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In the analysis of neural data, measures of non-Gaussianity are generally applied

in two ways: as tests of normality for validating model assumptions and as

Independent Component Analysis (ICA) contrast functions for separating non-

Gaussian signals. Consequently, there is a wide range of methods for both

applications, but they all have trade-o�s. We propose a new strategy that, in

contrast to previous methods, directly approximates the shape of a distribution via

Hermite functions. Applicability as a normality test was evaluated via its sensitivity

to non-Gaussianity for three families of distributions that deviate from a Gaussian

distribution in di�erent ways (modes, tails, and asymmetry). Applicability as an ICA

contrast function was evaluated through its ability to extract non-Gaussian signals

in simple multi-dimensional distributions, and to remove artifacts from simulated

electroencephalographic datasets. The measure has advantages as a normality

test and, for ICA, for heavy-tailed and asymmetric distributions with small sample

sizes. For other distributions and large datasets, it performs comparably to existing

methods. Compared to standard normality tests, the newmethod performs better

for certain types of distributions. Compared to contrast functions of a standard ICA

package, the newmethod has advantages but its utility for ICA is more limited. This

highlights that even though both applications—normality tests and ICA—require

a measure of deviation from normality, strategies that are advantageous in one

application may not be advantageous in the other. Here, the new method has

broad merits as a normality test but only limited advantages for ICA.

KEYWORDS

dimension reduction, EEG, Hermite functions, independent component analysis, non-

Gaussianity, normality test, signal processing, source separation

1. Introduction

Tests for normality play many important roles in neural data analysis. Two of these are

complementary. One such role is to determine whether a distribution is sufficiently close

to normal (Wilcox and Rousselet, 2018; Kwak and Park, 2019) to justify an assumption of

normality. A contrasting role is to identify distributions with the greatest deviation from

normality (McKeown and Sejnowski, 1998; Vigário et al., 2000; James and Hesse, 2004;

Onton et al., 2006). This is the key step in independent component analysis (ICA), and is

motivated by the heuristic that unmixed sources have the lowest entropy, and are therefore

highly non-Gaussian (Comon, 1994; Bell and Sejnowski, 1995). Perhaps as a consequence
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of these disparate goals, there are many tests of normality (Shapiro

et al., 1968; Yazici and Yolacan, 2007) and related ICA contrast

functions (Grouiller et al., 2007; Rejer and Górski, 2013), but each

of these has trade-offs. Here we introduce a new method, and

compare its utility to existing approaches for a range of simulated

datasets.

The advantages and disadvantages of the various kinds of

normality tests and ICA contrast functions can be understood

in terms of the strategies that they use. For example, moment-

based normality tests can be overly sensitive to outliers (Shapiro

et al., 1968). Tests based on cumulative distribution functions and

frequency statistics give appropriate weight to tails (Shapiro et al.,

1968; Mendes and Pala, 2003), but may overlook the shape near the

center. ICA contrast functions that utilize entropy-based measures

face the difficulty of estimating entropy from limited data (Paninski,

2003).

Our strategy diverges from these methods: it is based

on approximating the distribution of data by using a set of

orthonormal basis functions, the Hermite functions (Szegö, 1939).

In principle, since the coefficients of a Hermite expansion can

be estimated via simple linear estimators that are insensitive to

outliers, this approach provides advantages for some kinds of data

distributions.

Here, we conduct a thorough investigation to assess whether a

Hermite functions-based measure of non-Gaussianity is useful as

a normality test and as an ICA contrast function. We note that

similar approaches using Hermite functions have been previously

proposed for moment-based normality tests (Almuzara et al.,

2019; Amengual et al., 2022) and distribution shape-sensitive ICA

(Puuronen and Hyvärinen, 2011), but a comparison to other

normality tests or applicability as an ICA contrast function had not

been undertaken. We test the proposed method by using datasets

constructed to have simple distributions as well as realistic EEG

simulations. We then benchmark the performance of our method

against common normality tests and ICA contrast functions

included in a popular ICA package, FastICA (Hyvärinen, 1999).

Our method has advantages as a normality test for heavy-tailed and

asymmetric distributions. However, as an ICA contrast function,

these advantages are only realized for a niche of datasets: small

datasets with components that have heavy tailed or asymmetric

distributions.

2. Methods

We first introduce Hermite functions and the properties that

underlie our proposed measure of non-Gaussianity. Next, we

formulate the method which serves as a normality test and a

contrast function for ICA. Finally, we detail the datasets and

procedures we use for assessing the performance of the proposed

method.

2.1. Background on Hermite functions

Our approach to assess the non-Gaussianity of a probability

distribution p(x) centers on its expansion in terms of an

orthonormal family, the Hermite functions Hn(x) (Szegö, 1939).

In the Hermite expansion of p(x), the first term, H0(x), is a

Gaussian. This property allows the Hermite expansion to separate

the Gaussian and the non-Gaussian parts of p(x).

