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Materials and methods

Physiologic methods

Standard techniques [1, 3|, consistent with US National Institutes of Health and Weill Cornell Med-
ical College Animal Care and Use Committee guidelines, were used to prepare six adult macaque
monkeys for acute extracellular recordings from areas V1 and V2. After initial sedation with
ketamine and isoflurane, general anesthesia was induced and maintained with infusion of a propo-
fol /sufentanil mixture during surgical preparation and recording. All incision sites were infiltrated
with bupivacaine prior to tissue opening. Endotracheal tube placement and catheterization of one
femoral artery, both femoral veins, and the urethra, were completed after initial sedation. Hydration
was provided with Normosol and dextrose, and eye movements were minimized by neuromuscular
blockage through infusion of vecuronium or rocuronium bromide. Heart rate and rhythm, arte-
rial blood pressure, body temperature, end-tidal CO2 partial pressure, arterial oxygen saturation,
EEG, and urine output were monitored over the entire course of each experiment. The pupils were
dilated with topical atropine and the eyes were protected with gas-permeable contact lenses and
topical flurbiprophen. Animal maintenance also included administration of penicillin and dexam-
ethasone at the start of the experiment and gentamicin later in the recording session, if needed.
All combined, the measures briefly described here maintained the animals in a stable physiological
state for 4-5d.

Recording and recovery of recording sites

Following a craniotomy, a small dural incision was made and three to six guide tubes, each con-
taining a quartz-platinum-tungsten tetrode (Thomas Recording GmbH, Giessen, Germany), were
positioned over the opening above the cortical surfaces on opposite sides of the V1/V2 boundary.
Three to six tetrodes were lowered independently into and through the cortex with microdrives
(Thomas Recording GmbH, Giessen, Germany) to locations with visually-driven extracellular ac-
tion potentials. Initial neuronal characterizations were performed to determine tunings for sinu-
soidal gratings varying in orientation, spatial frequency, temporal frequency, and contrast through
on-line analysis of the responses of a few well-isolated single units. The recorded units within either
V1 or V2 generally had overlapping or neighboring receptive fields. The preferred orientation for
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a cluster of neurons at a recording site was used to choose the orientation for the black-and-white
patterns that were used to generate the neural reponses used in this study. Details concerning the
procedures for lesion making, perfusion, and histology to identify the recording sites (V1 or V2)
and assign laminar location can be found in [1].

Figures

Eleven supplementary figures (Figs. S1-S11) are included below, on pages 3-13.
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Figure S1: Analyzed collections of neuronal responses. A,B. Distributions of the analyzed
responses over the 10 axes in the stimulus space that specify the type of spatial correlation and
coordinates along those axes that determine the strength of correlation as described in [2]. Compare
with Fig. 1 of the main text. C. Distribution of the repeats from which the analyzed responses
were drawn. D. Distribution of the number of non-empty responses (at least one spike) in the
28 x 80 collections of 64 responses considered in the analysis.
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Each panel shows the distribution of centers of mass for all values of the

(B3 of the experimental data

Figure S2: Comparison of centers of mass of the Betti curves for data recorded in V1
vs. V2. The figure is similar to Fig. 3 of the main text, but Betti curves are summarized via
their centers of mass (see Materials and Methods of the main text) instead of their integrated Betti

values. The values of the centers of mass of the Betti curves for [51-
are shown divided into two groups, according to whether the data were recorded in area V1 (blue)

or V2 (red) of the visual cortex. To generate the distributions of centers of mass displayed in the

figure, individual (non-averaged over the dataset) Betti curves of each collection of responses are
considered. The four panels are for increasing (A,B) and decreasing (C,D) filtrations, and for k

(A,C) and k=1 (B,D).
timescale parameter ¢ of the Victor-Purpura distance.
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Figure S3: Comparison of centers of mass of the Betti curves for responses elicited by
low- and high-order spatial correlations. The figure is similar to Fig. 4 of the main text,
but Betti curves are summarized via their centers of mass instead of their integrated Betti values.
The values of the centers of mass of the Betti curves for 81-83 of the experimental data are shown
divided into two groups, according to whether neuronal responses are driven by visual stimuli with
first- and second-order correlations (axes v, 8-, 8}, 8\, B, of the stimulus space described in 2]
and summarized in Fig. 1 of the main text) or third- and fourth-order correlations (axes 6, 6.,
O-, 0+ and «). The distributions of centers of mass, determined as in Fig. S2, are respectively
shown in blue and red. To generate the distribution of centers of mass, individual (non-averaged
over the dataset) Betti curves of each collection of responses are considered. The four panels are
for increasing (A,B) and decreasing (C,D) filtrations, and for k=0 (A,C) and k=1 (B,D). Each
panel shows the distribution of centers of mass for all values of the timescale parameter ¢ of the
Victor-Purpura distance.
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Figure S4: Distribution of the integrated Betti values for 35. The figure is parallel to Fig. 6
of the main text, but for §; rather than ;. It shows the distribution across the 28 datasets of
the difference between the integrated Betti values for (s of each surrogate, averaged over the 20
computations, and the integrated Betti value of the experimental data. Each plot shows the four
surrogates: uniform resampling of spike times (blue, “U”), exchange of spike times between collec-
tions (red, “EB”), exchange of spike times within collections (yellow, “EW”), Poisson generated
spike data (purple, “P”). Insets zoom in on some boxplots at a smaller scale. When present, a
dashed line bounds an area at the extreme of a plot beyond which data are shown on a compressed
ordinate. The four panels are for increasing (A,B) and decreasing (C,D) filtrations, and for k=0
(A,C) and k =1 (B,D). For example, in A, the means of the integrated Betti values for the Poisson
surrogates for all timescales, q are greater than the means of the integrated Betti values for the
experimental spiking responses from the 28 datasets. Note that the deviation of the behavior of

