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Geometry of spiking patterns in early visual cortex:
a Topological Data Analytic approach

Andrea Guidolin*  Mathieu Desrochest ~ Jonathan D. Victor!  Keith P. Purpura$
Serafim Rodrigues!

October 20, 2022

Abstract

In the brain, spiking patterns live in a high-dimensional space of neurons and time. Thus, de-
termining the intrinsic structure of this space presents a theoretical and experimental challenge.
To address this challenge, we introduce a new framework for applying topological data analysis
(TDA) to spike train data and use it to determine the geometry of spiking patterns in the visual
cortex. Key to our approach is a parameterized family of distances based on the timing of
spikes that quantifies the dissimilarity between neuronal responses. We applied TDA to visually
driven single-unit and multiple single-unit spiking activity in macaque V1 and V2. TDA across
timescales reveals a common geometry for spiking patterns in V1 and V2 which, among simple
models, is most similar to that of a low-dimensional space endowed with Euclidean or hyperbolic
geometry with modest curvature. Remarkably, the inferred geometry depends on timescale, and
is clearest for the timescales that are important for encoding contrast, orientation, and spatial
correlations.

Introduction

The broad goal of understanding the nature and function of neural activity entails the intermediate
step of characterizing the space in which this activity lives. This is a challenging problem, even
for small populations of neurons, because of the dimensional explosion and data limitations: it
is simply not feasible to obtain sufficient experimental data to exhaustively sample the space of
all possible spiking patterns [46]. For this reason, indirect methods are required. A promising
strategy, applicable in a wide variety of contexts, is the persistent homology approach to topological
data analysis (TDA) [22, 36, 37, 50, 10]. With TDA, an abstract notion of distance is used to
compare observations, such as samples of neural activity. Based on these pairwise distances, a
sequence of network graphs can be constructed, with successive graphs built by connecting the
nodes at increasingly greater distances. These graphs are then associated with higher-dimensional
topological objects called simplicial complexes, which are characterized via their Betti numbers,
describing (intuitively speaking) the number of disconnected components, the number of holes, the
number of “bubbles”, etc. The way that the Betti numbers change as a function of the distance
criterion between the samples then provides a topological characterization of the space.

Here, we use this approach to analyze the activity of clusters of cortical neurons, with a specific
focus on patterns of spiking activity in time. This requires confronting another issue, but one that
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the persistent homology approach is also well-suited to handle: even for a single neuron, activity is
not a scalar quantity, but rather, a sample of a point process. Thus, it is possible to use the TDA
machinery in a novel way, by applying it to a measure of distances between neural responses that is
sensitive to temporal patterns within and across neurons: the family of spike distances introduced
by Victor and Purpura [44]. While these distances do not correspond to Euclidean distances [4],
they do satisfy the triangle inequality, which suffices for the TDA machinery.

While our approach shares the overall goal of a geometric characterization of neural activity
with many other studies, there are some important differences in the questions we ask. Below we
highlight the two main distinctions.

One central question is, what is the dimensionality of the response space? In previous studies
[12, 11] dimensionality is defined as the dimension of the space that contains response trajectories,
where a response trajectory is the evolution of average firing rates over time. Thus, these previous
approaches would not distinguish between spiking activity that was well-described by a Poisson
process, and spiking activity whose patterning required additional dimensions to describe. Our
construction of the response space is quite different: it is sensitive to the patterns of spikes on
individual trials. We find that there are substantial differences between the geometry of the recorded
neural activity and their Poisson-like equivalents. Moreover, we find that the influence of spike
patterning on geometry is maximal at the timescales that are important for neural coding of visual
attributes such as contrast, orientation and spatial patterns [43].

Many recent studies have shown that the geometry of the responses “untangles” the key param-
eters of the stimulus, an important and novel finding for complex, naturalistic domains [31, 23, 26].
This is not a focus of the current study, as an untangling is to be anticipated for the stimulus set
studied here: a family of artificial visual textures parameterized by local image statistics [42]. V1
and V2 neurons are selectively tuned to these statistics (see below), so decoding of the popula-
tion will necessarily identify distinct directions (i.e., distinct population vectors) that capture the
stimulus parameters.

Rather, our focus is on whether the intrinsic geometry of neural activity patterns depends on
the stimulus parameters being encoded. To this end, our visual stimuli contained a range of types
of statistical structures, including textures that varied in first-, second-, third-, and fourth-order
local spatial correlations (see Materials and Methods) known to be present in natural images [27]
and to be salient for human observers [45]. First- and second-order statistics control luminance
and orientation content, respectively, and thus drive neurons in both V1 and V2, while third- and
fourth-order statistics control aspects of local form that are primarily detected by V2 neurons [49].
Here, we separately analyze responses to many examples of textures that explore each of these
statistics. Thus, we can determine whether the geometry of neural activity patterns depends
on the kind of visual structure that is encoded, or perhaps on the cortical area (V1 vs. V2),
or alternatively, has a more universal behavior — the latter suggesting that the spike patterning
dynamics are endogenously-driven.

Applying TDA to spike distances carries with it a theoretical departure from most previous
applications of the persistent homology approach to neural data. Provided that mean responses
depend continuously on stimulus parameters, Fuclidean distances between mean firing rates or
distances derived from correlations [22, 13, 14], which are effectively dot products in a vector
space, will always lead to a manifold (though not necessarily one of low dimension). The reason is
that these distance will map neural activity to a smooth and connected subset of a vector space.
Spike metrics have a discrete component and consequently are fundamentally not Riemannian, so
response geometry will typically not constitute a manifold — but, as we show, manifold structure
is not needed to interpret the results of TDA.

Finally, we find that a novel way of passing from distance measures to graphs — linking nodes
according to greatest dissimilarity rather than greatest similarity (using a “decreasing filtration”
rather than the standard “increasing filtration”) sharpens the distinction between the experimental
data and candidate geometrical models.
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Results

The starting point of our analysis is 28 datasets of single-unit spiking activity recorded from areas
V1 and V2 of the visual cortex of anesthetized macaques during stimulation with visual patterns
drawn from a high-dimensional space of visual textures [42]. Each dataset is a recording at a
separate recording site or in a different macaque, and at each site, the stimulus space is sampled
along its 10 axes, corresponding to 10 independent and visually salient kinds of spatial correlation
(Fig. 1). We sample each axis at four points: two levels of positive correlation and two levels of
negative correlation (see Materials and Methods for details). 64 perceptually similar examples of
each of these 40 texture types (10 axes, 4 sample points per axis) were presented in random order,
with each stimulus lasting 320 ms. This sequence was repeated four times at each recording site.
We refer to the neuronal responses to the 64 perceptually similar stimuli obtained in this way in
one repeat as a “collection”; thus, there were 160 collections (40 texture types, 4 repeats) in each
dataset. For our analysis, we selected the 80 collections with the smallest number of empty responses
from each dataset. Depending on the dataset, the responses consisted of the spike trains of one or
more isolated neurons. If more than four neurons were simultaneously recorded, we considered only
the four neurons with the highest firing rates. We then applied TDA to characterize the topology
of the firing patterns in each of the collections, and summarize the resulting characterizations to
identify their consistent features.