Each Hermite function (Hn(x)) is given by the Hermite

polynomial of the same order (hn(x)), multiplied by a Gaussian

envelope e−
x2

2 . In the standard convention used here, the Hermite

polynomials hn(x) are orthogonal with respect to the Gaussian

weight e−x2 , and are given by

hn(x) = (−1)nex
2 dn

dxn
e−x2 . (1)

The Hermite function of order n (Hn(x)) thus corresponds to

the product of the Hermite polynomial of the same order (hn(x))

and a Gaussian with mean 0 and variance 1.

Hn(x) =
1

√

2nn!
√

π
e−

x2

2 hn(x). (2)

With this definition, the orthonormality of Hermite functions

is expressed by

∞
∫

−∞

Hm(x) Hn(x) dx = δmn. (3)

This property allows us to express probability distribution

functions p(x) in terms of Hermite functions:

p(x) =
∞
∑

i=0

aiHi(x). (4)

If p(x) is known, the coefficients ai can be found in the following

manner:

ai =
∞

∫

−∞

Hi(x) p(x) dx. (5)

This evaluation of the coefficients ai follows from the

orthonormality property of Hermite functions:

∞
∫

−∞

Hi(x)p(x)dx =
∞

∫

−∞

Hi(x)

∞
∑

j=0

ajHj(x) =
∞

∫

−∞

aiHi(x)Hi(x) = ai.

(6)

2.2. Hermite function-based measure of
non-Gaussianity

In the Hermite expansion of p(x) (Equation 4), H0 is Gaussian

(Equation 2), and thus its coefficient a0 can be considered to

represent the Gaussian part of p(x). We leverage this to estimate

non-Gaussianity of p(x) via the coefficients of the higher-order

Hermite functions (Hi(x) where i 6=0) that enter into its Hermite
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expansion (Equation 4). Specifically, we propose to measure non-

Gaussianity as the relative power in the coefficients corresponding

to all but the zeroth order Hermite function:

J = 1−
a20

∞
∑

i=0
a2i

. (7)

The minimum possible value of J is 0, which is only achieved

for a Gaussian distribution with mean 0 and variance 1, i.e., when

a0 is non-zero and all other ai are 0. Positive values of J indicate a

deviation from this distribution.

However, this measure cannot be used directly for three

reasons. The first reason is that our data might not have 0 mean

and 1 variance. We address this by standardizing our data before

we estimate J. The second reason is that the estimation of ai uses

p(x) (Equation 5), which is unknown. Instead, we estimate the aesti
from samples xj drawn from p(x):

aesti =
N

∑

j=1

Hi(xj)

N
. (8)

The third reason is that the infinite sum in the denominator

of equation 7 is divergent for distributions which are not square

integrable (such as a discrete distribution based on a finite number

of samples). Thus, we modify the estimator in Equation (7) by

truncating the denominator to a finite number of terms n:

Jn = 1−
(aest0 )2

n
∑

i=0
(aesti )2

. (9)

By limiting the number of Hermite coefficients, we trade off

resolution of the shape of the distribution for an estimator that is

robust and avoids overfitting—a kind of regularization. As we show

in the Section 3, the choice n = 15 works well in many practical

situations, and we use that value unless otherwise stated.

Here, we examined two applications of J15. First, as a normality

test, we compare its ability to detect deviations from a normal

distribution with that of standard normality tests, and to the

measures of normality typically used as ICA contrast functions.

Second, since performance as a test of normality need not

necessarily translate into utility as a contrast function in ICA, we

directly compared an implementation of ICA that uses J15 as a

contrast function with standard ICA (Hyvärinen, 1999), for simple

low-dimensional datasets with known statistics and in realistic

simulated EEG datasets.

2.3. Evaluation of J15 as a normality test

To determine the sensitivity of J15 to typical ways in which

distributions may deviate from the normal distribution, we

compared its ability to detect non-Gaussianity for three families of

distributions: a family of distributions that differed in the extent

of bimodality, a family of unimodal symmetric distributions that

ranged from light- to heavy-tailed, and a family of unimodal

distributions that varied in the degree of asymmetry.

2.3.1. Bimodal distributions
To examine sensitivity to bimodality, we used a family of

distributions consisting of a mixture of Gaussians (Equation 10)

with a parameter α that controls the mixing weights.

p(x) = αN(x;µ1, σ1)+ (1− α)N(x;µ2, σ2) (10)

where N(x;µi, σi) denotes normally distributed random variable

x with mean µi and standard deviation σi. The distribution is

Gaussian for α = 0, or 1 and bimodal for intermediate values.

2.3.2. Light- and heavy-tailed distributions
To examine the gamut from light- to heavy-tailed distributions,

we used the family of symmetric generalized normal distributions

(Equation 11).

p(x) = C(β) e−
|x|β
2 ; (11)

where C(β) is a normalizing constant. This distribution is Gaussian

for β = 2, light-tailed (platykurtic) for β > 2, and heavy-tailed

(leptokurtic) for β < 2.

