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Synonyms  

Spike metric 

Definition  

A “spike train distance” is a means for comparing two sequences of stereotyped events.  The term “spike 
metric” refers to a spike train distance that, additionally, has the formal mathematical properties of a 
metric. Spike train distances have broad application in neuroscience, since the action potentials emitted 



by a neuron or set of neurons can be regarded as a sequence of stereotyped events; we briefly survey these 
applications here.   

Detailed Description 

Spike train distances are rules for assigning a notion of distance, or dis-similarity, to pairs of event 
sequences. In contrast to most quantitative approaches to the analysis of scientific data, the framework of 
spike train distances does not make the implicit assumption that the objects of interest (i.e., the event 
sequences) can be thought of as vectors. In many cases, including the earliest examples of spike train 
distances (van Rossum 2001, Victor & Purpura 1996, Victor & Purpura 1997), these distances also satisfy 
the formal mathematical requirements to be a “metric” (see below).  In this case, the event sequences may 
be considered elements in a “metric space.”  A metric space is a topological space that is more general 
than a vector space.  A metric space must have a notion of distance, but it need not have coordinates, nor 
allow for addition, scalar multiplication, or the measurement of angles. 

Two considerations give this general framework a special flavor when applied to neural data. The first 
consideration is mathematical:  for event sequences, it is natural to think of the topology as combining a 
discrete component with a continuous component. The discrete component is that the number of events in 
a spike train must be an integer; the continuous component is that each of these events can occur across a 
continuum of times. The second consideration is biological:  much is known about the physiology of 
neurons and neural circuits, and spike train distances are typically designed with the goal of capturing the 
biologically significant aspects of neuronal activity.  

As detailed below, two contrasting ideas concerning the biological meaning of a spike train serve as 
anchor points: (a) the firing events in a spike train might serve primarily as a means to represent an 
underlying firing rate vs. (b) the times of these firing events might have individual significance, enabling 
neural computations to be based on coincident firing events across neurons and other aspects of fine 
temporal structure. 

Notation 

A spike train – the sequence of action potentials emitted by one or more neurons – is formalized as a 
sequence of stereotyped events, called spikes, that occur during a fixed observation period [0, ]T . That is, 

a spike train A is represented by an ascending sequence of real numbers 1 ( ), ,A A
M At t  in [0, ]T , where A

jt (or 

simply jt ) is the time of occurrence of the j th spike, and ( )M A is the total number of spikes (which may 

be 0). 

The above applies to a setting in which all spikes originate from a single neuron, or in which the identity 
of the neurons that generate the individual spikes is not distinguished. It is readily extended to a setting in 
which the neural activity arises from R  different neurons, and the neuron of origin of each event is 
known:  the sequence of times 1 ( ), , M At t  is associated with a sequence of labels 1 ( ), , M Aa a , each drawn 

from a set of tags  1,..., R . Thus, spike trains are regarded as a sample drawn from a point process 

(activity of one neuron) or a labeled point process (activity of several neurons). 

 



Formal Definition 

A spike train distance is a mapping D  from the set of spike trains to the non-negative real numbers that 
meets the three requirements of a topological metric: 

  Non-negativity: ( , ) 0D A B  , and  ( , ) 0D A B   only if A B  (1) 

 Symmetry: ( , ) ( , )D A B D B A  (2) 

 Triangle inequality:  ( , ) ( , ) ( , )D A C D A B D B C    (3) 

The symmetry property (Eq. (2)) and the triangle inequality (Eq. (3)) are critical to give the metric the 
properties that one expects from a distance based on paths between points.  Specifically, the symmetry 
property means that the shortest path between two points does not depend on the direction of travel, and 
the triangle inequality means that the shortest path between two points ( A and C ) cannot be any longer 
than a path that is constrained to stop at a particular intermediate point B . However, the non-negativity 
property (Eq. (1)) is less crucial, and is frequently relaxed to omit the “only if” clause – in which case, D  
is formally a pseudometric.  In this case, the space of spike trains can be partitioned into equivalence 
classes of spike trains that are at distances of zero from each other, and D  acts as a metric on these 
equivalence classes.  The “spike count distance,” formalized following Eq. (11), is a simple example of a 
pseudometric; spike trains with the same number of spikes fall into an equivalence class. 