The TDA method we used follows very closely the framework proposed by [22], but we started
from a different way of endowing a set of neuronal responses with a notion of distance. Specifically,
we used the multineuron Victor-Purpura distance [43, 3] to define the distances between all pairs
of neuronal responses. This choice to employ a distance between spike trains rather than the
correlations (based for example on firing rate) between neuronal responses to quantify (dis)similarity
is motivated by several considerations. The main consideration is that we wanted to focus on
spiking patterns in neuronal data that is relatively sparse (typically only a few spikes in the 320
ms response period). Information about spiking patterns would be lost in averages over multiple
stimulus presentations, or after a smoothing procedure to estimate time-varying firing rates from
single trials. Secondarily, use of the Victor-Purpura distance allows us to build on previous studies
of the visual cortex that employ other data analytical techniques. We note that the generality of
the TDA approach extends seamlessly to metrics such as the Victor-Purpura distance, as it does
not assume a vector space embedding.

The Victor-Purpura distance between spike trains (see Materials and Methods) is defined as
the minimum cost of transforming one spike train into the other via addition or deletion of spikes,
shift of spike times, or change in the neuron of origin of the spikes. Each editing move is associated
with a cost, which depends on a parameter ¢, controlling the relevant timescale for shifts of spike
times, or on a parameter k, controlling the sensitivity to the neuron of origin of each spike. The
family of distances defined in this way ranges from measures of dissimilarity that ignore spike timing
altogether (¢ = 0), measuring distance based only on spike count, to measures that consider spike
timing meaningful at an arbitrarily high level of precision (¢ - o). Similarly, & = 0 corresponds
to ignoring the neuron of origin, while k£ = 1 corresponds to considering a change in the neuron of
origin equivalent to the insertion of a spike. We carried out TDA for a grid of values of these two
parameters: q =1,2,5,10,20,50,100, 200 (sec‘l) and k =0,1. The resulting grid covered the range
found relevant to neural coding in previous studies [43, 3].

For each choice of parameters of the Victor-Purpura distance we computed topological sum-
maries via Betti curves [22] (Fig. 2) and characterized relevant features of the topological space by
computing mean Betti curves averaged over the 80 collections drawn from of each dataset. The
procedure for construction of the Betti curves is detailed in Materials and Methods and summa-
rized here. We first create a sequence of graphs from each collection; in each graph, the nodes
are the individual responses in the collection, and the edges are determined by the dissimilarities
(Fig. 2A). As in the standard implementation of TDA, each graph is built by connecting nodes
whose dissimilarities are less than a given ceiling. Thus, the graph sequence begins with a ceiling
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of 0 (all nodes disconnected) and terminates at a ceiling equal to the maximum distance (all nodes
connected), a graph sequence known as the increasing filtration, and used in the clique topology
method of [22]. Here, we also create a graph sequence by adding in the edges in decreasing order
(the decreasing filtration), like in [32]. In each filtration, as the edges of the graph fill in, its topol-
ogy can be characterized by the number of enclosed “holes” of different dimensions: the number of
1-dimensional tunnels, 2-dimensional voids and 3-dimensional “cavities”, known as Betti numbers
and denoted by (1, 82 and (3 respectively. These are computed at each step of the filtration, and
thus, the Betti numbers are functions of the edge density p, the fraction of potential edges that
have been filled in: 31(p), B2(p) and B3(p). These quantities, which we computed over the range
from p =0 to 0.6 and then averaged over the 80 collections in a dataset, are shown in Fig. 2B.

Note that while the Betti curves are sensitive to the geometry and topology of the metric space
of data points [22, 37, 50] they are invariant under monotonic transformations of the distance [22].
This means that they are sensitive only to the relative ordering of all distances.

Below, we will focus on the mean Betti curves from the 80 collections with the highest firing
rates at each recording site, but first we investigated whether the Betti curves had a substantial
dependence on the two critical experimental variables that distinguished the collections: whether
the recordings were in V1 vs. V2, and whether the spatial structure of the stimulus was low-
order (first- and second-order) vs. high-order (third-or fourth-order) (see Fig. 1, Materials and
Methods, and [45] for details and definitions). Low-order correlation structure is extracted by
linear receptive fields and is already present in V1; third- and fourth-order correlation structure is
primarily extracted in V2 [49].

To compare the topological characterizations of the collections of responses, we summarized
the information in the Betti curves by two main features: the integral of the curves [22], referred
to as integrated Betti values, and the position of their dominant peak on the p-axis, quantified by
their center of mass (see Materials and Methods for details). Fig. 3 shows that the integrated Betti
values of the collections recorded in areas V1 and V2 of the visual cortex have similar distributions.
A remarkable consistency can be observed across all values of the parameters of the Victor-Purpura
distance, and for both the increasing and decreasing filtration. The distributions of the center of
mass of the Betti curves (Fig. S2) also show no dependence on recording area.

Furthermore, the distributions of integrated Betti values (Fig. 4) and center of mass (Fig. S3)
do not depend on whether the visually-salient structure of the textures is driven by first- and
second-order spatial correlations, which lead to differences in luminance and spatial frequency that
is already manifest in the cortical input, or by third- and fourth-order spatial correlations, which
require intracortical calculations to extract [49].

Note that this analysis does not seek to determine whether the responses to one kind of texture
differ from responses to another (whether they lie in different parts of a combined response space,
e.g., by virtue of different firing rate profiles), but rather, to analyze the intrinsic geometry of each
collection, via methods that focus on firing pattern. Our results up to this point suggest that
this geometry is largely independent of the recording area, or the stimuli that drive the responses.
Given the similarity of the results of TDA across recording areas and texture types, we pool these
results in the further analysis below and now focus on the mean Betti curves over the 80 collections
within each of the datasets.

To assess which aspects of the spike train data might be responsible for the shape of these mean
Betti curves (e.g., Fig. 2B), we synthesized surrogate spike train data of four different types by
perturbing specific aspects of the original experimental data. The description of the surrogate data
is detailed in Materials and Methods and summarized here.

1. Uniform resampling of spike times (U): the spike times of each response are resampled uni-
formly in the response interval (0 — 320ms).

2. Ezchange resampling of spike times between collections (EB): the spike times of each response
are resampled uniformly, without replacement, in the set of spike times of the 80 collections
of the dataset.

http://mc.manuscriptcentral.com/jrsi
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3. Ezchange resampling of spike times within collections (EW): as in 2, but with the resampling
restricted to the set of spike times of the collection to which the response belongs.

4. Poisson generated spike trains (P): each response is replaced with a sample of a Poisson
process with the same firing rate.

In all cases, the spike times are resampled independently for each neuron that participates in a
response. For each experimental dataset, we generated 20 surrogate spike datasets for each of the
above four types, and computed Betti curves for these surrogates just as the curves were computed
for the experimental data.

An example of this analysis is shown in Fig. 5. As is typical across the datasets, the Betti curves
associated with the experimental data were often quite distinct from those of the surrogate sets.
These differences were most prominent in the mid-range values of ¢ (5 to 50 sec™!), and also more
prominent for the decreasing filtration than for the increasing filtration. In addition, the Poisson
surrogates usually show a greater divergence from the real data than the other surrogates. One
possible reason for this is that, unlike the other surrogates, the Poisson surrogates do not preserve
the number of spikes in each response.

To determine the consistency of these features across the 28 datasets, we used the integrated
Betti values and the centers of mass of the Betti curves. Thus, for every fixed Betti number
(81, B2 or Bs3), we considered the difference between the integrated Betti value of each surrogate
(mean value over the 20 computations) and the integrated Betti value of the experimental data,
and averaged them over the 80 collections from each dataset (see Fig. 6 for 31 and Figs. S4-S5 for
B2-P3). Consistent with Fig. 6, Figs. S4-S5, and with the single dataset of Fig. 5, the behavior of
the experimental data departs from the behavior of the surrogates, especially for the mid-range
values of ¢ (5 to 50 sec™t). This holds both when the neuron of origin is ignored (k = 0) and when
it is considered relevant (k = 1), and it is seen for both increasing and decreasing filtrations. All
surrogates behave in a way that is distinct from the experimental data. As in Fig. 6, three of the
surrogates (U, EB, EW) behave similarly to each other, while the Poisson surrogate (P) deviates
from the data more extensively. We confirmed these observations using the centers of mass of the
Betti curves in place of the integrated Betti values (see statistical tests below).

