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Cruse and colleagues reported1 that a new electroencephalography (EEG)-based tool was able to 
show that 3 out of 16 vegetative state (VS) patients performed a motor imagery task requiring 
language and short-term memory. This finding, if confirmed, has major implications for 
diagnosis and care of severely brain-injured patients. We were concerned about the method’s 
validity because of the difficulty of the task, and its critical reliance on certain statistical 
assumptions. To allow us to test the validity of the method, Cruse and colleagues graciously 
supplied their data and analysis software. Below we show that the patient data do not meet the 
statistical assumptions made in Cruse et al., likely because of the presence of various artifacts 
(Table). We then show that when the data are re-analyzed by methods that do not depend on 
these model assumptions, there is no evidence for task performance in the patients.  

To begin, we examine the EEG data itself. The normals have findings typical of healthy adults 
(Figure 1A, left): rhythmicity in the alpha range (~10 Hz) with minimal eye-blink and muscle 
artifact. In contrast, the patients’ EEG (Figure 1A, right) is dominated by 1-4 Hz activity, as is 
typical of severe brain dysfunction, deep sleep or anesthesia2. Frequency-domain representation 
(Figure 1B) confirms these findings. It also reveals that the patient’s EEG has significant muscle 
artifact3 that fluctuates block-to-block. 

To determine whether subjects performed motor imagery, Cruse and colleagues used a 
multivariate method (Support Vector Machine; SVM) 4,5 to differentiate EEG signals recorded 
while subjects were asked to imagine moving their hand, vs. their toes. SVM is a powerful 
technique, but, without a gold-standard for task performance, the validity hinges on the 
appropriateness of the statistical model.6 As detailed below, the statistical model used in Cruse et 
al. did not account for relationships between adjacent blocks, or correlations between trials 
within a block.  
For calculation of accuracy (how often the SVM correctly classified trials as “hand” vs. “toe”), 
the Cruse et al. methods did not take into account the possibility of slow variations across blocks, 
as their approach always classified pairs of neighbouring blocks (e.g., hand and toe block 1, but 
never hand block 1 and toe block 4). We modified their analysis to use these alternative pairings 
for cross-validation6 (Webappendix). In two of the positive patients (Webappendix Figure 1), 
accuracy decreased to chance (P1), or worse-than-chance (P12) as the test-block-pairs were 
further apart. This drop in accuracy implies that idiosyncratic relationships between adjacent 
blocks contributed substantially to SVM performance in these subjects.  
For calculation of significance, Cruse and colleagues calculated p-values using a binomial 
distribution for the number of correct trials, an approach that assumes that each trial is an 
independent assay. We found that this assumption does not hold in the patients. First, frequency 
domain representation of the EEG (Figure 1B; Webappendix) reveals a lack of independence: 
data from individual trials are more nearly matched within a block than across blocks. Second, 
we applied the Cruse et al. analysis separately to all time points of the trials. For patients, we 
found that worse-than-chance classification occurred substantially more often than expected 
from binomial statistics. This excess of outliers implies that trials are correlated (Webappendix 
and Webappendix Figure 2). 

We next show that when the SVM results are re-analyzed with a statistical approach that takes 
into account the correlations mentioned above (Webappendix and Webappendix Table 1 for full 
details), there is no statistical evidence of a task-related signal. To take into account correlations 
between blocks, we defined accuracy using all block-pairs as test components6, rather than 
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restricting consideration to adjacent block pairs. To account for dependence among trials, we 
determined significance via a permutation test that recognized the block design. With this 
approach, positive normals remained significant, but only one patient (P13) remained significant 
(p=0·0286; lowest possible p-value with 4 blocks). We further note that even for random data, a 
classifier would be expected to yield 1 in 20 positive subjects at p≤0.05. We therefore corrected 
for multiple comparisons via the False-Discovery Rate (FDR)7; normals remained significant but 
none of the patients were significant at p≤0·05.  
Finally, we applied an independent approach that asked whether there was a significant 
difference between task and rest periods, using univariate statistics (i.e., separate tests for each 
frequency and channel of the EEG; methods in Webappendix and 8; Webappendix Figures 3 and 
4). Normals showed the expected task-related changes in motor imagery tasks (decreases in EEG 
power from 7-30 Hz, especially over the motor cortices contralateral to the imagined limb 
movement; p≤0.05 after FDR correction)9,10. None of the 16 patients had significant changes 
identified by this measure. This emphasizes that even if we were to accept the ‘positive’ patient 
classifications of Cruse et al. as different from chance, the EEG signals lack the expected 
physiological changes associated with motor imagery (in contrast to the suggestion made by 
Cruse and colleagues in connection with their Figure 2).  
In sum, we found that the method of Cruse et al. is not valid because the patient data do not meet 
the assumptions of their statistical model. Specifically, the model does not allow for correlations 
between nearby trials and blocks, which are likely induced by fluctuating artifact and arousal 
state; when these factors are taken into account, there is no statistical evidence for task 
performance in patients. Importantly, the model of Cruse et al. generally suffices for normals, 
where there is minimal artifact contamination. These findings cast doubt about conclusions 
drawn from this method, both in Cruse et al., and a more recent study11. 

SVM and related methods are useful tools, particularly in EEG analysis for Brain-Computer 
Interface (BCI)10,12. In BCI applications, subjects can confirm task performance and the 
consequences of classifier failure are limited to reduced device performance. But in the 
diagnostic setting (e.g., determination of consciousness, genomic diagnosis of cancer13,14), 
classifier failure can misinform clinical decision making, with major consequences for patients 
and families. Given this, and the ease of dissemination of EEG technology, standards of 
demonstration of validity need to be high. Our analysis suggests that the approach of Cruse et al. 
falls short of this standard. 

Finally, we wish to emphasize the importance of data sharing. This analysis would not have been 
possible without full access to the original data and code.15  
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TABLE 

 

Assumption of Cruse et al. Relevance to Analysis Test(s) of the Assumption Outcome 

no special relationship 
between adjacent blocks 

calculation of accuracy 
and significance 

dependence of classification 
accuracy on temporal separation 
of hand and toe blocks 

invalid in two 
positive patients 

independence of trials within 
blocks calculation of significance 

1. consistency of spectra from 
different blocks of same task 
type  

invalid in all 
positive patients  

2. distribution of p-values with 
classification tested at all 
time points 

invalid in patients 
as a group 

Table – Overview of analyses and findings.  
 

FIGURE LEGENDS 
Figure 1: Time and frequency domain representations of the EEG of a typical normal (N2) and 
patient (P13) who had similar classification rates in Cruse et al. (75% and 78%, respectively; 
Webappendix for methods). A. Laplacian-montaged EEG of the first trial of hand and toe block 
1. The 25 channels used in Cruse et al. are shown. Note high frequency activity in P13 that 
differs between the trials. B. Spectra of the EEG calculated from each block, color-coded by 
block type, for the same subjects as Panel A. Rest period is data 1·5 to 0 seconds pre-tone, and 
task period is data 0·5 to 2·0 seconds post-tone. Channels displayed include extreme left, midline 
and extreme right of the 25 channels shown in Panel A. I-bar symbol in each plot of Panel B 
represents average 95% confidence limits for the spectra (by jackknife). If trials were 
independent, the spectral estimates from each block should agree with each other, up to the 
confidence limits of each estimate. This holds for the data from normals (left) but not patients 
(right). 
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