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Abstract Conventional methods widely available for the
analysis of spike trains and related neural data include
various time- and frequency-domain analyses, such as peri-
event and interspike interval histograms, spectral measures,
and probability distributions. Information theoretic methods
are increasingly recognized as significant tools for the
analysis of spike train data. However, developing robust
implementations of these methods can be time-consuming,
and determining applicability to neural recordings can
require expertise. In order to facilitate more widespread
adoption of these informative methods by the neuroscience
community, we have developed the Spike Train Analysis
Toolkit. STAToolkit is a software package which imple-
ments, documents, and guides application of several
information-theoretic spike train analysis techniques, thus
minimizing the effort needed to adopt and use them. This
implementation behaves like a typical Matlab toolbox, but
the underlying computations are coded in C for portability,
optimized for efficiency, and interfaced with Matlab via the

MEX framework. STAToolkit runs on any of three major
platforms: Windows, Mac OS, and Linux. The toolkit reads
input from files with an easy-to-generate text-based,
platform-independent format. STAToolkit, including full
documentation and test cases, is freely available open source
via http://neuroanalysis.org, maintained as a resource for
the computational neuroscience and neuroinformatics
communities. Use cases drawn from somatosensory and
gustatory neurophysiology, and community use of STAToolkit,
demonstrate its utility and scope.
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Introduction: Unrealized Potential
of Information-Theoretic Measures for Neurophysiology

Understanding how the brain represents and processes
information is an extraordinarily complex problem, requiring
a wide range of experimental preparations, measurement
techniques, physical scales, experimental paradigms, and
computational methods. Effective collaboration across each
of these domains is crucial to progress in neuroscience.
Computational neuroinformatics can aid many such collabo-
rations by synthesizing computational neuroscience—analyses
of neural representation and information processing—and the
standards-based methods for archiving, classifying, and
exchanging neuroscience data embodied in this journal’s title
and reviewed in its pages by Gardner et al. (2003, 2008a, b),
Kennedy (2004, 2006), and Koslow and Hirsch (2004).

The neural coding problem—how neurons represent and
process information with spike trains—can be approached
in a rigorous, quantitative manner. Information theory,
originally developed as a means of studying modern
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communication systems (Shannon 1948), is now being
applied to questions of neural coding by many laboratories
(Ince et al. 2009, Quian Quiroga and Panzeri 2009, Victor
2006). Although many of these newly-developed methods
have high potential significance for our understanding of
neural coding and classification in health and in disease
states, they are not easily adapted, adopted, or utilized widely
throughout the neurophysiology community because they
require significant time for implementation, testing, and
matching to appropriate datasets. Toward reducing these
barriers to wider utilization of such methods, we have
developed and released STAToolkit, an open source and open
access suite of information-theoretic analytic methods.

STAToolkit is a component of an evolving computational
neuroinformatic resource for the sharing and analysis of spike
train data. This resource integrates the neurophysiology data
repository at Neurodatabase.org (Gardner et al. 2001a, b,
2005) with a suite of complementary methods for information
theoretic and other advanced analyses of spike trains. The goal
of this component is to make emerging and significant analysis
techniques available to the experimental neurobiologist who is
not a computational expert or programmer.

A specific motivating focus of the project was on the
analysis of data from neurophysiology experiments where
stimuli can be divided into discrete categories, and
responses are in the form of spike trains. Information
theoretic analyses here quantify how well the stimuli can be
distinguished based on the timing of neuronal firing
patterns. We illustrate the utility of STAToolkit with
examples from parietal cortex and a brainstem gustatory
nucleus (nucleus tractus solitarius), and other neural
systems. Each of these advances the goal of understanding
the dimensions of neural coding.

Another motivation for making available a suite of tools
was in order to facilitate testing of three overarching
meta-hypotheses:

& different regions, networks, or modalities within the
nervous system may utilize different neural codes or
coding strategies,

& individual regions, networks, or modalities may utilize
different coding at different times, or in different
contexts, and

& the mechanisms of neural or mental disorders may be
better understood by discriminating neural coding
correlates of such disorders.

These remain meta-hypotheses because they can only be
explored by the independent action of individual inves-
tigators whose work is enabled by such algorithms and
tools as those the project make available. The union of
results so obtained—made available through conventional
literature and new-modality channels—may develop and
test such meta-hypotheses.