Fig. 7 and Figs. S6-S7 assess the statistical significance of these observations for ;-3 via the
two-sample Kolmogorov-Smirnov (KS) test applied to the distributions of integrated Betti values.
Even for the EW surrogate, which perturbs the recorded spike trains the least, the KS test statistic
takes on large values, especially for mid-range values of ¢, rejecting (at the 0.05 significance level)
the null hypothesis that the EW surrogate and the experimental data samples come from the same
distribution. More generally, the analysis shows that the surrogates for U, EB, and EW diverge
in a similar, timescale-dependent manner from the experimental data, while the Poisson generated
data is always significantly different from both the experimental data and the other surrogates.
These observations are confirmed by the KS test applied in the same way to the distributions of
centers of mass of the Betti curves (Figs. S8-S10).

In sum, Figs. 3-7 and S2-S10 demonstrate that the neural activity elicited by images with a
range of statistical properties, and recorded in either V1 or V2, have a common topological structure
that is distinct from that of surrogates with matching spike counts and spike timing distributions.
These differences are present over a broad range of temporal scales, and are most prominent at a
temporal scale of 550 sec™!, i.e., 20 to 200 ms.

The analysis so far shows that the observed firing patterns depart from that of surrogates
that randomize spike times but maintain mean firing rates in various ways. This departure is
manifest in the Betti curves, but the Betti curves are only an indirect reflection of the structure
of the response space. To gain insight into this topological structure, we compared the measured
Betti curves with those obtained from randomly-assigned distances or by sampling points in simple
geometric spaces [22, 36, 50]. Specifically, we computed the Betti curves associated with: (i) a
random symmetric 64 x 64 matrix with zeros on the diagonal [22], (ii) a sample of 64 random points
in a unit (hyper)cube within a d-dimensional Euclidean space [22], and (iii) a sample of 64 random
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points in the hyperbolic ball model of the d-dimensional hyperbolic space [50]. For Euclidean and
hyperbolic spaces, we considered dimensions d from 1 to 15. For the hyperbolic models, we also
varied the effective curvature. As in [50], we implemented this by keeping intrinsic (Gaussian)
curvature fixed at —1 but changing typical distances between the points (i.e., varying from 1 to 5
the maximum radius Rpax of the hyperbolic ball model, see Materials and Methods). We therefore
refer to models with low Ry« as hyperbolic spaces with moderate curvature. For each random or
geometric model, we computed the Betti curves of 300 sets of samples. We then compared these
distributions with the Betti curves selected from our data via integrated Betti values and centers
of mass. We restricted the analysis to collections with at most one empty response, in order to
have 64 data points (and to exactly match the geometric models), and we randomly chose one such
collection for every dataset that had collections meeting this criterion. This yielded Betti curves
from 18 different datasets.

To determine compatibility with the geometric models, we first tallied how many of the exper-
imental integrated Betti values were within 3 standard deviations of the mean of the 300 values
of the model for all Betti numbers §;1-83 and for both increasing and decreasing filtrations. This
procedure was followed for the grid of values of the k and ¢ parameters of the Victor-Purpura
distance (Fig. 8). We then compared the centers of mass using the same notion of compatibility
(Fig. S11).

While none of these models were a good fit to the data, the FEuclidean and low-curvature
hyperbolic models (Rmax = 1) came the closest (Fig. 8). Fig. S11 shows however that compatibility
is reduced when considering centers of mass instead of integrated Betti values, in particular for k = 1.
Compatibility is maximal for low dimensions (d = 3 to 5) in the range we considered, consistently
across the geometric models. In all cases, Betti curves associated with the experimental data
were found to be incompatible with the random symmetric matrix model. Interestingly, across the
geometric models, compatibility of integrated Betti values between the experimental data and the
models (Fig. 8) is maximized in a consistent region of the parameter space of the Victor-Purpura
distance. These regions correspond approximately to g = 5 to 20 sec™! for k = 0, and ¢ = 1 to 10
sec”! for k = 1, while for large values of ¢ the compatibility is very low in all cases.

Discussion

Geometry of spiking patterns

Understanding the properties of biological neural networks requires examining the structure of
spike trains — the sequences and patterns of action potentials generated by groups of neurons in
the cortex during the processing of information. We show here that characterizing the response
space in which these patterns live through TDA provides insight into the intrinsic structure of the
activity patterns generated in V1 and V2 in the macaque monkey during robust visual stimulation.
The influence of timescale on this structure suggests that local networks in V1 and V2, and perhaps
the interactions between these two cortical areas, play a major role in shaping the geometry of the
spike response space, and in fact dominate the influence of the stimuli. While no simple model
such as a circle, torus, or sphere [36] recapitulates the space, across a range of timescales the spaces
extracted by TDA are most similar to low-dimensional models of Euclidean geometry or hyperbolic
geometry with a modest amount of negative curvature (Figs. 8 and S11). Moreover, these spaces
appear to be largely independent of the visual stimuli used in this study (Figs. 4 and S3) or the
cortical region of the recordings (Figs. 3 and S2).

Note that while the spike pattern structures we identify are most consistent with Euclidean
geometry or hyperbolic geometry with modest curvature, this geometry arises in a way that is
fundamentally different from the manifolds and subspaces described above in the Introduction.
The latter are derived from a vector state space of instantaneous spike rates [48], or calcium
activity across a population [47], and the time evolution of these signals can be interpreted as
trajectories across these subspaces. Here we begin with a family of metric state spaces, each
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defined by a timescale for comparing individual spike trains, and through TDA identify a family
of spaces that each capture a unique spike pattern structure. These spike pattern structures exist
in time as entities. Furthermore, vector space approaches assume that the actual timing of the
spikes underlying the firing rates in the state space are largely irrelevant and can be effectively
modeled as a Poisson point process, either homogeneous or inhomogeneous [36], with no temporal
structure [25]. In our approach, we are specifically interested in the spike timing in individual and
joint responses across groups of neurons.

Implicit in our results is the demonstration that TDA provides a way to characterize neuronal
response spaces avoiding the limitations of vector space methods. TDA begins with the pairwise
distances between instances of population activity. While several previous applications of TDA
to neural spiking data have assumed a vector space structure or used a vector space embedding
to compute these distances [22, 13, 14, 36], there is no fundamental reason to do so. Rather, the
primary requirement is that the distance between two samples of neural activity corresponds to
their dissimilarity. In [5], TDA methods combined with non-parametric (dis)similarity measures
between spike trains were applied to synthetic spike train data for regimes classification in artificial
neural networks. Here, we apply TDA in conjunction with a parametrized family of distances
that have been shown to capture the meaningful dissimilarities between spike trains in several
contexts [43, 1, 15, 19], and that are not Euclidean [4].

