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Although disorders of consciousness (DOCs) demonstrate widely
varying clinical presentations and patterns of structural injury,
global down-regulation and bilateral reductions in metabolism of
the thalamus and frontoparietal network are consistent findings.
We test the hypothesis that global reductions of background
synaptic activity in DOCs will associate with changes in the pattern
of metabolic activity in the central thalamus and globus pallidus.
We compared 32 ['®F]fluorodeoxyglucose PETs obtained from se-
verely brain-injured patients (Bls) and 10 normal volunteers (NVs).
We defined components of the anterior forebrain mesocircuit on
high-resolution T1-MRI (ventral, associative, and sensorimotor
striatum; globus pallidus; central thalamus and noncentral thala-
mus). Metabolic profiles for Bl and NV demonstrated distinct
changes in the pattern of uptake: ventral and association striatum
(but not sensorimotor) were significantly reduced relative to
global mean uptake after BI; a relative increase in globus pallidus
metabolism was evident in Bl subjects who also showed a relative
reduction of metabolism in the central thalamus. The reversal of
globus pallidus and central thalamus profiles across Bls and NVs
supports the mesocircuit hypothesis that broad functional (or an-
atomic) deafferentation may combine to reduce central thalamus
activity and release globus pallidus activity in DOCs. In addition, BI
subjects showed broad frontoparietal metabolic down-regulation
consistent with prior studies supporting the link between central
thalamic/pallidal metabolism and down-regulation of the fronto-
parietal network. Recovery of left hemisphere frontoparietal met-
abolic activity was further associated with command following.

vegetative state | minimally conscious state | thalamocortical loops |
fronto-striato-thalamic circuit

Disorders of consciousness (DOCs) following severe brain
injuries arise in the setting of both cellular and circuit-level
dysfunction secondary to deafferentation, neuronal death, and
a wide range of changes in cellular function that remain poorly
understood. Many studies demonstrate that patients with DOCs
may continue to improve slowly over long time intervals (1, 2). In
this context, measurements of cerebral metabolism can provide
important insight into underlying mechanisms of brain function
after severe brain injury (BI).

Historically, ['®F]fluorodeoxyglucose-PET (FDG-PET) mea-
surements provided the first demonstrations that the vegetative
state (VS) was characterized by sharp, global reductions in ce-
rebral metabolism to levels consistent with those measured in
coma induced by pharmacologic anesthesia (3-5). FDG-PET
measurements in the minimally conscious state (MCS) demon-
strate similar levels of metabolic depression despite evidence of
greater cerebral integrative function in this state (6-8). Assess-
ments of regional changes in metabolism across the brain after
severe BI indicate a key role for the posterior medial complex (6,
8), the cortical areas demonstrating the highest resting metabo-
lism in the normal brain (9). Graded increases in metabolism in
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the posterior medial complex index recovery from VS to normal
function (6) and provide a proxy, along with global metabolic
rates for overall changes in background synaptic activity in BI
based on known physiological correlation of glucose metabolism
with neuronal firing rates (10).

Recent anatomical studies point to a key role of structural
connectivity of the thalamus and the posterior medial complex as
indexing anatomical substrates correlated with graded outcomes
across VS and levels of function within the category of MCS (11).
These observations provide an important link to measurements
of restoration of central thalamic metabolism across recovery of
consciousness (12) and direct restoration of behavioral re-
sponsiveness in MCS with electrical stimulation of the central
thalamus (c-TH) (13). Theoretical considerations based on known
anatomical connectivity, physiological principles, and patho-
physiological observations have combined into a proposed model
for graded variations in metabolic activity within the anterior
forebrain “mesocircuit” across DOCs (14). The mesocircuit model
predicts that several related phenomena should arise at the cir-
cuit level following BI and also suggests important links to the
metabolic variations observed in the posterior medial complex in
DOC (8, 15). Most importantly, the model predicts that changes
in overall metabolism observed in BI and generally associated
with frontoparietal metabolic suppression (4, 8) should covary
with a reversal of metabolic activity in the globus pallidus (GP)
and c-TH.