The application of information theoretic concepts to the
study of neural coding is non-trivial, because straightforward
estimates of information theoretic quantities often require
prohibitively large amounts of data. Alternative methods
reduce the amount of requisite data, but do so at the
expense of making assumptions about the neural system
under study. Because we lack a priori knowledge about
the appropriateness of these assumptions, it is essential
that multiple methods be made available to analyze
datasets from multiple systems.

This provides the third motivation for implementing a
suite of selected analytical methods: not all methods are
applicable to all data sets. The applicability of a particular
method to a specific data set depends upon:

& The amount of experimental data
& Assumptions about the topology of the response space
& Assumptions about the nature of the neural code

In addition, different methods provide different insights,
and the dependence of information on method parameters
provides insight about the nature of the encoding.

Earlier versions of this material have appeared in abstract
form (Gardner et al. 2007a; Goldberg et al. 2006a, b, c, d,
2007; Vaknin et al. 2005).

STAToolkit Design and Methodology

Information and Entropy

In describing the capabilities of the toolkit, we distinguish
between information methods and entropy methods.
Information methods are those that estimate the mutual
information (in the Shannon 1948 sense) between an
ensemble of spike trains and some other experimental
variable. We further distinguish between formal informa-
tion and attribute-specific information, as proposed by
Reich et al. (2001a). Formal information concerns all
aspects of the response that depend on the stimulus. It is
estimated from the difference between the entropy of
responses to an ensemble of temporally rich stimuli and
the entropy of responses to an ensemble of repeated stimuli.
Attribute-specific information refers to the amount of
information that responses convey about a particular
experimental parameter. If the parameter describes one of
several discrete categories, we refer to it as category-
specific information. Entropy methods are those methods
that estimate entropy from a discrete histogram, a compu-
tation common to many information-theoretic methods.
Although information is defined as a difference in entropies
and usually calculated in this fashion, there are strategies
(e.g., the “binless” method, see below) that largely bypass
this step.
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Information Methods A recent survey of information-
theoretic methods is provided in Victor (2006). Our design
principles included the following criteria for selecting
methods to be incorporated into the initial version of the
STAToolkit:

& They were useful but new and therefore not generally
available,

& Multiple methods were needed because of the inability
of any onemethod to give useful results for each of several
common experimental designs and the data they yield,

& We could offer verification of each method and provide
instruction in its applicability and use.

The current version contains implementations of three
information methods:

& Direct method, providing formal and category-specific
information (Strong et al. 1998)

& Metric space method, providing category-specific
information (Aronov 2003; Victor 2005; Victor and
Purpura 1997)

& Binless method, providing category-specific information
(Victor 2002)

Each of these methods informs us about a different
aspect of neural coding. The direct method makes no
assumptions about the underlying neural code, but
requires a prohibitive amount of data in many cases. The
binless method exploits the continuity of time in order to
reduce data requirements. The metric space method gives
us information about the temporal precision of the neural
code. The methods also have differing degrees of
suitability to the analysis of multiple simultaneously
recorded neurons, data for which are rapidly becoming
more readily available. The direct method and the metric
space method are suitable for this but the binless method
is not readily applied to the multineuronal setting. A more
thorough analysis of the concepts behind these methods
and others for which implementation is planned as
STAToolkit is enhanced, as well as an expanded rationale
for applying multiple complementary methods, is found in
Victor (2006).

Entropy Methods The toolkit includes a module that
includes several entropy methods. Users select methods
by specifying any of several entropy_estimation_
method options. The included methods are:

& Plug-in, the classical estimator, based on the entropy
formula H ¼ �P

i pi log2 pi:
& Asymptotically debiased (Carlton 1969; Miller 1955;

Treves and Panzeri 1995).
& Jackknife debiased (Efron and Tibshirani 1993).

& Debiased Ma bound (Ma 1981; Strong et al. 1998).
& Best upper bound (Paninski 2003)
& Coverage-adjusted (Chao and Shen 2003).
& Bayesian with a Dirichlet prior (Wolpert and Wolf

1995).