Spiking responses driven by visual textures

Recognizing that neural activity is the result of an interaction of the inputs to the population
and its intrinsic network properties, we sought to identify characteristics of the spiking response
space that might apply to a wide range of visual stimuli. To this end, we used stimuli consisting of
mathematically-defined visual textures [45, 49] of known relevance to natural vision [39]. Critically,
this stimulus set included some textures whose visually-salient structure (first- and second-order
spatial correlations) could be extracted by simple center-surround operations in the retina, and
other textures whose structure (third- and fourth-order spatial correlations) can only be extracted
by cortical computations, primarily in V2 [49]. As we show (Figs. 3-4 and S2-S3), the characteristics
we identify are independent of this distinction; that is, these characteristics are shared by V1, where
only first- and second-order spatial correlations are robust drivers of activity, and V2, where many
neurons are sensitive to higher-order correlations [49]. During the data collection phase, we matched
the orientation and spatial scale of the texture stimuli to the receptive field properties of the well-
isolated single-units in the tetrode recordings. This allowed us to collect robust spiking activity
even under propofol anesthesia/sufentanil analgesia [49]. These responses included strongly driven
modulations of firing rate driven by many of the texture types, as well as trial-to-trial variability,
thus facilitating wide exploration of the response space. We further promoted the exploration of
the response space through the use of 64 distinct exemplars of each texture type. Finally, to ensure
sensitivity to the details of spiking patterns, we based the analysis on individual spike trains rather
than their averages, and used a distance that was sensitive to the timing of individual spikes rather
than just overall spike count [36] or firing rate envelope [41].

The importance of spiking pattern analysis in neuroscience

There is a considerable body of work spanning more than 3 decades, both experimental and theo-
retical, dedicated to elucidating the nature and function of spiking patterns in single neurons and
across populations of neurons [18, 30, 9]. Several themes have emerged from this work. One is that
the spiking patterns of individual neurons and groups of neurons can encode sensory information
in the timing of their spikes [40, 43]. Second, the degree of synchrony of spiking patterns and the
generation of discrete sequences of spikes across neurons, may play a role in transferring signals
through synaptic pathways [33, 24]. Third, spiking patterns can arise through phase-locking of
spikes to slower oscillatory signals in neural networks, a mechanism that is thought to mediate
communication across cortical areas [28]. Fourth, spiking patterns in individual neurons may arise
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from joint activity in neural assemblies [35]. Finally, plasticity and learning in neural networks
is dependent on the precise timing of pre- and post-synaptic spikes across the synapses in the
network [8, 17]. Together, these themes emphasize the critical role spiking patterns play in brain
function. However, the studies within this body of work use a wide range of approaches that of
necessity often each provide only a partial picture of the spiking patterns of interest. Our study
here is the first to apply TDA to the analysis of spiking patterns in the visual cortex. This study
identifies a number of low-dimensional subspaces in the spiking response space, each at a different
timescale. These subspaces reveal the presence of spiking patterns in the visual cortex generated
during robust visual stimulation that do not encode the visual stimuli, but like the low-dimensional
spaces that organize during spontaneous spiking activity [38], may reflect intrinsic states in visual
cortical processing.

Timescales and neurons of origin in spike patterns

Our approach recognizes that the timing of individual spikes is potentially important but it is
agnostic as to what the relevant timescales are. This viewpoint is implemented by applying TDA
to a family of distances controlled by a parameter ¢ (in units of sec™) that sets the resolution with
which spike timing influences the measure of dissimilarity. Applying TDA to the resulting family
of distances for ¢ = 1 to ¢ = 200 sec™! allows us to focus on a range of timescales from 1sec down to
51ms.

The family of distances has a second parameter, k, which controls the importance of the neuron
of origin in determining dissimilarity. For k = 0, the neuron of origin is irrelevant; for k£ = 1, chang-
ing the neuron of origin has unit cost. These extremes proved useful in analyzing multineuronal
coding of spatial phase [3], demonstrating maximal information near k = 1; here, the dependence
of response space geometry on k was relatively small.

Importantly, the distinction between experimental data and the random surrogates (U, EB, EW,
P) depends systematically on the temporal resolution ¢ of the distance between spike trains (Figs. 6-
7 and S4-S10). The distinction is greatest for intermediate values of ¢ = 5-50 sec™!, corresponding to
resolutions of 200 to 20 ms). For low values of g (< 5), the distinction is generally lost, as the Victor-
Purpura distance progressively disregards spike timing; for higher values (> 100), it is also generally
weaker, indicating that at these timescales (with interspike intervals < 10ms) the systematic effect
on geometry is less pronounced. Although the behavior of Poisson surrogates statistically diverge
from the experimental data for the decreasing filtration method and high values of ¢ (Figs. 5, 7 and
S6-510), we observe (Figs. 6-7 and S4-S10) that the distinction is clearly visible across the whole
range of parameters and for both filtration methods. One can interpret the dependence between
the timescale parameter ¢ of the Victor-Purpura distance and the difference between experimental
data and the random surrogates as the temporal scale of distinctive geometries that structure the
spiking response space. It is notable that the timescales which most clearly reveal the geometry
of the response space correspond to the timescales that are most informative for carrying visual
information about contrast, spatial frequency, orientation, and texture — both as identified by
analysis methods based on the Victor-Purpura distance [43], and by unrelated approaches [21].
Because the timescales at which the ongoing activity has the most distinctive geometric structure
is similar to the timescales that are most informative about visual features, it is reasonable to
hypothesize that this match facilitates transmitting visual information.

One way to interpret the results with the random surrogate data is to consider the degrees of
freedom of the spiking activity. The Betti curves of the surrogates typically have higher values
than the experimental data for intermediate values of ¢ (Figs. 6 and S4-S5). This may indicate
that the response space for the real spiking activity is more constrained than the synthetic spiking
activity. In this range (¢ = 5 - 50 sec‘l)7 the random manipulation of the spike data in different
ways consistently opens up holes in the response space, leading to higher Betti values (Figs. 5-6
and S4-S5). This result suggests that the neural response space produced during visual stimulation
has fewer discontinuities (is more structured) than the response spaces produced by the surrogates.
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Comparison with simple geometric models

The comparison with random and geometric models highlights complementary aspects of the ge-
ometry of the space of sampled spike trains endowed with Victor-Purpura distances. Upon defining
a notion of compatibility that accounts for the Betti curves of ;-85 and both increasing and de-
creasing filtration, we observed that even if none of the considered models consistently fits the
data, Euclidean geometry and hyperbolic geometry with moderate curvature (Rpax = 1) are more
compatible with the geometry of the spike train responses (Figs. 8 and S11). Compatibility is
concentrated in low dimensions of the geometric models (d = 3-5). This observation is consistent
with other geometrical descriptions of neural population activity [20]. In these descriptions, the
instantaneous firing rates of a large number of neurons are found to occupy a low-dimensional
manifold within a high-dimensional spiking response space. While in the study described here we
analyze recordings from at most four neurons, the distances we consider between spike trains are
intrinsic and do not depend on the choice of an embedding, and as a consequence, potentially cap-
ture aspects of the neural activity manifold. However, recordings of larger numbers of neurons are
needed to demonstrate that this is the case. Fig. 8 also shows that the compatibility between the
data and the geometric models assessed via integrated Betti values systematically depends on the
timescale ¢ of the Victor-Purpura distance between spike trains, and is maximized for mid-range
values ¢ = 5 — 20 sec™! when the neuron of origin of each spike is disregarded (k = 0), and for low-
range values ¢ = 1 — 5 sec™* when the origin of each spike is accounted for (k = 1). When assessed
via centers of mass, however, compatibility is reduced for k£ = 0 and very low for k£ =1 (Fig. S11),
even if a systematic dependence on ¢ is still observable.

