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The mean-field theory for cellular automata (Wolfram, and Schulman and Seiden) is generalized to the local structure
theory. The local structure theory is a sequence of finitely-parameterized models of the statistical features of a cellular
automaton’s evolution. The nth model in the sequence takes into account correlations in terms of the probability of blocks of
n states. A class of measures, the n-block measures, is introduced. The local structure operator of order n maps n-block
measures to n-block measures in a manner which reflects the cellular automaton map on blocks of states. The fixed points of
the map on measures approximate the invariant measures of the cellular automaton.

The ability of the local structure theory to model evolution from uncorrelated initial distributions is studied. The theory
gives exact results in simple cases. In more complex cases, Monte Carlo numerical experiments suggest that an accurate
statistical portrait of cellular automaton evolution is obtained. The invariant measures of a cellular automaton and the

stability of these measures may be obtained from the local structure theory.
The local structure theory appears to be a powerful method for characterization and classification of cellular automata.
Nearest neighbor cellular automata with two states per cell are studied using this method.

1. Introduction

Cellular automata are discrete dynamical sys-
tems. A cellular automaton consists of a discrete
lattice of cells, and a rule which operates on the
lattice. The lattice may be infinite in extent. Each
cell of the lattice has a finite number of states. The
rule is deterministic and translationally invariant.
It gives the state of a cell in terms of the states of
cells in a finite neighborhood about the cell at the
previous time step (von Neumann [19], Wolfram
[22]). P

Cellular automata were introduced by von
Neumann [19], who used computation theory to
study organic self-reproduction. He was able to
show that a particular two-dimensional cellular
automaton supports configurations which are ca-
pable of simulating a universal Turing machine,
and capable of constructing copies of themselves
on the lattice. The appeal of cellular automata is
that they are simple to construct, yet potentially

give rise to very complicated behavior when the
rule is iterated. This phenomenon has mathemati-
cal, computational and physical interest, as von
Neumann was the first to realize.

It is typically difficult to determine the nature of
a cellular automaton’s performance directly from
a description of the rule. The “local structure
theory” described in this paper is a finitely-para-
meterized procedure for the determination of the
statistical features of a cellular automaton’s evolu-
tion. Its ability to accurately model the evolution
of an arbitrary cellular automaton is noteworthy
in view of Wolfram’s [24] conjecture that no finite
computational procedure may be given to effec-
tively predict the behavior of a chaotic cellular
automaton.

The local structure theory may be viewed as a
generalization of the mean-field theory for cellular
automata (Wolfram [22], Schulman and Seiden
[18]). The mean-field theory is a model of cellular
automaton evolution which makes the assumption
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that iterative application of the rule does not
introduce correlations between the states of cells
in different positions, so that if an initial con-
figuration were uncorrelated, it would remain un-
correlated under cellular automaton evolution.
This assumption is generally not valid, but allows
the derivation of a simple formula for an estimate
of the limit density of each possible state of a cell.
In some cases (Wolfram [22]), the mean-field the-
ory does well in predicting the limit density, as
ascertained by comparison with Monte Carlo
simulations of the rule. In the case of interesting
and complex rules, the mean-field theory performs
quite poorly (Schulman and Seiden [18]).

The most striking feature of cellular automata is
that correlations between the states of cells de-
velop as the automata evolve. The mean-field the-
ory fails to predict statistical features since it
assumes that correlations are never generated dur-
ing cellular automaton evolution. By contrast, the
local structure theory takes correlation explicitly
into account. It has the potential to capture de-
tailed statistical features of cellular automaton
evolution. Recently, Wilbur et al. [20] have shown
that cellular automaton evolution may be ap-
proximated by a Markov process. This work dem-
onstrates the value of expressing the intuitive
notion of “correlation” in terms of block probabil-
ities. Their method may be directly related to the
local structure theory.

Empirical study of a number of cellular au-
tomaton rules demonstrates the potential of the
local structure theory to describe the statistical
features of cellular automata. The behavior of
some particularly simple rules is derived analyti-
cally. These rules serve as useful checks for the
empirical methods employed. Other rules have
more complex behavior. Even for these rules, the
local structure theory yields an accurate portrait
of both small- and large-time statistics.

In this paper we initiate a classification study of
cellular automata using the local structure theory.
Rules which differ in construction may none-
theless lead to the same local structure approxi-
mation. It is argued that this provides a useful
classification scheme for cellular automata.

2. Fundamentals

Before the local structure theory itself is dis-
cussed, some fundamental concepts and notation
will be introduced. Let Z be the integers,
...,—1,0,1,.... We construct a 1-dimensional
lattice by associating with each integer i a cell b,.
Each cell can have any one of k states:
Sgs S1s---» Sg_1 € S, where k is finite. We denote
elements of S by 0,1,..., kK — 1. In the following k
has the value 2, though all results generalize read-
ily. An assignment of states to the entire lattice is
called a configuration. The collection of all con-
figurations, S4, is a compact metric space under
the metric

d(x,y)= X 27"x,—y| x,yeSs? M
— o0

Under this metric, two configurations are close if
their central cells agree.

The set of all configurations with a specified
sequence of states in particular contiguous posi-
tions is called a cylinder set. Cylinder sets are open
in the topology imposed by the metric (1) on SZ.
All open sets may be expressed as unions of
cylinder sets. A specified sequence of states,
(b_, ...y by,--., b)) or (by, b,,..., b,), depending
on context, is called a block. (Length n)-cylinder
sets may be put in one-to-one correspondence
with n-blocks. The symbol B or B, will denote
either a block or the corresponding cylinder set.
| B| denotes the length of B; for example, |B,|=n.
(B); denotes the state of the ith cell in B. The
shift operator vy is defined by (yB),=(B),,,. The
collection of all n-blocks (or n-cylinders) for fixed
n will be called B,. B, is identical to the state
space S. Blocks of a given size may be put in
lexicographic order by taking the block itself to be
the k-ary expansion of an integer. This integer
gives the index of the block in the ordering. I(B)
denotes the integer represented by the block B.

2.1. Cellular automata

A cellular automaton, T, of radius r is a map
from B ,,,, into B;. It may be extended via the
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shift operator to a map B, . ,,,— B, for arbitrary
n. By infinite extension, a shift-commuting map
on configurations ¢ may be defined as

(TC),-=T(C:-_,,...,C‘-,‘..,CH_r). (2)

We may refer to either the fundamental map 7:
B 42, B, or its extensions by the shift as a
cellular automaton. The set of shift-commuting
functions on configuration space S% which are
continuous with respect to the metric (1) is identi-
cal with the set of cellular automata (Hedlund
[12)).

We will find it convenient to name cellular
automata with code numbers following Wolfram
[22]. A unique number may be associated with
each cellular automaton 7 of radius » =1 and state
space of size k = 2. Let the states of S be labeled
0 and 1, and consider them as integers, not merely
labels. The cellular automaton applied to a block
B in B, yields a single state, hence 7(B) defines
an integer, provided B is in B;. Recall that I(B)
is the position of B in lexicographic order. A
number w( 1) corresponding to 7 is given by

w(r)= T 7(B)2®. ()

BeB,

The code number w() ranges from 0 to 255, and
uniquely defines 7. The action of 7 on 3-blocks
may be decoded from w(7); thus, every integer in
the range [0,255] defines a distinct cellular au-
tomaton. Unique code numbers for rules of arbi-
trary radius and state space size are easily derived
in a similar fashion.

P

2.2. Truncation operators

The truncation operators L and R map any
n-block B, to an (n — 1)-block B, _, by truncation
from the left or right, respectively. That is, if
B,=(b,, b,,..., b,) then

LB,= (b, bs,.... b,) (4)

and

RB,= (b, b,,..., b, ;). (5)
Observe that L and R commute. L or R applied
to a 1-block yield the null-block.

2.3. Block probability functions

A map P, from {B, B, ,,...,B,} into the
reals is a block probability function of order n if it
satisfies the Kolmogorov consistency conditions.
There are four of these. The first,

P(B)=0 for|B|=0,1,...,n, (6)

states that P, is non-negative on all blocks in its
domain. The second condition,

Y P(B)=1 form=0,1,...,n, (7)
BeB,

states that on each collection of blocks of fixed
size, up to a maximum n, P, is a probability
function. In particular, the probability of the
null-block is 1 under all block probability func-

tions. The next two conditions,

P(B')= Y P/(B) for|B’|<n, (8)
B|RB=R’

and

P(B’)= ) P/(B) for|B'|<n, (9)
B|LB=E'

define self-consistency for a block probability
function. The vertical bar under the summation, |,
is read “such that”. Satisfaction of both of these
conditions together implies that the probability of
any block in the domain of P, is the sum of the
probabilities of blocks which contain the given
block at a particular position.

The set of all block probability functions P, for
a particular »n is called P,. If, in addition to being
self-consistent, two block probability functions P,
and P, (m < n) agree on m (and smaller) blocks,
they are said to be consistent with each other.



H.A. Gutowitz et al. / Local structure theory for cellular automata 21

A consequence of the Kolmogorov consistency
theorem (Denker [3]) is that if a set of self-con-
sistent function {P,}, m=1,2,..., which are
consistent with each other, is given then these
functions extend to a unique shift-invariant mea-
sure on SZ. Below, we will use this method of
defining measures in terms of block probability
functions by constructing a canonical map from
P, to P, for m>n.

2.4, The associated Markov matrix of a block
probability function

The Kolmogorov consistency conditions con-
strain the values of n-block probability functions.
These constraints imply that fewer than 2" param-
eters are needed to describe a generic n-block
probability function (i.e. one with no excluded
blocks). We will see that 2"~! parameters are in
fact necessary and sufficient. Let B be an n-block.
To each block probability function we construct a
unique 2"~ by 2”1 Markov matrix whose rows
are indexed by RB and columns by LB. This
matrix describes the transition from (n — 1)-blocks
RB to (n— 1)-blocks LB. There are two possible
paths originating at each RB. On one path we
adjoin on the right of RB a cell in state 0 and
drop the left-most cell of RB to obtain a block
LB. The other path differs in that we adjoin a cell
in state 1. For each block RB, a single parameter
describes the relative probability of these two
paths. Given a block probability function, the
value of each of these parameters may be com-
puted. Conversely, each way of choosing the tran-
sition probabilities leads to a block probability
function’ Hence, 277! parameters, one for each of
the 2"~ ! blocks RB, are needed to describe an
n-block probability function.

Powers of this Markov matrix describe the
probability of a transition from a given (n—1)-
block to an (n — 1)-block at a distance. The eigen-
values of this Markov matrix determine the way
that correlations between blocks change with dis-
tance.

