the results of FEHD. The results in figure 3 show that FEHD
successfully recovers the original generators from the principal components of the random
combinations.

If the entire bandwidth is considered, and the network can be rotated into a purely
hierarchical form, the methods HD and FEHD will perform identically, since they are seeking
the same thing. The proof is based on the convergence relation given in [7]:

s

— [ Feax(ir < o,

™ —T

where Fy_x is the Granger causality measure in the time domain and is trivially zero

for when X is above Y and all lag matrices are lower triangular. So, if all upper triangular

entries of all of the lag matrices are zero (the HD solution) then the causality in the frequency
domain will also be zero.

The hierarchical decomposition for a purely hierarchical network is unique. If the network
is not purely hierarchical and there are multiple components that are non-causal, then the
time series determined by FEHD will not be unique. To demonstrate this, we consider a
pair of synthetic time series designed to have multiple non-causal components.

We consider how the method performs on a multivariate time series containing two com-
ponents, independent of one another, mutually driving a third component (Figure 4). It can
be seen from this figure that the method does not reproduce the original generators - the top
two components determined by FEHD are not the same as the first two original generators.
However, the method does return a hierarchical time series. FEHD successfully identifies the
non-causal component (the third original component is the same as the third hierarchical
component). This non-causal component is the only component that is Granger caused so
when it is removed from the analysis the remaining components are both non-causal. Hence,
any linear combination of these components will also be non-causal. At each step FEHD
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Figure 3: Application of FEHD on hierarchically generated time series. The upper left panel

shows the hierarchical generators. In the upper right panel are random linear combinations

of the generators. The lower panels are the first three principal components (left) and the
Hierarchical components (right).
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Figure 4: FEHD on network with two sources driving a third component. The left panel
shows the time series of the original components (top), and the hierarchical components
(bottom) as determined by FEHD. The middle column shows, as a color scale, the causal
influence components exert on one another for both the original and hierarchical components.
The third column is a cartoon of the graph for the original and hierarchical components.

The dots on the right are color coded and numbered to match the time series on the right
and the nodes in the graph on the right.
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Figure 5: FEHD on network with two independent sub-networks. The layout is the same as
in Figure 4, but with line thicknesses reflecting the causality from one component to another
(Thicker is greater).

searches for the least causal linear combination. Any linear combination of non-causal com-
ponents is non-causal, and so any linear combination will yield this minimum (zero). Thus,
the determined hierarchical time series is not unique. The specific linear combination that
the method arrives at depends on the noise in the coefficients of the model. Even though
FEHD did not reproduce the original components, it did produce a valid hierarchical VTS,
as intended.

To further illustrate the non-uniqueness of the determined hierarchical time series, we
consider a synthetic VI'S where there are two independent networks (Figure 5). Each of
these networks consist of two components, one that Granger causes the other. Since neither
of the "receiving” components exert any Granger causality, any combination of them will be
non-causal. This is the same situation as we saw in the previous example, and again FEHD
does not reproduce the original generators. However, it does determine a time series that is
hierarchical, as desired.

The next example is a cyclic network, the first of our examples that is not hierarchical
to begin with. The goal of FEHD is to minimize feedback, and so it is interesting to see
what it does on a network that has a strong feedback. Figure 6 shows the results when the
method is applied to such a network. The original time series is generated exactly the same
as above, except rather than a hierarchical structure, a feedback is included in the AR model.
Since all three original components are Granger causal, any linear combination of them will
also be Granger causal. FEHD locates the linear combination that exerts the least amount
of Granger causality. This minimum will not be zero, and so there will be some feedback.
Thus, FEHD is not going to locate a strictly hierarchical VTS, where all Granger causality
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Figure 6: FEHD on a network with feedback. The details are the same as in Figures 4 and 5.
In the lower panel, the gray arrows are the feedback connections, which are present but much
smaller than the feed forward connection from component 1 to component 2. We note here
that although the connection matrix shows a connection from component 1 to component 3
for the original components, because we designed this time series, we know this connection

is not there. The appearance of this connection results from the well known inability of
Granger Causality to determine conditional causality.
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is downward. Rather, it provides as close to hierarchical VTS as possible by minimizing
the feedback for each component. One can see from figure 6 that there are small feedbacks
remaining after FEHD (lighter blue squares in the upper diagonal).

We note here, for this cyclic network, that the D/U-ratio defined in section 2.3, will be
large. Generalizing, consider an N-component VTS organized such that each component
causes the next with GC of 1, with the exception of the Nth component which causes the
first with a GC of 1. This will have a D/U-ratio of N-1, which is much larger than one would
expect from a random network, and thus significant. This example shows that the D/U-ratio
is not useful as a classifier of VIT'S with zero feedback, but rather an indicator of the amount
of feed-forward causality relative to the amount of feedback.

The next example we provide illustrates the major advance of FEHD - the ability to
determine hierarchical time series within arbitrary frequency bands. To demonstrate this,
we construct a multivariate time series such that at frequency w; = 0.2 (where At =1 so
that the Nyquist frequency is 0.5) the first component Granger causes the other two, and at
frequency ws = 0.4 the third component Granger causes the first and second components.
The auto spectra, and the pairwise Granger causality indices for such a time series are shown
in Figure 7.