2.3.3. Unimodal asymmetric distributions
To examine sensitivity to asymmetry, we used the family of

generalized extreme value distributions (Equation 12).

p(x) = e−
(

1+κx
)− 1

κ
(

1+ κx
)−1− 1

κ . (12)

This distribution has a heavier left tail for negative values of κ , a

heavier right tail for positive values of κ , and a transition near−0.3.

2.3.4. Procedure
For each of the above families, we estimated non-Gaussianity

via J15 for a range of distribution shapes (generated by varying

the family parameter α, β , or κ), and compared these values with

measures provided by five standard tests of normality and three

standard ICA contrast functions. These comparisons were repeated

for 1,000 runs of simulated data, and different sizes of datasets (103,

104, and 105).

While there are many normality tests available today, we

focused on five of the most common tests that use a range of

strategies. Among the standard normality tests used, two tests were

based on cumulative distribution functions (Kolmogorov-Smirnov

test Kolmogorov, 1933 and Anderson-Darling test Anderson and

Darling, 1952), two were moment-based (Jarque-Bera test Jarque

and Bera, 1987 and D’Agostino’s k-squared test D’Agostino et al.,

1990), and one used frequency statistics (Shapiro-Wilk test Shapiro

and Wilk, 1965).

The ICA contrast functions compared here are part of

a standard ICA package, FastICA (Hyvärinen, 1999). These

comparisons were chosen for two reasons. First, we are targeting

analysis of EEG datasets; FastICA is commonly used for this

purpose (Vigário, 1997; Rejer and Górski, 2013). The second reason

relates to the strategy taken by the newmethod: it finds components
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one by one, as does FastICA (via the “deflate” argument for

approach). We did not compare our approach to methods (Amari

et al., 1995; Belouchrani et al., 1997) that find all components

simultaneously, as the proposed contrast function, in its present

form, cannot do this. Details of the ICA contrast functions used

are discussed in Section 2.4.

2.4. Evaluation of J15 as a contrast function
in ICA

To assess the applicability of J15 to ICA, we evaluate the

accuracy and precision with which it could identify the maximally

non-Gaussian 1D projections of 2- and 5-dimensional datasets with

simple density functions, and in high-dimensional datasets drawn

from a standard biologically-realistic simulation of EEG data. 1D

projections of the 2D datasets were further used to find the optimal

number of Hermite functions required in Equation (9) to assess

non-Gaussianity. In each case, the true independent components

were known, so we could compare accuracy and precision with

standard ICAmeasures used in FastICA (Hyvärinen, 1999), and the

dependence of these measures on the size of the dataset.

The standard ICA contrast functions used were: FastICA-I,

which is kurtosis-based (invoked with the argument pow3), and

FastICA-II and FastICA-III, which are two approximations of

differential entropy (invoked with the arguments tanh and gaus).

They are defined by

FastICA-I(X) =
1

4
E[X4], (13)

FastICA-II(X) = E[log(cosh(X))], (14)

and

FastICA-III(X) = E[−e−
X2

2 ]. (15)

2.4.1. 2D and 5D datasets
In the two-and five-dimensional datasets, the component

variables were independently drawn from a Gaussian distribution

or a member of one of the above families (Section 2.3), with the

following parameters: bimodal symmetric (α = 0.5;N(x;−2, 1)

and N(x; 2, 1)), bimodal asymmetric (α = 0.7;N(−2, 1) and

N(x; 2, 0.4)), heavy-tailed (β = 1), light-tailed (β = 10), and

unimodal asymmetric (κ = 0).

Two-dimensional datasets were generated by sampling a

product distribution that was Gaussian along one axis and non-

Gaussian along the orthogonal axis. For each dataset sampled

from the distribution, an exhaustive search (adaptive step size

from 1◦ down to 0.1◦) was done to estimate the direction of

maximal non-Gaussian projection of data, i.e., the direction that

yielded the maximum value of J15 or one of the standard contrast

functions. This direction is referred to as the estimated direction of

unmixing and its convergence to the true non-Gaussian axis of the

underlying distribution measures accuracy. Precision is measured

from the estimated direction of unmixing, i.e., the direction at

which non-Gaussianity is maximal. Specifically, precision is the

angular deviation from this direction at which estimates of non-

Gaussianity first reliably deviate from maximal non-Gaussianity.

1D projections of these 2D datasets were also used to find

an appropriate number of Hermite functions for estimating non-

Gaussianity in Equation (9).We used these datasets for two reasons:

(i) they allow us to test for different aspects of non-Gaussianity, and

ii) they allow for an exhaustive search. That is, we can determine

the precision with which they identify the maximally non-Gaussian

direction, which is critical to ICA. For this analysis, we varied the

highest order of Hermite functions n in Equation (9) from 2 to

50, and, for each value of n, we considered variants in which the

denominator included (a) all orders up to n, (b) even orders up to

n, and (c) odd orders up to n (but also including n = 0). Dataset sizes

were 102, 103, 104, and 105 samples. An exhaustive search similar to

2D datasets was done to find the estimated direction of unmixing,

but with a smaller range of angles (−10◦ to 10◦, with step-size 0.1◦

for −2◦ to 2◦, and 0.5◦ otherwise). Error is defined as the average

angle between the estimated direction of unmixing and the true

direction of unmixing. Confidence limits for error were determined

from 1,000 bootstraps.