3. The local structure theory

3.1. Finite-block measures

Though the Kolmogorov consistency theorem
assures that a set of block probability functions
satisfying the consistency conditions extends to a
measure, it does not show how to construct such a
set of functions. The Bayesian extension process,
introduced in this section, provides such a con-
struction. Given a block probability function P,,
the Bayesian extension process generates block
probability functions P,, m >n which are con-
sistent with P,. The Bayesian extension process
will enable us to construct a class of measures
called the finite-block measures. These measures
are the domain of the local structure theory. Their
basic properties are discussed in this section.

It is reasonable to suppose, for at least some
cellular automata, that although the repeated
action of the cellular automaton produces con-
figurations in which the states of nearby cells are
correlated, this correlation dies away with increas-
ing separation. That is, for a block B which is
“long enough”, the conditional probability of
finding that block augmented by a cell in state s
on the right (say) will not significantly depend on
the state of the left-hand-most cell of B. If P is a
block probability function, then

P(Bs)  P(LBs)

p(B) _ P(LB) o)
P(f;‘s) = w : (11)

P(LB)

This relation is anticipated to good approximation
if B is long compared to the correlation length.
The Bayesian extension process constructs mea-
sures for which the relation (11) is exact after
some finite |B| = N.

Clearly, (11) should be symmetric in form be-
tween the addition of cells to the right or left of AB.
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The symmetry becomes evident when we let Bs=B
and observe that B = R(Bs) = RB. Substitution of
these expressions in (11) yields

_ P(LB)P(RB)

P(B)=—p(1RB) (12)
We use expression (12) to define an operator

@ (P,). This operator maps an n-block probability

function to an (n + 1)-block probability function

«( P,) which gives the probability of (n + 1)-blocks

B by

P (LB)P (RB

n(2,)(8) = BUESE) (13)
and is identical to P, on blocks of smaller size. It
may happen that P (LRB) is 0, in this case any
block which contains LRB also has probability 0.
In particular, both numerator terms LB and RB
have probability 0 if LRB does. In this case we
will assign the ratio (13) the value 0. Summarizing,

Pn(RB);",,( LB)

P (RLB)
if [B|=n+1and P,(RLB) >0,
#(P,)(B)={0
if |[Bj=n+1and P,(RLB)=0,
P,(B)
if |B| <n.

(14)

We will show below that «(P,) is a block prob-
ability function of order n + 1. Given this fact, it
will be clear that block probability functions P,, of
order m>n+1 may be generated by recursive
application of . The collection of functions P,
generated in this way from a block probability
function P, is called the Bayesian extension of P,.

Intuitively, Bayesian extension works by mak-
ing a “best estimate” of (n+ 1)-block probabili-
ties in terms of n-block probabilities. In fact,
Bayesian extension constructs the block prob-
ability functions P,, m > n, of maximum entropy

m?

which are consistent with a given probability func-
tion P, (Gutowitz et al., in preparation).

A trivial but important example of Bayesian
extension is the estimation of the probability of a
sequence of flips of a biased coin from knowledge
of the probability p of a head (1), and 1 —p of a
tail (0). These probabilities correspond to a block
probability function P in P, specified by P(1)=p
and P(0) =1 — p. The probability of a 2-sequence
of flips b, b, can be found by Bayesian extension
of P:

(P (b)) = P I)

= P(b,) P(b,). (15)

The denominator is the probability of a null block
which is 1. A simple induction shows that the
probability of a block B of arbitrary length com-
puted by recursive application of 7 is p™®) (1 —
p)*UB) where #1 and #0 are the number of 1’s
and O’s, respectively, in B. This result connects the
local structure theory to the mean-field theory
(section 3.8).

Bayesian extension has a concrete interpreta-
tion. Imagine an urn of infinite capacity contain-
ing oriented n-cell “dominos” labeled with 0’s and
1’s. The probability of drawing from the urn an
n-domino labeled in a particular way is given by a
block probability function P,. The probability of
a smaller block of labels occurring at a particular
place in a drawn n-domino is also given by P,. An
(n + 1)-domino may be constructed by drawing an
n-domino, and then drawing a second domino
from the urn until the right-most » — 1 labels of
the first n-domino match the left-most n — 1 labels
of the second n-domino. The middle n — 1 labels
of the two dominos are fused, producing an (n +
1)-domino. The probability that a particular (n +
1)-domino may be constructed by drawing from
the urn according to the above procedure is given
by #(P,). Longer dominos may be constructed in
the same manner. The probability that a particular
domino may be constructed in the appropriate
number of successful draws from the urn is com-
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puted by recursive application of = to P,. Equiv-
alently, these probabilities may be found using the
Markov matrix associated with the block probabil-
ity function.

We will now show that the functions P, gener-
ated by Bayesian extension satisfy the Kolmogorov
consistency conditions and are therefore block
probability functions.

Theorem. If a function P, satisfies the
Kolmogorov consistency conditions (6)—(9) for
blocks up to size n, then «(P,) satisfies the
Kolmogorov consistency conditions for blocks up
to size n+ 1.

Proof. =(P,) satisfies the Kolmogorov consistency
conditions on blocks of length n or less because
its values on these blocks are identical with those
of P; and P, a block probability function,
satisfies the consistency conditions by definition.
We will show that condition (9) is satisfied by
w(P,) on blocks B of length n+ 1, and use this
fact to show that conditions (6)-(8) are also
satisfied for #(P,) on (n + 1)-blocks. Let B’ be an
n-block, B an (n+ 1)-block. We need to verify
that

Y 7(P,)(B)=P(B). (16)

B|LB=B'
By definition

P,(RB)P,(LB)
P,(RLB)

(17)

L wB)B)= )

B|LBE=E' B|LE=FE"'

By subsfitution of B’ for LB, (17) becomes

P"(RB)P,,(B’)
e (18)

z

B|LB=B'
Removing constants from the sum, (18) becomes

PJ‘!('B’)

P.(RB) Y. P,(RB). (19)

B|LB=B'

Define a new variable B = RB. Then, LB= B’
implies LB = RB’. Thus, the sum (19) over (n +
1)-blocks B may be written as a sum over n-blocks.
Eq. (19) becomes

Pn( B’) 5

PH(RBJ') y Z ’Pn(B) (20)
The value of this sum is P,(RB’) by the con-
sistency hypothesis for P,. Hence

2 #(P)(B)=P/(B). (21)

B|LB=B'

as we wished to verify.

An identical argument holds with L exchanged
for R, which establishes condition (8). Condition
(6) is immediate. To see that condition (7) holds,
we evaluate

Y =(P,)(B)

BeB,

-3 | 2

B'€B,| B|LB=B’

P,(RB)P,(LB)
P (RLB) (22)
By the proof of (9), the inner sum is P,(B’). By
the consistency hypothesis for 7,, the outer sum is
1. Hence w(P,)isin P, .

We have just shown that «(P,) satisfies the
Kolmogorov consistency conditions. Inductively,
all block probability functions constructed by re-
cursive application of = to P, are consistent with
P, and satisfy the Kolmogorov consistency condi-
tions.

We thus have extended P, to a collection of
functions which allows us to assign probabilities
to blocks of arbitrary length in a canonical fash-
ion.

The Kolmogorov consistency theorem (Denker
[3]) says that we can use this collection of func-
tions on finite blocks to define a measure on the
set of all infinite configurations, S%. We will call
such a measure, constructed from a block-
probability function P, by a Bayesian extension, a
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finite-block measure, or, if n is specified, an n-block
measure. A finite-block measure constructed by
Bayesian extension of a block probability function
P, will be denoted Bay(P,). Recall that a cylinder
set is a set of configurations which have a particu-
lar block B at a particular position in the con-
figuration. A finite-block measure assigns to each
cylinder set B a value equal to the probability of
the associated block B. This probability is de-
termined by Bayesian extension from blocks of
length n up to blocks of length |B|.

A finite-block measure is shift-invariant: cylin-
der sets receive the same measure regardless of
where the origin of configurations is chosen. Let
M be the set of all shift-invariant measures on %
and M, be the set of all n-block measures. Then
M, c M for each n, and M, C M, if m <n.

The difference between the probability of the
blocks 1 and 0 will be called the bias of a measure.
~ 1-block measures are those based on the genera-
tion of block probabilities by flips of a biased
coin. Such measures will be called uncorrelated.
The unbiased, uncorrelated measure is called the
standard measure.

3.2. The scramble operator

The scramble operator of order n, denoted as o,,
is a map from M, the set of shift-invariant mea-
sures on configuration space to M,, the set of
n-block measures. The scramble operator first
maps a measure p in M to a block probability
function by integrating the measure over n-cylin-
ders, then it extends this function to a finite-block
measure by Bayesian extension. Recall that if P, is
a block probability function then Bay(2,) is the
corresponding rn-block measure. We define an “in-
verse” operation Blk,(p) which defines a block
probability function in terms of a measure,

Blk,,(p)(3)=f8dy. for |B| < n. (23)

The scramble operator of order 7, o, is defined as

o,() = Bay (BIk,,(1))- (24)

g,(p) is an approximation to an arbitrary shift-
invariant measure p by an n-block measure. Ele-
mentary properties of the scramble operator are
that 6,0,,=0, for m<n, and o, u=p if p is an
n-block measure. Note that o, is not a linear
operator because Bay(P,) is not, according to
(14).

We now show that the sequence {o,pn} con-
verges to p in the weak topology on measures. We
will say that a sequence {p,} converges weakly to
p if lim,_, ffdp,= [fdp for all continuous
functions f: SZ— R (Parthasarathy [17]). We say
that a function on SZ is approximable if it may be
uniformly approximated by functions constant on
cylinder sets. Since SZ is compact and totally
disconnected, each continuous function on SZ is
approximable. Hence convergence with respect to
the set of approximable functions is equivalent to
convergence in the weak topology.

Theorem. Let p be a measure in M, and let f be
an approximable function from SZ into R. Then,
the sequence {p,} = {o,p} converges to p for all
pLEM.

Proof. Given € >0, let f, be an approximation to
f which satisfies

f-fl<3 (25)

and is constant on cylinder sets of length N(e).
We will show that

[rauy— frau|<e (26)
for all N’ > N(e). By the triangle inequality,
Jrany = [rau|<| f[rang.~ [rany

ffcdn—ffdu‘-

+

+‘fﬂdw—fﬂdu

(27)

We evaluate the first tem on the right-hand side of
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27),

|[rauy= [feduy | fir—ridny

<e/2fduy=e/2.  (28)

The third term evaluates in the same way to €/2.
It remains to evaluate the second term. f, is
constant on cylinder sets. Let B be a cylinder set
of length N’ and f.(B) be the value of f, on B.
We have

Lfcduwa=ﬂ(3)fgd#~-,
(29)

focdp=ff(B)de».

By definition of o,, py. =oy.(u) agrees with p
when integrated over cylinders of size N’(e). By
(29),

j; fodpy= fB f.dp. (30)

We may decompose the integrals in the second
term of (27) into a sum of integrals over each B in
B,.. By eq. (30), each of these vanishes. Hence,

] [fauy - ffdu|~<e (31)

as desired.

