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The job of the visual system is to extract useful information
about the 3D world from the 2D image projections formed by
our eyes. How do the statistics of visual scenes—encompassing
all relevant aspects of surface geometry, material properties and
illumination—affect the architecture and function of the visual sys-
tem and its performance on specified tasks?

Natural scenes are complex and varied, and since von
Helmholtz (1867) at least, it has been understood that vision
requires inference. The problems are ill-posed—multiple different
scenes might account for any given set of image observations—
although only one of these accounts is correct. To perform well
in natural environments, the visual system must therefore some-
how embody an understanding of the likelihood of these various
accounts.

While Helmholtz expressed these ideas qualitatively, with the
development of information theory in the mid-twentieth century,
a view of visual perception as a fundamentally statistical task
began to emerge (Attneave, 1954; Barlow, 1972; Brunswik &
Kamiya, 1953): optimal visual coding and inference demands
knowledge of the statistics of real-world environments and how
projection onto the image affects these statistics. The vast cortical
and subcortical resources devoted to vision attests to its adaptive
value and predicts that neural coding will have evolved and devel-
oped to embody these statistics, in order to perform well in the
environments we commonly encounter.

The importance of these statistics to understanding visual per-
ception is by now generally agreed. But the problem of identifying
these statistics and understanding how exactly they have shaped
the visual system is daunting. The challenge springs from two fun-
damental difficulties. The first is the Curse of Dimensionality: the
number of degrees of freedom needed to describe the possible
covariation of visual scenes and images over space and time is so
enormous as to defeat standard approaches for statistical estima-
tion and inference. Hope lies in the evidence that the effective
dimensionality of real scenes and images is much lower than the
full dimensionality of the embedding space (Chandler & Field,
2007), underlining the importance of efficient coding concepts
and dimensionality reduction to understanding visual perception.
But this leads to the second fundamental difficulty: this lower-
dimensional manifold appears to be highly curved, hence defeating
standard linear systems approaches which dominated much of
vision science in the 20th century.

Given these massive challenges, the road to understanding the
statistical foundations of visual perception is clearly long and
winding, and the journey has just begun. Nevertheless, the ten
papers in this special issue collectively represent an important step
forward in understanding the statistics of natural scenes and how
they have shaped visual coding, and in some cases at least, point to
potential opportunities to overcome some of these challenges, a
topic to which we will return at the end of this editorial.

1. Point statistics

Papers in the first half of this special issue address point statis-
tics of the visual image, characterizing the local statistics of lumi-
nance and color contrasts. By marginalizing over (almost) all space
and time dimensions, the analysis is restricted to one or two
dimensions, and thus becomes tractable.

Galilei (1632) and von Helmholtz (1867) had both observed
that spatial resolution is higher for dark stimuli than for light
(Kremkow et al., 2014)—why is this? It has long been known that
the distributions of luminance and contrast in natural scenes exhi-
bits strong positive skewness (Laughlin, 1983; Richards, 1982).
One consequence is that in natural images, negative contrasts are
more numerous and carry more information than light contrasts.
Given finite neural bandwidth, the principle of efficient coding
(Barlow, 1961; Laughlin, 1981) predicts that this asymmetry would
be matched by the brain, and recent evidence (Ratliff, Borghuis,
Kao, Sterling, & Balasubramanian, 2010) suggests that it is: OFF
retinal ganglion cells are more numerous and smaller than ON reti-
nal ganglion cells.

Two papers in this issue show that these asymmetries are rele-
vant to higher-level aspects of visual function as well. Sato et al.
(2016) consider perceived blur: the tacit assumption has been that
perceived blur is determined by the spatial frequency content of
the image, treating darks and lights equally. However, the authors
show that this is not the case, and that, along with the visual
system’s higher sensitivity and spatial resolution for darks, it gives
darks higher weight in assessing blur.

While these results represent a concordance of visual tuning
with natural scene statistics consistent with the efficient coding
hypothesis, the results of Graham et al. (2016) do not. Graham
et al. consider subjective preference for naturalistic images as a
function of the skewness of the luminance distribution. Perhaps
surprisingly, they find that observers prefer images when modified
to have zero skewness (i.e., symmetric luminance distributions)
rather than the positive skewness typically observed in natural
scenes. What this seems to suggest is that aesthetic preference
does not necessarily follow the principles of efficient coding.

Three papers address the point statistics of color. Provenzi et al.
(2016) identify a simplifying feature of second-order statistics
in the spatio-chromatic domain: they show that spatial and
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chromatic covariance matrices of natural images commute with
each other. This formalizes a sense in which spatial and chromatic
statistics are separable, enabling a simplified description of the
second-order spatio-chromatic statistics of natural images.

The other papers concerning color attempt to understand eco-
logical aspects of the spatiochromatic variation of natural images.
Color features in the image are co-determined by surface reflec-
tance and illumination. It is generally agreed that the former is of
greater interest to the observer, and so the latter appears largely
as a nuisance variable. How then can the observer factor out the
effects of varying illumination to obtain invariant estimates of sur-
face color?