Significance

Establishing consciousness in the human brain requires an en-
semble activity of multiple cortical and subcortical structures.
Following severe brain injuries, widespread deafferentation
and neuronal death alter function across the corticothalamic
system and its projections to the basal ganglia. In this paper,
we test a theoretical model of a mesocircuit mechanism likely
to arise in all severe brain injuries. Specifically, reduction of
resting glucose metabolism within the central thalamus, stria-
tum, and frontoparietal cortices and concomitant increases in
metabolism within the globus pallidus as a result of disinhibi-
tion are proposed to arise across etiologies of injury. Here we
verify this prediction and demonstrate a reversal of metabolic
profile of central thalamus and globus pallidus that character-
izes and indexes the patients’ behavioral level.
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Here we test these predictions of the mesocircuit model using
FDG-PET and behavior measurements in a cohort of severely BI
subjects and a group of normal volunteers (NVs). We tested the
related hypotheses that the metabolism of the c-TH and the
striatum is reduced in severe BI compared with NV subjects and
that GP metabolism is increased as a consequence of decreased
c-TH outflow to both frontal cortex and striatum. Finally we test
the hypothesis that in severe BI the metabolism would be most
reduced over cortical regions critical to higher-order cognitive
function.

Results

Comparison of Patterns Resting Metabolism in Subcortical Structures
of Brain-Injured and Healthy Controls. We first sought to assess
whether patterns of resting metabolism differed across sub-
cortical structures of BI and NV groups (Fig. 1 A-D). As a first
step, we compared the groups using a factorial ANOVA that
demonstrated significant effects of mean normalized uptake
values (mn-UV) for the factors group (F = 5.7, P = 0.017) and
basal ganglia and thalamic region of interest (ROI) (F = 59.3,
P < 0.0001), as well as in their interaction (F = 21.9, P < 0.0001);
no lateralization effect or interaction of lateralization with group
or basal ganglia and thalamic ROI appeared. Therefore, we
combined results from subcortical structures of both hemi-
spheres. One-way between-group comparison of the regional
mn-UV of the functional subdivisions of the striatum and thal-
amus demonstrated the following differences between patients
and controls: glucose metabolism of the ventral striatum (VST)
and the associative striatum (AST) were significantly reduced
after severe BI (mn-UV + SEM for VST: NV = 1.19 + 0.11,
BI =0.48 £ 0.08; F =21.8, P < 0.0001; AST: NV =1.20 + 0.09,

Fig. 1. (A and B) Axial anatomic high-resolution MRI in representative NV
and Bl subjects, respectively, showing locations and manual delimitation for
ventral, associative, and sensorimotor striatum (VST, AST, and SMST, re-
spectively), globus pallidus (GP), central and noncentral thalamus (c-TH and
non-c-TH, respectively), and color scheme for regions of interest (VST, yel-
low; AST, green; SMST, red; GP, white; c-TH, magenta; non-c-TH, violet). (C
and D) ['®FIFDG-PET, T1-MRI fusion in in representative NV and BI subject,
respectively. NV demonstrates symmetric pattern of relatively increased c-TH
metabolism compared with non-c-TH. A marked asymmetry of thalamic
metabolism with loss of contrast in ¢-TH compared with non-c-TH metabo-
lism is evident in BI subject.
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BI = 0.54 + 0.09; F = 14.5, P = 0.003), but metabolism of
sensorimotor striatum (SMST) did not differ [NV = 1.06 +
0.13, BI = 1.30 + 0.10; F = 1.5, P = not significant (NS)]. A
significant increase of mn-UV for the GP is present for the BI
group (NV = —0.49 + 0.10, BI = 0.52 + 0.07; F = 48.3, P < 0.0001),
whereas the ¢-TH showed a significant reduction of glucose me-
tabolism for the BI group (NV = 0.43 + 0.07, BI = —-0.34 + 0.06;
F =452, P < 0.0001), and the noncentral thalamus (non-c-TH)
remained unaffected (NV = —-0.25 + 0.08; Bl = —0.23 + 0.05; F =
0.8, P = NS; Fig. 24). The relationship of these significant changes
in GP and c¢-TH metabolic rates of the BI subjects importantly
represents an exact reversal of the pattern demonstrated by the
healthy controls (Discussion).