This theorem says that any measure on S may
be approximated arbitrarily well by finite-block
measures.

3.3. The cellular automaton map on measures

A cellular automaton 7 maps each configuration
¢ in SZ to another configuration. The inverse
image under 7 of a configuration is a set of
configurations. We can think of r as mapping
subsets of §Z to other subsets. This action of 7 on
subsets of S# induces an action on measures on
SZ. Following Lind [14] we define (tp)(E)=

p(7 Y E)) for all p-measurable sets E. If p is an
n-block measure, then t may be explicitly com-
puted. Tu assigns to a set E the measure of its
inverse image. Each open set is a union of cylinder
sets. The inverse image of each cylinder set in the
union is again a union of cylinder sets. Tu(E) is
the sum of the measures of the component cylin-
der sets in a disjoint cover of the inverse image of
E. The measure of each of these cylinder sets may
be found by Bayesian extension.

3.4. The local structure operator

The local structure operator combines the op-
erations of scrambling and applying a cellular
automaton to a measure. The local structure oper-
ator of order n for a cellular automaton 7 is a
map, A,(7), on measures defined by

A, (r)p=0,0,u. (32)

The first application of o, produces an n-block
measure. The application of T produces a general
measure, and the final application of o, reduces
this to an n-block measure. In particular, A, (7)
maps M, the set of n-block measures, into itself.

3.5. Invariant measure

The invariant or limit measure, p*, of a cellular
automaton 7 is defined as lim, _, ,r'n. If a measure
invariant under a cellular automaton T were a
finite block measure of order n or less, then this
measure would also be invariant under A (7). For
let p be a finite block measure of order n in-
variant under 7. o, = p since o, is the identity on
n-block measures. tp=p by hypothesis. Hence,

A A7) = 0,70, = p.

3.6. The basic hypothesis of the local structure theory

The basic hypothesis of the local structure the-
ory is that the local structure operator A,(7)
approximates the action of r on a measure, and
does so increasingly well as #n — o0. In particular,
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we hypothesize that A (7) acts dynamically on
measures approximately as 7 does. In the experi-
ments described below we demonstrate that the
evolution of block probabilities under the local
structure operator of small order for a given rule
closely approximates the evolution of block prob-
abilities under the rule itself.

If the cellular automaton has a large time limit
measure, and the close approximation of the dy-
namics of A, (7) to the dynamics of T continues to
large time, then we can expect that A, (7) should
also possess a limit measure, and that the limit
measure of A, (7) should approximate that of .
Below we demonstrate empirically that some cellu-
lar automata do indeed possess limit measures.
We will see that cellular automata typically do not
have finite-block limit measures. Nonetheless, the
limit measures of the rules studied are well-
approximated by the fixed points of the corre-
sponding local structure operators of low order.

Close dynamic approximation of 7 by A, (7)
implies that if 7 has a single invariant
measure then A, (7) will also have a single in-
variant measure. More generally, one might expect
the number of parameters which specify the set of
invariant measures of a rule 7 to be the same as
for the set of invariant measures of A (1), for n
sufficiently large.

A matter of concern is the stability of the in-
variant measures of 7 with respect to perturbation
as compared to the stability of invariant measures
of A,(r). This question is of particular impor-
tance in view of the use of cellular automata as
models of physical systems. Let p(F(x(z))) be an
invariant measure of a dynamical system stepped
forward by the vector field F(x(¢)). Following
Eckmann.and Ruelle [4], the natural or physical
measure of F(x(t)) is lim, , ou(F(x(?)) + €w(?))
where w(¢) is a suvitable noise operator. They
suggest that the natural measure represents experi-
mental time-averages. Heuristically, the scramble
operator of order n may be thought of as an
n-block noise generator, obliterating features of a
measure contained in the probability of blocks of
size greater than n. In this interpretation, it is

reasonable that only the natural measures of a
cellular automaton could be approximated by in-
variant measures of the local structure operator.
Below we will study a few examples in which the
measures invariant under a cellular automaton in
local structure approximation correspond to mea-
sures obtained by time-averaging or perturbation
of empirical measures.

3.7. Implementation of the local structure theory

We noted above that A,(7) maps the set of
n-block measures into itself. Since n-block mea-
sures are finitely parameterized, and = is a ra-
tional function in block probabilities, the action of
A, (7) can be computed from a finite system of
rational recursion equations. Hence, we can
numerically investigate the ability of the local
structure theory to approximate a cellular automa-
ton. In particular, we will test whether the fixed
point parameters (block probabilities) of A, (1)
extend to a measure which approximates the true
limit measure of the cellular automaton .

To find the evolving n-block measures of A, (7)
numerically, we repeatedly calculate the action of
7 on an n-block measure by the following steps:

1) Find the inverse image under T of each block
of length n. For each n-block this is a set of
(n + 2r)-blocks.

2) Compute the probability of each of the (n +
2r)-blocks using Bayesian extension.

3) For each n-block, sum the probabilities of
the blocks in its inverse image, and take the sum
as the probability of the n-block at the next gener-
ation. Repeated application of these steps locates
a fixed point of A (7).

In the experiments described below, we study
the various aspects of the relationship between a
rule 7 and its local structure approximations using
the procedure outlined above.

In this paper we will be primarily concerned
with r=1 cellular automata. To accomplish the
program above, we need to compute the condi-
tional probability of (n + 2)-blocks given a specifi-
cation of n-block probabilities. Let B be an (n +
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2)-block and B’ an n-block. Bayesian extension of
an n-block probability function gives the probabil-
ity of the (n + 2)-block B as

P,(R*B)P,(RLB)P,(L’B)
P,(R*LB)P,(L*RB)

(33)

Let 8(7(B), B’) take the value 1 if 7(B) is the
n-block B’, and 0 otherwise. Let P, be an n-block
probability function at time ¢. The evolution of P
is given by a system of non-linear recursion equa-
tions

Pt Bl F
Be Svr+2
P!(R*B)P/(RLB)P/(L’B)
P!(R*LB)P!(L’RB)

8(7(B), B)

(34)

Probabilities of blocks of length smaller than » at
time ¢ are found using the Kolmogorov con-
sistency conditions.

3.8. The mean-field theory as a special case

Before turning to specific empirical results, we
will discuss the relationship of the mean-field the-
ory and the local structure theory.

An approximation is typically called a mean-
field theory if the assumption is made that the
state of a particular member of a collection de-
pends only on an average of the states of other
members of the collection. Let p, be the probabil-
ity of the state 1 at time ¢ In the mean-field
theory it is assumed that the probability of larger
blocks rhay be computed in terms of p,. That is, it
is assumed that no correlations are introduced by
the evolution of the cellular automaton. The prob-
ability of a block B at time ¢ is given by: p;/*(®)(1
—p)*%®) where #1(B) and #0(B) are the
number of 1’s and 0’s, respectively, in a block B.
The mean-field theory approximates the probabil-
ity of a 1 at a time ¢ by the sum of the probabili-
ties at the previous time of the blocks which map

to 1. Explicitly,

Pi+v1= Z

BB a2

(B () =) (35)

This is identical to the local structure theory of
order 1. To see this, put B’=1 in eq. (34). We
may replace P/*}(B’) in (34) by p,. . Also, since
T(B) is an integer, either 0 or 1, 7(B) replaces
8(7(B), B’). Now, since P, is a 1-block measure,
parameterized by p,

P, if B_,=1,

RIRY —

BB {(1 -p) ifB_,=0;
P, ifB,=1,

P'(RLB) =

A RLE) {(1—p,) if B, = 0; (36)
», if B,=1,

t LZB S

Pi(L7B) {(1—;;,) if B,=0.

Further, since the probability of the null-block is
]"J

P/(R:LB)=1, and P!(L’RB)=1. (37)

Using these substitutions, the local structure re-
cursion equations (34) reduce to the mean-field
equation (35).

This simple case illustrates the fact that some of
the recursion equations (34) are redundant; a fact
which may be traced back to the existence of two
consistency conditions (8) and (9) which establish
a relation between different partial sums of prob-
abilities. A count on the number of independent
equations was given in section 2.4.

4. Rule-specific results

We will investigate the statistical behavior of a
number of r=1, k=2 cellular automata. These
rules have been widely studied (see Wolfram [26]
and references therein). The rules chosen form a
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sequence of roughly increasing statistical complex-
ity. For each rule, we examine the correspondence
between the exact behavior of the rule as de-
termined by Monte Carlo experiments and the
behavior of the local structure theory approxima-
tions to the rule. When possible, we take ad-
vantage of special features of a rule to perform an
analytical treatment of a rule and the local struc-
ture theory for the rule.

Since the local structure theory is a statistical
theory, while cellular automata themselves are de-
terministic, it is evident that local structure theory
represents in some sense the average behavior of a
cellular automaton. In the following, we consider
several ways in which the average behavior of a
cellular automaton can be discovered using Monte
Carlo techniques. In some cases (e.g. rule 90),
time-averaging suffices to set up a correspondence
between space-averaged Monte Carlo statistics and
the local structure theory. For rules with very little
mixing (e.g. rule 180), complex dynamics are pres-
ent in Monte Carlo simulations. These persist
after time-averaging but do not persist after sto-
chastic perturbation of the evolution. Neverthe-
less, the local structure theory of sufficiently high
order indicates the presence of the complex dy-
namical behavior. In the case of a cellular auto-
maton with chaotic dynamics (e.g. rule 22), the
mixing properties of the rule itself are sufficient to
permit correspondence of local structure theory
and Monte Carlo statistics.

4.1. Monte Carlo techniques

The local structure theory is a theory of the
behavior of cellular automata in the infinite size
limit. Any. Monte Carlo experiment, on the other
hand, is subject to finite size constraints. In par-
ticular, the choice of boundary conditions may
strongly affect the outcome of statistical experi-
ments (Martin et al. [15], Falk [5]). When it was
necessary to eliminate boundary effects, we em-
ployed “triangular” boundary conditions. That is,
we only computed statistics on the basis of the
central N — 2rt cells of a configuration, where N

is the length of the configuration, r the radius of
the rule, and ¢ the number of times the rule has
been applied.

In all experiments, initial configurations of
length N = 6000 with triangular boundary condi-
tions were pseudorandomly generated to be uncor-
related and to have a specified density. We then
applied the cellular automaton to these configura-
tions, for a number of iterations much smaller
than the length of the initial configuration. At
each generation, block probabilities were com-
puted by counting occurrences of blocks in the
configuration. When quoted, standard errors of
the mean of block probabilities are relative to the
number of configurations (samples) used to derive
the given statistic.