Constructing Spike Train Distances 

Spike train distances can be organized into several families.  The most straightforward family is based on 
embedding: spike train distances are defined by mapping the spike trains into a vector space, and then 
adopting the vector space distance. Since the vector space distance is a metric, the resulting spike train 
distance is also guaranteed to be a metric.  

However, spike train distances need not be derived from distances in vector spaces. In cost-based 
distances, a set of simple transformations of spike trains is specified, along with their (non-negative) 
costs.  The spike train distance is then defined as the minimal total cost of transforming one spike train 
into another.  Because the distance is defined in terms of a minimum-cost path of transformations, these 
distances are guaranteed to be metrics.  Other families of distances include time-resolved and timescale-
independent spike train distances, described below; many of these are not metrics. 

Spike Train Distances Based on Embedding 

In the embedding construction, spike trains are first mapped into a normed vector space V  via a 
mapping f . Since the vector space norm u  provides a metric on vectors via ( , )D u v u v  , mapping 

spike trains into vectors yields a metric on the spike trains: 

  ( , ) ( ) ( )D A B f A f B    (4) 

The nature of the mapping f  from the space of spike trains to the vector space is critical. Typically, this 

mapping respects an additive structure on the spike trains: that is, if A B  denotes the spike train that 
results from superimposing A  and B  (with suitable provision made for coincident spikes), then 

( ) ( ) ( )f A B f A f B   . For such embeddings, then resulting metric is unchanged by parallel translation:  



  ( , ) ( , )D A C B C D A B     (5) 

Spike train distances in this class generally emphasize either the continuous aspect of spike train topology 
or its discrete aspect. The family of distances introduced by van Rossum (van Rossum 2001) is a 
prototypical example of the former. We consider first the case of an unlabeled spike train, which here is 
regarded as a sequence of delta functions. The target vector space consists of scalar functions of time 
(considered as a continuous variable), and the embedding f consists of a convolution by a kernel 
function ( )K t : 

 
( )

1

( )( ) ( ) ( )
M A

A
j

j

f A t K t t d   




     (6) 

Since the mapping in Eq. (6) from the spike train A  to the vector space element ( )f A  is linear, it follows 

that the resulting metric, defined by Eq. (4), is unchanged by parallel translation (as in Eq. (5)). 

Typically the kernel function K  in Eq. (6) includes a parameter that expresses the temporal resolution of 
the comparison between two spike trains, e.g., 
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.   (7)  

If spikes in train A  and train B are matched within this resolution, i.e., if 0
A B
j jt t t  , then the spike 

train distance between A  and B  will be small. Gaussians, boxcars, and similar non-negative windowing 
functions are also reasonable choices for K .  These embedding functions are conventionally used in 
conjunction with an pL  norm for the target vector space, 

 

1/

( ) ( )( )

p

p
f A f A t dt





 
  
 
 ,  (8) 

usually with 2p   (the Euclidean norm).  Thus, the net result of a linear embedding followed by the 

vector space norm provides a Euclidean geometry on spike trains. 

To extend this kind of spike train distance to the multineuronal setting ( R  labeled neurons), the target 
vector space is taken to be vector-valued functions of time (Houghton & Sen 2008), and the norm is the 

2L -norm on the space of vector-valued functions.  To define the embedding function f , vectors lv


 

(typically, unit vectors) are assigned to each of the R  labels.  With this assignment,  

 
( )

( )
1

( )( ) ( ) ( )
M A

A
a j j

j

f A t K t v t d   




  
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(9) 

Thus, the j th event, a spike on neuron ( )a j  at time jt , is mapped to a bump (the kernel shape) 

“pointing” in the direction ( )a jv


 that has been assigned to neuron ( )a j .  The angles between the vectors lv


 

correspond to the extent to which the spike train distance is sensitive to the label associated with each 
spike. An alternative approach is to define multidimensional kernels that spill over from one neuron’s 
spike train to another’s (Tezuka 2014, Tezuka 2018).  