As a second step of statistical verification, a post hoc Bonferroni-
corrected analysis of the two-way ANOVA (within group and ROI)
demonstrated (i) a significant reduction of the metabolism in VST
and AST compared with SMST for the BI group only; (i) an in-
crease in GP metabolism for the BI group (showing an equivalent
metabolism compared with AST and VST) compared with NV
group (where GP metabolism is significantly lower than in the VST,
AST, and SMST); (iii) a significant difference between ¢-TH and
GP for both BI and NV groups with a clear pattern reversal (see
above); and (iv) an equivalence of c-TH and non-c-TH metabolism
for the BI group in contrast with a significantly higher metabolism
observed in ¢-TH compared with non-c-TH for NV (Fig. 2B).

We next carried out a multiple regression analysis using only
the initial FDG-PET for the six patients longitudinally tested to
further assess the relationship between c-TH glucose metabolism
against VST, AST, SMST, and non-c-TH (R2; =0.72, F = 35.9, P <
0.0001). In this omnibus comparison, a significant inverse cor-
relation of c-TH and GP glucose metabolism was identified (F =
23.3, P < 0.0001; Durbin-Watson = 1.97, serial autocorrelation =
—0.014): higher GP glucose metabolic rates covaried with lower
¢-TH glucose metabolic rates (Fig. 2C).

Cortical Glucose Metabolism After Severe Bl. We compared the
regional glucose metabolism across cortical ROIs selected for
analysis. A three-way ANOVA demonstrated significant effects
of factors group (F = 244.9, P < 0.0001), ROI (F =332, P <
0.0001), and side (F = 8.5, P = 0.0035), as well their interactions
(F = 2.4, P = 0.003). Accordingly, for comparisons of cortical
metabolism, left and right results are reported separately (Fig. 3
and Table S1). One-way ANOVA showed a significant reduction
of glucose metabolism in the BI group bilaterally across frontal
cortical regions [i.e., orbitofrontal cortex (OFC), ventromedial
prefrontal cortex (vmPFc), dorsolateral prefrontal cortex (dIPFc),
and premotor cortex (PMC)], with the exception of the primary
sensorimotor cortex (SM1) (Fig. 3 4 and B). Deep-seated mesial
cortical structures including the anterior cingulate cortex (aCGc)
did not show group differences; however, the medial cingulate
cortex (mCGc), the precuneus, and the left posterior cingulate
cortex (pCGc) show a marked symmetric reduction of glucose
metabolism in BI. Finally, the BI group showed significant
reductions of metabolism of posterior cortical structures on the
lateral surface [i.e., bilateral superior posterior parietal cortex
(sPPc), right inferior posterior parietal cortex (iPPc), and pri-
mary visual cortex (V1)]. No alteration of glucose metabolism
was observed on the posterior one-third of the superior temporal
sulcus (post-1/3 STS).

Multiple regression analysis of all cortical ROIs only showed
a moderate significant linear relationship (Rﬁd]- =0.56, F = 4.3;
P < 0.005) between the right c-TH/aCGc (p = —0.58; P < 0.01)
and the c-TH/post-1/3 STS (p = —0.53; P < 0.01] and on the left
side (R2;=0.50, F = 3.5; P < 0.01) between the c-TH/post-1/3
STS (B = —0.55; P < 0.01). Because activity in the precuneus has
been specifically associated with recovery of consciousness (11),
we further tested in a simple regression model its metabolic
interactions with c-TH. Results show a (+) linear relationship
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Fig. 2. Group data displaying mn-UV of glucose metabolism in deep brain
structures measured in NV and Bl subjects. (A) Box plot. A significant re-
duction in relative glucose metabolism of the ventral striatum (VST), asso-
ciative striatum (AST), and central thalamus (c-TH) in BI subjects is seen
compared with NV. No difference in sensorimotor striatum (SMST) mn-UV is
present between NV and Bl subjects. A significant increase in globus pallidus
(GP) metabolism is present in the group of BI subjects. (B) Contrast showing
the results of the post hoc Bonferroni corrected analysis of a two-way
ANOVA (group and ROI). Significant results are shown in blue for NV and red
for Bl patients, whereas white boxes denote no significant differences;
arrows indicate the direction of the significance (i.e., pointing toward the
higher mn-UV values). (C) Bivariate scattergram demonstrates an inverse
linear correlation between glucose metabolic rate of the ¢-TH (x axis) and
the GP (y axis), P < 0.001 (between groups).

between metabolism in precuneus and c-TH (F = 18.449; P <
0.0001; Durbin-Watson = 2.23; serial autocorrelation = —0.12).