The 5D datasets were generated by sampling a product

distribution that was non-Gaussian along one axis and Gaussian

along the orthogonal axes. Since an exhaustive search was

impractical, we modified the standard FastICA algorithm

(Hyvärinen, 1999) to use a Hermite-based contrast function.

This required modification of the search algorithm of FastICA to

gradient descent with a time-based learning schedule, since the

standard search algorithm requires the contrast function to be

linear in the distribution, but J15 is not. To increase the likelihood

that the search converged to an extremum for all contrast functions,

we used 25 random starts and selected the best result for analysis.

For a pilot subset of distributions, using 100 random starts did

not result in further improvement. These differences in search

algorithm increased the computational cost of J15 by more than

a factor of 20; for some of the larger datasets analyzed here, this

factor was more than 1,000. We took a final step to ensure that

any apparent difference in performance of the contrast functions

was due to the contrast function itself and not due to differences

in the search algorithm: we chose, for each contrast function,

the direction at which it achieved its extreme value, including

consideration of the directions identified by extremizing the other

contrast functions.

Error and precision were assessed with measures that were

analogous to those used in the 2D datasets for the estimation of

an optimum set of Hermite functions. Error was quantified by

the angle between the estimated and true directions of unmixing.

Precision was quantified by the angular variance, a generalization

of the circular variance to higher-dimensional distributions. In

general, for a set of N unit vectors U, the angular variance av(U)

is defined as:

av(U) = 1− R; where R2 =
∣

∣

∣

∣

1

N

N
∑

j=1

−→uj
∣

∣

∣

∣

2

. (16)
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Since an estimated direction of unmixing−→u est and its negative

cannot be distinguished by ICA, we replaced each estimated

direction of unmixing by −→u est = −→u est sgn(−→u est . −→u true) before

applying Equation (16).

2.4.2. Simulated EEG datasets
To test the approach on datasets that have a level of complexity

comparable to biological data (e.g., EEG and the artifacts that

corrupt EEG signals) yet also have a known ground truth, we

used the simBCI package (Lindgren et al., 2018) to generate 249-

electrode EEG data based on a realistic head model. The simulation

included ocular artifacts referred to in the paper as eye blinks

generated by each eye. We tested the ability of ICA to identify the

directions corresponding to these artifacts. Simulations were 5 min

long and sampled at 250 Hz. To assess the effect of the quantity

of data, we applied ICA to 6-s, 15-s, 30-s, 1-min, 2.5-min, and 5-

min segments, and analyzed 30 examples of each run length. As is

standard, principal compoenent analysis was applied prior to ICA

for an initial dimensionality reduction; we retained 50 principal

components accounting for over 99% of the variance observed.

Finally, each ICA run produced 20 components fromwhich the two

components corresponding to ocular artifacts were determined by

visual inspection of the waveforms. Accuracy and precision were

measured as described above for the 5D datasets, separately for the

signals associated with each eye.

3. Results

Below, we explore the use of Hermite-based contrast function

as a normality test and a viable option for ICA. As detailed

in Section 2, the approach capitalizes on the fact that Hermite

functions form an orthonormal basis set, in which one basis

vector, the zeroth-order Hermite function, is a Gaussian. Thus, a

probability distribution can be expressed as a linear sum of Hermite

functions, with the zeroth order term representing the Gaussian

part of the distribution. This allows us to measure non-Gaussianity

by comparing the size of the zeroth-order coefficient to the size of

higher-order coefficients, as formalized by Equation (9).

We assess the performance of this measure in two kinds of

applications: as a normality test of one-dimensional distributions,

and as a contrast function in ICA for multi-dimensional

datasets. The tests of applicability to ICA use simple two- and

five-dimensional datasets with known distributions and high-

dimensional simulated EEG datasets with ocular artifacts.

3.1. Comparison of measure of
non-Gaussianity to normality tests and
contrast functions

We evaluate the potential use of J15 as a measure of non-

Gaussianity by measuring its sensitivity to typical deviations from

the normal distribution. To this end, we used three families of

one-dimensional datasets deviating from normality in different

aspects of the distribution: modes, heaviness of tails, and symmetry.

For each family, a range of distributions with varying shape were

tested. We expect that within a family, a good measure of non-

Gaussianity will grow as the distribution shape becomes more non-

Gaussian. To determine the advantage of the proposedmethod over

the existing ones, we compared its performance against standard

normality tests and contrast functions included in a popular ICA

package (Hyvärinen, 1999).

Figure 1 compares the sensitivity of J15 for non-Gaussianity to

standard normality tests for the three families described in Section

2.3.