In the above examples, the embeddings are linear, and, moreover, time-reversal (formally, replacing each 

jt with ( ) 1M A jT t   ) has no effect on the resulting distances.  Neither of these properties is needed for an 

embedding to yield a metric; in fact, there are biological motivations to consider distances that derive 



from embeddings but lack these properties.  For example, as a consequence of synaptic facilitation and 
depression (Sen et al. 1996), the effect of a spike on a post-synaptic neuron depends on how much time 
has elapsed since the previous spike.  This dependence can be incorporated into an embedding function 
(Brasselet et al. 2011a, Houghton 2009), conferring on it both nonlinearities and time-reversal 
asymmetries. 

Spike train distances based on an embedding can also emphasize their discrete aspect.  Specifically, a 
spike train can be discretized into “bins” of width T  (typically chosen to be short enough so that no bin 
contains more than two spikes) and then regarded as a binary sequence.  The Hamming distance between 
two discretized spike trains (i.e., an 1L  distance in a vector space of dimension /T T ) is a spike train 
distance.  The main distinction is that in contrast to the kernel-based distances discussed above, spike 
trains that have spikes in different bins are regarded as equally distant, regardless of whether or not the 
times of occurrence of the spikes are close. 

Embeddings can also be used to construct measures of spike train similarity (i.e., measures that decrease 
as spike trains become more dissimilar), via the normalized inner product  

 
( ), ( )

( , )
( ) ( )

f A f B
A B

f A f B
  ,  (10) 

where ,u v  is the inner product in the vector space V and ,v v v  is the corresponding norm.  These 

similarity measures have an exact correspondence to a spike train distance, as  1cos ( , )A B  is a metric 

– namely, the geodesic distance between the unit vectors in the direction of ( )f A  and ( )f B  on the unit 

sphere.  The Haas and White measure (Haas & White 2002) uses an exponential kernel for the embedding 
(Eq. (6)); the Schreiber measure (Schreiber et al. 2003) uses a Gaussian kernel.  Since these measures are 
normalized for the spike count of the individual spike trains, they are only sensitive to temporal pattern, 
and a provision needs to be made for the empty spike train. 

Cost-Based Spike Train Distances 

While distances constructed via vector space embeddings focus on either the continuous or discrete 
aspects of the topology of spike trains, cost-based distances attempt to combine these two facets. 

The prototypical example was introduced by Victor and Purpura, the “spike time” distance (Victor & 
Purpura 1997). As is the case for the other distances in this class, the key ingredient is a set of elementary 
transformations between spike trains, each of which is assigned a cost.  Once the elementary 
transformations have been specified, the distance between two spike trains is the minimal total cost 
required to transform one spike train into another. That is, the distance ( , )D A B  is defined as  

  1
0

( , ) min ( , )
K

k k
k

D A B c X X 


  ,   (11) 

where 0,..., KX X is a sequence of spike trains with 0X A  and KX B  and each successive spike train 

linked to the next by an elementary transformation of cost 1 1( , ) ( , )k k k kc X X c X X  . For the specific case 

of the spike time distance, the elementary transformations consist of (i) inserting a spike into a spike train, 
(ii) deleting a spike from a spike train, and (iii) shifting a spike in time.  Inserting or deleting a spike is 
assigned a cost of 1; shifting a spike by an amount of time t  is assigned a cost q t . The parameter q  

plays the same role as the parameter 01/ t  for the kernel-based distances (eq. (7)):  as q  increases (or as 0t  



decreases), the distance becomes progressively more sensitive to fine timing differences.  For 0q  , the 

distance is entirely insensitive to timing differences (so, formally, it is a pseudometric), since spikes can 
be moved “for free.”  In this limit, the distance which is often called the “spike count distance” is simply 
the difference in spike counts, ( , ) ( ) ( )D A B M A M B  .   