All entropy estimation techniques have some degree of
bias. The toolkit currently includes two basic bias reduction
techniques: the jackknife and the classical method popularized
by Treves and Panzeri (1995). Even with these techniques, it
is often impossible (depending on the preparation and the
choice of estimation technique) to collect enough data for
entropy estimates to be useful. (For example, the “direct
method” is impractical for the parietal cortex data described
below). We have adopted several recently-developed and
sophisticated bias-reduction techniques. One such meth-
od is the best upper bound method (Paninski 2003)
which finds the polynomial entropy estimator that mini-
mizes the error (bias squared plus variance) in the worst
case. The toolkit also provides estimates of the variance of
entropy estimates, which can in turn be used to compute
confidence limits. These results can be obtained by setting
the option variance_estimation_method for jack-
knife or bootstrap.

Our choice of entropy estimation methods included in
the initial STAToolkit release was based on several
considerations. A necessary condition was that the methods
needed to have a rigorous mathematical foundation, backed
up by peer-reviewed publications. But we also recognize
that criteria for utility of entropy estimation methods for
neural data analysis differ from criteria in other contexts,
e.g., biological sequence analysis (Hausser and Strimmer
2008). In neural data analysis, the quantity of interest is
often information, which is a difference in entropies. This
differencing operation can have major effects on bias
properties: methods that have poor bias properties as
entropy estimators may be quite useful for information, if
the biases tend to cancel when entropies are subtracted;
conversely, methods that have good properties as entropy
estimators may have undesirable properties if the biases
tend to reinforce. Moreover, neural data are intrinsically
event sequences in continuous time, and the continuity of
time allows for approaches that do not readily apply to
discrete symbol sequences.

Because of this, we placed a high priority on including
methods that were diverse in terms of their basic approaches
and assumptions, rather than being prescriptive. To increase
awareness of these issues by our users, we include in the
STAToolkit distribution a script (demo_entropy) that
demonstrates all of the entropy methods included in the toolkit
on examples drawn from a binomial distribution with ten bins
and provides as well expected results as a check.We anticipate
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that with continued use of the STAToolkit by investigators with
a variety of kinds of data and goals, heuristics will emerge that
suggest that specific estimators are preferable in particular
contexts—and we will collect this knowledge into documen-
tation in future releases, and/or a knowledge base.

Input/Output

In order to modularize the development of the different
components of the project, and facilitate re-use of STAToolkit
modules by the community and for parallel computational
engines, we developed a standard categorical data container
(Fig. 1) that is:

& Agnostic to the procedure that generated the data
& Appropriate for both single and multichannel data
& General enough to handle episodic or time-stamped

data such as spike trains as well as continuously-
sampled signals such as field potentials.

Each input data set is described by two easy-to-generate
text-based, platform-independent files, each described in
detail at http://neuroanalysis.org/toolkit/releases/1.0g/format.
html:

& A data file, denoted by a .stad file extension
& A metadata file, denoted by a .stam file extension

The metadata file is a text file consisting of name=value
pairs that describe the data in the data file. The metadata file
provides information about four types of elements: the data
file itself, recording sites (includingmulti-electrode and multi-
site recordings), categories associated with any experimental/
control, timed, or normal/diseased distinction, and trial-
associated metadata. Users also have the option of bypassing

the text-based file format and using other means to read the
data into the Matlab input data structure. Documentation for
the analysis options and parameters for information methods
and entropy methods is available.

In parallel, we have developed an output data
container (Fig. 2) that provides an intuitive structure for
results of analyses. This specialized container stores
discrete histograms and associated statistics, commonly
used for estimation of entropy, and accommodates bias
corrections and variance estimates.

Both input and output data structures are organized in a
hierarchical manner. To facilitate the segregation of stimulus
and response traces into categories, we have developed a
framework for grouping traces on the basis of their relation-
ships in time, recording locations, and stimulus attributes. (In
parallel, we augmented the data submission procedure at
neurodatabase.org to accommodate the metadata concerned
with grouping, and developed methods to visualize the
relationships among traces in large datasets.)