For bimodal distributions (Figures 1A–C), the Hermite-

function measure, as expected, identifies the bimodal distribution

as maximally non-Gaussian, and indicates that non-Gaussianity

decreases as bimodality becomes less prominent. However, the

standard tests of normality deviate from this behavior, and the

way that they deviate can be understood in terms of the approach

these tests employ. Specifically, the moment-based tests are heavily

influenced by the tails and symmetry of the distributions: the

D’Agostino’s k-squared test, which is dominated by kurtosis

performs poorly for distributions that are skewed (asymmetric

bimodal), while the Jarque-Bera test, in which skewness has

a heavier weighting, performs poorly for symmetric bimodal

distributions. Note that though skewness and kurtosis both peak

near the ends (α = 0, 1), D’Agostino k-squared test peaks

for bimodal distribution (α = 0.5) and has only minor peaks

near the ends. Tests based on cumulative distribution functions

(Kolmogorov-Smirnov test and Anderson-Darling test) measure

non-Gaussianity via the accumulated difference between the

distributions of the data and a Gaussian: asymmetric distributions

accumulate the difference faster resulting in greater sensitivity to

non-Gaussianity for asymmetric distributions than for bimodal

distributions. As tests based on frequency statistics (Shapiro-Wilk

test) use principles intuitively similar to tests based on cumulative

distribution functions, they behave similarly. Note also that these

differences in behavior persist over a wide range of sample sizes

(103 to 105 in Figures 1A–C). We also examined the performance

of the Lilliefors test and the Cramer-von Mises criterion; these are

related to the Kolmogorov-Smirnov test and performed similarly

to it (not shown) for these distributions and the others described

below.

For heavy-tailed and light-tailed distributions (Figures 1D,

E), all measures track non-Gaussianity and increase as the

distribution deviates further from a normal distribution. For

these symmetric distributions, moment-based tests rely solely

on kurtosis since their skewness is zero. Despite this, the two

moment-based tests have opposite performance for the two sets

of distributions: the Jarque-Bera test performs poorly for light-

tailed distributions and D’Agostino’s k-squared test performs

poorly for heavy-tailed distributions. This can be attributed

to the way kurtosis is used by the two tests. In the Jarque-

Bera test, kurtosis is squared, therefore it grows rapidly and

is more sensitive to heavy-tailed distributions. D’Agostino k-

squared test uses a function involving the cube root of kurtosis,

which decreases slower than kurtosis for heavy tailed distributions

but is approximately a linear function of family parameter β

for light-tailed distributions. By virtue of the symmetry and

unimodality of these distributions, tests based on cumulative-

distribution (Kolmogorov-Smirnov test and Anderson-Darling

test) and frequency statistics (Shapiro-Wilk test) perform as well
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FIGURE 1

Comparing sensitivity of J15 and standard normality tests for 1D datasets. Each panel analyzes a parametric family of distributions, shown below each

abscissa (see Section 2.3 for details). (A–C) Bimodal distributions (Section 2.3.1) with a range of sample sizes. (D) Heavy-tailed distributions (Section

2.3.2). (E) Light-tailed distributions (Section 2.3.2). (F) Asymmetric distributions (Section 2.3.3). Within each panel, measures were normalized so that

the maximum value of the mean is 1. Error bars correspond to ± 2SD.

as or better than J15. These trends persisted when sample size was

varied (data not shown).

For asymmetric distributions (Figure 1F), all measures track

non-Gaussianity but the standard normality tests have low

precision, as indicated by wide error bars. Both moments-based

tests perform poorly for distributions with heavier left tails, but

for distributions with heavier right tail, D’Agostino’s k-squared

test performs better than Jarque-Bera test despite the latter giving

more weight to skewness. This is because for this family of

distributions, kurtosis rises faster with κ than skewness. Tests

based on cumulative distribution function and frequency statistics

quickly accumulate the difference between the cumulative data

distribution and a Gaussian distribution and perform with good

accuracy but less precision.

Figure 2 extends this analysis to the three contrast functions

typically used in FastICA (Hyvärinen, 1999): the default function,

based on kurtosis (FastICA-I), and two options based on

approximations of entropy (FastICA-II and III). Results show

that the performance of all three contrast functions has many

features in common with that of the moment-based methods

(Figure 1 in red and pink). For example, in bimodal distributions

(Figures 2A–C), the measure of non-Gaussianity peaks either

for bimodal symmetric distribution in the center (α = 0.5)

like Jarque-Bera test or for asymmetric bimodal distributions

near the ends (α = 0, 1) like the D’Agostino’s k-squared test.

Consequently, they are relatively insensitive to deviations from

non-Gaussianity in asymmetric bimodal distributions (α ∼ 0.25

or ∼ 0.75). For heavy-tailed distributions (Figure 2D), FastICA-I

behaves similarly to Jarque-Bera test (low accuracy and precision)

but FastICA-II and III perform similarly to D’Agostino’s k-squared

test (good accuracy and precision). For light-tailed distributions

(Figure 2E), all three FastICA methods perform similarly to

D’Agostino’s k-squared test and perform better than J15 with

respect to precision and accuracy. For asymmetric distributions

(Figure 2F), FastICA-I performs similarly to Jarque-Bera test

(low accuracy and precision) and FastICA-II and III perform
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FIGURE 2

Comparison of the sensitivity of J15 to that of FastICA contrast functions for 1D datasets. (A–C) Bimodal distributions (Section 2.3.1) with a range of

sample sizes. (D) Heavy-tailed distributions (Section 2.3.2). (E) Light-tailed distributions (Section 2.3.2). (F) Asymmetric distributions (Section 2.3.3).