The choice of elementary transformations determines the qualitative nature of the distance.  A contrasting 
example of the spike time distance is the “interspike interval” distance (Victor & Purpura 1997), in which 
the elementary transformations act on interspike intervals, rather than on the spike times themselves.  
Since changing the length of one interspike interval shifts the time of all successive spikes, two spike 
trains can be close in terms of the spike interval distance, but not in terms of the spike time distance.  
Thus, these distances confer different topologies on the space of spike trains: the topology of the spike 
time distance is equivalent to that of the van Rossum distance (Eq. (6)) with a typical kernel, but the 
topology of the spike interval distance is not. Additionally, the spike time distance is invariant under 
parallel translation (adding a common spike train to the spike trains being compared, as in Eq. (5)), while 
the spike interval distance is not.  Cost-based distances are typically non-Euclidean (Aronov & Victor 
2004, Dubbs et al. 2010). 

Cost-based distances are also applicable to the multineuron setting (Aronov et al. 2003).   For the spike 
time distance, a straightforward approach is to include an elementary transformation that assigns a cost to 
changing the neuronal label associated with a spike.  Parametric variation of this cost changes the 
character of the distance from one that is sensitive to overall population activity (low cost to change the 
label) to one that is sensitive to cross-population patterns (high cost to change the label). 

For cost-based distances, the overall distance and the costs associated with elementary transformations 
can be interpreted in terms of a generative model for spike trains (Dauwels et al. 2009). Cost-based 
distances can also be formulated in terms of “alignments” between spikes, rather than transformations 
(Dubbs et al. 2010).  

The above constructions can be generalized in many ways.  To name a few, normalization by spike count 
can be applied; the costs of each transformation (Victor et al. 2007) or alignment (Dubbs et al. 2010) can 
be transformed by a power law prior to summation; elementary transformations sensitive to burst 
structure can be added (Victor & Purpura 1997); and different kinds of elementary transformations can be 
combined.  

 

Timescale-independent Spike Train Distances 
 

Complementary to the timescale dependent approaches, in recent years spike train distances have been 
proposed which are timescale and thus parameter free since they always adapt to the local firing rate. 
While not allowing the functional characterization and precision analysis described above, single-valued 
methods give an objective and comparable estimate of neuronal variability (Chicharro et al. 
2011). Measures in this group include the ISI-distance (Kreuz et al. 2007), the SPIKE-distance (Kreuz et 
al. 2013), and SPIKE-synchronization (Kreuz et al. 2015). 
 
ISI-distance and SPIKE-distance 
 
The ISI-distance ID  and the SPIKE-distance SD  rely on instantaneous values in the sense that in a first 

step the sequences of discrete spike times are transformed into piecewise-continuous dissimilarity profiles 
( )I t  and ( )S t . For the ISI-distance (Kreuz et al. 2007) the dissimilarity profile is derived from the 

interspike intervals, while in the case of the SPIKE-distance (Kreuz et al. 2013) it is extracted from 



differences between the spike times of the two spike trains. Both distances are then defined as the 
temporal average of the respective dissimilarity profile, e.g., for the SPIKE-distance 

  DS 
1

T
S(t)

to

T

 dt.   (12) 

The two dissimilarity profiles rely on three piecewise constant quantities which for each neuron ( X A  
or X B  below) are assigned to every time instant between 0 and T . These are the time of the preceding 
spike 

 tP
X (t) max(ti

X | ti
X  t),  (13) 

the time of the following spike 

 tF
X (t)  min(ti

X | ti
X  t), (14) 

and the interspike interval 

 zISI
X (t)  tF

X (t) tP
X (t). (15) 

The ambiguity regarding the definition of the very first and the very last interspike interval is resolved by 
means of auxiliary spikes (Kreuz et al. 2015) . 
 