Considerations regarding the experimental procedure

The data analyzed here were collected from monkeys under propofol anesthesia/sufentanil anal-
gesia and neuromuscular blockade. As a consequence, fixational eye movements could not have
contributed to the fluctuations in spiking activity we observed in V1 and V2, but conversely, the
natural dynamics of the visual input due to such eye movements is only partially approximated by
the transient mode of stimulus presentation that we used. Another caveat is that the anesthesia
and opiate analgesia may have produced noise correlations in the neural activity that contributed to
the topological structure we extracted through TDA. While it is impossible to rule out any impact
of anesthesia and analgesia on our results, there are two reasons that it is probably minor. First,
as mentioned above, the timescales associated with the most consistent and distinctive state-space
structure observed here corresponded to the timescales that are most important for carrying visual
information in neurons in the visual cortex of the awake macaque [43]. Second, available evidence
suggests that the effect of drug-induced changes in network state would be more likely to dilute any
underlying structure, than to create it. Specifically, Ecker and co-workers [16] compared the vari-
ability of the spiking activity in V1 in awake monkeys with that seen in monkeys under sufentanil,
inferring the presence of a sufentanil-related state variable. This state variable fluctuated with a
timecourse that varied from 50 to 1650ms. If similar sufentanil-related fluctuations were present
during our recording sessions, the impact would have been distributed randomly across the many
320ms spiking response samples.

Methodological innovations

In summary, we introduce a new framework for applying TDA to spike train data, and use it to
analyze patterns of spiking response in macaque visual cortex. There are two main methodological
innovations. First, in contrast to most previous applications of TDA to neural data, we do not
assume that the spike trains have a vector space embedding that induces distances and correlation
measures between them; rather, the topological analysis is directly applied to dissimilarity measures
(e.g. distances) that result from considering spike trains to be sequences of events — in this case, the
Victor-Purpura spike train distances, which are non-Euclidean. A second innovation of the approach
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is the filtration — the sequence of simplicial complexes derived from the dissimilarities that are used
to compute the Betti curves. Typically, an increasing filtration is used for TDA [37, 10]: graphs
are progressively filled in for pairs of points at greater and greater dissimilarities; here we show
that the decreasing filtration can reveal a clearer picture of the datas geometry and topology. Betti
curves, especially when averaged over several computations, capture the statistical distribution
of the persistent topological features (tunnels, voids, etc.) across a filtration, which serves as a
topological descriptor of the underlying metric spaces. In contrast to the usual filtration of graphs
by increasing weights and their associated clique complexes, the decreasing filtration is obtained
by considering, in reverse order, the independence complex of each graph (i.e., the clique complex
of the complement of the graph). Betti curves of low dimension ($;—33) of the decreasing filtration
therefore carry information on the arrangements of high-order cliques of the original graphs, which
is not related to the homology of the increasing filtration. Because the analysis is carried out for
a sequence of distances parameterized by timescale, we are able to identify the range in which
the geometric structure of the spiking response space is most distinctive: the range 5 — 50 sec™!,
i.e., 20 to 200ms. As noted above, this timescale corresponds to the temporal precision that is
most informative for decoding visual information from spike trains. This matching of the timescale
of response space geometry and the timescale of neural coding may be a general feature of brain
networks, and we speculate that networks in other domains (e.g., motor planning, learning, decision-
making, etc.) will behave similarly.

Materials and Methods

Experiments

All procedures followed the guidelines provided by the US National Institutes of Health and Weill
Cornell Medical College Animal Care and Use Committee. Full details concerning the physiological
preparation and multi-tetrode single-unit recordings can be found in [34] and [49]. Detailed descrip-
tions of the visual stimuli, their generation, and their display during the experimental sessions are
given in [49], which also details how single-unit activity was characterized, and how the time-series
of neural firing events, including the procedures utilized for spike sorting, were extracted from the
multi-tetrode recordings. These methods are summarized in SI Materials and Methods.

Visual stimuli and stimulation protocols

The visual stimuli used in this study are 16 x 16 black and white checkerboard-like patterns drawn
from a mathematically-defined stimulus space. The stimulus space has 10 coordinate axes specifying
the type of the multipoint correlations in each 2 x 2 grid of “checks” in the patterns, and the
coordinates along these axes define the strength of the correlation (the fidelity with which the
multipoint correlation is rendered across each pattern), and the correlation’s polarity [45, 49]. The
10 coordinate axes can be partitioned into four classes according to the order of the multipoints
correlations [45]: first-, second-, third- and fourth-order correlations (see Fig. 1). In this study,
the patterns were drawn from four coordinate values (2 magnitudes x 2 polarities) along each of
the 10 axes in the stimulus space. The size of the 16 x 16 patterns, their position on the visual
display screen, the orientation of the patterns, and the check-sizes in the patterns were chosen to
optimize stimulation of isolated clusters of neurons based on the neurons’ receptive field properties
as determined by the responses to sinusoidal gratings. Further details on this point are given in [49].

The topological data analysis presented here was performed on a subset of the neural responses
obtained during the experimental runs. The experimental runs used (at least) 64 samples from
the 4 coordinate values along each of the 10 axes in the stimulus space. In addition, 64 examples
of fully random patterns were included in the experimental runs. The topological data analysis
excluded the responses to the random patterns. For the experimental runs, a total of 2624 unique
stimuli (64 x 41) each repeated 4 times (for a grand total of 10496 stimuli) was shown. In 20 of
the 28 analyzed datasets, the 64 analyzed responses to visual stimuli of the same type are part
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of a larger sequence of 128 responses to 128 unique stimuli; in these cases, we selected for our
analysis the responses to the first 64 unique stimuli shown during the experiment. The patterns
were presented in extended pseudorandom sequences at 100% contrast, surrounded by a mid-level
gray background. Each pattern appeared for 0.32 seconds and was immediately followed by the
next pattern in the sequence. A different pseudorandom sequence was used for each of the four
times a sequence was run during a recording block. There was a pause of about 1 minute between
these repeats, during which time the gray background was displayed.

Analyzed data

For each of the 28 datasets, the responses to all non-random stimulus types (each determined by
a choice of an axis and a strength level for the correlations) for all repeats were then assembled
to yield a total of 40x4 =160 collections. To study the topology of the space that neural activity
occupies, we selected the 80 collections in each dataset with the smallest number of empty responses
(i.e., responses with 0 spikes). The vast majority of these collections had at least 60 non-empty
responses; see Fig. S1 (D). This choice for selecting collections is motivated by the fact that our
analysis maps spike trains with at least one spike to distinct points in the topological space, while
all empty spike trains are mapped to the same point. Thus, this selection criterion maximized the
sampling of the space occupied by a collection.

Data analysis and TDA

Victor-Purpura distance The (multineuron) Victor-Purpura distance [43] is a cost-based dis-
tance between spike trains that has two parameters: a parameter ¢ that controls the timescale
used to quantify dissimilarity in spike timing, and a parameter k£ that determines the relevance of
the neuron of origin of each spike. The distance between two neuronal responses is defined as the
minimum cost of transforming one spike train into the other via a sequence of basic moves: addition
or deletion of a single spike, with a cost of 1, shift of a single spike by a time interval At, with a
cost q|At|, or change in the neuron of origin, with cost k. Thus, ¢ = 0 corresponds to ignoring spike
time but retaining spike count, ¢ > 0 corresponds to considering temporal structure at a scale of
1/q. If a spike time in one train is within 1/q of a spike time in a second train, they are considered
to correspond, as they contribute less than 1 unit to the dissimilarity. Conversely, if spikes are
more than 2/q apart, they are considered to be unrelated, since shifting them into correspondence
would incur a higher cost than deleting the spike from one train and inserting it into the other.
Similarly, while for k = 0 changing the neuron of origin of a spike comes with no cost, for k£ =1
the corresponding cost is equivalent to the insertion of a spike. Further background on the Victor-
Purpura distance, as well as efficient dynamic-programming algorithms for calculating it, can be
found in [44, 2]. In our analysis, for each collection of neuronal responses we determined the dis-
tance matrix D = (D;;), where D;; is the Victor-Purpura distance with parameters (g, k) between
the ith and the jth response in the collection. The parameters ¢ and k ranged over a grid of val-
ues: ¢ =1,2,5,10,20,50,100, 200 (sec‘l), and k =0,1. The Victor-Purpura distance between spike
trains is computed using the “labdist_faster_gkpara_opt” Matlab function implemented by Thomas
Kreuz, available at: http://www-users.med.cornell.edu/~ jdvicto/labdist_faster_gkpara_opt.html