Other conventions as in Figure 1.

similarly to D’Agostino’s k-squared test (good accuracy but low

precision).

3.2. Utility as a contrast function in
independent component analysis

To assess the utility of a Hermite-based measure of non-

Gaussianity (J15) as a contrast function for ICA, we compared its

performance against the ICA contrast functions used in Figure 2 for

multi-dimensional datasets. For simple 2D datasets, we compare

accuracy and precision in an exhaustive search and further use this

framework to choose the set of Hermite functions for estimation

of non-Gaussianity using Equation (9). For simple 5D datasets

and simulated EEG datasets, we compare accuracy using ICA

implementation of the contrast functions in FastICA (Hyvärinen,

1999).

3.2.1. 2D datasets
We generated 2D datasets by mixing a Gaussian and a non-

Gaussian component (Section 2.4). The non-Gaussian components

were drawn from the three families of distributions analyzed in

Figures 1, 2 which represent different aspects of non-Gaussianity

(bimodality, heaviness of tails, and asymmetry). Details of the

distributions are provided in Section 2.4.

For 2D distributions, all methods were accurate (Figure 3) but

J15 had the best precision for most distributions. The precision

for FastICA contrast functions followed trends observed for

1D datasets in Figure 2. For bimodal distributions (Figures 3A,

B), FastICA contrast functions have wider peaks than J15,

corresponding to the finding in 1D distributions (Figures 2A–C)

that these methods have reduced sensitivity for structure near the

center. For heavy-tailed distributions, FastICA methods have low

precision (width of peak) and for light-tailed distributions, they

have high precision. This behavior of FastICA methods is due to

their over-sensitivity to weight in tails. For unimodal asymmetric

distributions, as was seen for 1D datasets, J15 has better precision

than FastICA contrast functions (Figure 3E). As expected, precision

increased with the number of samples but the differences between

methods persisted (data not shown).

3.2.2. E�ect of number of Hermite functions
Consideration of the one-dimensional projections of 2D

distributions also provides an opportunity to determine how the

measure of non-Gaussianity (Equation 9) behaves as a function
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FIGURE 3

Comparison of the performance of J15 to that of contrast functions of FastICA for 2D distributions. Each panel analyzes a distribution consisting of a

mixture of a Gaussian and a non-Gaussian distribution chosen from one of the families shown in Figures 1, 2, and is illustrated below each abscissa

(see Section 2.4 for details). Non-Gaussianity is assessed for projections onto a range of angles, also illustrated below the abscissae. Results shown

for 104 samples. (A) Bimodal symmetric distribution. (B) Bimodal asymmetric distribution. (C) Heavy-tailed distribution. (D) Light-tailed distribution.

(E) Unimodal asymmetric distribution. Normalization and error bars reported as in Figure 1. For each measure, accuracy is indicated by peak location

and precision is inversely related to peak width, as indicated by the horizontal bars within each panel. For further details, see Section 2.3.

of n, since precision can be measured by exhaustive search of the

projection angle. This analysis is shown in Figure 4.

For most distributions (Figures 4A–D), using all Hermite

functions up to order n = 15 achieves minimum circular variance,

or close to it. Although there are some distributions where error

is minimized for a smaller n (unimodal asymmetric, Figure 4E)

or a larger n (light-tailed, for large sample sizes, Figure 4D), these

values of n have larger error for other distributions and sample

sizes. On the other hand, n = 15 has near-optimal performance

across distributions and sample sizes.

The analysis also shows that using all orders is preferable to

variants that only use even orders or only odd orders. Performance

of these variants depends on the symmetry of the distribution in a

straightforward fashion. For symmetric distributions (Figures 5A,

C, D), the odd-order variants perform poorly (circular variance∼ 1

for all n and all sample sizes). This is because odd-order coefficients

are zero in the Hermite expansion of a symmetric distribution

and do not contribute to non-Gaussianity. On the other hand,

for symmetric distributions, even-order variants perform similarly

to variants that use all orders (overlapping x and solid lines in

Figures 5A, C, D). For asymmetric distributions (Figures 5B, E),

though using all orders is better than using either only even or

only odd orders, performance of the odd-order variants is better

than that of the even-order variants. This is because the odd-

order functions are asymmetric and thus crucial to capturing

the asymmetry of the distribution. Across different sample sizes,

error decreased as sample size increased but the above trends

persisted.