ISI-distance 
The ISI-distance (Kreuz et al. 2007) is a time-resolved, symmetric, and timescale-adaptive measure of the 
relative firing rate pattern, defined as the ratio between the instantaneous interspike intervals zISI

A (t) and 

zISI
B (t)  (Figure 1a) is calculated according to: 

 

( ) ( )
( )

max( ( ), ( ))

A B
ISI ISI

A B
ISI ISI

z t z t
I t

z t z t


 . (16) 

This quantity is 0 when the ISI’s in the two spike trains are equal, and approaches 1  and 1, respectively, 
if the first or the second spike train is much faster than the other. Since both directions of deviation from 
identical ISI’s are equally important, the ISI-distance is calculated by temporal averaging over the 
absolute values ( )I t  in Eq. (12).   

 
SPIKE-distance 
The ISI-distance relies on the relative length of simultaneous interspike intervals and is thus capable to 
quantify similarities in the neurons’ firing rate profiles. However, it is not optimally suited to track 
synchrony that is mediated by spike timing. This issue is addressed by the SPIKE-distance (Kreuz et al. 
2013) which combines the properties of the ISI-distance with a specific focus on spike timing. 
The dissimilarity profile of the SPIKE-distance is based on differences between the spike times in the two 
spike trains. It is calculated in two steps: First, for each spike, the distance to the nearest spike in the other 
spike train is calculated. Then, for each time instant, the relevant spike time differences are selected, 
weighted, and normalized. Here ‘relevant’ means ‘local,’ i.e., each time instant is uniquely surrounded by 

four corner spikes: the preceding spike of the first spike train tP
A , the following spike of the first spike 

train tF
A , the preceding spike of the second spike train tP

B , and, finally, the following spike of the second 

spike train tF
B  (Figure 1b).  Each of these corner spikes can be identified with a spike time difference, for 

example, for the previous spike of the first spike train 

 
tP

A  min
k

( tP
A  tk

B )
 

(17) 

and analogously for tF
A , tP

B , and tF
B . 

For each spike train separately, a locally weighted average is employed.  The weighting factors ensure 
that the differences for the closer spike dominate: the weighting factors depend on 



 zP
A (t)  t  tP

A (t) (18) 

and 

 zF
A (t)  tF

A (t) t , (19) 

the intervals to the previous and the following spikes for each neuron. The local weighting for the spike 
time differences of the first spike train reads 

 
SA (t)  tP

A (t)zF
A (t)tF

A (t)zP
A (t)

zISI
A (t) . 

(20) 

For the second spike train SB (t)is obtained analogously. 

Averaging over the two spike train contributions and normalizing by the mean interspike interval yields 

 ,

( ) ( )
( )

2 ( )
A B

X
ISI X A B

S t S t
S t

z t


 

, 

(21) 

where 
,

( )X
ISI X A B

z t


 is the average of the local ISI’s of spike trains A and B. 

This quantity weights the spike time differences for each spike train according to the relative distance of 
the corner spike from the time instant under investigation. Averaging over this dissimilarity profile ( )S t  

according to Eq. (12) yields the rate-independent SPIKE-distance (RI-SPIKE-distance) RI
SD  (Satuvuori et 

al. 2017), which completely disregards any rate differences between the two spike train and thus focuses 
purely on spike timing information. 
 
In order to also account for differences in firing rate, in a last step the two contributions from the two 
spike trains are locally weighted by their instantaneous interspike intervals. This leads to the dissimilarity 
profile of the SPIKE-distance 

 

S(t)  SA (t)zISI
B (t) SB (t)zISI

A (t)

2 zISI
X (t)

XA,B

2

 

(22)

 

which is thus sensitive to both spike rate and spike timing (Satuvuori & Kreuz 2018). 
 