One possible assumption is that the illuminant can be approxi-
mated as roughly uniform within a scene, so that color variations
in the image can mainly be attributed to variations in surface color.
Examining the hyperspectral statistics of natural scenes over space
and time, Nascimento et al. (2016) find that in fact the instanta-
neous variation in illumination color within a scene typically
varies roughly as much as illumination varies over time or latitude.
These findings argue against the use of overly simplistic models of
illumination in natural scenes.

Foster et al. (2016) explore the consequences of these illumina-
tion variations on color measurements made in the image. A
potential way for the visual system to attain a degree of invariance
with respect to these illumination variations is to rely not upon
absolute but upon relative color measurements. The latter are
computed as ratios of cone responses measured at different points
in the image, which are invariant to purely temporal variations of
the global illumination. The authors show that in fact, due to the
complex geometry of natural scenes, the local illuminant and
hence these ratios vary considerably. However, placing either spa-
tial or temporal limits on these ratios can reduce variation below
detectability, suggesting that cone ratios may serve as useful
pseudo-invariants for more localized spatiotemporal neighbor-
hoods within a scene.

2. Oriented filter statistics

These first five studies focused on first- and second-order point
statistics of the luminance and color distributions of natural
images. However, important features in the scene, such as the
boundaries of objects, result in locally oriented structure in the
image, and since Hubel & Wiesel’s discovery that most neurons
in primate area V1 are tuned for orientation (Hubel & Wiesel,
1959, 1968), the local processing of oriented information in the
image has been seen as a primary goal of early visual cortex.

Hubel & Wiesel sometimes referred to cells in V1 as edge- and
line-detectors, which suggests that their receptive fields should not
only be oriented, but should have specific selectivity for the detec-
tion of edges and lines versus other forms of oriented structure. In
tension with this proposal was the spatial frequency account of
early visual coding (Campbell & Robson, 1968), which envisioned
these neurons as uniformly tiling a two-dimensional Fourier repre-
sentation of the image. In such a representation, tuning for edges
and lines should manifest as a bias toward particular bandwidths
and phases (odd and even). While early physiological studies in
cat (e.g., Field & Tolhurst, 1986) did not confirm this prediction,
later studies in primate (e.g., Ringach, 2002) did.

MaBouDi et al. (2016) address whether the statistics of natural
images may account for these physiological findings. In particular,
using a standard quadrature filter model of an oriented V1 complex
cell, they analyze the phase distribution of local image patches as a
function of the frequency tuning, bandwidth and aspect ratio
parameters of these filters. While for most parameter values they
find a relatively uniform distribution of phases, for a specific range
of filters they find that phase response is bimodal, consistent with
tuning for specific local features such as edges and lines. They
speculate that the visual system makes use of these inhomo-
geneities to code visual inputs efficiently: phase-independent
complex cells for configurations that correspond to uniform
local phase distributions, and phase-tuned complex cells whose
configurations correspond to bimodal phase distributions.

The nonlinearity involved in the quadrature filter model of
complex cells is just one example of the many nonlinear properties
of early visual cortical neurons that complicate statistical analysis.
Golden et al. (2016) seek to relate these nonlinearities to principles
of sparse coding (Bell & Sejnowski, 1997; Olshausen & Field, 1996).
Employing a representation of neural tuning in curved coordinate
frames introduced by Zetzsche and colleagues (Zetzsche, Krieger,
and Wegmann (1999), Zetzsche and Nuding (2005) and Zetzsche
and Rohrbein (2001)), they show that the sparse coding network
of Olshausen and Field produces a form of curvature that accounts
for nonlinearities that give rise to key selectivity and invariance
properties of oriented V1 neurons. Since the objective function
used to learn these sparse networks does not explicitly pursue this
curvature, these findings provide insight into the connections
between sparsity, response nonlinearity and curved representa-
tional manifolds for neural coding.

The prominence of orientation tuning in early visual cortex is
often attributed to the importance of identifying the boundaries
of objects in the scene. However these boundaries are signaled
not just by gradients in luminance and color but also in motion
and binocular disparity. How important is each of these modalities
to the detection of an object boundary? Mély et al. (2016) address
this question by training classifiers that use individual modalities
and ensembles. While motion and binocular disparity are often
cited as most diagnostic for the discrimination of object bound-
aries, the authors find that in fact color and luminance play domi-
nant roles. However, they also find that more accurate boundary
extraction can be achieved by combining all cues, and, importantly,
motion and stereoscopic disparity play a much larger role when
combined with the other cues than would be expected from their
performance in isolation. This suggests a tighter coupling of these
modalities than might be suggested by a strict modular view of
visual cortex (Livingstone & Hubel, 1988).