4.2. Linear rules

Linear rules are particularly simple. They have
been extensively studied (Falk [5], Hedlund [12],
Lind [14], Martin et al. [15]). There are § linear
rules among the r=1, k=2 cellular automata.
These include the rule 0 which maps all 3-blocks
to 0, the identity (204), the left shift (170) and the
right shift (240). The non-trivial linear rules are
rules 60, 90, 102, 150. By interchange of the state
labels 0 and 1, we obtain rules 255, 195, 165 and
153 from the linear rules 0, 60, 90, and 102,
respectively (see table I). These additional rules
are non-linear, but since they are related by a
trivial automorphism to linear rules, they may also
be analyzed by the methods outlined below.

For non-trivial linear rules every block has pre-
decessors. In addition, the number of blocks of
length (n + 2r) in the inverse image of an n-block
is the same for all n-blocks. To see this, let N be
the set of (n+ 2r)-length predecessors of the 0
n-block under a non-trivial linear rule 7. If B’ in
B,, ., is a predecessor of a block B in B, then, by
linearity, every other predecessor of B may be
expressed as B’ + n, where n is in N. Thus, the
number of predecessors of every block is simply
the number of elements in N, which is k""" /k”"
e k2r‘
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Under the standard measure, the probability of
each block of a given length is the same. Since
there are the same number of blocks in the inverse
image of each block of the given length, the stan-
dard measure is invariant under the action of
non-trivial linear rules.

4.2.1. Invariant measure of A, (1)

We observed above (section 3.5) that if a cel-
lular automaton has an n-block measure as an
invariant measure, then this measure is also in-
variant under the local structure operator of order
m > n. Since the standard measure is a 1-block
measure, the local structure operators of all orders
for linear rules have the standard measure as a
fixed point.

4.2.2. Stability of the standard measure

The stability of the standard measure under
linear rules is a more subtle matter than its
invariance. For linear rules, the number-theoretic
properties of the generation number strongly
influence the statistics at that time. Let us focus
on rule 90, for which the state of a cell at a time ¢
is the sum modulo 2 of the states of its nearest
neighbors at the previous time. Lind [14] proved
that if 7 is rule 90, lim,_, .7’ does not converge
to the standard measure if it did not begin there.
This is due to statistical anomalies which occur at
generation numbers which are a power of 2. Lind
shows further, however, that lim,._, , (1/T)Z7_;7p
converges to the standard measure, independent of
the density of the initial measure p. This result
suggests that the standard measure is the “physical
measure” of rule 90 in the language of Eckmann
and Ruelle [4]. It is the unique invariant measure
which emerges when the statistics of evolution are
time-averaged.

The Monte Carlo experiment of fig. 1 illustrates
Lind’s results. In this experiment 50 configurations
of length 6000 were pseudorandomly generated so
as to be uncorrelated and to have density 0.75.
The evolution of these configurations under rule
90 was followed for 512 generations, with
triangular boundary conditions imposed. The
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Fig. 1. Evolution of linear rule 90 on initial configurations of
length 6000 with triangular boundary conditions. 50 configura-
tions were generated pseudorandomly to have a density of 1's
of 0.75. The average density was computed over the set of
configurations at each iteration 0-512.

density was computed at each generation. The
departures from the standard measure at power of
2 generations described by Lind are clearly seen in
this figure. Aside from the rare departures, the
empirical density conformed with the local
structure prediction of 0.5. In this experiment,
time-averaging of statistics would have produced a
limiting density of 0.5, as Lind proved to be the
case for the infinite cellular automaton. At very
high initial bias additional, more complicated
departures occur (not shown), but these also do
not survive time-averaging.

The other linear rules displayed behavior similar
to that of rule 90 in this experiment.

4.2.3. Stability in local structure theory
approximation

As discussed above, the standard measure must
be invariant under the local structure operator of
all orders for linear rules. To see if the standard
measure is also stable, we used block probability
functions with densities (0 to 1 in steps of 0.1) as
initial data for the local structure operators (of
order 1-10) for the non-trivial linear rules. The
action of the operators on these data is simply
stated: the standard measure was the fixed point
of the local structure operators for these rules.
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(The only qualification was that the initial data
must be bounded away from the singular condi-
tions P(1)=1 or P(0)=1, which are themselves
invariant.) This suggests that the local structure
theory of linear rules is insensitive to the genera-
tion-number anomalies described by Lind. Rather,
the local structure theory prediction of the limit
measure appears to correspond to the physical
measure of the rule. In summary, the statistical
behavior of linear rules as determined by the local
structure theory corresponds to a time-average of
the exact behavior.

4.3. Toggle rules

A rule may be said to be a (left or right) toggle
rule if changing the state of the (left-most or
right-most) cell in the neighborhood of the rule
changes the value given by the rule. These rules
were also studied by Milnor [16] who called them
(left or right) permutative. Willson [18] proved
that rules in a broad class which includes the
toggle rules are ergodic with respect to the stan-
dard measure. In this section we compare the local
structure theory predictions with this result.

Toggle rules share with linear rules the property
that each block of a given size has the same
number of blocks in its inverse image. To fix ideas,
let b be an n-block, and 7 be a right toggle rule.
To find all the blocks in the inverse image of b,
begin choosing states for cells at the left end of a
prospective (n+ 2r)-block, B. Since 7 is a right
toggle rule, no matter how the first 2r states are
chosen, there is one and only one choice of state
for the (1 + 2r)th cell such that B is in the inverse
image of b. Indeed, once the first 27 choices are
made, ther makeup of b determines uniquely the
states of the remaining cells in B. The 2r free
choices imply that there are k?” blocks in the
inverse image of each n-block. As for linear rules,
this implies that the standard measure is invariant
both under the rule and all local structure ap-
proximations to the rule.

We note that for all r=1, k=2 left toggle
rules, the rule number w(r) is a positive multiple

of 15. Conversely, each such rule number (except
for 255) corresponds to a left toggle rule. To see
this, let w; (0 </ < 3) be the value of the rule 7 on
each 3-block whose left-most cell is 1. Because 7
has the left toggle property, it must have the value
(1 —w,) on the corresponding block whose left-
most cell is 0. Then,

w(T)= I;g [ZHAwF +(1- wj}Zi]

3 ;
=15 [1 + ) wr.2"]. (38)
i=0

The right toggle rules are obtained by reflection of
the left toggle rules. Left toggle rules typically
come in pairs, each member of the pair is mapped
into the other by interchange of the 0,1 state
labels (table I). Note that rules 90, 105, 150 and
165 are both left and right toggle rules (as dis-
cussed above, 90 and 150 are also linear). The left
and right shifts (170 and 240) and left and right
toggle rules, respectively.

4.3.1. Stability of the standard measure under
toggle rules

Wolfram [25] submitted toggle rules to a variety
of statistical tests which show that evolution under
these rules tends to destroy correlation and bias in
finite configurations. This is evidence that the
standard measure is stable under toggle rules. We
obtained further evidence for the stability of the
standard measure under left toggle rules using the
same experimental paradigm as employed above
for linear rules. The statistical properties of a right
toggle rule are the same as those of the corre-
sponding left toggle rule. We will group with
parentheses left toggle rules which are related by
interchange of state labels (table I). Left toggle
rules (30, 135), (45, 75), and (120, 225) had an
average density of 0.5 at all times (up to 512)
beyond an initial transient, regardless of initial
density. Under exchange of state labels, rules 165
and 195 map to linear rules 90 and 102, respec-
tively, and hence have the same statistical behav-
ior (table I).
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Three left toggle rules (180, 210, and 15) display
behavior which is dissimilar to any of the linear
rules. Rules (180, 210) will be studied in detail
below. Rule 15 is effectively an » = 0 rule. It shifts
a configuration one position to the right, and
maps the state of each cell to the opposite state. If
a configuration has a density p of 1’s, then rule 15
applied to the configuration will produce a
configuration which has a density 1 — p of 1’s. The
next application of rule 15 will return a
configuration with the original density p. Thus,
without time-averaging, the space-averaged density
does not converge to 0.5 if it did not begin there.
Time-averaging, on the other hand, will produce
an invariant density of 0.5.

4.3.2. Stability in local structure theory
approximation

We showed above that the standard measure is
invariant under the exact action of toggle rules.
The local structure operator (of order up to 10) for
r=1, k=2 toggle rules (except rule 15, and its
reflection, rule 85) has the standard measure as the
unique stable fixed point.

The local structure operator of any order for
rule 15 behaves exactly like the rule itself in the
respect that given an initial block probability
function with density p, the result of application
of the local structure operator is a block
probability function with density 1 — p, the next
with density p, etc.

4.3.3. Rule 180

Rule 180 (and corresponding rule 210) is nearly
an r =0 rule. Rule 180 simply shifts a cell state to
the right, unless it is followed on the right by the
pair 10 in which case it is mapped to the opposite
state, and shifted to the right. Despite the
simplicity of this description, rule 180 is the most
statistically complex of the r=1, k=2 toggle
rules. Examination of the behavior of this rule and
its local structure theory approximations will
enable us to gain some insight into the mixing
properties of the local structure theory.

A consequence of the results of Willson [18] is
that the standard measure is ergodic for rule 180.
An intuitive interpretation of this statement is that
for a “typical” configuration, (one in which
space-averaged density of 1’s converges to 0.5) will
map to another configuration of density 0.5 under
rule 180. This next configuration will map to
another such configuration, etc., so that space-
averages in a configuration at a given time may be
exchanged with averages over samples taken from
a given place in a time sequence of configurations.
Ergodicity with respect to the standard measure
does not preclude the existence of sets of con-
figurations which 1) have measure 0 with respect
to the standard measure, 2) are invariant under
the rule (or some power of the rule), and 3) have
space averages which may not be exchanged with
time averages. It is also possible for a set of
measure 0 to be invariant under rule 180 and yet
have space- or time-averaged densities different
from 0.5.

In the following we will present both Monte
Carlo and analytical evidence that 1) sets of
measure 0 exist on which rule 180 is dynamically
complex, 2) this complexity is not stable to
stochastic perturbation, and 3) the local structure
theory accurately reflects this cellular automaton’s
behavior on sets of both positive and 0 measure.

(a) Monte Carlo simulation of rule 180

Fig. 2 shows the evolution of configurations of
length 6000 for 64 generations under rule 180,
with triangular boundary conditions imposed.
Configurations were generated to be uncorrelated,
and to have different densities: 0.1, 0.4, 0.5, 0.7, or
0.99. 10 configurations at each density were used.
When 0.5 was not the density of the initial measure,
the density underwent oscillations. The periods of
the oscillations depended on the initial density.
Period 2 oscillation at low density gave way at
high density to a complex mix of oscillations
whose periods were powers of 2. As the density of
initial configurations was increased toward the
high density limit P(1) =1, power shifted into
oscillations whose periods were even higher powers
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Fig. 2. Evolution of toggle rule 180 on initial configurations of
length 6000 with triangular boundary conditions. Starting con-
figurations were generated to be uncorrelated but to have
different initial density. 10 configurations at each density 0.1,
0.4, 0.5, 0.7, and 0.99 were used. The average density was
computed at each iteration 0-64.

of 2. There appeared to be no period-doubling
bifurcations. Rather, the power expressed in high
harmonics increased smoothly as the density
increased.