The dissimilarity profiles of both the ISI-distance and the SPIKE-distance and thus both distances are 
bounded in the interval [0,1] . For the ISI-distance the minimum value 0 is obtained for any periodic spike 

trains with the same period. Thus the ISI-distance is a pseudo-metric, in which all spike trains with a 
certain constant interspike interval, but overall time shifts form the equivalence classes (Mulansky et al. 
2015). On the other hand, for the SPIKE-distance the value 0 is indeed obtained only for perfectly 
identical spike trains, but it is possible to construct examples that violate the triangle equality (Mulansky 
et al. 2015), so the SPIKE-distance is not a metric. 
For both distances there exists a straightforward extension to estimate the time-resolved level of 
dissimilarity within a group of spike trains (Kreuz et al. 2009, Kreuz et al. 2013). It is the straightforward 
average over all pairs of spike trains, but in these cases the averaging can be performed locally, e.g., for 
the SPIKE-distance: 

 
1

1 1

1
( ) ( )

( 1) / 2

M M
a mn

n m n

S t S t
M M



  


   . (23)  

 
SPIKE synchronization 



SPIKE synchronization (Kreuz et al. 2015) acts as coincidence detectors and quantifies the level of 
synchrony from the number of quasi-simultaneous appearances of spikes. It is a measure of similarity, i.e. 
for identical spike trains it yields not its minimum value 0 but its maximum value 1. 
The calculation consists of two steps, coincidence detection and a combination of normalization and 
windowing. The first step builds on the same bivariate and adaptive coincidence detection that was used 
for event synchronization (Quian Quiroga et al. 2002). The temporal resolution can be adjusted with a 
coincidence window of fixed size  , but in the parameter- and timescale-free main variant the maximum 

time lag ,A B
ij  up to which two spikes t

i
A  and B

jt  are considered to be synchronous is adapted to the local 

spike rates according to 

 

,
1 1 1 1

1
min[ , , , ]

2
A B A A A A B B B B
ij i i i i j j j jt t t t t t t t        

. 
(24) 

The coincidence criterion can be quantified by means of a coincidence indicator 

 

Ci
A 

1 if min j (| ti
A  t j

B |)  ij
A,B

0 otherwise





  

(25) 

(and analogously for Cj
B), which assigns to each spike either a one or a zero depending on whether it is 

part of a coincidence or not (Figure 1c). Here the minimum function already takes into account that a 
spike can at most be coincident with one spike in the other spike train. If a spike is exactly in between two 
spikes from the other spike train, this is not considered a coincidence. 
 
The extension to the case of one group of more than two spike trains is straightforward. After performing 
bivariate coincidence detection for every pair of spike trains, for each spike of every spike train a 
normalized coincidence counter 

 

,1

1
A A X
i i

X A

C C
M 


 

 
(26) 

is obtained by averaging over all 1M   bivariate coincidence indicators involving the spike train A . This 
way for both the bivariate and the multivariate case we have defined a coincidence counter for each 
individual spike in every spike train. In order to obtain one combined similarity profile, we pool the 
spikes of all the spike trains as well as their coincidence counters by introducing one overall spike 
index j . In case there exist exact matches (perfectly coincident spikes), j  counts over all of these spikes. 

From this discrete set of coincidence counters jC , the SPIKE-Synchronization profile ( )jC t  is obtained 

via ( ) ( )jC t C j . Finally, SPIKE-Synchronization is defined as the average value of this profile 

 1

1
( )

pM

C j
jp

S C t
M 

 
 

(27) 

with ( )p
X

M M X  denoting the total number of spikes in the pooled spike train. 

The interpretation is very intuitive: SPIKE-Synchronization quantifies the overall fraction of 
coincidences. It is zero if and only if the spike trains do not contain any coincidences, and reaches one if 
and only if each spike in every spike train has one matching spike in all the other spike trains.  
SPIKE-Synchronization is complementary to the distances described above. It is a measure of spike 
matching based on a binary coincidence criterion.  If converted from a measure of similarity into a 
measure of distance (by considering 1 CS ), it would remain symmetric, but it would fail to be a metric. 