To create a VTS series that satisfies the above description, we create two AR models.
First, we begin by fitting a damped oscillation with frequency 0.2 to a 2 lag AR model. Then
we proceed as in the previous examples, creating an AR model that is hierarchical with the
damped oscillatory component as the generator. We also do this for a damped oscillator with
frequency 0.4. We filter Gaussian white noise through each of these models, and then add
the resulting time series (flipping the second so that the causality is upward). We repeat the
process of previous examples by randomly combining into 16 components, taking the first
three principal components, and applying the FEHD method separately on the frequency
ranges [0.15,0.25] and [0.35, 0.45] using 52 frequency points to approximate the integral (10)
(chosen to be consistent with the FFT).

The left panel of Figure 8 contains the original generators. In the center panel, the hier-
archical decomposition is shown for the frequency band [0.15,0.25]. The method effectively
computes and orders the generators for this frequency band (2 and 3 are switched, but they
are independent and so they can appear in either order - see Figure 7). On the right is the
FEHD for frequencies [0.35,0.45]. The method successfully orders the components here as
well, with generator 3 moving to the top, and 1 moving to the bottom. Here, generator 2
also Granger causes 1, so there is no ambiguity.

The final example we provide is a synthetic time series that corresponds to a type of
network that is prevalent in the brain, a single generator driving behavior at multiple (eight)
other locations. We do this analysis twice. First, we generate time series so that there is no
shared noise when fit to an AR model (residuals are close to orthogonal). When we do the
analysis a second time, we generate the time series so that the residuals covary substantially,
modeling a shared noisy input. As in the previous examples, we randomly combine the
original components to have a multivariate time series with sixteen components.

Figure 9 shows the results for each of these analyses. In each case, the components
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Figure 7: The causality of the example multivariate time series frequency by frequency. The
left panel shows the hierarchy: at frequency w; = 0.2 the top component Granger causes
the other two, and at frequency ws = 0.4 the third component Granger causes the other
two. The right panel shows the pairwise Granger causality at all frequencies. Here, the
ith column represents the causal index (expression (5)) of the ith component at the given
frequency upon the component corresponding to the given row.
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Figure 8: Hierarchical Decomposition by frequency. The left figure is the original generators,
chosen so that at w; = 0.2 the first generator causes the other two and at wy = 0.4 , the
third generator causes the other two. The middle figure shows the FEHD at w; (integral
over [0.15,0.25]) where the first generator on the left is most causal, and the right figure
shows the FEHD at wy (integral over [0.35,0.45]) where the third generator on the left is
most causal.
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Figure 9: FEHD successfully determines the generator for an all-to-one network, where a
single component causes activity in all other components. The upper part of the figure shows
cartoons describing the networks. Each has the same structure - a single causal generator
that influences behavior in all of the other nodes (black arrows). For the actual analysis
done, there is one generator and eight recipients. Each node in each network also has its
own, independent input. The difference is that for the network on the right, each node
also receives a shared input (magenta arrows). The lower part of the figure shows the time
series of the original generator as well as the component determined to be at the top of
the hierarchy by FEHD. In each case, the resemblance between the original generator time
series, and the time series identified by FEHD is very strong - the covariance is greater than
0.97 (out of 1) for each.
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Figure 10: The performance of FEHD when the generator exhibits low variance. In this
figure, we show how FEHD resolves the network described in figure REF using a range of
principal components. The columns are as follows: The number of PCs used in the analysis,
the time series of the first FEHD component (the first row is the true generator), the plotted
time series, the covariance with the true generator, and the percentage of the identified first
hierarchical component made up of the true generator.

determined by FEHD to be at the top of the hierarchy are a very close match to the original
generator. The rest of the FEHD components are not unique, since they are just random
combinations of non-causal components, and so we do not show them.

The above time series was constructed to have another property - the time series corre-
sponding to the node that drives all of the other nodes has relatively small variance. When
determining principal components, this results in most of this generator being contained
in smaller principal components. In figure 10, we show the results for a range of principal
components used (4-9). We measure the closeness of the identified generator to the true
generators using covariance, as well as the relative contribution of the true generator to the
identified one, in terms of weight. Since the generator is not largely present in the first few
principal components, FEHD will not be able to locate it until sufficiently small principal
components are used. Figure 10 shows that as more principal components are added the
isolation of the true generator becomes increasingly precise.

In addition to the capacity to derive the hierarchical decomposition for user-specified
frequency bands, the method provides another, more subtle, improvement over HD. If a
multivariate time series has one or more independent components (neither Granger caused
nor causal), then the decomposition obtained by HD is not unique. That is, an independent
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component can appear anywhere in the hierarchy, since it would not contribute anything to
the upper triangular part of any of the lag matrices, regardless of where it was. To contrast,
FEHD would place all such components at the bottom of the hierarchy, since they exert no
causal influence. If there are multiple such components, neither method is unique, however
FEHD will place the components at the bottom of the hierarchy whereas HD would place
them randomly throughout.