Separation of Bl Subjects with Evidence for Command Following:
Subcortical Structures. As a separate comparison, we segregated
the BI group into subsets of subjects capable of demonstrating
command following from those unable to show behavioral evi-
dence of command following at the bedside (Fig. 4). This anal-
ysis followed an initial evaluation of the Coma Recovery Scale
Revised (CRS-R) total scores that did not significantly covary
with the brain glucose metabolic rates across the patient subject
pool. Membership assignments within these two patient groups
were based on the cutoff of the auditory function scale of the
CRS-R: command following and no command following. The no
command following included 3 patients in VS and 10 subjects in
the MCS(-) classification, whereas all command following
patients fulfill the MCS(+) category (16) (we excluded patients
that emerged from MCS and were in locked-in syndrome who
were not tracked on this measure). One-way comparisons be-
tween the subgroup of BI subjects able to follow commands and
those unable to follow commands demonstrated a difference in
glucose metabolism of the c-TH; c-TH demonstrated signifi-
cantly increased glucose metabolism for the command following
subgroup (command following = —0.13 + 0.06 vs. no command
following = —0.45 + 0.09; F = 8.3, P = 0.005). An opposite
finding was present for the VST (command following = 0.26 +
0.12 vs. no command following = 0.61 + 0.09; F = 5.6, P = 0.02;
Fig. 44). To assess the linkage of the expressed pattern of c-TH/GP
metabolic reversal to behavioral profiles, we created a ratio for
¢-TH and GP glucose metabolism using the individual raw stan-
dardized uptake value (SUV) (not normalized to the global mean).
One-way ANOVA comparisons of ¢-TH/GP ratio between NVs
and the BI command following and no command following groups
showed that those BI subjects who followed commands demon-
strated a significantly higher c-TH/GP ratio even though they also
significantly differed from NVs [command following = 0.89 + 0.031
vs. no command following = 0.75 + 0.034 (P = 0.0019) and vs.
NV =1.26 + 0.030 (P < 0.0001); F = 59.842, P < 0.0001; Fig. 4B].

Separation of Bl Subjects with Evidence for Command Following:

Cortical Regions. A one-way ANOVA comparison of mn-UV
of cortical regions between the command following and no
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command following groups showed a significant increment of
the regional glucose metabolism in three left-sided cortical
regions for the command following group: the SM1 (com-
mand following = 0.73 + 0.09 vs. no command following = 0.30 +
0.10; F = 7.4, P = 0.007), the iPPc (command following = 1.07 +
0.08 vs. no command following = 0.32 + 0.13; F = 23.0, P <
0.0001), and the sPPc (command following = 0.04 + 0.09 vs. no
command following = —0.55 + 0.21; F = 6.5, P = 0.017). A
significant difference between command following and no
command following was also observed for the right OFC, which
showed a reduction of glucose metabolism in the command fol-
lowing group (command following = —0.50 = 0.10 vs. no command
following = 0.02 + 0.09; F = 15.2, P = 0.0001; Fig. 4C).

Discussion

The main finding of the present study is that specific changes in
the pattern of resting metabolic activity measured by FDG-PET
across the individual substructures of the striatal-pallidal-thala-
mocortical circuit demonstrates clear differences in severe BI
patients with DOCs in comparison with NVs.