3.2.3. 5D datasets
Next, we assessed the performance of J15 for simulated 5D

datasets by adding it to the FastICA package (Hyvärinen, 1999)

and comparing it against the three contrast functions used

for 1D and 2D datasets (Figures 2, 3). The 5D datasets were

constructed by mixing a non-Gaussian distribution with four

Gaussian distributions. The non-Gaussian signals were the same

as in the 2D datasets (see Section 2.4). For each dataset, we

implemented ICA with the three standard contrast functions and

J15 and measured the error in estimating the direction of unmixing

(Equation 16) when the contrast function was optimized. To

optimize J15 in FastICA, we used gradient descent with a time-based

learning schedule. Additionally, for all contrast functions (FastICA
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FIGURE 4

Comparison of measures of non-Gaussianity constructed with di�erent sets of Hermite functions. Non-Gaussianity was estimated with variants of

Equation (9) terminating at a range of values of n (solid lines), and also with variants that included only even (x connected with faint lines), or odd (o

connected with faint lines) orders. Distributions are shown at the top. Colors di�erentiate sample sizes. Curves show the mean of circular variance, a

measure of precision. (A) Bimodal symmetric distribution. (B) Bimodal asymmetric distribution. (C) Heavy-tailed distribution. (D) Light-tailed

distribution. (E) Unimodal asymmetric distribution.

I-III and J15), we used 25 random starts to increase the chance of

finding the global extremum.

An analysis of variance of the estimation error (Table 1)

shows the expected large effects of distribution, sample size,

and contrast function, and the interactions of distribution with

contrast function and sample size. Sources of these effects

were then explored by conducting pairwise comparisons

of J15 with FastICA methods individually and to the best

performing FastICA contrast function for each dataset

(Figure 5).

Results for 5D datasets (Figure 5) follow the trends observed

for 1D and 2D datasets, except that the advantages of J15
are seen only for smaller sample sizes. For bimodal symmetric

distributions, J15 performs similarly to the three FastICA methods.

For bimodal asymmetric distributions, J15 performs better than

FastICA methods for smaller datasets (N = 103, 104) but

similarly for larger sample sizes (N = 105). For heavy-tailed

distributions, the advantage of using J15 is realized for the smallest

datasets (N = 103) and it performs similarly to FastICA-

II and III for larger datasets (N = 104, 105). For light-tailed

distributions, FastICA-I performs best for small sample sizes and

all methods perform similarly for large datasets. For unimodal

asymmetric distributions, J15 performs comparably to FastICA-

I and these methods outperform FastICA-II and III for all

sample sizes.

3.2.4. Simulated EEG datasets
An important and established use of ICA is the removal of

artifact from EEG recordings (Makeig et al., 1995; Vigário, 1997;

Iriarte et al., 2003). ICA is well-suited to this purpose, since many

kinds of artifacts have heavy-tailed distributions. We have seen

above that this is a scenario in which J15 has advantages as a

test of non-Gaussianity for simple 1D distributions (Figures 1A–

C), but we also saw that this advantage extended only weakly to

identifying maximally non-Gaussian projections of 2D (Figure 3)

and 5D distributions (Figure 5).

As these findings suggest a distinction between methods that

are effective general tests of non-Gaussianity, and methods that are

effective ICA contrast functions, we next tested the applicability

of J15 in the use of ICA for EEG artifact removal. To do this, we

generated realistic simulations of EEG datasets by using simBCI

(Lindgren et al., 2018) which contained signals for 249 electrodes

with ocular artifacts referred to in the paper as "eye-blinks"

(Lindgren et al., 2018). Performance of J15 was assessed in the

same way as for 5D datasets for sample sizes ranging from 6 s

(N = 1.5× 103) to 5 min (N = 7.5× 104). An analysis of variance

of the estimation error indicated large effects of sample size (F =
99.96, p < 10−4), contrast functions (F = 125.87, p < 10−4), and

their interaction (F = 11.15, p < 10−4).

Investigating the sources of these effects showed that J15
performs better than the best performing FastICA contrast function
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FIGURE 5

Comparison of performance of J15 to that of contrast functions of FastICA for 5D distributions. Rows (A–E) show results for datasets consisting of

one non-Gaussian signal (the signals of Figure 3) mixed with four Gaussian signals. The first three columns show results for a range of sample sizes.

For all 30 simulations of a distribution and sample size, we report the error in estimation of the direction of unmixing identified by optimizing each

contrast function (see Section 2.4.1). Results for a single dataset are connected by thin black lines. The last column compares the error achieved by

J15 to the three FastICA methods. Colored symbols compare J15 to each FastICA method individually. Gray symbols J15 to the best performing

FastICA method for each dataset. Error ratios greater than 1 indicate that J15 has the smaller error. *Indicates significant (p < 0.05) di�erences, via a

two-tailed paired t-test, with p-values computed separately for each comparison.
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for EEG datasets of <15 s (Figure 6). However these advantages

diminish for larger datasets (N = 3.75 × 104 and 7.5 × 104,

representing 2.5 and 5 min recordings respectively at 250 Hz); for

these sample sizes, performance of J15 is comparable to FastICA

contrast functions.

TABLE 1 Analysis of variance of estimation error for 5D datasets.