Input Structure The input structure (Fig. 1) is organized
to naturally store multineuron data and to facilitate the
application of analytic methods. The top level of the input
structure contains an array of sites structures and an array
of categories structures. The sites structures describe
the physical locations where the signals were recorded.
An individual input structure can simultaneously accommo-
date data that consists of time-stamped events (episodic)
or data sampled at regular intervals (continuous). Because
the notion of categorization is central to information
theoretic analysis, the recorded data is segregated into
categories at the top level. These categories could be
based on an attribute of the stimulus or an observed
behavior that coincided with the recording. Each element

Fig. 1 The STAToolkit project-
designed input data container
facilitates application of analytic
methods, including multiple
information-theoretic methods
to datasets. The sites tag
accommodates multielectrode
recordings; the categories
and trials tags provide an
organization broadly compatible
with current experimental
protocols. Variable indexed
elements of the structure are
extended in grey
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in the categories array holds a two-dimensional array
of trials structures, each of which corresponds to a
distinct recording trial in the same category. All of the
elements in a single row of the trials array correspond to
a single instance of a simultaneous recording. All of the
elements in a single column of the trials array
correspond to repeated recordings at a single physical
location. Finally, each trials array consists of a list
structure with the raw data: event times for episodic data,
and sampled signal levels for continuous data.

Output Structure Many of the functions in the toolkit yield
estimates of information-theoretic quantities. The output
data structure (Fig. 2) is organized to facilitate intuitive
storage of analysis results obtained with several different
methods, and to allow for future expansion. Because the
estimation of entropy from discrete probability distributions
is one of the main functions of the toolkit, the output
structure is organized around a histogram construct with
auxiliary information such as variance estimates. The basic
one-dimensional histogram (hist1d) consists of paired
arrays wordlist and wordcnt, which list the labels of
the unique elements in the data set and the number of times
they appear, respectively. Also present is the entropy, which
is held in an array of estimate structures. Each element
in the array corresponds to a different entropy estimation
method. An estimate structure holds not only the
estimated quantity, but also estimates of the entropy
estimates’ variances, each obtained with a different vari-
ance estimation method. The hist1d structure can also be

used to construct more complicated histograms. For
example, a two-dimensional histogram (hist2d) consists
of hist1d structures that describe the marginal histograms
across rows and columns and their corresponding marginal
entropies, a hist1d structure that describes the joint
histogram and the joint entropy, as well as an estimate
structure that holds the mutual information.

Modular and Iterative Design

The information methods are implemented in a modular
fashion (Fig. 3). While the goal of the information methods
is to compute mutual information from a set of spike trains,
intermediate results may be of interest to the user. Toward
this goal, each algorithm has been partitioned into modules
corresponding to steps that provided useful intermediate
results. An additional shared module estimates entropy
from a discrete histogram, a computation that arises in
almost all information theoretic methods. This module
provides classical bias corrections (Treves and Panzeri
1995) as well as more sophisticated methods (e.g., Paninski
2003). Further, the user has the option to use only those
modules that provide the intermediate variable of interest,
rather than being required to run each method to the end.

In addition to being modular, code development is
versioned and commented, in conformance to standard
professional software practice. Development of the STAToolkit
proceeded via several beta releases, each of which added
significant functional enhancements. Release 0.2 (March

Fig. 2 The output data container
provides an intuitive structure for
the results generated by any of
several information-theoretic
analytic methods
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2006) added functions for calculation of formal information
via the Direct method of Strong et al. Release 0.9 (June 2006)
added the Ma entropy estimate and augmented the metric
space method via the spike interval metric. It provided
statistical tools for assessing the significance of information
methods (a bootstrap variance estimator, and efficient routines
for shuffling and jackknifing), and facilitated the use of parallel
algorithms for the spike time metric, described below (Victor
et al. 2007). Release 0.9.1 added Paninski’s “best upper
bound” method, which is computationally intensive but
provides accurate estimates with less data than the Direct
method. Public release 1.0 (November/December 2006)
added the Chao-Shen entropy estimator, which, though less
principled than the “best upper bound” method, is very fast,
and appears to provide more reliable results in some
undersampled regimes, and the Wolpert-Wolf estimator, that

makes explicit Bayesian use of a Dirichlet prior. There were
of course in addition improvements to increase robustness,
modularity, and extensibility. Successive releases included a
number of tools to facilitate implementation and further
development: versioning, didactic demos, exercising routines
that validate the installation, and full documentation of
functions and data structures.