the Poisson surrogates is maximal for the range ¢ = 5 sec™! to ¢ = 50 sec™.
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Figure S5: Distribution of the integrated Betti values for 33. The figure is obtained similarly
to Fig. 6 of the main text and Fig. S4, but for 3. Plotting conventions as in main text Fig. 6 and
Fig. S4.



A k=0 (Betti 2, increasing filtration) C k=0 (Betti 2, decreasing filtration)
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Figure S6: Two-sample Kolmogorov-Smirnov test for the integrated Betti values for 3,.
The figure is parallel to Fig. 7 of the main text, but for So rather than 8;. It shows the two-sample
Kolmogorov-Smirnov test statistic D* (ordinate) for comparison of the samples of integrated Betti
values for (s of the experimental data with each type of surrogate data. The sample for the
experimental data consists of the (28 x 80) integrated Betti values from all 80 collections from all
28 datasets. The samples for each surrogate consist of the (20 x 28 x 80) integrated Betti values of
the 20 computations. Values above the dashed line, corresponding to p = 0.05, indicate rejection
of the null hypothesis that the two samples come from the same distribution. The dotted line
corresponds to the value p = 0.05 corrected for multiple comparisons, using the false discovery rate
method. The four panels are for increasing (A,B) and decreasing (C,D) filtrations, and for k =0
(A,C) and k=1 (B,D).



A k=0 (Betti 3, increasing filtration) C k=0 (Betti 3, decreasing filtration)
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Figure S7: Two-sample Kolmogorov-Smirnov test for the integrated Betti values for (3.
The figure is parallel to Fig. 7 of the main text and Fig. S6, but for f3. Plotting conventions as in
main text Fig. 7 and Fig. S6.
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Figure S8: Two-sample Kolmogorov-Smirnov test for the centers of mass of the Betti
curves for 3;. Two-sample Kolmogorov-Smirnov test statistic D* (ordinate) for comparison of
the samples of centers of mass of the Betti curves for 51 of the experimental data with each type
of surrogate data. The sample for the experimental data consists of the (28 x 80) center of mass
values from all 80 collections from all 28 datasets. The samples for each surrogate consist of
the (20 x 28 x 80) center of mass values of the 20 computations. Values above the dashed line,
corresponding to p = 0.05, indicate rejection of the null hypothesis that the two samples come from
the same distribution. The dotted line corresponds to the value p = 0.05 corrected for multiple
comparisons, using the false discovery rate method. The four panels are for increasing (A,B) and
decreasing (C,D) filtrations, and for k=0 (A,C) and k=1 (B,D).
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Figure S9: Two-sample Kolmogorov-Smirnov test for centers of mass of the Betti curves
for B2. The figure is parallel to Fig. S8, but for 2. Plotting conventions as in Fig. S8.
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Figure S10: Two-sample Kolmogorov-Smirnov test for the centers of mass of the Betti
curves for B3. The figure is parallel to Figs. S8 and S9, but for g3. Plotting conventions as in
Fig. S8.
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Figure S11: Compatibility of the experimental Betti curves with geometric models,
based on centers of mass of the Betti curves. The figure is parallel to Fig. 8 of the main
text, but compatibility is assessed via the centers of mass of the Betti curves. The heatmaps show
the fraction of Betti curves of 18 selected collections from different datasets which are compatible
with the Euclidean (column 1) and hyperbolic models (Rmax = 1,2,5) (columns 2-4) of dimension
d=1,...,15 (abscissas), for all values of the parameters ¢ (ordinates) and k (rows) of the Victor-
Purpura distance. The notion of compatibility we introduced requires the experimental centers of
mass of the Betti curves to be within 3 standard deviations of the mean of the 300 values of the
model, for all Betti numbers 31-£3 and for both increasing and decreasing filtrations. In the range
q =1to 10 sec™!, the greatest compatibility occurs for dimensions 2-4. Compatibility is consistently
low for k£ =1 (bottom row), and is generally lower than compatibility assessed via integrated Betti
values (Fig. 8 of the main text). As we determined by visual inspection of the Betti curves, the
hotspot at dimension 1 and ¢ = 200 in the hyperbolic heatmaps for k£ = 1 is an artifact due to the
fact that the low dimension constrains the Betti curves of the hyperbolic models to being close
to (identically) zero, hence compatible in some cases with the experimental Betti curves at the
extreme value g = 200.
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