3. Disparity statistics

The detection of object boundaries is only one expression of the
general role stereoscopic disparity plays in revealing the 3D struc-
ture of visible surfaces in the scene. Hibbard et al. (2016) consider
the statistical cues in the natural visual environment that are avail-
able to compute disparity. While early ‘‘first-order” models relied
upon luminance correlations between corresponding image
patches in the two eyes, psychophysical (Hess & Wilcox, 1994)
and physiological (Tanaka & Ohzawa, 2006) work has revealed
mechanisms that allow stereoscopic disparity to be computed from
stimuli with no first-order inter-ocular correlations. Such mecha-
nisms must rely upon nonlinear processing (e.g., rectification or
squaring) to reveal ‘‘second-order” disparity cues. Hibbard et al.
show that such cues are indeed present in natural images and,
while correlated with first-order cues, can improve the accuracy
of disparity estimation. These findings suggest that stereoscopic
mechanisms have evolved to take advantage of the diverse cues
to stereoscopic matching available in complex natural scenes.

Despite this richness of cues, recovering an accurate global sur-
face estimate from stereo is one of the classic ill-posed vision prob-
lems; there are many ways to interpolate a surface through noisy
local disparity measurements, particularly when the measure-
ments are sparse. To perform well, the visual system must
therefore incorporate a statistical prior over these possible
surfaces. The question of how these scene priors can be learned
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neurally is therefore of great importance. Recent work (Samonds,
Potetz, & Lee, 2009; Samonds, Potetz, Tyler, & Lee, 2013) shows
the potential of Markov random fields (MRF) as models of neural
disparity processing. Using a Boltzmann machine model (Hinton
& Sejnowski, 1986), Zhang et al. (2016) show that such MRF
models can be tuned to natural scene disparity statistics in
unsupervised fashion, leading to network properties that mimic
certain aspects of the biology, including positive connectivity
between neurons tuned to similar disparities at nearby locations.

4. Outlook

Despite the progress demonstrated in these papers and other
recent studies, one cannot escape the sense that our understanding
of how the visual system is shaped by the statistics of our environ-
ment is still in its early stages, and much remains to be done. This
is not unexpected, given the challenges presented by the Curse of
Dimensionality and the nonlinear structure of natural scenes and
inference. What could be the way forward?

Should we look to the computer vision literature for insight?
Here we find that generic, deep, feed-forward nonlinear network
models that date from the Neocognitron of the early 1980s
(Fukushima, 1980) have finally come of age (LeCun, Bengio, &
Hinton, 2015), defining the state of the art for a broad range of
computer vision datasets. These deep feed-forward models work
well because we now have the powerful computers and large data-
sets required to train their many parameters using variations on
classical back-propagation methods. Through this training process,
these networks implicitly learn the statistics of (selected) natural
image sets, as well as some of the invariance and selectivity
properties relevant to the specific tasks they are assigned.
Unfortunately, the mathematical and physical principles underly-
ing their performance are left scattered over thousands of param-
eters, leaving scientists little insight into these principles.

These deep hierarchical networks learn by feedback but infer-
ence is strictly feedforward. Although visual cortex is sometimes
described as hierarchical, feedback connections appear to out-
weigh feedforward connections (Van Essen, Anderson, &
Felleman, 1992). For example, the ‘‘input” neurons in the primary
visual cortex of the primate receive most of their inputs from cor-
tical, rather than thalamic sources (Peters, Payne, & Budd, 1994).
These feedback connections are not just involved in learning but
play an important role in visual inference (Lamme & Roelfsema,
2000).

There are also profound differences between the job of the
human visual system and tasks that these computer vision systems
are assigned. Biological systems are inherently general-purpose in
nature, called on to solve a diversity of problems (scene layout,
object recognition, navigation. . .), often concurrently. This encour-
ages the development of efficient, generative, general-purpose
models that serve multiple functions. Modern computer vision
algorithms, on the other hand, target narrowly defined problems
associated with specialized datasets, leading to specific models
that can limit representations to capture only the most relevant
features. It is thus not clear how relevant these specialized deep
networks are to biological vision systems, although some similari-
ties have been demonstrated (DiCarlo et al., 2014).

If big data and deep artificial neural networks do not provide a
pathway to complete understanding, where shall we look? Some
clues are offered by the papers in this special issue. Simple theoret-
ical principles: the geometry of objects, the physics of image for-
mation, efficient and sparse coding, these are all ideas used by
papers in this issue that can be further developed and understood
to yield greater insights while keeping the dimensionality of our
models low. We believe these principles will increasingly be cou-
pled to the principles of perceptual organization first outlined by
Gestalt psychologists (Koffka, 1935). Despite the passing of time,
these principles have not only persisted, but have had profound
influence on modern computational theory and statistical accounts
of perception (e.g., Elder & Goldberg, 2002; Geisler, Perry, Super, &
Gallogly, 2001; Martin, Fowlkes, & Malik, 2004; Parent & Zucker,
1989). We believe a continuing confluence of these simple but
powerful ideas will ultimately lead to a more complete under-
standing of the statistics of the natural environment and their
implications for vision.
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