Victor et al. (2007) presented new algorithms for
analyzing multineuronal recordings that calculate similarity
metrics in parallel. This dramatically increases the efficiency
of analyses whose target is to characterize neural coding
strategies, since this kind of analysis requires exploration of a
wide range of parameters. These algorithms have been
incorporated into STAToolkit, along with options to allow
selection of the non-parallel versions of the calculation when
the latter will be more efficient.
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Fig. 3 Modular implementation facilitates design of current and
projected STAToolkit information-theoretic analytical methods. Compu-
tation of information and entropies for each of the direct, binless, or
metric space methods is implemented as sequences of basic modules that
not only provide intermediate results, but allow re-utilization as additional
capabilities are added to the STAToolkit. For example, direct calculations

of either formal or category information share modules for binning
(directbin), and for calculation of information and entropies from
histograms (infocond). Distinct modules are used for formal
(directcondtime, directcountclass, directcondformal,
directcounttotal) and category (directcountcond) calcula-
tions. Grey backgrounds outline modular flow. Further detail in text
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STAToolkit Release 1.0

Spike Train Analysis Toolkit: Capabilities and Options

In order to reach the widest possible audience, the toolkit
was designed to be compatible with the most common
computing environments—Windows, Mac OS, and
Linux. The computational engine is written in C, which
lends itself to fast execution that is critical for some of
the computationally intensive toolkit components. Free C
compilers are available for all of the major computing
environments. The toolkit takes advantage of the ad-
vanced numerical capabilities of the free, open source
GNU Scientific Library. The user interfaces with the
toolkit through Matlab, which communicates with the
computational engine through the MEX framework. We
chose Matlab because it is a de facto standard for many
members of the computational neuroscience community,
and because Matlab combines a convenient means for
performing additional calculations with the toolkit results
with sophisticated visualization tools. Native C/C++
access is also available. This Matlab/C hybrid approach
provides the toolkit with the portability and speed of C
and the intuitive user interface of Matlab.

The Spike Train Analysis Toolkit Version 1.0
(STAToolkit) is implemented for use on desktop work-
stations and available now open source for download at
http://neuroanalysis.org/toolkit. The toolkit distribution
includes:

& Full C and Matlab source code for the information-
theoretic and entropy routines described above,

& scripts for compilation and installation for Windows,
Linux, and MacOS,

& sample data sets,
& demonstration scripts that verify that the toolkit has

been properly installed and compiled and also illustrate
typical usage.

& A simple, platform-independent, human-readable data
format

& Extensive online documentation for installation and use
(for example, see Fig. 4).

Didactic Data, Demos, and Documentation

The toolkit distribution includes example data sets and
demonstration scripts that verify that the toolkit has been
properly installed and compiled. These scripts also illustrate
typical usage. The example data sets include synth, a
synthetic data set of sinusoidally modulated Poisson spike
trains as described by Victor and Purpura (1997), taste,
responses of taste-sensitive neurons in the nucleus tractus
solitarius in rat (Di Lorenzo and Victor 2003), drift,

responses of neurons in V1 to drifting gratings (Reich
et al. 2001b), phase, multineuron responses described in
Aronov (2003), and inforate_rep and inforate_
uni, synthesized data inspired by Reinagel and Reid
(2000) that is used to illustrate the calculation of formal
information. The demo_entropy script is described
above in the section on entropy methods.

STAToolkit includes user documentation for verifying
hardware and software compatibility, installation, and use,
including its utility and applicability to our target audience
of neurophysiologists. One example of the level of
coverage and detail is shown in Fig. 4. Documentation
describes how all of the modules are used, the input and
output data structures, and the options and parameters for
all of the analysis techniques. The documentation also
includes literature references citing the originators of the
various methods we have implemented in STAToolkit, both
to guide proper use of the routines and also to properly
acknowledge the intellectual property of each of those who
devised such methods.

STAToolkit-Enabled Spike Train Analyses

As part of the verification and testing of STAToolkit, and
also to stimulate more widespread adoption of information-
theoretic methods for the analysis of neural coding, we
developed several collaborative use cases combining proof
of concept with neuroscience significance. One of these is
illustrated in some detail; two others are briefly noted
below. Many of the datasets used in these analyses are
available via neurodatabase.org.