3.2 Application of the method to the EEG

The primary advance that we make with FEHD, over HD, is that FEHD is able to deter-
mine hierarchical time series over any band of frequencies. To demonstrate and justify the
method for use with EEG, we perform the FEHD analysis on the EEG recorded from four
healthy subjects, each of whom have been recorded at two time points (figures 11 and 12).
Additionally, we apply FEHD to the EEG of two subjects who have suffered a severe brain
injury.

We use the data from these six subjects to demonstrate the following:

1. Functionality - simply put, we want to demonstrate that the method does what we
claim it does. We show that FEHD successfully forms components of a highly hi-
erarchical time series, where components at the bottom exert a minimal amount of
Granger causality on those above. Moreover, the method is capable of determining
distinct causal networks for different frequency ranges. The causal structure of a hier-
archical network uncovered in one frequency band will not generally apply to another
frequency band.

2. Stability - Small perturbations to the data must result in proportionately small changes
in the results. We show that the method is able to extract similar generators for EEG
recorded at time points 6 months apart. This test-retest reliability is strong evidence
of a stable method.

3. Biological usefulness, specifically for EEG - We aim to show that the method has
the capacity to provide information about the brain using EEG data. We do this
by viewing the results in light of some "ground truths” of resting state activity in
the healthy brain. We show how the method facilitates a hypothesis regarding the
mechanism of dysfunction in the global dynamics of an injured brain. We also provide
a case where removing the pre-image of pathological FEHD components from the data
allows isolation of a previously hidden (and indicative of healthy thalamocortical loops)
rhythm.

We compute the downstream /upstream Granger causality ratios to determine how hierar-
chical the components determined by FEHD are. In terms of the pairwise Granger causality
heat-maps, we divide the sum of squares of the lower triangular entries by the sum of squares
of the upper triangular entries. A large ratio indicates that the method successfully ordered
the components so that components apply the minimal amount of Granger causality to those
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Figure 11: FEHD analysis over the a band (8-12 Hz) of the EEG of four healthy subjects.
Each of the four large panels represents one subject, tested at two time points six months
apart. Plotted are the line spectra and topographic map of the location on the scalp of the
generators determined by FEHD, as described in the methods section.The generators are
shown in the order determined by FEHD, and so the hierarchy is from top to bottom, with
the exception of the first time point of subject 3. In this case, the generators do not exert
a large amount of drive on one another, and so clearly identifying similarities between the

analysis at the two time points took precedence over the exact output of FEHD.
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Figure 12: FEHD analysis over the /5 band (the specific range varies) of the EEG of four
healthy subjects. Details are identical to that of figure 11. Frequency ranges for subjects :
Subject 1, 20-30 Hz; Subject 2, 18-22 Hz; Subject 3, 20-22 Hz; Subject 4, 14-18 Hz.
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First Time Point

Subject 1 Subject 2 Subject 3 Subject 4
FEHD FEHD FEHD FEHD
Q 15} Q 15} « 15} Q 15}
pac @ 70 | 1.94 | 287 | 7.17 | 278 | 3.81 31.2 | 14.7
g 1.19 | 510 | 3.37 | 14.17 | 3.54 | 28.6 | 26.1 | 81.9
Second Time Point
Subject 1 Subject 2 Subject 3 Subject 4
FEHD FEHD FEHD FEHD
« 16 « 16 Q@ 15} Q 15}
pac @ 28.1 | 1.563 | 36.9 | 853 | 26.4 | 3.34 130 | 45.0
B 529 | 351 | 1.09 | 225 | 3.19 | 12.51 | 45.7 | 75.1

Table 1: Table containing the downstream /upstream ratios of the pairwise Granger causality
for each of the four healthy subjects. The columns correspond to the FEHD analysis done,
by subject and frequency range (« or ). The rows correspond to the frequency range over
which the pairwise Granger causality (PGC) is computed. The yellow cells contain the ratios
for when the FEHD analysis and pairwise Granger causality are computed over the same
frequency band. The uncolored cells contain the ratios for when the FEHD analysis and
pairwise Granger causality are computed over different frequency ranges. All of the ratios
in yellow cells are significant (p < 0.01).

above them in the hierarchy. The results of this, for four healthy subjects, are shown in Table
1 (yellow cells). All of the D/U ratios in these cells are significant (p < 0.01). In all cases,
the method was able to determine a hierarchy where there is much more Granger causality
in one direction (downstream) than the other (upstream). Moreover, the method determines
different causal networks for different frequency ranges. We compute the hierarchical com-
ponents for one frequency range, and check the pairwise Granger causality over another.
For example, we compute the FEHD components over the a-range, but check the pairwise
Granger causality over the S-range. The results are shown in Table 1 (uncolored cells). For
each subject in each visit, the D/U ratio is higher when the pairwise Granger causality is
computed over the same frequency range for which the FEHD components were determined.
This result shows that the method is capable of determining hierarchical networks in different
frequency bands, and that the networks are unique to the frequency range analyzed.
Figures 11 and 12 demonstrate a robust test-retest reliability of the method. For data
recorded at time points months apart, FEHD extracts a set of generators that exhibit re-
markable similarities within subject 1-3, both in terms of spectral content and location on
the scalp. Specifically, in the a-range (Figure 11), the first two generators determined for
Subject 1, the first for Subject 2, and the first two for Subject 3 are very similar across
time points. This reliability can also be inferred for analysis in the S-range (see Figure 12).
The generators for Subject 1 possess the same frontal location on the head, though for time