TDA methods We applied and extended the clique topology method introduced in [22], which
corresponds to computing the Betti curves associated with our increasing filtration. Given a sym-
metric matrix M with zeros on its main diagonal, the first step of the method consists in considering
the above-diagonal part of the matrix, transforming it by rank ordering its entries (thus replacing
the original entry values by natural numbers 0, 1,...), and completing the below-diagonal part of
the rank-ordered matrix by symmetry. The method then computes the persistent homology (see
TDA software) of the rank-ordered matrix and finally determines the associated Betti curves. Since
the input matrix is transformed by considering only the rank ordering of its entries, the output is
invariant to monotonic transformation applied entry-wise to M. Given a dissimilarity or distance
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matrix, the clique topology method orders the entries increasingly. We observe that in [22] the
method is also applied to a matrix C' = (Cj;) of correlations by transforming it into a dissimilarity

; matrix D = (D;;) via the application of any function that inverts the ordering between the absolute
3 values |Cj;| of the correlations and the entries D;j;, e.g., D;j = —|Cj;]. In this work, we apply the
4 clique topology method by ordering the entries of our distance matrices both increasingly (increas-
5 ing filtration) and decreasingly (decreasing filtration), the latter case corresponding to the weight
6 rank clique filtration method introduced in [32].

7 A sequence of nested simple graphs Gg ¢ Gy c --- ¢ G, called a filtration, can be determined
8 from a rank-ordered n x n symmetric matrix (typically representing pairwise distances) as follows.
?O Each graph has the same set of n nodes, and the edges of a graph G}, are determined by thresholding
11 the rank-ordered matrix (setting to one all entries smaller than &, and setting to zero the remaining
12 entries) and regarding it as an adjacency matrix. An edge is therefore present between nodes 4
13 and j of the graph Gy if and only if the (i,7) entry of the rank-ordered matrix is less than k.
14 If the above-diagonal entries of the symmetric rank-ordered matrix are all different, the graph
15 G has no edges, the graph G has one edge, corresponding to the smallest off-diagonal entry of
16 the rank-ordered matrix, and so on. As the edges fill in, graphs can be enriched with higher-
1; order connectivity information encoded by basic “pieces” of different dimensions, called simplices.
19 Specifically, a p-clique (subgraph of p all-to-all connected nodes) in a graph is regarded as a (p—1)-
20 dimensional simplex: 2-cliques are the edges of the graph and are viewed as line segments (1-
21 dimensional simplices), 3-cliques are viewed as triangles (2-dimensional simplices), 4-cliques are
22 viewed as tetrahedra (3-dimensional simplices), etc. In this way, each graph becomes a simplicial
23 complex, called the cligue complex of the graph, in which arrangements of cliques can enclose
24 “holes” of different dimensions. The number of 1-dimensional tunnels, 2-dimensional voids and
25 3-dimensional “cavities”, known as Betti numbers and denoted by (51, B2 and (3 respectively, are
;? computed at each step of the filtration. The Betti numbers are viewed as functions of the edge
28 density p, the number of filled-in edges divided by the number N = n(n —1)/2 of potential edges.
29 These functions (81(p), B2(p) and B3(p)) are the Betti curves, which we computed over the range
30 from p =0 to 0.6 in our analysis.

31

32 TDA software To compute clique topology and persistent homology, we use a faster and equiva-
33 lent alternative to the original CliqueTop scripts (https://github.com/nebneuron/clique-top; see [22]),
gg namely Ripser [6] (https://github.com/Ripser/ripser) on a rank-ordered distance matrix. Starting
36 from a distance matrix D = (D;;), we added small (symmetric) Gaussian noise and transformed the
37 resulting symmetric matrix by rank-ordering its entries in increasing (resp., decreasing) order for
38 the increasing (resp., decreasing) filtration method. Note that the purpose of the Gaussian noise
39 is to uniquely specify an ordering of the entries in presence of equal values, and its magnitude was
40 chosen small enough to preserve the ordering between entries with different values. Ripser computes
41 the persistent homology of the clique filtration associated with the ordered matrix and outputs the
jé so-called barcode, a collection of pairs of real numbers B = {(b;,d;) }i=1,... m for the chosen dimension
44 of homology, which are j = 1,2,3 in our setting. The pairs (b;,d;) are the ranges in edge density
45 for which a particular void of dimension j is present. If the size of the input matrix is n x n, the
46 Betti curve is obtained from the barcode B by setting §;(r/N) to the number of (b;,d;) in B such
47 that b; < r < d;, where N =n(n-1)/2 and r is any integer between 0 and the maximum value s
48 such that s/N does not exceed a maximum edge density pmax. The parameter ppax was set to 0.6
49 in our analysis for computational efficiency, following [22]. The function 5;(p) for p € [0, pmax] is
?1) therefore piecewise-constant, as it is constant on every interval [r/N, (r +1)/N).

52

53 Integrated Betti values and centers of mass In the analysis we use integrated Betti val-
54 ues [22] (see Figs. 3-4, 6-8 and S4-S7) and centers of mass (see Figs. S2-S3 and S8-S11) to summa-
55 rize the shape of Betti curves. Let [ : [0, pmax] = R be a Betti curve. Its integrated Betti value is
56 defined as e

57 18)= [ 8() dp.

58 0

59
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The center of mass of the Betti curve is defined as

1 Pmax
m fo pB(p) dp

when I(f) >0, and it is defined to be zero when I(f) = 0.

Boxplots and KS statistical test Boxplots are generated with the Matlab function “boxplot”.
The two-sample Kolmogorov-Smirnov (KS) test was performed using the Matlab function “kstest2”.
In Fig. 7 and Figs. S6-S10 the significance level of the KS test has been corrected for multiple
comparisons via the false discovery rate correction [7].

Surrogate spike train data

In our analysis, we compared the Betti curves computed from the experimental data to the Betti
curves of four types of surrogate spike train data (Figs. 5-7 and S4-S10). For each experimental
dataset, we generated 20 surrogate spike datasets for each of the four types. The four types of
surrogate spike train data were generated by perturbing specific aspects of the spiking patterns in
the original experimental data.

1. Uniform resampling of spike times (U). Each sequence of spikes from each neuron from each
response is replaced by a sequence of the same number of spikes randomly distributed over the
length of the response interval (0 —320ms). The sequence of labels indicating which neuron
fired the spikes is preserved, as is the number of spikes of each neuron in the response.

2. Exchange resampling of spike times between collections (EB). Spikes are randomly swapped
between the 80 selected collections of a dataset, preserving their time of occurrence in the
320ms response and their neuron of origin. Thus, each response in the surrogate dataset has
the same number of spikes as the original, and the overall distribution of spike times across
the dataset are maintained.

3. Exchange resampling of spike times within collections (EW). As in 2, but with the swapping
restricted to responses within each collection. Thus, spike counts are unchanged within each
response, as is the distribution of spike times within each collection.

4. Poisson generated spike trains (P). For each neuron contributing to a dataset, we determined
its overall firing rate across the dataset. We then replaced each neurons spike train in all
non-empty responses in the dataset with a sample of a Poisson process with that rate. We
set the bin width in the Poisson generator to 0.0001ms. Note that this surrogate dataset does
not preserve the number of spikes of each neuron in each response, only the average.