STAToolkit Analyses of Neurons Encoding Information
About Primate Prehension

Using STAToolkit, we analyzed single neurons and neuro-
nal ensembles in parietal cortex of awake behaving
monkeys during a series of prehension tasks, using data
collected in the laboratory of E.P. Gardner. When the
primate hand performs sensorimotor tasks such as grasping
objects, successful performance requires sensory feedback.
Tactile information sensed by mechanoreceptors in gla-
brous skin encodes physical properties of objects. These
receptors also provide somatosensory information about the
actions of the hand. Toward analyzing processing of such
sensorimotor information in posterior parietal cortex, we
analyzed spike trains of neurons in the hand representation
of areas 5 and 7b/AIP recorded as each of two monkeys
performed a trained reach-and-grasp prehension task
(Gardner et al. 2007b, c). We used STAToolkit’s metric
space and multineuron metric space methods to investigate
which aspects of these sensorimotor behaviors are encoded
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by the firing of individual neurons, and by pairs and triplets
of neurons:

& Digital video images of hand kinematics were synchro-
nized to recorded single- or multi-neuron spike trains, and
were used to delineate the timing of task actions.

& Responses on individual task trials were characterized
by knob identity (location in the workspace, size and
shape), approach style (forward, lateral, local/regrasp),
and grasp style (power, precision, ulnar).

& In some trials, the animal’s view of the target objects
was unobscured (“sighted”); in others, an occluder plate
prevented visualization of targets (“blocked”).

We analyzed the spike trains with the metric space
method to determine how much information their

temporal structure conveyed about the task kinematics
and the properties of the grasped object. The efficiency
of the toolkit enabled a comprehensive search of the
parameter space, using different analysis window posi-
tions and sizes. STAToolkit metric space analysis of the
parameter space revealed particular aspects of task
kinematics and object features encoded by specific
neurons in parietal cortex. In addition, the routines
provided insight about what aspects of spike timing
conveyed information about kinematics. Our analysis
found that spike trains convey the greatest information
immediately prior to hand contact, distinguishing trials in
which the animal reached to the object from those in
which no reach was necessary because the hand was
already close to the object.

Fig. 4 Extensive STAToolkit
instructions at neuroanalysis.org
include these descriptions of
options available for precise
application of STAToolkit
methods to users’ datasets
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Figure 5 shows our initial analysis using STAToolkit
routines. Neuron 70-3 conveys information about kinematics
of grasp, not knob identity. About 0.4 bits of information are
conveyed for both approach style and grasp style, with
information peaking at temporal precision q=1 s−1

(corresponding to a timescale of 2 s). There was no
significant difference between sighted and blocked trials in
this test. Figure 5 also shows that neuron 131–3.1 again does
not convey information about the knob identity. Here,
significantly more information is conveyed about approach
style during sighted (0.7 bits) than during blocked conditions
(0.4 bits). There was a strong peak in information for both
sighted and blocked trials at q=10 s−1 (corresponding to a
timescale of 200 ms). A simultaneously-recorded neuron
(131–3.2) displayed qualitatively similar characteristics.

Of the 20 units analyzed from a series of single- or
multi-neuron recordings, the spike trains of 11 conveyed
information about approach style or knob identity. Most of
the information about these features is conveyed in a brief
(100 to 250 ms) window shortly before contact (Fig. 6).
Demonstrating success of the approach, the metric space
analysis extended conventional analyses by giving the
timescales over which the spike trains convey information
about the attributes of the task, and reduced the amount of a
priori knowledge that is needed for analysis by eliminating
the need for binning the spike train.

Neighboring Neurons Convey Largely Redundant Infor-
mation In several cases, pairs or triplets of simultaneously
recorded neurons on the same or nearby electrodes were

Neuron 70-3.2

All trials, grouped by knob identity:

All trials, grouped by grasp style:

All trials, grouped by approach style:

Neuron 131-3.1

Sighted trials, grouped by knob identity:

Blocked trials, grouped by approach style:

Sighted trials, grouped by approach style:
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Fig. 5 Metric space analysis reveals which aspects of task kinematics
are encoded by specific neurons in parietal cortex. Spike trains color-
coded (top to bottom) by knob identity (1–4, rectangular or round),
approach style (forward, lateral, local/regrasp), and grasp style (power,
precision, ulnar) were analyzed using the metric space method.
Neuron 70–3.2 codes for approach and grasp style; neuron 131–3.1

reports approach style in both sighted and occluded trials. Neither
neuron reports knob identity. In each panel, rasters show raw spike
timings, grouped by knob or style for visualization. Graphs report
STAToolkit-derived spike information for original compared to
shuffled data, as a function of spike timing
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analyzed by STAToolkit routines to reveal what information
about sensorimotor behaviors might be represented by the
ensemble of simultaneously activated neurons. This multi-
neuron analysis showed that the number of trials, although
standard for experiments of this type, was marginal for the
multi-neuronmetric space method. (Orders of magnitude more
data would be required for the direct method.) Nevertheless,
we were able to show that in each of the cases examined,
neighboring neurons convey largely redundant information. In
some examples, the activity of the cluster is more informative
than individual neurons. However, the increase in information

is carried by a summed population temporal code: the neuron
of origin of each spike is not significant (Fig. 7). Thus
knowledge of a spike’s neuron of origin does not increase the
task-related information conveyed. It is possible that a larger
sample size would reveal such an increase.

Other Use Cases

In ongoing formal collaboration with Dr. Patricia Di
Lorenzo (SUNY Binghamton), the project has applied
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Fig. 6 STAToolkit analysis of aspects of timing used to convey
information. Of the 11 units shown, recorded from awake behaving
monkey, eight (units A through H, from tracks h131, n313, and n313b,
recorded in area 5) coded approach style and three (units I, J, and K,
from track n315, recorded in area AIP) coded identity of knob grasped.
These analyses of hand kinematics show that spike trains convey the

greatest information immediately prior to hand contact. For each of the
11 units shown, most of the information about approach style and knob
identity is conveyed in a brief (250 ms) window shortly before contact.
Information above is color-coded and displayed as a function of analysis
window start and end times. Red = 1.0 bit, blue = 0 bit. Four tracks are
shown, each with two or three units recorded

Neuroinform



STAToolkit routines to analyze single-neuron recordings of
rat brainstem gustatory neurons in nucleus tractus solitarius.
This analysis yielded the first demonstration of temporal
coding of flow rate of stimuli. Analyses of responses to
chemically distinct substances of similar taste quality and
taste mixtures showed that temporal coding contributes
proportionally more for discriminations among similar
tastants, than for discriminations among tastants of different
qualities (Di Lorenzo and Victor 2007; Roussin et al 2008).
That is, while spike counts may suffice for gross discrim-
inations, temporal pattern is required for subtle ones. This
collaboration has also yielded a menu-driven Matlab user
interface that can serve as a model to aid the application of
STAToolkit routines to an individual’s data, and pilot
development of multidimensional scaling routines that use

STAToolkit output to construct a “perceptual space” of a
neuron or neural population.

The project has investigated the formal properties of the
“binless” entropy method in the highly undersampled
regime, with the ultimate goal of using this approach to
investigate the statistics of natural scenes. This illustrates
the utility of the toolkit routines to domains beyond
neurophysiology, namely, digitized images.

With Igor Bondar (Moscow), STAToolkit routines were
used to analyze temporal contributions to selectivity of
inferotemporal cortex neurons, and to neural code stability
over several weeks of recording. This illustrates the utility of
intermediate results provided by the toolkit—this application
only required calculation of measures of spike train similarity
(the output of the module metricdist of Fig. 3).
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Fig. 7 Neighboring neurons convey largely redundant information. In
this application of the STAToolkit to multi-neuron analyses, each of
the pairs or triples shown compares joint to individual information as a
function of temporal precision. Although in some examples multiple
neurons convey more information than one neuron alone, this is due to

a summed population code. That is, knowing the neuron in which a
spike occurred does not convey more information about the task. It is,
however, possible that larger sample sizes than those recorded here
might have revealed such an increase. Track and unit designators
correspond to those in Fig. 6
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From outside our group, one sample use case is provided
by Huetz et al. (2009), who used STAToolkit and neuro-
analysis.org for information-theoretic analyses of thalamo-
cortical spike timing.