25



Subject 1 Subject 2 Subject 3 Subject 4
a1D2 Oég.Dl O[2D1 O{1D2 O[ng O[1D2 a2D1
D/U ratio « | 6.39 7.19 3.26 | 1591 | 3.32 38.0 3.97 4.96

Table 2: Table of downstream/upstream ratios when a-range transformations are applied
across visits. For each subject, o;, @ = 1,2 represents the a-range FEHD transformation
matrix from time point ¢, and D, is the data from time point j. All of the D/U-ratios listed
are significant, with p < 0.01 for columns with green headers and p < 0.05 for columns with
blue headers.

point 1 the method found an additional generator and did not remove the contribution from
occipital channels. The first generators determined for Subject 2 are remarkably similar.
The analysis of Subject 3 is similar to that of subject 1, in that an additional generator
was determined by the analysis for time point 2. For each time point, a frontal-central
generator was determined. For both the a-range and the [-range, the analysis of Subject
4 produced the worst results, as the consistency between time points is not as clear as in
the other subjects. Moreover, the method extracts the same generators for each frequency
band. We suspect that these differences are in the data since the method determines the
most hierarchical networks for this subject, in terms of downstream /upstream ratios, of the
four subjects presented.

By visual inspection, we have seen similarities in the generators. We also want to know
how similar the determined networks are between time points. To do this, we once again
rely on the downstream /upstream ratio of Granger causality. In what we refer to as cross-
transforming, we apply the transformations obtained by FEHD from the data at one of the
time points to the data recorded at the other time point. For example, we apply FEHD
to the data recorded at time point 1, obtaining a matrix specific to the o range. We then
apply this linear transformation to the data recorded at time point 2. We will refer to
this component set as a;Ds. Then, we carry out the pairwise Granger causality analysis
on this set of components, for both the o and [ ranges. If one transformation results in
a significantly hierarchical network when applied to either data set, then we infer that the
generators determined by the method are similarly causal across time points.

The results of cross-transforming over the « frequency range are shown in Table 2. From
this table, it can be seen that all of the cross transformed multivariate time series are
hierarchical ( D/U ratio values greater than 1). Moreover, cross-transformed time series are
significant (Blue headers indicate p < 0.05 significance and green header indicate p < 0.01
significance, see section 2.3 for significance testing).

We repeat the cross-transformation analysis for the S-range. (Table 3). As above, each
of the cross transformed time series are hierarchical. The values are often significant as well,
as denoted by the blue and green headers.

In terms of biological inference, the generators for the a-range are mostly occipital. On
the other hand, the generators for higher frequency activity (f) are largely frontal. For
healthy brains, the occipital nature of the a-rhythm and the frontal origins of 5 activity are
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Subject 1 Subject 2 Subject 3 Subject 4

/81D2 ﬂ2D1 51D2 /82D1
D/Uratio B | 1.68 | 1.97 | 3.79 | 540 | 2.61 | 247 | 5.73 | 3.16

Table 3: Table of downstream/upstream ratios when S-range transformations are applied
across visits. The color of the header indicates significance: green corresponds to p < 0.01,
blue to p < 0.05 and red to p < 0.1.

well known. Because the method is able to capture this fundamental property of healthy
brains, we have reason to believe that this method is capable of lending insight regarding
the global dynamics of the injured and recovering brain. In the next two subsections, we
apply these methods to the EEG recorded from two patient subjects recovering from severe
brain injuries.

3.2.1 FEHD as a tool to study recovery from severe brain injury

We provide two examples that illustrate how FEHD can allow for hypothesis development
and testing in human subjects recovering from severe brain injuries. This area of research
is one likely to benefit from the availability of FEHD analysis since the EEG in the severely
brain injured subject typically combines a mix of signals from recovering brain networks and
those of pathological origin. The latter arise from transient functional deafferentation or, in
many cases, permanent structural injuries [24, 23].

Because recovery of consciousness is linked to measures of global brain dynamics, the
ability to assess the presence of specific causal dynamic processes is important. These pro-
cesses can either suggest restoration of function or the isolation of pathological rhythms.
Here we provide two relevant examples. The first example is the evaluation of an abnormal
dynamical element detectable across the scalp EEG of an injured subject. This element
arises coincident with recovery of brain function (along with behavioral improvement). We
show how FEHD analysis supports a biological interpretation of the origin of this EEG fea-
ture. In a second example we illustrate, using data obtained from a different patient subject,
how the use of FEHD to isolate pathological dynamics can allow for further evaluation of
recovery of brain function. Removal of the pathological component(s), identified by FEHD,
and reanalysis of what remains allow us to uncover and isolate a normal, dominant, occipital
a-rhythm originating in a more preserved cerebral hemisphere. Both examples demonstrate
the utility of the features of FEHD analysis over those of the full-bandwidth HD method.