Geometric models

Models of random and geometric spaces were considered for Fig. 8 and Fig. S11. The random
symmetric matrices and the distance matrices of random points in a Euclidean space were generated
following [22], while the distance matrices of random points in a hyperbolic space were generated
following [50].

1. Random symmetric matriz model. The nonzero (off-diagonal) elements of the distance matrix
D = (D;j) are randomly-chosen positive numbers uniformly distributed in the interval (0,1), with
D;; = Dj;, unconstrained by the triangle inequality.

2. Buclidean geometry model. To generate a random Euclidean distance matrix D = (D;;), 64
random points are uniformly sampled in a unit (hyper)cube within the d-dimensional Euclidean
space, for a fixed dimension d between 1 and 15. Each entry D;; is set equal to the Euclidean
distance between the randomly-chosen ¢th and jth points.
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3. Hyperbolic geometry model. Similarly to [50], we generated a random hyperbolic distance
matrix D = (D;;) by uniformly sampling 64 points in the d-dimensional hyperbolic space (for a

1

) fixed dimension d between 1 and 15), using the hyperbolic ball model [29] with curvature ¢ = 1.
3 We sampled a standard d-variate Gaussian (using the Matlab function “randn”) and rescaled the
4 radii of the sampled points by selecting radii » within [0, Ryax] following the distribution p(r) ~
5 sinh((d - 1)r). We examined Ry« values in the range from 1 to 10, and results for Rpax =1,2,5
6 are shown in Fig. 8 and Fig. S11. The distance D;; between two points of radii ; and r; with an
; angle Af between them is determined from the hyperbolic law of cosines

9 cosh (D;; = cosh((r;) cosh((r;) — sinh((r;) sinh(¢r;) cos(Af)

10

1 with curvature ¢ = 1 in our setting.
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Figure 1: The space of visual stimuli. The figure shows examples of stimuli, randomly drawn
from the 10 coordinate axes (7,...,«) of a mathematically-defined stimulus space, with 4 corre-
lations strengths (m2, ml, pl, p2) along each axis. Each stimulus is a 16 x 16 black and white
checkerboard-like pattern. The coordinate axes of the stimulus space specify the type of the multi-
point correlation within 2 x 2 clusters of checks, and are divided into four classes according to the
order of correlation [45]: first-order (), second-order (8-, B, B\, f;), third-order (6., 0., 0-, 0-),
and fourth-order (a). The correlation strengths, which are the coordinates along these axes, can
have positive or negative sign. They determine the frequency with which local configurations of 1,
2, 3, or 4 checks (diagrammed at the bottom of each column of textures) appear in the pattern with
even vs. odd parity. Specifically, a correlation strength of ¢ means that instances of configurations
with an even number of black checks occur with probability (1 + ¢)/2, and configurations with an
odd number of black checks occur with probability (1-c¢)/2. To generate the visual stimuli used in
the experiment, each axis of the space is sampled at four correlation strengths: high negative (m2),
low negative (m1), low positive (pl) and high positive (p2). Correlation values were +0.2 and +0.4
for first-order correlations, and +0.4 and +0.8 for second-, third-, and fourth-order correlations.
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Figure 2: A. Pipeline for extracting topological summaries from the experimental data.
Left: For each data set, neuronal responses (single-unit or up to four simultaneously-recorded units)
are grouped into collections of 64 responses of duration 320 ms each. Each collection consists of re-
sponses to 64 different examples of textures defined by one of 10 texture parameters. The responses
in each collection become points (colored balls) in a state space, whose distances, summarized by
the weighted graph, are determined by the Victor-Purpura metric. Center: The weighted graph
is associated with a filtration of simplicial complexes, using the clique topology method, by suc-
cessively adding edges of the graph according to their weights, either increasingly or decreasingly.
Right: Betti curves are computed from each filtration. Betti curves are a topological descriptor
that captures how the number of topological voids of different dimensions (holes, “bubbles”, etc.)
depends on the proportion of added edges in the filtration process. B. Average Betti curves of
one dataset. The average Betti curves for 31-f3 over the 80 collections of one dataset (L7301TT6),
containing recordings of spiking activity of 4 neurons in layer 5 of area V2, are displayed for in-
creasing and decreasing filtrations, and for each value of the parameters ¢ (timescale, sec™!) and k
(sensitivity to neuron of origin) of the Victor-Purpura distance. The two top (respectively, bottom)
rows correspond to the increasing (resp., decreasing) filtration method. The odd (resp., even) rows
correspond to k =0 (resp., k = 1). In the increasing filtration plots, the Betti curves for 33 are close
to zero.

19

http://mc.manuscriptcentral.com/jrsi



A Increasing, k =0
,a=1 L a4=2 N q=5 q=10 , 9=20 , 9=50 14 , 9=100 , 9=200
+4 + + t + + 4 — +
08 08 + 2 i b+
" + M ii + 1 + 2 +
g o §$ v o, $§ %% s E ) 12 0o N
© + T 16 | + +
S os | e o6 || ++ 08} | | § | 1 08T 4
5 | # I L ) ¥% el 15 é ol 1,
g os o ; 05 | | L 21 I | 0.8 0.6 +
@ I 08 + ) | Iy ‘ ;
- O 04 1 o 05
|51 1 06
£ o3 i 03 HH E: 04 HH 08 HH H +t K : I o4 F¥
o0 06 04 | 03
Q o2 0.2 | +
£ [ 02| 04t | 05T i oe 02 i
01 i 01 | l‘ I o2l |1 E (. i ‘ + 02 i o
l i SLan g
0 U&'ﬁfi 0 H&'ﬂ]ii 0 ééii oLt ii 0 ! éé i 0 1L fi ol W, | Q7i4—+
By B2 B3 B B2 B B B2 P B B2 P B B2 Bs B B2 Bs B B2 Bs B B2 Bs
Increasing, k=1
\ q=1 , 9=2 , 4a=5 , a=10 , 9=20 , 9=50 , a=100 , 9=200
+ + S 14—+ 0 07 —+
1.6 i x; 16 §* + + 2 i os
+ 07| + X
7] + 2 25
o 14 1.4
] | ; \§ b 1 06 i 05| +
g 12 H 1211 + 15
z P | 15 2 * 0s +
s : | T : ’ } ‘¥ 08 - 04 i
@ 08 I s P IEL I AT + 04
- B | | Ll 06 35 03
% 06 S 06 kS + ; |+ | o 03 .
ED 0.4 0.4 I 05 05 + | ! 0.2 +
e | i 05 0.2 + 0.1
£ o2t | L 02| || |l I ‘ ! i 0.1 % - .
0 ! Qé !! o ! éé !! o L él .i o L1 i‘ oLt :* o 7i o 0 ﬁ Yii 0 ’ ;*
B B2 B3 B B2 B B B B B B2 ba B B2 ba B B2 B B B2 B3 B B2 B3
Decreasing, k =0
q=1 | q=2 q=5 q=10 q=20 q=50 q=100 q=200
+ + F = + +
700 600 300 140 80 5
Vi 10
4] v2 * M + + P Y + 451 +
+ T+ |70 + 9
S 600 250 + 120
S e o + 3{% ¥ + %* 60 s ¥ sf T N
- + o+t ¥ 35
5 % + ¥ 1,0 +F 200 %i + 10 s t ol * ++ ;i f + 7 #i +
B + 20 3
m 400 +E % b 8o+, S $+ + ii EA 6| + + +$ +
- 300 150 40 i i s . . s o, 25
3 300 [ I + 60 i ¥ . it 4 )
g [ L 200 [ 80 1 + 4 *
80 200 ryo b o : : 40 ‘ 2 E 0 b t+ 15 + 4
3 \ | [ +
c % | [ | | |
o **EEHH Bt =it L M LMD W
0 éé - 0 éé - oL 0 m 0 Qﬁ 0 QQ L EE | o QQ o Lu . Er
B B2 Ps B B2 Ps B B2 P B B2 B B B2 B B B2 B B B2 Bs B B2 Ps
Decreasing, k=1
q=1_ | q=2 q=5 q=10 q=20 q=50 _ q=100 _ q=200
t +F s 70 + 35 : “ 8 — +
250 + 16
MEREE + * 9 7t 4+ +
0 v2 + 30
g T 140 + * 80 ++ 60 + + 12 1.4
T 200 F st TE + 7 25 1 oo ¢
> k3 120 $ ; 7 + T % + 10 2rE +
E= o4 E 60 s + * Foev + 5 s
D 150 4 {100t %i 1] e} ++ * + 00 F 8 4 + +
s3] I+ +* |50 e +t T, P L a4 08 i
B ® 40 wol * 15 + 6 + iy
2 00| ¥ o + ¥ ¥ spt o, 0s +
5 § | 30 20 10 f 4 $+ Ty 2 + +F
2 I wor of I + + 04 -
e 50 | |
ELT A R R A T R 5 Rhad [TFAE FANE | T
0 ﬁﬂ] 0 mﬁ 0 ﬁ ik 0 ﬁﬂ] ' 0 éé "y 0 0 S 0 §$¢ 0 fi %*
B B2 B B B2 B B B2 B3 B B2 B3 B B2 B3 B B2 B3 B B2 B B B2 B