Toward Expansion and Further Adoption of STAToolkit

STAToolkit is one Component of a Computational
Neuroinformatic Resource

STAToolkit, and other resources available via neuroanalysis.
org, complement those offered via our neurodatabase.org
and brainml.org sites. The three open resources together
offer a metadata-searchable database of neurophysiological
data from a broad spectrum of preparations and techniques,
group type definitions allowing easy correlational analyses
of data with sensory inputs or behavior or performance
measures, instructions for applying algorithms and preparing
data and algorithms for community submission, guidelines
for applicability of algorithms to datasets, a neurodatabase
construction kit, enabling terminologies for neurodatabase
development, and guidelines for submission of new or
extended terminologies. Toward further integration of the
stand-alone STAToolkit with the data repository at neuro-
database.org and a linked 64-processor parallel array, a suite
of tools will allow our user community to select, segment,
concatenate, and group datasets, select information and
entropy methods, and schedule custom analyses.

Planned Expansion Leverages Modular Design

As noted above, STAToolkit design is modular, to allow
additional information-theoretic and other algorithms to be
implemented within the overall structure and data formats,
thus expanding utility for the study of neural coding. In
addition to further entropy and information methods, system
design allows the planned addition of both variability and
synchrony metrics. Common to all of these, enhancements
originally scheduled for later implementation or suggested by
users include multi-parameter methods to further characterize
and match algorithms and data types, expanded grouping and
classification types, relating each of these to lab-developed
terminologies, expanded data converters and viewer types
provided by colleagues at related projects, and versioning for
multiple Matlab and Octave versions, libraries, and compilers.
Expanding user interest suggests the utility of a Sourceforge
site in parallel with the one at neuroanalysis.org, and a
user course or workshop at one or more computational
neuroscience or general meeting.

We plan expansion of entropy and bias methods, including
the Nemenman-Shafee-Bialek estimator (Nemenman et al.
2002), a Bayesian technique based on a unique distribution

of Dirichlet priors, and the Hausser and Strimmer (2008)
estimator based on the James-Stein “shrinkage” approach.
Theoretical insights developed by Paninski (2003) point to
rigorous bounds on the bias and variance of several
techniques. While rigorous bounds require knowledge of
the underlying probability distribution of the data (which is
unknown), we are nevertheless working to incorporate these
ideas into the toolkit via Monte Carlo or analytic approx-
imations of Bayesian estimates based on observed data.

STAToolkit is an Open Resource, Accepting User
Contributions

In keeping with goals for open analysis and data and algorithm
sharing, the STAToolkit has been designed to allow commu-
nity submission of complementary information-theoretic or
other algorithms. Version 1.0 includes instructions for external
contributions to the STAToolkit, at http://neuroanalysis.org/
toolkit/releases/1.0g/contribute.html. This includes specifica-
tions for input, output, options and parameters, and coding
conventions for either Matlab or C/MEX, with guidelines for
each. We continue to work with members of the computa-
tional neuroscience community to incorporate additional
information theoretic techniques, as well as looking beyond
information theory to other methodologies for analyzing
neurophysiology data. A recent paper on entropy estimation
from interspike intervals in J. Neurosci. Meth. (Dorval 2008)
reports successful porting of STAToolkit to Octave, an open
software package with capabilities similar to Matlab.

The STAToolkit is acknowledged as well as an exemplar
by computational neuroinformatics developers. The sig-
TOOL project, providing GUI-driven MATLAB-centric
spike train data input and analysis, has requested that we
collaborate on adding STAToolkit capability and combining
interface development (Lidierth 2009; http://sigtool.source
forge.net/). In addition, the developers of FIND (Finding
Information in Neural Data; http://software.incf.org/soft
ware/finding-information-in-neural-data-find/home) at the
Bernstein Centre in Freiburg note that “...we will incorpo-
rate other open source toolboxes (e.g. http://neuroanalysis.
org/toolkit, an information theory based toolbox).” The
Brian project (http://brian.di.ens.fr/) notes that for analysis
“Brian currently includes a module for simple spike train
statistics. It would be good to have more analysis functions
(for example porting the Spike Train Analysis Toolkit).”
Panzeri et al. (2007) and Ince et al. (2009) cite the
STAToolkit and its relation to Panzeri and others’ comple-
mentary development of Python tools. Scripts for inter-
change between STAToolkit and Chronux (Mitra and Bokil
2008; http://chronux.org), an independent spectral analysis
toolkit, are available by searching http://wiki.neufo.org,
associated with the neuroinformatics summer course at the
Marine Biological Laboratories, Woods Hole, MA, USA.
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Information Sharing Statement

The STAToolkit and documentation are available freely and
open source at http://neuroanalysis.org.
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