Reversal of Resting Metabolic Profile of Central Thalamus and Globus
Pallidus Characterizes the Severely Injured Brain and Supports the
Key Role of the Anterior Forebrain Mesocircuit. A recently pro-
posed model predicts that global reductions of background
synaptic activity in DOC subjects will associate with a specific
pattern of metabolic down-regulation in the c-TH and GP (14).
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Fig. 3. Group data displaying mn-UV of regional cortical glucose metabo-
lism in NV and BI subjects. (A) Box plot for the left hemisphere cortical
regions showing a significant reduction of glucose metabolism across ante-
rior frontal cortices, medial cingulate cortex (mCGc)/precuneus, and poste-
rior parietal cortices in Bl subjects. Note a distinct pattern of rostrocaudal
progression of increasing mn-UV glucose metabolic values in Bl patients as
arranged [orbitofrontal, ventromedial, and dorsolateral prefrontal cortices,
premotor cortices and primary sensorimotor (OFC/vmPFC/dIPFc/PMC/SM1,
respectively)] that converges with NV mn-UV at SM1. Bl subjects demon-
strate significant decreases in superior posterior parietal cortex (sPPC), pos-
terior cingulate cortex (pCGc), precuneus, and V1. (B) Box plot for the right
hemisphere showing similar pattern of rostrocaudal progression of in-
creasing mn-UV glucose metabolic values in Bl patients as arranged (OFC/
vmPFC/ dIPF/PMC/SM1). Note that right pCGc does not show differences in
observed for left hemisphere in posterior structures (for significance, see
Table S1).
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Fig. 4. Group data displaying mn-UV of glucose metabolism for deep brain
and cortical structures comparing subsets of severe Bl patients demonstrat-
ing command following (CF; green), those in the noncommand following
(N-CF) group (gray), and NV (blue). (A) Box plot of two deep brain structures
showing a significant difference in glucose metabolism. Increases of mn-UV
are seen in ¢-TH for the CF group compared with N-CF, whereas decreases in
VST are present. (B) Box plot of the ratio ¢-TH/GP of raw standard uptake
values body weight normalized (i_c-TH/GP); index separates the CF and N-CF
groups with increased ratio in CF group that remains lower than NV. (C) Box
plot of four cortical structures showing a significant difference in glucose
metabolism between the two groups. A significant increase of glucose me-
tabolism in the CF group is present for SM1, iPPc, and sPPc in the left
hemisphere. An opposite metabolic pattern is seen for the right OFC, which
shows a reduction of metabolism for CF group. This finding is consistent with
that observed in the VST (A).

Specifically, as a result of the high-threshold UP states of the
medium spiny neurons in the striatum (17), it is probable that
in the setting of broad deafferentation of corticostriatal and
thalamostriatal inputs that the striatal inhibition of the GP will
weaken and allow increased pallidal activity and consequent
inhibition of ¢-TH (SI Text and Fig. S1). Our findings of re-
duced c-TH metabolism and increased GP metabolism in DOC
subjects compared with the NVs supports this mesocircuit
hypothesis.

The c-TH is known to have dopamine (DA) expression with
levels approximating those found in the substantia nigra (SN)
(18, 19) and a preponderant distribution of D,-like receptors
(i.e., D, and D3) (20). Indeed, c-TH DA may constitute a fourth
dopaminergic pathway (21) sometimes referred as mesothalamic
(22, 23). Therefore, we designed an indirect method to segment
the thalamus into two main subregions, the c-TH and the non-c-
TH, using a dopamine D,-like receptor ligand template (SI Text).
We were able to separate the most representative map of D,-like
thalamic receptors in NVs with ['!C]raclopride to show then that
if this map is applied to analyze the glucose metabolism in NVs,
a clear higher metabolism exists in the c-TH when contrasted to
the noncentral aspect of the structure. More importantly, when
this same thalamic subdivision was implemented in severe BI
patients and results were contrasted to those obtained from NVs,
there was a metabolic reduction strictly confined to the c-TH.
Moreover, when the group of patients was divided based on their
ability to follow commands, c-TH metabolism was higher in the
group of responders. Hemodynamic thalamic dysfunction in
DOCs has long been shown (24) and is further supported by
metabolic studies using ['*F]-FDG (5, 25). However, this is to
our knowledge, the first evidence of a sustained deficit in glucose
metabolism after severe BI at a substructural thalamic level
(here, the c-TH).

Here, the striatum was functionally divided based on its cor-
tical loops (SI Text). We find that severe BI patients demonstrate
a disproportionate striatal metabolic deficit compromising se-
lectively the VST and AST but sparing the SMST. This distinc-
tion in metabolic profiles can be related to our findings of
relatively preserved cortical metabolism in SM1, which shows no
difference across BI and NV groups. A relative integrity of SM1
neurons and their activity likely accounts for the maintained
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mn-UV in SMST. Conversely, AST and VST compartments of
the striatum are linked to frontal association cortices known to
be functionally engaged during highly elaborated cognitive pro-
cessing (26-28), all of which show clear metabolic reduction in
BI; loss of corticostriatal and thalamostriatal input from c-TH is
proposed to account for these measured differences.