To understand this behavior, we first consider
the low density limit. At very low densities, most
1’s which occur in a configuration will be isolated
from other 1’s by long runs of 0’s. An isolated 1
maps to a pair of 1’s which in turn maps to a
single 1, shifted two places to the right of the
original 1. This accounts for the period 2 oscilla-
tions seen at low density. At somewhat higher
densities, one is lead to consider the evolution of
small regions of 1’s surrounded by a large number
of 0’s such as 11 (period 2) 111, 101, 1111, 1101
(period 4), etc. A more detailed analysis reveals
that 1) a block B = 01240122%1012%*1 .
01%*1 (k,a,b,..., f=0), if followed by a zero,
evolves in a diagonal band, independent of the
remainder of the configuration, 2) the block B has
a period 2" where 2" is the largest power 2 which
is less than the length of B, and 3) all configura-
tions can be segmented into blocks of the above
form, and inert regions of 0’s.
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Fig. 3. Evolution according to the local structure operators of
orders 1-5 for rule 180. Initial data were chosen to be uncorre-

lated and to have density either 0.1 or 0.99 corresponding to
the Monte Carlo data of fig. 2.

(b) Local structure theory of rule 180

Fig. 3 shows the evolution in response to local
structure operators of all orders, 1 through 5, of
uncorrelated block probabilities of initial densities
0.1 and 0.99 which may be compared with Monte
Carlo data as above. The first 64 generations were
studied. As was the case for other toggle rules, the
local structure operators of all orders studied for
rule 180 tended eventually toward the standard
measure. Unlike other toggle rules, however, as
the order was increased the local structure
operators for rule 180 took longer to relax to the
standard measure. Prior to this relaxation, they
tended more to reflect the behavior of the
corresponding Monte Carlo simulations.

The large-time behavior of the local structure
operators of low order reflects the action of rule
180 on sets of positive measure. This is the “aver-
age” or “typical” behavior of the rule, its behavior
on sets of positive measure (Willson [18]). The
small-time behavior of the local structure oper-
ators only reflect the action of the rule on the
measure 0 set of configurations on which it is
initialized.

Whether the pattern of behavior of higher orders
of theory is the same as the pattern of the low
orders, with the convergence to the standard mea-
sure merely delayed, is unclear. We can construct
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measures for which we can prove that the local
structure theory does not converge to the standard
measure for any sufficiently high order of theory.
An example is the measure which assigns 0 prob-
ability to any configuration which contains the
blocks 101 or 11, i.e. which only allows configura-
tions with 1’s isolated in runs of 0’s. The square of
rule 180 preserves this subset of the configuration
space. Hence, on this subset, it may be regarded as
an idempotent, and thus subject to exact treat-
ment (see below).

It appears that rule 180 will not always express
its average behavior in Monte Carlo experiments
or at small time in the local structure theory
because it is not sufficiently mixing. We now show
how the Monte Carlo experiments may be mod-
ified so that the average behavior of rule 180 is
expressed even though the simulations are initial-
ized on the measure 0 set of configurations.

(c) Stochastic perturbation

The results of an experiment in which rule 180
was Iteratively applied to configurations in the
presence of a small amount of noise are displayed
in fig. 4. Noise was added as follows: first the
density of the current configuration was found,
then each cell of the configuration was perturbed
with a probability . Perturbed cells were mapped
either to the same or the opposite state. Transition
probabilities for this map were chosen such that
the density of 1’s in the configuration was not
changed on the average. Noise was added in this
fashion so that any effect on the outcome of the
cellular automaton evolution would be due to the
perturbative effect of the noise, rather than its
bias.

In these experiments € took on the values 0,
0.01, 0.05, and 0.1. Low levels of noise were
sufficient to destroy the elaborate periodicities
of the deterministic evolution within a few
generations. Monte Carlo simulations in the
presence of noise in the limit of large time conform
with the fixed-point predictions of the local
structure theory.

The action of noise may be understood as
follows. At low density noise acts to disperse the
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Fig. 4. Evolution under rule 180 of configurations generated
as in fig. 2. In this experiment noise was added as described in
the text with e =0, 0.01, 0.05, or 0.1. Initial densities used were
0.1 and 0.99.

11-blocks which come from isolated 1’s at the
previous generation. In this way new isolated 1
“seeds” are formed so that increasingly high
densities may be reached. At high density, noise
introduces isolated 0’s in a string of 1’s. Such a 0
produces a pair of 0’s at the next generation. One
of the daughters moves to the left and the other to
the right as the rule is iterated. Not only is the
density lowered by this mechanism, but the in-
fluence of the perturbation can spread over large
distances.

4.4. Idempotents

A cellular automaton is said to be idempotent if
72 =r. Some non-idempotent rules have a power
which is idempotent. Since this power is a cellular
automaton of larger radius, our discussion of
idempotents may be applied to these rules as well.
Though idempotent rules are dynamically simple
(their evolution stops after one generation) they
may have more complicated statistical behavior
than the linear and toggle rules studied above. In
the case of linear and toggle rules, we were able to
describe the behavior of the local structure oper-
ator by counting the number of predecessors of
blocks. We will apply the same method to the
study of idempotents.
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The r =1, k=2 rules which are idempotent or
whose square is idempotent are listed in table I.
Some rules obey the equation 73 =7, The square
of such a rule is idempotent. Rules which obey the
equation 72 = yr, where v is the shift operator, are
also tabulated. Statistically, these rules are like
idempotents.

4.4.1. Excluded blocks

A block is called an excluded block for a rule =
if it has no predecessors under the rule. A basic
excluded block does not contain other excluded
blocks. For example, rule 4 which maps all 3-blocks
to 0 except the block 010 is an idempotent. The
block 11 is a basic excluded block for rule 4.

The excluded blocks of an idempotent rule
determine the structure of the limit measure of the
rule. In particular, for all non-excluded blocks B,
there exists a block B’ such that L’'R’B’ = B and
7(B’) = B. That is, every block is either mapped
to itself under an idempotent rule or it is an
excluded block for the rule. Assume a block B is
not excluded. Then it has at least one predecessor
B’ which also has a predecessor B”. That is, 1)
T(B"”)=B’, and 2) 7(B’) =B, and 3) 1%(B") =
B. Since 72 =7, we have both 7?(B’"") = B’ (from
1) and 7%(B”) = B (from 3), hence B’ = B where
they overlap and hence L'R'B’ = B.

If an idempotent rule 7 has radius r, the largest
possible basic excluded block has length 2r+ 1.
To see this, assume the existence of a basic
excluded block B of length a (fig. 5). LB and RB
are not excluded, and thus, LB has a predecessor
B’ (of length a + 2r—1) such that L'R'B’ = LB,
and RB has a predecessor B” (of length a + 2r —
1) such that L'R’B"" = RB. Construct a block B*
of length'a+ 2r whose left-most r elements are
equal to the left-most r elements of B”, whose
central a elements are equal to B, and whose
right-most r elements are equal to the right-most r
elements of B’. (B* coincides with B, B’, and B”
on its central a elements). Now consider 7(B*).
The right-most a —r—1 elements of 7(B*) are
equal to L™ "B, since B* coincides with B’ on the
right-most @ + r — 1 elements of B’. The left-most
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Fig. 5. The relationship among the blocks B, B, B", and B*
used in the proof that the largest basic excluded block for an
idempotent is of length 2r+ 1.

a—r—1 elements of (B*) are equal to R"*'B
since B* concides with B”" on the left-most a +
r — 1 elements of B”". Our purpose is to show that
if a is large enough then B* is a predecessor of
B, hence B is not excluded, contrary to assump-
tion. The existence of a predecessor on the left
side implies the identity of 7(B*) and B on all
but a patch of r+ 1 cells n the extreme right side.
Likewise, the existence of a predecessor on the
right side implies that 7(B*) and B can only
differ on at most r+1 cells on the extreme left
side. But the identity forced on one side covers the
potential mismatches on the other side, unless the
two regions of potential mismatch overlap. Over-
lap only occurs if a<2r+1. If a>2r+1 then
T(B*)= B, that is, B has a predecessor and hence
is not excluded. The bound 2r + 1 is achieved by
some r = 1 idempotents (e.g. the block 111 for rule
76).

These facts allow us to exactly describe the
behavior of the local structure operator for
idempotents. Let us compute the action of A, (1)
on an n-block measure p which assigns 0 to all
excluded blocks. For a block B which is not
excluded, A, (7)p(B) is the sum of the measures
assigned by Bay, (1) to predecessors B’ of B. Such
predecessors either contain excluded blocks of size
n or less, (in which case Bay,u assigns them a
measure 0), or they coincide with B on their n
central elements. Conversely, all blocks B” which
coincide with B on their n central elements are
predecessors of B, or they contain excluded blocks
(and thus are assigned a measure 0). It follows by
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Kolmogorov consistency that the sum of the
measures assigned to the predecessors of B by
Bay, (p) is exactly the measure of all blocks which
contain B, and is thus p(B). Any measure which
assigns probability 0 to excluded blocks will be
stable under A (7) if n is as large as the largest
basic excluded block. Thus it is also clear that if p’
is an n-block measure which assigns non-zero
probability to excluded blocks, then A (7)u’ as-
signs 0 probability to excluded blocks. Finally, it
follows that if 7 is idempotent, so is A (7).

4.4.2. The number of predecessors of allowed blocks
under rule 4

For idempotents, we have found so far that for
n sufficiently large, the local structure theory of
order n is exact for the probability of blocks of
length n. We might wish to do better still by
finding an order of local structure theory at which
the probability of blocks of all sizes is given
exactly. We will now present a result which
indicates that for some idempotents at least, there
is no order of theory which will do this.

We noted above that the block 11 is a basic
excluded block for rule 4. It is the only basic
excluded block for this rule. We can use this
knowledge to describe the set of all allowed blocks
under rule 4. From this we find the action of the
rule on the standard measure. If the initial measure
is the standard measure, then the invariant measure
will give each allowed block of a given size a
probability proportional to the number of
predecessors of the block. Runs of 0’s of any
length are allowed blocks. All other allowed blocks
have isolated 1’s separated by runs of 0’s. Each
(non-trivial) allowed block is composed of sub-
blocks c‘onsisting of a pair of 1’s separated by any
number k >1 of 0’s. Let such blocks be denoted
10111, We would like to compute the number of
predecessors of these sub-blocks. Let N(k) be the
number of predecessors of 10411, Each predecessor
will be of the form 010...010. That is, each
predecessor has a “core” region bounded by 0’s.
The core region is a (k — 2)-block which contains
no isolated 1’s.