Figure 3: Comparison of integrated Betti values for data recorded in V1 vs. V2. Inte-
grated Betti values (i.e., the values of the integrals of the Betti curves) for 51-33 of the experimental
data are shown divided into two groups, according to whether the data were recorded in area V1
(blue) or V2 (red) of the visual cortex. To generate the distributions of integrated Betti values
displayed in the figure, individual (non-averaged over the dataset) Betti curves of each collection
of responses are considered. The four panels are for increasing (A,B) and decreasing (C,D) filtra-
tions, and for k=0 (A,C) and k£ =1 (B,D). Each panel shows the distribution of integrated Betti
values for all values of the timescale parameter g of the Victor-Purpura distance.
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Figure 4: Comparison of integrated Betti values for responses elicited by low- and high-
order spatial correlations. Integrated Betti values for 51-83 of the experimental data are shown
divided into two groups, according to whether neuronal responses are driven by visual stimuli with
first- and second-order correlations (axes v, 8-, 8|, B\, B, of the stimulus space described in [45]
and summarized in Fig. 1) or third- and fourth-order correlations (axes 6, 6_, 6, 6+ and «).
The distributions of integrated Betti values, determined as in Fig. 3, are respectively shown in
blue and red. High-order (third- and fourth-order) correlations are extracted primarily in V2 [49];
low-order (first- and second-order) correlations can be extracted by the spatial filtering of retinal
processing. To generate the distribution of integrated Betti values, individual (non-averaged over
the dataset) Betti curves of each collection of responses are considered. The four panels are for
increasing (A,B) and decreasing (C,D) filtrations, and for k£ = 0 (A,C) and k£ =1 (B,D). Each
panel shows the distribution of integrated Betti values for all values of the timescale parameter ¢
of the Victor-Purpura distance.
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10 Incr., k=0) g=1 q=2

w
N
Betti numbers

35 Edge dentity p

37 Figure 5: Average Betti curves of one dataset, and comparison with surrogate data.
The figure superimposes on Fig. 2B the Betti curves of the 20 computations of the four types of
surrogate data generated from the single dataset “L7301TT6”. The average Betti curves for 51-83
41 of the experimental data (black, “exp”) are highlighted with a thicker line. The average Betti
42 curves for fB1-8s of each computation of the surrogate data are drawn in thin color lines: uniform
43 resampling of spike times (blue, “U”), exchange of spike times between collections (red, “EB”),
44 exchange of spike times within collections (yellow, “EW”), Poisson generated spike data (purple,
45 “P”). As in Fig. 2B, the two top (respectively, bottom) rows correspond to the increasing (resp.,
decreasing) filtration method, and the odd (resp., even) rows correspond to k =0 (resp., k= 1).
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Figure 6: Distribution of the

sec™ to ¢ =50 sec™.

integrated Betti values for 3; of neural data and surro-
gates. Distribution across the 28 datasets of the difference between the integrated Betti values
for 5y of each kind of surrogate, averaged over 20 examples, and the integrated Betti value of the
experimental data. Fach plot shows the four surrogates: uniform resampling of spike times (blue,
“U”), exchange of spike times between collections (red, “EB”), exchange of spike times within
collections (yellow, “EW”), Poisson generated spike data (purple, “P”). Insets zoom in on some
boxplots at a smaller scale. When present, a dashed line bounds an area at the extreme of a plot
beyond which data are shown on a compressed ordinate. The four panels are for increasing (A,B)
and decreasing (C,D) filtrations, and for £ =0 (A,C) and k =1 (B,D). For example, in A, the
means of the integrated Betti values for the Poisson surrogates for all timescales, ¢ are greater
than the means of the integrated Betti values for the experimental spiking responses from the 28
datasets. Note that the deviation of the behavior of the surrogates is maximal for the range ¢ =5
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34 Figure 7: Two-sample Kolmogorov-Smirnov test for the integrated Betti values for
35 B1. Two-sample Kolmogorov-Smirnov test statistic D* (ordinate) for comparison of the samples of
integrated Betti values for 81 of the experimental data with each type of surrogate data. The sample
for the experimental data consists of the (28 x 80) integrated Betti values from all 80 collections
39 from all 28 datasets. The samples for each surrogate consist of the (20 x 28 x 80) integrated Betti
40 values of the 20 computations. Values above the dashed line, corresponding to p = 0.05, indicate
41 rejection of the null hypothesis that the two samples come from the same distribution. The dotted
42 line corresponds to the value p = 0.05 corrected for multiple comparisons, using the false discovery
43 rate method (see Materials and Methods). The four panels are for increasing (A,B) and decreasing
44 (C,D) filtrations, and for k=0 (A,C) and k=1 (B,D).
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Figure 8: Compatibility of the experimental Betti curves with geometric models, based
on integrated Betti values. The heatmaps show the fraction of Betti curves of 18 selected col-
lections from different datasets which are compatible with the Euclidean (column 1) and hyperbolic
models (Rmax = 1,2,5) (columns 2-4) of dimension d = 1,...,15 (abscissas), for all values of the
parameters ¢ (ordinates) and k (rows) of the Victor-Purpura distance. The notion of compatibility
we introduced requires the experimental integrated Betti values to be within 3 standard deviations
of the mean of the 300 values of the model, for all Betti numbers $1-83 and for both increasing
and decreasing filtrations. In the range ¢ = 5 to 20 sec™!, the greatest compatibility occurs for
dimensions 3-5, and for the Euclidean or hyperbolic models with moderate curvature (Rpax = 1).
As we determined by visual inspection of the Betti curves, the hotspot at dimension 1 and ¢ = 200
in the hyperbolic heatmaps for k = 1 is an artifact due to the fact that the low dimension constrains
the Betti curves of the hyperbolic models to being close to (identically) zero, hence compatible in
some cases with the experimental Betti curves at the extreme value g = 200.
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