Isolation of pathological dynamics: thalamocortical dysrhythmia
In this example, we evaluate findings from a patient subject who spontaneously recovered
from the minimally conscious state to a level of full, interactive spoken communication

with persistent disorientation (see [17] for topical review) over a 10 year time period. In
this subject, an initial EEG assessment showed a minor feature in the power spectrum
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Figure 13: Structural MRI and PET for patient subject IN388R. Panel A shows four repre-
sentative magnetic resonance images revealing an asymmetric injury of the left hemisphere.
Panel B shows changes in regional cerebral metabolic rates measured by fluorodeoxyglucose
positron emission tomography (I8FDG-PET). A global increase in cerebral metabolic rate
is seen between the first measurement 1.5 years post-injury and the second time point at 10
years post-injury (coincident with the EEG measurements shown in Figure 14).

around 4-8 Hz that, after 10 years, became a prominent feature on the majority of recorded
channels. This emerged along with a new, very prominent broad peak in the power spectrum
in the range of 25 to 35 Hz (see Figure 14). The emergence of the combined 4-8Hz and
25-35Hz features of the resting EEG correlated with broad increases in fluorodeoxyglucose-
positron emission tomography (18FDG-PET) measured cerebral metabolism across both
hemispheres with a marked asymmetry of near normal metabolic rates across the right
hemisphere and relatively lower resting metabolism in the left hemisphere (Figure 13). Both
the EEG and 18FDG-PET changes coincided with the patient’s recovery of spoken language
and interactive communication between 1.5 and 10 years after severe brain injury.

The combination of these features in the power spectrum (4-8 Hz for the low frequency
peak, and 25-35 Hz for the high frequency peak) are consistent with a physiological phe-
nomenon reported in the EEG of several neurological disorders known as thalamocortical
dysrhythmia, TCD [14, 19]. TCD is described as an EEG or magnetoencephalography
(MEG) phenomena arising from a deafferented thalamus that produces low threshold T
type calcium channel bursting during wakeful periods as result of relative hyperpolarization
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Figure 14: Principal components and FEHD components of EEG recorded from patient
subject IN388R at 10 years into recovery from a severe brain injury. In the left column are
the first five principal components, line spectra and the spatial weights. In the right column
are the first five hierarchical components as determined by FEHD over the frequency range
25 — 35Hz. The hierarchy is from top to bottom.

because of loss of excitatory inputs [14, 19]. The theta frequency (4-8Hz) burst of the tha-
lamic neurons drive cortical cells and produce slow oscillations in the EEG. The arriving
bursts are theorized to create a lateral inhibition effect within the surrounding cortex, re-
sulting in the generation of the linked higher frequency rhythm (this is known as the edge
effect [19, 18]).

Both the general increase in global cerebral metabolism and the persistent left sided
hypometabolism seen in the patient’s PET images (Figure 13) support the possible emergence
of the combined 4-8Hz and 25-35Hz features in the resting EEG as resulting from this
mechanism. Based on this hypothesis we computed the generators for each of these rhythms
using FEHD over 4-8 Hz for the low frequency peak, and 25-35 Hz for the high frequency
peak (Figure 14) and found two elements of evidence in favor of this hypothesis. The
first observation is in comparison to findings of a separation of dominant low and high
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frequency features in the power spectrum under FEHD for a typical healthy subject (see
Figures 11 and 12). Figure 14 shows that the application of FEHD consolidates the high-
frequency rhythm into the two first components, whereas this rhythm was pervasive among
the principal components. Moreover, the low frequency theta peak is also largely contained
in these first two components. This suggests a dynamical linkage of these two rhythms
that was not seen in the analysis of healthy individuals (Figures 11 and 12). The second
element of evidence is that the generators underlying these rhythms appear to be spatially
located adjacent to the most severely injured regions of the cerebral cortex, corresponding
to partially innervated cortical regions with some intact thalamocortical connections and
residual cerebral metabolism.

The results of the FEHD analysis, taken together with the patient’s marked behavioral
improvement - becoming alert and communicative - are supportive of the hypothesis that
there is a TCD process emanating from deafferented cortical tissue surrounding the large
lesion in the left hemisphere (see Figure 13).

Removal of pathological dynamical elements and analysis of remaining residual
resting EEG signals

FEHD provides a linear transformation of the data, and one can use this linear operator
to selectively remove various features that FEHD analysis identifies with the extraction of
hierarchical components. Procedurally, the removal process is the same as when one removes
a principal component or an independent component, via ICA, from a multivariate vector
series: If W = Cjy_ is the matrix identified by FEHD (equation (11)) so that

Y(t) = WX(),

where X (t) is the original data and Y'(¢) are the transformed components, we can "remove”
components of Y from the original data, X, using linear projections. For example, if we
want to remove the first FEHD component, we can adjust the original data as

(1) = x(1) - XH(;)V—HWW

where W'l is the first row of W. This ensures that

Wy - X(t) =0,

thus removing the first component of Y from the original data X. Similarly, removal of
multiple components from the original data simply requires determining an orthogonal basis
for the relevant rows of W and removal of the projection of the data onto each of these basis
vectors, as above, one at a time.