000 001 011 100 101 110 111
000 | 1 1 0 0 0 0 0
001 | O 0 1 0 0 0 0
011 | 0 0 0 0 0 1 1
100 | 1 1 0 0 0 0 0
101 | 0 0 1 0 0 0 0
110 | 0 0 1 1 0 0 0
11 | 0 0 0 0 0 1 1

Fig. 6. The transition matrix for the allowed 3-blocks under
rule 4.

We can describe the blocks of this form by
means of an adjacency matrix M. Each row and
column of M is labeled by a 3-block which may
occur in an allowed block. Thus, M is a 7x7
matrix with one row and column for each 3-block
except 010. M, , is 1 if the two right-most cells of
the ith row block match the two left-most cells of
the jth column block, otherwise M, ; is 0 (fig. 6).
Each non-zero entry represents a transition from
the left-most cell of the row block to the right-most
cell of the column block. A predecessor block will
begin in state 0 and follow allowed transitions
such that it ends in state 0. There are two ways of
doing this, namely 000 — 000 and 011 — 110. In
other words, the only allowed core regions (of size
2) are 00 and 11, hence the first power of the
matrix specifies N(4)=2. We can find N(5) by
squaring M and summing the entries which con-
nect an initial and final 0, each such path contains
an allowed core region of size 3. N(k) for any k is
found by taking higher powers of M. Asymptoti-
cally, N(k) will be given by the dominant eigen-
value of M. The characteristic polynomial of M is
A(A* = 2A% + X — 1). The non-trivial real root of
this polynomial is an irrational number, ap-
proximately 1.7549.

The irrationality of the root has important
consequences. If the invariant measure of rule 4
could emerge as the result of applying the local
structure operator of finite order to the standard
measure then the invariant measure would be a
finite-block measure. If it were a finite-block
measure then, eventually, N(k)/N(k —1) would
be a rational number. To see this, assume that the
measure which results from applying rule 4 once
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Fig. 7. Final vs. initial density for idempotent rules a) 4; and b) 108. 10 configurations of length 6000 at each initial density were
used. Error bars indicate +2 standard errors of the mean. The step size in density was 0.01. The Monte Carlo results are compared
with local structure estimates of orders 1-5. The local structure theory becomes exact for the density at order 2 for rule 4 and at order
5 for rule 108. The first order local structure theory (mean-field theory) for rule 4 predicts a final density of 0 independent for initial

density.

to the standard measure were a finite-block mea-
sure of order K. We compute N(10M%11)/
N(10% 1), where k is larger than K. Since the
initial measure is the standard measure, the prob-
ability of a block is proportional to the number of
predecessors of the block. The probability of
blocks of size k or greater is given by Bayesian
extension. Hence,
N(10'11)  p(10M*11)

N(10%-1)  p(10k-11)

_ P(10'1) p(0t*) P01

B P(0IK1) P(10%=1) p(0t*-10) ’

) (39)

By a second application of Bayesian extension to
P10y and P(0'¥11), (39) is equal to

P(10%-10) p(0k1) p(0k1) p(0tk—111)
P(o[k—l]) P(o[k—l])
« P(0k-1) __P(0l*)
P(OX) (10~ p(0t%-111) — p(olk-1)~
(40)

But,

P(g[kl) B P(o[k—ll)
P(O[k—u) = P(O[k—zl) )

by application of Bayesian extension to (0!*)).
Hence if k is greater than K, and the limit measure
is a finite-block measure, then the ratio
N(10™)/N(@10%~11) is a rational number
independent of k. The irrationality of the root of
the recursion equation for N(k) implies that the
limit measure arising from one application of rule
4 to the standard measure cannot be a finite-block
measure of any order. Counting the predecessors
of blocks under an idempotent rule typically leads
to a recursion equation with irrational roots. This
suggests that many idempotents will not have
finite-block limit measures,

(41)

4.4.3. Dependence on initial conditions

For any idempotent rule, any P, which assigns
probability 0 to excluded blocks is stable.
Therefore, there is a family of stable measures,
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and the limit of 7’u depends on p. This dependence
on initial measure is illustrated in fig. 7. At each
density in 0 to 1 steps of 0.01, we generated 10
configurations of length 6000 with uncorrelated
neighbors and with the given density. We operated
on these configurations with rules 4 and 108. We
also generated corresponding initial data for the
local structure operators for these rules. In fig. 7
the final density is plotted against the initial
density, with calculations performed by both
Monte Carlo and local structure theory of orders 1
to 5.

Idempotent rule 4 was discussed above. The
local structure theory of order 1 for rule 4
incorrectly predicts an invariant measure density
of 0 regardless of initial density. Conversely, all
orders of theory greater than 1 are exact.

The square of rule 108 is an r= 2 idempotent.
The basic excluded blocks for this rule are 1011,
1101, 1111, and 10101. The largest is a 5-block,
hence the local structure operator of order 5 or
greater will compute the density exactly. The local
structure theory for the rule 108 has a different
behavior from that of rule 4. The order 5 theory is
exact, but lower orders provide reasonable
approximations. As the order increases, so does
the accuracy of the theory (fig. 7). This result
cannot be derived from the simple combinatorial
analysis described above. It encourages belief that
even for complex rules the local structure operator
will be a good approximation if the order is
sufficiently high.

4.5. Asymptotically trivial rules

Rules may be said to be asymptotically trivial if
the fraction of blocks in the mth inverse image of
0 (or 1) 'approaches unity as m approaches infin-
ity. These rules are not idempotent, but successive
powers are more and more like idempotents. An
example is rule 32. Only the triple 101 maps to 1
under rule 32. The only predecessor of 101 is
10101, etc. This block may be said to be asymptot-
ically excluded. Another example is rule 254. Rule
254 maps all triples to 1 except 000. The only
predecessor of 000 is 00000, etc.

Consider the local structure theory of order 3
for rule 32. The probability assigned to the block
10101 by Bayesian extension of an order 3 block
probability function must be less than or equal to
the probability of a 101 block, since it contains
the 101 block. Equality obtains only if P,(010) =
P,(101) = 4. Except in this special case, iteration
of the local structure operator for rule 32 will map
the P, to functions which assign probabilities
arbitrarily close to 1 to the 000 block. This is
because 101 has only the one predecessor 10101,
and its probability will be progressively smaller at
each application of the third-order local structure
operator.

A similar argument shows that iteration of the
local structure operator of order at least 3 for rule
254 maps any initial block probability function P
(except P(00...00)=1) to P(11...11)=1. From
these observations we conclude that the fixed-point
measure of the local structure operator of suitable
order for asymptotically trivial rules is the same as
the limit measure of the rule itself. The asymptoti-
cally trivial rules are listed in table 1.

4.6. Summary of exact results

We showed that for certain classes of rules:
linear, toggle, idempotent and asymptotically triv-
ial, the local structure theory is exact. In the case
of linear and toggle rules we took advantage of
special algebraic features of the rules. Since the
limit measure for these rules is a finite-block mea-
sure of order 1, it is also a fixed point of the local
structure operators of all orders. In the case of
idempotent and asymptotically trivial rules, we
took advantage of a special dynamical feature: the
statistics do not change after a finite number of
steps, or they have an asymptotically small change.
For idempotents this implies that a finite order of
theory applied a finite number of times to initial
conditions can determine exactly the probability
of a finite block under the limit measure of the
rule. For asymptotically trivial rules, the theory is
exact only in the limit of many applications of the
local structure operator.
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Table I

Some classes of rules for which the local structure theory is
directly analyzable. This table lists the toggle, asymptotically
trivial and idempotent rules among the r=1, k=2 cellular
automata. For idempotent rules, each sub-table is headed by
the equation obeyed by the rules in the sub-table. Within each
sub-table, rules are grouped into tableaux separated by double
bars. The right column of each tableau contains rules which
are obtained by left-to-right reflection of rules in the left
column. The bottom row of each tableau contains rules which
are obtained from rules in the top row by exchange of the
state labels. Some tableaux are degenerate because reflection
and /or exchange of state labels fail to generate distinct rules.
A blank row and/or column indicates that the corresponding
row and /or column is simply copied. Asterisks indicate toggle
rules which are linear.

Toggle
15 | 85 || 30 | 86 || 45 | 101 || 60* [ 102* || 90* | J‘
135 | 149 || 75 | 89 || 195 | 153 || 165 |
105 120 | 108 |[150* 180 | 188 [240* |170* |
225 | 189 T210 | 154 || i
2=r
0 4 iz | B8 || 78 200 204 |
255 223 207 | 221 || 205 238 | |
2=
2 | 16 || 10 | 80 || 34 | 48 || 42 | 112 [/138 | 208
191 247 175 245 187 243 ||171 241 || 174 244

B=r
1 5 29 | 71 || 51
127 a5 71 29
A=
8 | 64 || 19 [ 38 72 108 |
239 | 253 || 55 [ 219 237 201 |

Asymptotically trivial

[32 a0 | 98 [[128 138 | 192 [[ 180 [188 | 224
l251 235 | 249 || 254 238 | 252 [[ 250 [234 | 248 |

#

These classes of rules are not mutually exclu-
sive. By exchanging the labels of states 0 and 1
some linear rules map to non-linear rules. Rule 90
maps to rule 165, for instance. Rule 165 is both a
left and right toggle rule. For rules of larger
radius, this exchange of labels will lead to non-lin-
ear rules which are not toggle rules. Since the

dynamics of rules do not depend on the way states
are labeled, these non-linear rules may also be
understood by the methods described above.
Table I contains code numbers for rules which
may be approached by the methods described thus
far. 100 of the 256 r =1, k=2 rules are listed.

4.7. Rule 22

We now turn to a rule that is more difficult to
handle by analytical means. Rule 22 maps the
triples 100, 001, and 010 to 1, and all others to 0.
Monte Carlo work by others (Grassberger [6, 7, 8],
Ingerson and Buvel [13], Wolfram [22]) suggests
that rule 22 is among the most statistically com-
plex r=1, k=2 rules. We study local structure
approximations to this rule in detail. As with
simpler rules, the overall strategy is to compare
Monte Carlo estimates of block probabilities with
those of the local structure theory. Because of its
complexity, however, we will take care to establish
the statistical significance of these comparisons.

4.7.1. Initial density independence

The result of applying rule 22 to initial configur-
ations of various densities is shown in fig. 8. The
experimental paradigm of fig. 7 was used except
that configurations were subjected to repeated
application of the rule until the density stabilized.
At very high density, initial configurations which
lead immediately to the 0 configuration were
discarded. This was required to compensate for
finite size effects. Only 10 configurations at each
initial density were used. The density at large time
is approximately 0.35, independent of the initial
density. Time-averaging did not affect this result.