There are clear distinctions in the functional relationship
of thalamic nuclei and the striatum. Thalamostriatal networks
are divided into two segregated subsystems: the centromedian/para-
fascicular complex striatal projection and the non-centromedian/
parafascicular striatal projection (29). Although the thalamic
segmentation implemented in this work has mostly likely ag-
gregated the c¢-TH to include the centromedian/parafascicular
complex along with additional anterior midline structures, our
results in severe BI patients are supportive of a major selective
failure of both the main thalamostriatal and corticostriatal
projections to the associative and limbic brain with a preser-
vation of the sensorimotor system. Specifically, this inference is
supported by (i) the low metabolism of the ¢-TH, VST, and
AST; (i) the relatively equal metabolic profiles of the SMST
and SM1 in the NV and BI groups; (iii ) the lack of alteration of
the non-c-TH metabolic profile; and (iv) the observed meta-
bolic increases in GP that show inverse correlation with the
c-TH metabolic deficit evident in severe BI patients, suggesting
a greater vulnerability of the parafascicular over the centromedian
within the centromedian/parafascicular complex and its striatal
projection (30).

Fronto-Parietal Cortical Metabolic Down-Regulation in the Severely
Injured Brain: Evidence for Lateralization and Mechanistic Link to
Subcortical Metabolism. Similar to prior FDG-PET findings in
patients with DOCs, we found here a marked frontoparietal
metabolic down-regulation, most prominent in the precuneus
(Fig. 3). The present findings extend these observations and
provide a demonstration of hemispheric lateralization in fron-
toparietal metabolic rates distinguishing those patients able to
follow commands from those who cannot. Increased metabolism
in cortical regions correlated with this distinction are primarily in
the left posterior parietal cortex and its connections with the
SM1, with the exception of a relative suppression of metabolic
activity in the right OFC. A similar dissociation in the metabolic
rates of subcortical structures is also evident across the two pa-
tient groups, with increased c-TH activity linked to the command
following group along with relatively suppressed VST metabolic
activity. Collectively, the findings indicate that the patient sub-
jects in the no command following group have both a down-
regulation of the left posterior parietal cortex and posterior
medial complex (6, 8), as well as an excess of disinhibition of
limbic frontal cortices (Fig. 4C). In addition, a more global
down-regulation of the anterior forebrain indexed by the c-TH/GP
ratio in the no command following group is also present (Fig.
4B). Both of these findings may be related to the metabolic
suppression of the c-TH. Anatomical and physiological studies
have established the close link between the ¢-TH and the pos-
terior medial cortical regions; such studies include track tracings
in nonhuman primates (31) and demonstrations that the c-TH
and precuneus show covarying decreases in regional blood flow
during anesthetic coma compared with wakeful baselines that
reverse together when consciousness is briefly restored (32).
Importantly, our findings here that a linear relationship exists
between metabolism in precuneus and c-TH supports this
physiological linkage of the central thalamus to the key cortical
structure demonstrating highest resting metabolism and corre-
lation with level of recovery of consciousness (6, 9, 33). Thus, the
present findings provide further detail of the known graded
increases in cerebral metabolic rate in the posterior medial
complex indexing recovery from VS to normal function (6) and
suggest that regional patterns of metabolic rate within the
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frontoparietal network may be informative of mechanisms
underlying differences in clinical presentation of patients with
DOC. Another detail evident in the differences in fronto-
parietal metabolism across the patients is a metabolic gradi-
ent with apparently more pronounced metabolic differences
across a rostocaudal distribution from prefrontal cortex to
SM1 (Fig. 3); this finding is also consistent with the mesocircuit
model and comparable to a tendency for the more anterior pre-
frontal cortical regions to demonstrate reduced blood flow under
anesthesia, sleep, and even early awakening sleep inertia (34, 35).
Collectively, these findings support a mechanistic link between the
key role of the posterior medial complex in outcomes of DOCs
(36), restoration of normal resting metabolic activity (33), and
restoration of anterior forebrain mesocircuit function via activity
of the c-TH (13, 14).