Since FEHD identifies components based on the Granger causality, removal of compo-
nents can allow the user to remove such isolated dynamical systems that are identified by the
analysis. This approach in principle can uncover rhythms that might originally be hidden in

30



the signal by the increased variance contributed by the large pathological component. Figure
15 demonstrates the validity of this approach using data from a second severely brain-injured
patient subject . In this subject, there is a dominant rhythm in the 3-6Hz range that origi-
nates from the severely injured right posterior regions of the cortex (Figure 15 C); this 3-6Hz
rhythm dominates the global dynamics of the EEG and is most prominent within the first
and fourth hierarchical components (Figure 15 A). This same generator appears for the «
frequency range when applying FEHD to the raw EEG. Low frequency rhythms in the EEG
are common for injured brains, and often pathological behavior. We remove the three FEHD
components (3-6 Hz) that have a concentrated peak in this range (components 1,4, and 5 -
outlined in red) as described above. We repeat the FEHD analysis in the a-range for the
residual data set of remaining EEG signals. As shown in Figure 15 B, FEHD of the residual
EEG now identifies and isolates a posterior occipital generator containing a very prominent
a-rhythm. This generator lies within the intact left hemisphere, which demonstrates a nor-
mal pattern of cerebral metabolism (Figure 15 C). We propose that the FEHD analysis of
the residual EEG uncovers a normal alpha rhythm generated by the left hemisphere that is
masked by dominant low frequency activity emanating from the damaged right hemisphere.

Following the example shown in Figure 15, the findings in patient IN388R above (Figure
14) also suggest the possibility that the right hemisphere in this patient which shows a
normal metabolic profile (PET) and structural integrity in MRI images might generate a
normal alpha rhythm. By removing the image of the data that projects onto these two
components and performing the FEHD analysis over the a range, we are able to isolate a 10
Hz rhythm for this subject as well (data not shown). This application of FEHD may have
considerable diagnostic value if it allows identification of functional brain activity hidden by
pathological processes that add strong signal variance to the resting EEG and mask evidence
of recovery. This approach may be particularly important in the evaluation of patients in
intensive care settings [24].

4 Discussion

The purpose of this manuscript is to provide proof of concept for the FEHD method. To
demonstrate the advantages of the method we show analyses of a series of toy examples
and then evaluate several different applications to the resting state EEG recorded from both
healthy volunteers and patient subjects with severe brain injuries. We show the consistency
of the FEHD decomposition of low and high frequency background rhythms in the EEG of
four healthy volunteers studied longitudinally. We demonstrate the robustness and stability
of FEHD measurements (Figures 11 and 12, and Tables 1 and 2). With the exception of one
subject, our results show a consistency in the generators determined at the different time
points, both in terms of scalp location and power spectrum.

A more rigorous analysis of the similarity is done by computing the downstream /upstream
ratio of pairwise Granger causality.

Additionally, computing the downstream/upstream pairwise ratio of Granger causality
provides for a more rigorous analysis. This analysis is intended to determine the robustness
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Figure 15: Demonstration of the use of FEHD to project a dominant pathological rhythm
from the raw EEG and to examine the dynamics of the remaining residual EEG signal. A.
Patient subject IN373M demonstrates a 3-6Hz peak in the power spectrum that is generated
over the severely injured right posterior regions of the cortex (Panel C); this 3-6Hz rhythm
dominate the global dynamics of the EEG and is most prominent with the first and fourth
hierarchical component; the same generator also appears for the a-range when applying
FEHD to the raw EEG. B. Removal of the first and fourth hierarchical component identified
by FEHD for the 3-6 range (the most concentrated peak in this range) from the data (outlined
in red boxes) as described in text followed by FEHD analysis of the residual EEG signals
on the a-range for the residual data set of remaining EEG signals. As shown in Panel
B, FEHD of the residual EEG now identifies and isolates a very prominent a- rhythm on
the left side of the head. This components appears as the second hierarchical component
of the FEHD decomposition of the residual EEG and its generators are within the intact
left hemisphere which demonstrates a normal pattern of cerebral metabolism. C. Fused
MRI/FDG-PET images of patients brain illustrating large right sided region of cortical
injury and hypometabolism.
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of these determined networks. In every case, the method is successful in determining a
hierarchical time series (Table 1). Moreover, for the a range, it is often the case that the
VTS made by applying the FEHD transformation derived at one time point to the data from
the other time point maintains the hierarchical structure of the non-cross-transformed data
set. The results for the § range are also positive, in the sense that the cross-transformed
networks are more causal in the § range than the o range; although the cross-transformed
networks have much lower ratios. This was not unexpected for high frequency EEG activity
since it is much more variable and includes more types of artifact than « activity. Test-retest
EEG differences in high frequency activity were observed in the power spectrum, so we were
not surprised that the HD time series were more reproducible for the « range than for the
[-range.

Across subjects, the results are consistent with what is known about global brain dy-
namics in the frequency bands tested - a generators are largely occipital in location, while 3
activity generally originates from frontal areas. The ability to capture this ”ground truth”
behavior indicates that this method can aid in the study of recovery from severe brain in-
jury. Furthermore, FEHD can identify distinct dynamical features present in the injured
brain which are opposite to those characteristic of healthy human subjects. We further
demonstrate that FEHD can be used to investigate these pathological features of the injured
brain and generate hypotheses as to the origins of these features. Removal of corresponding
components of the FEHD determined time series can uncover hidden evidence of recovery
of normal brain function in the injured brain. Each of the observations shown depends on
the capacity of FEHD to resolve causal hierarchies within selected band limited frequency
ranges.