4.7.2. Mixing

We repeated the experiment of fig. 8 using
periodic boundary conditions rather than
triangular boundary conditions. The differences
between the two paradigms were far less than the
experimental error (not shown). It appears that
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Fig. 8. a) Local structure approximations for the density of the invariant measure of rule 22. For the Monte Carlo portion of these
data (line with error bars), 10 configurations at each density in the range 0 to 1, (step size 0.01) were generated pseudorandomly. Each
was acted upon by rule 22 until the density stabilized. The error bars indicate +2 standard errors of the mean. The density of the
local structure operator fixed point at each initial density, for each order of theory 1-6 is also shown. b) Fixed point density for each
order of local structure theory up to 10 for rule 22. MC indicates the large time density for rule 22 according to the Monte Carlo

results of Grassberger in Wolfram [26].

the limit statistics of rule 22 are independent of
initial and boundary conditions, in strong contrast
with rule 180 treated above. This is explained in
part by the results of Grassberger [8] which show
that while the correlations between sites after many
iterations of rule 22 may be very long-ranged and
complex, these correlations decay rapidly, roughly
exponentially for distances less than 20. The
influence of the boundary is diminished by the
strongly mixing dynamics of the rule. Wolfram

[22] studied a number of rules, comparing their
behavior under periodic boundary conditions and
“0” boundary conditions (fixing boundary points
in the O state). He found no difference for chaotic
rules.

4.7.3. Local structure theory

Fig. 8 shows the fixed point density computed
from the local structure approximations to rule 22
for all orders through 6. The local structure
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Fig. 9. Rule 22 evolution of the density with time. 1000 configurations of length 6000 with triangular boundary conditions were used.
These were generated pseudorandomly to be unbiased and uncorrelated. They were acted upon by rule 22 for 16 iterations. At each
iteration the average density and standard error of the mean were computed. Error bars indicate +2 standard errors of the mean.
Also shown is the density derived from the first 16 applications of the local structure operators of order 1-10 to the standard

measure. Note the expanded density scale.

approximations, like the Monte Carlo data were
independent of initial density. We see further that
as the order increased, the local structure estimates
of the density approached the Monte Carlo
estimate. Fig. 8b shows the fixed point density for
the local structure theory to order 10. Also
indicated is the Monte Carlo fixed point density
from results of Grassberger quoted in Wolfram
[26].

4.7.4. Approach to equilibrium with standard
measure initial conditions

We studied the approach of rule 22 to a
statistical equilibrium by following the evolution
of unbiased, uncorrelated finite configurations. In
this experiment 1000 configurations of length 6000
with triangular boundary conditions were used.
After each application of the rule we computed
the average density and the standard error of the
mean for the density of the 1000 configurations.

The evolution was followed for 16 generations. In
addition, we applied the local structure operator
to standard measure initial conditions, and found
the density of the resulting measure at each
successive application. We studied each order 1-10
of the theory, again for 16 generations. The results
are shown in fig. 9.

A curious aspect of this figure is that the large-
time density estimates from the third and fourth
order theories were worse than the estimate from
the second order. However, the third and fourth
order theories did a better job than the second
order theory of tracking the initial transient
behavior of the Monte Carlo estimate. As the
order increased beyond 4, the large-time estimate
again moved toward the empirical value, and,
in addition, the small-time behavior became
increasing well modelled.

The local structure operator combines the exact
action of a cellular automaton on blocks of a fixed
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Fig. 10. Rule 18 evolution of the density with time. Experimental paradigm as in fig. 8. Note the expanded density scale.

size with an estimation of the probability of these
fixed size blocks. For the first few iterations, no
estimation of block probabilities is needed to
determine the probability of small blocks. Small
block probabilities are determined exactly by the
local structure operator by summation of the
probabilities of predecessor blocks. The local
structure operator of order » is initialized with
an exact specification of (n + 2r)-block
probabilities. Each time the operator is applied,
block probabilities are summed to determine the
probability of blocks which are shorter by 2r.
Hence the local structure operator of order n
determines the probability of blocks up to n+
2r—2rt in length at time f. In particular, the
density is followed exactly by the 9th and 10th
order operators to time 5.

In fig. 10 we show the results of the same
experimental paradigm applied to rule 18. Here
the relationship between small- and large-time
local structure density estimations is more clearly
revealed. The Monte Carlo density estimate
underwent a sequence of fluctuations at low
generation numbers. The local structure operator
followed these fluctuations with increasing fidelity,

and for a greater number of generations as order
increased. The large-time density was not
necessarily better estimated with each increase in
order. The operator at each order appeared to
“get stuck” at a certain iteration: it took the
density at this iteration to be the final density. On
one hand, the empirical distribution itself was
approaching equilibrium. On the other hand, the
local structure operator became an increasingly
better estimator of the dynamics of the rule. These
factors combined to make the local structure
estimate of the invariant measure density increase
in accuracy with increase in order.

4.7.5. The invariant measure of rule 22

The density of the invariant measure of rule 22
was found above to be approximately 0.35. Clearly
this measure is not the standard measure. How
then do we describe it? One way to gain a picture
of this complex measure is to construct a map
from configuration space SZ to the unit square
in R2 This can be done as follows (Halmos
[11], Grassberger [6]): Let ¢ be a configuration
ei€_1€gCy ... in SZ and x, y be the real numbers
whose binary expansions are the same as the
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1.04

Fig. 11. The invariant measure of rule 22. Top: 400 configurations of length 6000 were generated pseudorandomly to be unbiased
and uncorrelated. 16-blocks were sampled from these configurations after they had been acted upon by rule 22 for 128 generations,
with triangular boundary conditions. Bottom: 13th order local structure block probability estimates. Each pixel is illuminated with an
intensity proportional to the log of the probability of the associated 16-block. (Black corresponds to probability 0.)
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right- and left-hand sides, respectively, of this
configuration. That is: x=0.cocic,... and y =
0.c_j¢_,.... Each configuration maps to a point
(x, y) in the unit square, and the topology of S*
is preserved. Finite blocks may be similarly
mapped to rational points in the unit square. A
finite-block approximation to a measure on con-
figuration space may be visualized by placing a
symbol at the coordinates of the block illuminated
with an intensity proportional to the log of the
probability of the block. Using blocks of size n,
there are 2%/ “pixels”. The top of fig. 11 shows
the result of sampling 16-blocks from 400 con-
figurations of length 6000 generated pseudo-
randomly to be unbiased and uncorrelated. The
sampling occurred at the 128th generation of
evolution under rule 22. Under the map described
above, this sampling leads to a pattern in the unit
square. This figure shows the invariant measure of
rule 22 as a complicated pattern of densities and
rarefactions. In the bottom of fig. 11 we show the
16-block probabilities of the invariant measure of
the 13th order local structure operator. The local
structure data look very much like the Monte
Carlo data. In section 4.7.9, we present a quantita-
tive analysis of the similarity of these data.

4.7.6. Excluded blocks

As discussed above, the excluded blocks of an
idempotent rule completely determine the struc-
ture of the invariant measures of the rule.
Asymptotically trivial rules exclude blocks in the
sense that the probability of the block rapidly
decreases as the rule is iterated. We will see to
what extent these kinds of block exclusions help
explain the pattern shown in fig. 11.

The block 10101 has only one predecessor under
rule 22: the block 0101010. This block in turn has
only one predecessor, etc. All other 5-blocks have
more than one predecessor. Unless the probability
of the configuration ...010101010... is 1, any
block which contains the 5-block 10101 will have
rapidly diminishing probability as rule 22 operates,
regardless of its initial probability. We wish to

1.0

0.0 05 10
X

Fig. 12. Asymptotically excluded block for rule 22. Top: The
shaded region contains all 16-blocks which have the block
10101 at the central positions. Bottom: All 16-blocks which
have the block 10101 at any position within the block.

locate in the unit square the 16-blocks which
contain 10101. We first place the 10101 block so
that the origin is between the first 0 and the
second 1 of the block. That is, x is 0.01 in binary
and y is 0.101. The first digit determines which
quadrant the block is in. Since the first digit of x
is 0 and the first digit of y is 1, it is in the upper
left quadrant. Continuing this process through
further subdivisions, we locate the set of blocks
shown at the top of fig. 12. Also shown in fig. 12 is
the area obtained by interchanging x and y in the
preceding discussion. The block 10101 maps to
itself under this interchange.

Halmos [11] points out that the action of the
shift on configuration space corresponds to the
baker’s transformation on the unit square repres-
entation of configuration space. That is, if we shift
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the block 10101 so that it occupies all possible
positions in a 16-block, we obtain the area shown
at the bottom of fig. 12. This area covers much of
the blank space in the invariant measure of rule 22
(fig. 11). Examination of fig. 11 shows that some
blank area is left over. The remaining blank areas
indicate other blocks which are exactly or asymp-
totically excluded, such as 101100101.

4.7.71. Higher order parameters

Earlier (section 2.4) we pointed out that 2"~!
parameters are required to describe an n-block
probability function. A convenient parameter-
ization for the experiments described below is
simply the probability of all blocks of length less
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than or equal to n whose left-most and right-most
cell is 1. There are 2"~ ! such parameters, and each
is independent of the others. The parameters may
be ordered according to the corresponding blocks
themselves as binary expansions. In this order, the
ith parameter is the probability of the block (2/ —
1) in binary. In the following we shall use both
Monte Carlo methods and the local structure
theory to estimate the value of each of these
parameters.

In the Monte Carlo experiment, we began with
100 configurations of length 6000, and applied
rule 22 to these. At each generation we sampled
7-blocks from each configuration. From the counts
on 7-blocks, we computed the value of each of the
64 independent 7-block parameters.
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Fig. 13. The evolution of representative parameters a) 1; b) 3; ¢) 12; and d) 61 under rule 22. These parameters are the probability of
al,101, 10111, and 1111001 block respectively. Each parameter is scaled up by 2", where # is the size of the corresponding block.
The sampling method is described in the text. The error bars indicate +2 standard errors of the mean.
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Fig. 14. Monte Carlo estimates of all 64 7-block parameters at
times a) 0; b) 64; and c) 1024. The parameters are scaled by 2"
where # is the size of the corresponding block. The error bars
indicate 2 standard errors of the mean.

The evolution of representative parameters 1, 3,
12, and 61 under rule 22 is shown in fig. 13. These
parameters are the probabilities of a 1, 101, 10111,
and 1111001 block, respectively. In this figure,
each parameter is scaled up by a factor of 2"
where n is the size of the corresponding block. All
parameters shown exhibit the same rough time
scales in their course ‘toward equilibrium. It
appears that equilibrium is reached after only a

few (approximately 10) generations, independent
of the block size.