Therapeutic Implications of Metabolic Profiles of the Severely Injured
Brain: Toward Molecular Neuroimaging of the Mesocircuit Model of
DOCs. Our findings suggest implications for therapeutics at three
different sites of action, c-TH, striatum, and GP, and point to
testable predictions for future studies that use receptor binding
ligands, PET, and pharmacologic intervention.

Dopaminergic drugs may directly increase the dopaminergic
tone within the c-TH, enhancing its output (37, 38). It is also likely
that dopaminergic drugs at the striatum may counterbalance the
observed deficits in the direct and indirect pathway (via D; and D,
respectively) (39), and the net gain would be the reduction of the
inhibitory input to the c-TH. Last, dopaminergic drugs can directly
stimulate D;-postsynaptic receptors at the GP and consequently
disinhibit the c-TH or stimulate D,-postsynaptic receptors to in-
directly inhibit GABAergic pallidothalamic neurons (40). In ad-
dition, it is possible to directly target GABAergic-A a-1 receptors
distributed at the GP to suppress their activity (14, 34) as reported
in some severely BI patients with zolpidem (41, 42). Finally, the
findings provide further evidence of the mechanistic basis for
arousal regulation effects of activation of the c-TH by electrical
stimulation (13, 43) or indirectly via regularization of the globus
pallidus interna (44-46), which has also been shown to be effective
in increasing arousal states.

Limitations of Our Study. The heterogeneity in our group of
patients in terms of lesion source, location, extension, and clin-
ical expression may have hidden some relevant changes occur-
ring at some important levels of the mesocircuit (i.e., AST),
principally when comparisons were done between the two groups
of patients. In addition, the preserved relative metabolism of
SMST in the BI subjects may raise concerns about a bias of in-
creased measured GP metabolism arising from the SMST due to
a partial volume effect. Two observations mitigate this concern:
first, we find that SMST was equally active in the pool of severe
BI patients and NVs. Thus, a similar spill-in to the GP of NVs
would have been expected as well but did not occur, with the
exception that structural demarcations are clearer in the NV
group. Second, after correction for partial volume effect (SI Text
and Fig. S2) demonstrated that the significant difference in GP
between patients and controls remained intact with no evidence
of difference of SMST glucose metabolism. Limitations in our
results may also arise from quantitative differences in acquisition
due to the use of different PET cameras in NV and BI subjects,
although prior studies indicate such effects are very small, if present
at all (47, 48). We believe that the almost equal glucose metabolic
pattern observed between our severe BI patients and controls over
SMST and SM1, the reversal of the pattern of c-TH/GP, and
the opposing patterns observed with respect to associative fron-
toparietal cortices and VST-AST make it very unlikely that a
systematic source of variation could account for our findings
on a nonphysiological basis. Finally, our results may be biased by
the introduction of a manual determination of the deep brain
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structure target ROIs. However, manual anatomical determi-
nations of these areas were carried out before the MRI-PET
coregistration and were not reoriented thereafter based on the
metabolic display on FDG-PET.

Materials and Methods

Participants. A prospective sample of 24 severely Bl patients with varying
etiologies, who fulfilled criteria for VS, MCS, or emerged from MCS, were
assessed at Weill Cornell Medical College (Table 1). A total set of 32 PET
studies individually treated were included in the final group analysis, and
clinical examination was performed using CRS-R (49) (Table S2). A group of
10 NVs (4 females/6 males; 45.2 + 14.3 y) recruited at the Faculty of Medicine
of the University of Liége acted as the age-matched control group. All
patients’ informed consent was obtained from their legally authorized
representative and the medical team. All NVs gave informed consent under
the University of Liege Ethics Committee. Ethical approval for the study was
provided by the Weill Cornell Medical College Institutional Review Board.