Source Mean Sq. F ratio p-value

Distribution 544.84 818.38 < 10−4

Sample size 3267.34 4107.75 < 10−4

Contrast function 6.68 10.03 < 10−4

Distribution x

Sample size

2.46 3.69 < 3∗10−4

Distribution x

Contrast function

7.19 10.80 < 10−4

Sample size x

Contrast function

0.03 0.04 1.00

Distribution x

Sample size x

Contrast function

0.15 0.23 1.00

Distribution: the five shapes described in Section 2.3 and shown in Figure 3. Sample Size: three

levels, 103 , 104 , and 105 data points. Contrast function: the three standard FastICA contrast

functions and J15 . ANOVA was performed on the natural log values of the error.

We also note that because of its implications for search

strategies (see Section 2.4.1), use of J15 as a contrast function is

computationally more expensive than the use of standard FastICA

contrast functions. On a PC workstation (16 threads, 64 GB RAM,

and 2.9 GHz clock speed), J15-based ICA of the smallest simulated

EEG dataset (N = 1.5×103) takes∼ 40min, vs.< 30 s for FastICA

contrast functions.

4. Discussion

We investigated the utility of a Hermite-based measure of

non-Gaussianity for two purposes: as a test of normality, and

as a contrast function for ICA. Compared to standard normality

tests, the measure has better sensitivity to asymmetric and heavy-

tailed distributions. The new method had no discernible advantage

for symmetric bimodal and light-tailed distributions. To examine

utility as an ICA contrast function, we assessed its ability to find the

true direction of unmixing of the non-Gaussian signals. We found

that its performance is largely similar to the contrast functions

of a standard ICA package (FastICA), but there were modest

improvements for small datasets (<15 s) with asymmetric and

heavy-tailed distributions.

The broad finding that emerged was that a method’s advantages

for normality tests may have only limited applicability to ICA.

This discrepancy likely stems from the different goals of the

FIGURE 6

Comparison of performance of J15 to that of contrast functions of FastICA for simulated EEG datasets with ocular artifacts. The left 6 panels report

the results for 30 EEG datasets generated using simBCI (Lindgren et al., 2018) at 250 Hz, analyzed for run lengths ranging from 6 s (1.5× 103 samples)

to 5 min (7.5× 104 samples). Similar results were found for signals corresponding to both eyes; the average is reported. The right-most panel

compares the error achieved by J15 to the three FastICA methods. Colored symbols compare J15 to each FastICA method individually. Gray symbols

J15 to the best performing FastICA method for each dataset. Error ratios greater than 1 indicate that J15 has the smaller error. *Indicates significant

(p < 0.05) di�erences, via a two-tailed paired t-test, with p-values computed separately for each comparison. Circled symbols are also significant at

p < 0.05 false-discovery-rate correction.
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two approaches: normality tests answer the question, “Is this

distribution non-Gaussian at all?”, whereas the question answered

by ICA is, “Which distribution is the most non-Gaussian?”.

Evidence in support of this viewpoint can be found in the results

for 1D bimodal distributions (Figures 1A–C). In this family, for

a range of distribution shapes, the measure J15 is constant at a

normalized value of 1. In other words, J15 is highly sensitive to

the deviation of each of these distributions from normality, but

it does not distinguish which one(s) are the most non-Gaussian.

While this is not a drawback for normality tests, it is critical

to ICA.

We also observed increased computational cost for J15 when

used as an ICA contrast function, but not when used as a normality

test. This cost arises because the fixed-point algorithm for FastICA

is not applicable to J15 (see Section 2.4 for details). Thus, we used

gradient descent for J15, but to counter the increased probability

of getting stuck in local extrema, we augmented this strategy

with a time-based learning schedule and multiple random starts.

While these changes improve convergence, they increase run-

time. Nevertheless, despite the increased computational cost, the

improvement in accuracy achieved by J15 for small datasets make it

a viable alternative.

In the context of EEG, we found that the new method

has advantages over standard contrast functions for analyzing

datasets spanning a few seconds. This is likely to be particularly

useful in brain-computer interface applications (Xu et al., 2004;

Kachenoura et al., 2007). For larger dataset (over several minutes),

the method performs similarly to standard contrast functions, with

a higher computational cost. We note that the current approach is

specifically targeted at identifying non-Gaussian projections, and

does not address statistical issues that are important in interpreting

the extracted components—for example, inter-subject and inter-

trial variability—which are extensively discussed in Hyvärinen

(2011) and Hyvärinen and Ramkumar (2019). Moreover, since

the new contrast function is used to identify one-dimensional

projections in sequence, it is not immediately applicable to ICA

variants that can extract multiple components simultaneously

(Amari et al., 1995; Belouchrani et al., 1997).

In conclusion, the new method has advantages both as a

normality test and as an ICA contrast function. As a normality

test, its performance is either better than or at least comparable

to commonly-used normality tests. When applied as an ICA

contrast function, the new method has modest advantages for

small datasets spanning over a few seconds with asymmetric and

heavy-tailed distributions. In the context of EEG, this yields benefits

for extraction of artifacts such as eye blinks (that have heavy-tailed

distribution) in small datasets.
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