4.1 Relationship between FEHD and other methods

FEHD can be compared with several other methods of causal inference that operate within
specific frequency bands. For example, the directed transfer function (DTF), partial directed
coherence (PDC), and Granger causality are each methods that provide an index for how
much one signal influences another within a frequency band. Also, it is possible to determine
transfer entropy on band-passed data to establish cross-frequency interactions but with more
generality to include nonlinear interactions not testable utilizing FEHD, DTF, or any other
method based on AR models. The critical distinction when directly comparing FEHD,
as a tool, with other approaches is that only FEHD can quantify the relationship among
hidden generators that are not sampled directly by electrodes, but exist as a superposition
across sensors. For example, in section 3.2.1 we demonstrate the extraction of a narrow-band
generator with hidden dynamics from the resting EEG; this finding derives from the isolation
and removal of a component after the FEHD unmixing process followed by a reanalysis
again utilizing FEHD. This sequence of analysis, biological inference and interpretation, and
reanalysis of a residual dataset is unique to FEHD among these other related methods.
FEHD is compatible with other mathematical methods utilizing causal inference and can
be thought of as a minimization strategy. In this paper, we chose to use Granger causality of a
single component onto others as the function to be minimized. One could alternatively choose
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to minimize the upstream DTF or PDC component by component, and obtain a hierarchical
decomposition. The same approach can be taken using transfer entropy of band passed data,
though non-parametric methods likely introduce rather large computation times.

4.2 Causality within frequency bands

The major advance of FEHD over HD is the ability to perform the hierarchical decomposi-
tion across specific frequency bands. The scalp EEG has many stereotypical rhythms with
known behavioral correlates. For example, the posterior alpha rhythm is a kind of idling
rhythm which may have more causal influences in behaviors (e.g. role in reaction times)
which is reduced when the subject focuses on a task. A major motivation for the devel-
opment of this method is the identification of a consistent typology of global dynamics in
patients recovering consciousness after severe brain injuries utilizing standard HD [10]. Our
working hypothesis is that particular pathological features of the EEG in the structurally in-
jured brain will appear during the recovery process and have dynamically isolated frequency
content and spatial localization that changes with levels of functional reafferentation across
the corticothalamic system [10, 30, 25, 23]. The key advantages of the FEHD method as
illustrated here provide the essential tools for further exploration and testing of these ideas.

Other methods have been used to determine the frequency by frequency causality between
two time series generated by neural data. For example, in [5], the authors use transfer
entropy on band-passed data to demonstrate the causal relationships within the visual cortex
both for the spontaneous (baseline condition) and stimulated (movie condition). In [6], the
authors use Granger causality over the gamma band to show that propagation in the gamma
frequency band is mostly uni-directional between V1 and V4 in the primate visual cortex.
Granger causality has also been used to demonstrate the directionality of theta, alpha,
and beta rhythms in the primate visual cortex [4, 15, 29]. Each of these studies used the
causal inference apparatus (transfer entropy or Granger causality) to establish the causal
relationships within pairs of locations. It is in this regard the FEHD (and HD) are different.
Rather than establish the causal relationships between locations, FEHD seeks to recombine
the components of a multivariate time series so that the resulting V'T'S possesses a hierarchical
structure - or as close to a hierarchical structure as possible. This approach makes FEHD
unique. FEHD and HD are the only methods where the components are determined to have
the desired causal structure. This allows the user to locate generators.

FEHD provides a different, unique analysis over the methods cited above. Those methods
treat channels as sources, and the goal of the analysis is to determine the causal influence
between these channels. FEHD, alternatively, seeks linear combinations of channels to form a
hierarchy. The goal of FEHD is to determine superpositions of channels (linear combinations)
so that these combinations have a hierarchical structure. In other words, rather than knowing
how much A causes B, and B causes C and so on, FEHD seeks to determine combinations
of A,B,and C to form a hierarchy.

The purpose of this manuscript is to describe and demonstrate FEHD in the context of
EEG. However, the method is capable of working on arbitrary (albeit, close to Gaussian)
time series such as, for example, local field potential recordings. While local field potential
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(LFP) recordings have high fidelity of their origin within the sampled local networks, many
such studies sample a small, heterogeneous sets of neuronal populations in complex tissues,
particularly studies done within subcortical structures (for example [3] where > 30 microwire
LFP electrodes were simultaneously sampled across many frontostriatal populations). It
is possible that broader participation and independent control of specific frequency bands
within each sampled LFP signal may depend on larger networks hidden from the sensors
and afford a similar simplification of the dynamics for building biological inference. In this
way FEHD offers a powerful and complementary window on causality. Future studies will
determine the value of FEHD in such contexts. As noted above, even closely sampled local
field potentials have already been shown to carry distinct causal interactions within specific
frequency band [3].