MRI Data Acquisition. A structural anatomical image was acquired on each
severe Bl patient on a 3-T GE MRI using a T1 3D fast spoiled gradient echo
sequence (matrix size, 256 x 256 x 120; voxel size, 0.93 x 0.93 x 1.2 mm;
note: in the first four studies, parameters were 256 x 256 x 156; voxel size,
0.93 x 0.93 x 1.0 mm). NV data were acquired on a 3-T Siemens MRI using
a T1 3D magnetization prepared rapid gradient echo sequence (matrix size,
256 x 256 x 176; voxel size, 0.9 x 0.9 x 0.9 mm).

PET Data Acquisition. Each Bl patient underwent injection of ['®F]-labeled FDG
(~370 MBq). All PET studies but four were acquired on a GE PET-CT LS Dis-
covery unit under a standard resting condition in 2D dynamic high-sensitivity
emission mode, matrix size = 128 x 128 x 35, axial field of view = 25 cm,
4.25-mm slice thickness (studies 29-32 on a Siemens Biograph mCT scanner
matrix size = 512 x 512 x 83). NV data were acquired after i.v. injection of
~370 MBq FDG on a Siemens CTI 951 R16/31 scanner as described in ref. 50.

Using PMOD v.3.309 (PMOD Technologies), SUV was computed, normal-
ized by body weight, and scaled to the global mean signal (mn-UV) across the
region defined by their skull-stripped T1-MRI (51), similarly to the first step
involved during spatial covariance analysis of resting state metabolic images
(52). Coregistration to each subject’s MRI was done using a rigid matching
method using the PET to determine the transform (dissimilarity function:
normalized mutual information with a trilinear interpolation method). Last,
smoothing (6-mm full width at half maximum) was applied to the PET data.

Overview of the Approach to ['®FIFDG-PET ROI Definition. To assess the hy-
potheses tested in this study, we required a detailed evaluation of metab-
olism within the subcortical structures of the basal ganglia and thalamus. As
standard atlas approaches are inadequate to capture the marked anatomical
variation present across patients with severe BI (i.e., striatal and/or thalamic
templates overlaid the lateral ventricles), we carried out several initial meth-
odological steps using structural and metabolic data obtained from our NVs and
from reanalysis of another previously published dataset of normal subjects from
a study of D,-like receptor expression using [''Clraclopride [8 NVs; 26.0 + 5.5 y;
8 females (53)]. For all normal subjects and patient analyses, striatal and tha-
lamic ROIs were hand drawn onto 3D MRI (Fig. 1 and S/ Text).

The thalamic ROIs in NV and Bl subjects were first defined manually and
then divided into a central and noncentral component (c-TH and non-c-TH,

Table 1. Demographics

Variable Result
Total number of PET studies 32
Total number of patients 24
PET studies per patients: 1/2/3 studies 18/4/2
Age (y) 40.3 + 12.8
Sex (female/male) 13/19
Dx (VS/MCS/EMCS) 3/27/2
Etiology (TBI/AE/miscellaneous) 19/6/7
Months postinjury 77 + 84.9
CRS-R 12.7 £ 1.0
MCS command following (yes/no)* 1314

*Not included: two emerged from MCS; one locked-in syndrome, and two
cases with data not recorded.
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respectively) based on the use of standard structural automatic segmentation
results (S/ Text and Fig. S3) and the pattern of D,-like receptors expression
obtained using [''CJraclopride to identify the boundaries of the c-TH.

To obtain cortical ROIs, previously defined cortical regions were extracted
using a standard nonrigid normalization to the MNI space (54) and then
applied, using an inverse transformation, to the individual NV or Bl subjects’
natural space (S/ Text and Fig. S4).

Statistical Analysis. For the final analysis, the individual ROl mn-UV was used.
All data were assessed for normality [Shapiro-Wilk test, W = 0.99 > critical
value of W = 0.947 (5% significance level)]. For statistical analysis, factorial
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ANOVA design with group (NV/BI), side, and ROl was used. A one-way
ANOVA was then computed to compare differences between groups
(combined for those without lateralization differences). Multiple regression
analysis was performed using the ¢-TH as the dependent variable. Results
were considered significant at P < 0.05. Bonferroni correction was applied
for within-group multiple comparisons. Last, we created a post hoc ratio
between the raw SUV (i.e., not normalized to the global mean) in the c-TH
and GP and contrasted between groups using a one-way ANOVA.
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