All 64 n-block parameter means are examined
in fig. 14. Fig. 14a, t=0, shows the result of
sampling from configurations before they have
been acted upon by the cellular automaton. The
scaled mean for all parameters is close to 0.5 as
expected for unbiased, pseudo-random generation
of configurations. All standard errors are small as
compared to the parameter mean. In fig. 14b the
scaled value of each parameter after evolution for
64 time steps by rule 22 is displayed. These
parameter values are close to the equilibrium
values. In fig. 14c, the same parameter values at
time 1024 are shown. Each parameter represents
an average over a particular region of the pattern
in fig. 11. The size of the region concerned
decreases as the parameter index increases.

4.7.8. The t-test

We would like to determine how well each of
the 64 7-block parameters is estimated by the local
structure theory. The significance of a discrepancy
between a Monte Carlo and a local structure
arameter estimate may be assessed by computing
the -test (Crow [2]) for this estimate,

=}

z=|—-—-m(f_c) : (42)

where X and s are the mean and standard deviation
(not the standard error of the mean), respectively,
of the Monte Carlo estimate and ¢ is the local
structure estimate for the same parameter. N is
the number of samples. The smaller the value of ¢,
the less the certainty that the Monte Carlo and
local structure estimates are actually different. If
the true value of a particular block probability is
different from the local structure estimate we
should expect the r-test to increase with increasing
amounts of Monte Carlo sampling. Thus the
magnitude of the t-test has meaning only relative
to a given amount of Monte Carlo sampling. We
will calibrate ¢-tests derived from local structure
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Fig. 15. Comparison of rule 22 generation 64 block parame-
ters (fig. 14b) with the same parameters at generation 1024 (fig.
14¢) using the r-test. The scale is the same as the second
column of fig. 16. The horizontal solid bar indicates a t-value
of 2.

estimates against f-tests from the internal
comparison of portions of Monte Carlo data.

If block statistics are close to their equilibrium
value by generation 64, then the value of each
parameter computed at that generation time should
be a good estimate of the value of the same
parameter at a larger time. We took generation 64
block parameter estimates (fig. 14b), and the means
and standard deviations of Monte Carlo estimates
of the same parameters at generation 1024 (fig.
14c). We then computed the z-value for each
parameter using the time step 64 value as the
estimate ¢ in the f-value (fig. 15). Almost all 64
t-values for the comparison of generation 64
parameters with generation 1024 are comparable
with 2. Most are less than 2. Following traditional
t-test usage (Crow [2]), we will consider a t-value
of 2 to be small.

4.7.9. Estimation of equilibrium 7-block parameters

We are now in a position to quantify the
similarity of Monte Carlo and local structure
estimates such as those in fig. 11. From the fixed
point of the local structure operator at each order
1-10, the value of each of the 64 parameters
discussed above was found. These parameter
values were used to compute t-values relative to

300, 30
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Fig. 16. Dependence on the order of the ability of the local
structure theory to predict the values of the empirical 7-block
parameters. First column: r-tests for block parameter estimates
derived from the fixed points of the local structure operator for
rule 22 of orders 1 through 5. Abscissa: 50/tick. Second
column: orders 6-10. Abscissa: 5/tick. The horizontal solid
bars in this column indicate a r-value of 2.

the generation 1024 Monte Carlo results. In the
first column of fig. 16 t-values computed in this
fashion from the local structure theory of orders 1
through 5 are displayed. Here each tick mark on
the abscissa represents an increment of 50 in the
value of . Note that the r-value is quite large for
some parameters, indicating that the local structure
estimates of low order are significantly different
from the empirical values. Note also, however,
that as the order of the local structure. theory
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increases, there is an overall improvement in the
goodness of fit of the local structure estimates. In
the second column of fig. 16, results for the local
structure theory of orders 610 are displayed. The
same format is used but for an order of magnitude
increase in the scale, so that each tick mark
represents 5 in f-value. The overall improvement
with order in the local structure estimates
continues; by order 10 all r-values are comparable
with 2. We conclude that in these experiments,
10th order theoretical parameter estimates cannot
be resolved with statistical significance from
empirical parameter estimates at the given level of
sampling,.

5. Conclusions

An important property of some cellular au-
tomata is their capacity for self-organization. A
simply described rule, operating iteratively from a
simple initial distribution of block probabilities,
may give rise to very complex distributions at
large time. Moreover, for many of these rules, the
details of the complex distribution obtained do
not depend on the structure of the initial distribu-
tion — only on the rule and the type of lattice on
which it evolves. The capacity to generate stable
complex structure from modest starting materials
is characteristic of living systems. If cellular au-
tomata are to be used as models of physical or
biological systems, an effective means of analyzing
the statistical properties of particular rules is
needed. The local structure theory is a step toward
satisfying this need.

The fundamental assumption of the local struc-
ture theory is that the action of a cellular automa-
ton on an arbitrary measure may be understood
through the study of its action on finite-block
measures. Finite-block measures are finitely de-
scribed. This gives them a tremendous theoretical
and practical advantage over general measures.
On the theoretical side, the simplicity of construc-
tion of the finite-block measures allows the ex-

plicit computation of measure-theoretic functions
of interest, such as the entropy (Gutowitz et al., in
preparation). On the practical side, the action of a
cellular automaton on a finite-block measure may
be found approximately by means of a system of
rational equations.

We have seen that the local structure theory is
an accurate model of several aspects of cellular
automaton evolution. The dependence on initial
conditions and convergence properties are well
modeled by the theory. It appears that, even for
complex rules, the stable invariant measures of a
cellular automaton may be estimated to arbitrary
resolution.

For linear, toggle, idempotent and asymptoti-
cally trivial rules, proof of the accuracy of the
local structure theory is possible. For more general
rules, we have relied on empirical studies to dem-
onstrate the power of the theory. There seems to
be no fundamental barrier to accurate local struc-
ture approximation of the limit measure of cellu-
lar automata.

We have performed the detailed statistical anal-
ysis described above on a variety of complex rules
(unpublished). We have always found the local
structure theory to perform as in the case of rule
22. At a computationally accessible order of the
theory, an accuracy is achieved which rivals exten-
sive brute force calculations.

We wish to point out that all theoretical results
are presented here in no more generality than
needed to describe the empirical results. General-
izations in a variety of directions are readily at
hand. The same formalism applies to rules of
arbitrary radius, state space size, and lattice di-
mension. Generalization to probabilistic cellular
automata (Wolfram [22], Grinstein [9]) or cellular
automata which are more than first order in time
may be made with little formal overhead.

We are using a statistical method to study a
deterministic system. The interplay of these aspects
may reveal special features of a cellular automa-
ton. When possible we have related the algebraic
properties of a cellular automaton to the behavior
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of its local structure approximations. Extending
these ideas, we see that the local structure theory
of orders greater than 1, unlike the mean-field
theory, takes into account both the nature of the
cellular automaton rule and the structure of the
lattice on which it operates. On one hand this puts
restrictions on the manner in which local structure
theories may be built for different lattices. On the
other hand, it opens up the possibility of dis-
tinguishing the particular influences of rule and
lattice structure. We will show in a subsequent
paper (Gutowitz and Victor [10]) that local struc-
ture theories may be developed for cellular au-
tomata on lattices of higher dimension.

Wolfram ([22, 23]) suggested, largely on em-
pirical grounds, that cellular automata can be
classified in terms of four “universality classes”.
He used a variety of methods from computation
and dynamical systems theory to arrive at this
classification. To these methods we may add the
local structure theory. Rules may be said to be
equivalent if they have the same limit measures.
This “equivalence in limit measure” is a refine-
ment of Wolfram’s classification scheme. We have
seen that for some rules limit measures may be
described exactly. For most rules, however, the
complete specification of invariant measure needed
for a measure-theoretic classification may well be
unfeasible to obtain. In lieu of a complete specifi-
cation of invariant measures, rules might be clas-
sified according to their local structure theory
approximations.

The local structure theory provides an analytic
alternative to Monte Carlo methods in the study
of cellular automaton rules. Its usefulness may
extend beyond the study of cellular automata into
the general theory of dynamical systems. Present-
ly, it is one of the few analytic methods for the
computation of the invariant measures of a class
of chaotic systems.

Acknowledgements

This work was supported by grants EY 6871,
EY 1428 and NS 877 from the NIH, the Hartford
Foundation, the McKnight Foundation, and a
Rockefeller University Graduate Fellowship. We
would like to thank Scott Brodie and Joel Cohen
for discussions.

References

[1] ER. Berlekamp, J.H. Conway and R.K. Guy, Winning
Ways for Your Mathematical Plays, vol. II. (Academic,
New York, 1982).

[2] E.L. Crow, Statistics Manual (Dover, New York, 1960).

[3] M. Denker, Ergodic theory on compact spaces, Lect.
Notes Math. 527 (Springer, Berlin, 1976).

[4] 1.P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57 (1985)
617.

[5] H. Falk, Physica 20D (1986) 447.

[6] P. Grassberger, Physica 10D (1984) 52.

[7] P. Grassberger, Int. J. Theor. Phys. 25 (1986) 907.

(8] P. Grassberger, Univ. of Wuppertal, preprint.

[9] G. Grinstein, C. Jayaprakash and Y. He, Phys. Rev. Lett.
55 (1985) 2527.

[10] H. Gutowitz and J. Victor, Complex Systems, 1 (1987) 57.

[11] P.R. Halmos, Lectures on Ergodic Theory (Chelsea, New
York, 1956).

[12] G.A. Hedlund, Math. Syst. Th. 3 (1969) 320.

[13] T.E. Ingerson and R.L. Buvel, Physica 10D (1984) 59.

[14] D.A. Lind, Physica 10D (1984) 36.

[15] O. Martin, A M. Odlyzko and S. Wolfram, Commun.
Math. Phys. 93 (1984) 219.

[16] I. Milnor, Instit. Adv. Stud., preprint (1984).

[17] K.R. Parthasarathy, Probability Measures on Metric
Spaces (Academic, New York and London, 1967).

[18] L.S. Schulman and P.E. Seiden, J. Stat. Phys. 19 (1978)
293.

[19] 1. von Neumann, Theory of Self-reproducing Automata,
A.W. Burks, ed. (Univ. of Illinois Press, Urbana, 1966).

[20] W.J. Wilbur, D.J. Lipman and S.A. Shamma, Physica 19D
(1986) 397.

[21] S.J. Willson, Math. Sys. Theory. 9 (1975) 132.

[22] S. Wolfram, Rev. Mod. Phys. 55 (1983) 601.

[23] S. Wolfram, Physica 10D (1984) 1.

[24] S. Wolfram, Phys. Rev. Lett. 54 (1985) 735.

[25] S. Wolfram, Adv. Appl. Math. 7 (1986) 123.

[26] S. Wolfram ed., Theory and Applications of Cellular
Automata (World Scientific, Singapore, 1986).