4.3 FEHD as an extension of HD

FEHD is an extension of the hierarchical decomposition (HD) [22]. FEHD and HD seek
a ”causal hierarchy”, which can also be described as a feed-forward network. Goldman
showed that any multivariate time series can be viewed as a feed-forward network (with two-
component feedback loops corresponding to complex eigenvalues) when viewed as a linear
iterative map [12]. The transformation relies on the Schur factorization, which entails finding
a lower triangular matrix that is similar, via an orthogonal matrix, to the original iteration
matrix. A linear auto-regressive model is also a linear iterative map, but unlike the iterative
maps described by Goldman, the predictions are obtained from multiple time points, or lags.
There is no analogue to the Schur factorization for simultaneously triangularizing multiple
matrices simultaneously - it is not generally possible (A necessary condition is given in [22]
- for j = 1..M, where M is the dimension of a lag matrix, there is a j dimensional subspace
that contains j eigenvectors of all matrices). Thus, triangularizing the lag matrices of an
autoregressive model is not generally possible.

Since simultaneous triangulation is generally not possible, HD adds some flexibility by
minimizing the sum of squares of the upper triangular elements. When there are significant
feedbacks, this minimization can lead to very erratic results where components determined
to be at the bottom of the hierarchy, when checked for pairwise Granger causality, exert a lot
of feedback on one or more components above. In using HD to analyze EEG data, we found
this unpredictability to cause a lack of stability - the results could vary widely within subjects
and conditions, and small parameter changes (such as the addition or subtraction of a lag,
or component) proved very disruptive. Rather than attempt to simultaneously triangularize
multiple matrices, FEHD simply locates, iteratively, the least causal component that can be
obtained by linearly recombining the data. This least causal component is marked as such
and removed, and the operation is repeated with the remaining components. This strategy
leads to more predictable, stable results, which we demonstrate by showing reproducible
results across time and across healthy subjects (Figures 11 and 12).

Because of the strategy we choose, the method is very resilient to the number of lags in
the AR model. We use 40 lags for all of the analyses in this manuscript, but we have also
verified that the results do not change much as a function of this parameter. The method
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is as resilient to the number of principal components used as the data will allow. Principal
component analysis treats each time point independently, whereas Granger Causality is
largely determined by the statistical relationships between different points in time. This
means that a very small principal component can be quite causal. If an additional principal
component Granger causes one of the earlier components then it will rise up in the hierarchy;,
changing the results. The more components you use, the less likely the addition of a new
one will introduce a previously orthogonal causal element. However, it cannot be guaranteed
that it will not happen (see the last example provided in the synthetic time series section).

It is of note that we locate the minimally causal component at each step, rather than
a maximally causal one. Though maximization of causal influence might prove useful for
some applications, it is not useful in determining a hierarchy. That a component exerts a lot
of Granger causality onto other components does not preclude it from being heavily caused
itself.

4.4 Drawbacks of the method

At this time, we must use parametric Granger causality, where the kernel estimations of
TE are replaced by much more efficient matrix rotations. The use of a linear AR model
has drawbacks - primarily the lack of ability to determine non-linear relationships, and
the assumption that there are no instantaneous interactions (this assumption is implicit in
assuming orthogonal residuals). However, because of the technological restriction to para-
metric models, FEHD provides the only means of determining global dynamics in arbitrary
frequency bands. One cannot, for example, use frequency-band passed data with a AR
model, especially over very small frequency windows. First, AR models have only poles, so
the zero power outside the pass band is a difficulty. Second, the sharp increase from zero
power (outside the band pass) to the power of the band passed signal makes fitting equa-
tion (4) to the actual PSD difficult, similar to approximating the Heaviside function with a

sigmoid,
1

1+ Zz Ai€_’\it

by changing only the Als. Doing so requires a lot of lags. This is further complicated when
using least squares to compute the AR model. For small enough frequency bands, versions of
the data that are shifted differently can become linearly dependant. This causes the normal
matrix to become singular, and one cannot use enough lags to adequately model the data.
While not part of the FEHD method itself, the suggested use of the D/U-ratio to de-
termine the success of the method in determining a largely feed-forward VTS is subject to
same shortcomings as Granger causality. In particular, the inability of GC to distinguish
between direct causality and indirect causality (ie. A causes B causes C vs. A causes B and
C) can skew the statistic. One should check for this possibility of by, for example, looking
at the grid of pairwise Granger causalities for suspect cascades. If there are three offending
components, than one can use other methods to determine the directness or indirectness of
these connenctions (for example, see [7]). It is important to note that this issue only applies
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to the test statistic. Since FEHD works by peeling away non-causal combinations, it will
order the components correctly regardless of whether the connections are direct or indirect.

4.5 Summary

In this paper, we describe a modification of the hierarchical decomposition (HD) method
which we refer to as Frequency Extracted Hierarchical Decomposition (FEHD). FEHD is
capable of determining the hierarchical decomposition of a multivariate time series within
arbitrary frequency bands. Moreover, by approaching the minimization process differently,
FEHD possesses large advantages over the original implementation of HD in terms of stabil-
ity, robustness, and sensitivity to modeling parameters.

FEHD is implemented in FORTRAN, and has been tested using the gfortran compiler
(of the gee compiler collection, a product of the GNU project - www.gcc.org), and openmp
for parallelization of the particle swarm optimization algorithm (www.openmp.org).
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