This is because of the binariness of the coincidence criterion: there are non-identical spike trains that 
would have a distance of zero (violating Eq. (1)), and it is possible to construct violations of the triangle 
inequality  (Eq. (3)) (Mulansky et al. 2015). SPIKE-Synchronization is complemented by SPIKE-



order and Spike Train Order (Kreuz et al. 2017), two indicators that allow to sort spike trains from leader 
to follower and to quantify the consistency of the temporal leader-follower relationships for both the 
original and the optimized sorting.  
 
All three of these timescale-independent approaches (the ISI-distance, the SPIKE-distance and SPIKE-
Synchronization) have recently been adapted for data containing multiple timescales by adding a notion 
of the relative importance of local differences compared to the global time scales (Satuvuori et al. 2017). 
 
Other timescale-independent measures 
 
The modulus- and the max-metric (Rusu & Florian 2014) form another family of metrics which is 
timescale free as well and can also be turned into a time-resolved profile. Both measures are more 
sensitive to large-scale temporal structure and less sensitive to spike counts and to fine structure within 
bursts. The most recent proposal in this group is Spike-contrast, a further timescale independent and 
multivariate measure of spike train synchrony (Ciba et al. 2018). It mostly yields very similar results to 
the SPIKE-distance, however, it is complementary since it does not provide a time-resolved dissimilarity 
profile but instead a synchrony curve as a function of bin size (one of several parameters). 
 
 

Other Types of Spike Train Distances 
 

There are several useful spike train distances that do not fall into these major categories. The family of 
metrics proposed in (Wu & Srivastava 2011) resembles an embedding-based metric in that the spike 
trains are mapped to functions using a kernel; however, these metrics also allow for time to be warped for 
one spike train relative to the other to bring them into better alignment.  In a manner which is reminiscent 
of a cost-based metric, this warping is associated with a penalty. This metric facilitates the calculation of 
a “mean spike train,” something that can also be calculated using an embedding-based metric (Julienne & 
Houghton 2013).  
 
The Hunter-Milton measure compares spike times in one train with the nearest spike times in the other 
(Hunter & Milton 2003). A choice of scale parameter is required. Lyttle and Fellous have proposed 
metrics to specifically assess the similarity of spike trains with either common silent periods or bursts 
(Lyttle & Fellous 2011). Both metrics can be adapted to the dataset by means of several parameters. 
Finally, the “coincidence factor,” while not a distance, has also been used to compare discretized spike 
trains based on a normalized count of coincidences (Jolivet et al. 2008, Kistler et al. 1997). 

Applications: Analytical Methods 

Spike train distances are the starting point for many analysis and modeling strategies.  The distinctive 
feature of this starting point (i.e., considering spike trains to be event sequences, vs. considering them to 
be vectors) is that it allows for a much more flexible kind of geometry, and focuses on intrinsic relations 
between spike trains, rather than a coordinate system for them. As we describe below, this enables a 
variety of approaches to exploratory data analysis, neural coding, and model testing. We first survey these 
approaches according to the type of analysis, and then describe some examples of these applications in 
neuroscience and behavior. For earlier reviews, see (Houghton & Victor 2011, Victor 2005, Victor & 
Purpura 2010).  



Dimension reduction 

A main challenge in analyzing neural data is its high dimensionality. Thus, as a first step in exploratory 
analysis or data visualization, it is often helpful to construct a low-dimensional representation of a dataset 
that preserves key aspects of its structure. From the spike train distance viewpoint, the central goal is to 
preserve similarity; thus, the crucial requirement in dimensional reduction is to preserve the metric.  

The classical approach to accomplishing this is standard multidimensional scaling (Kruskal & Wish 
1978), which can be directly applied to spike metrics.  Multidimensional scaling is algebraically related to 
principal components analysis, but in multidimensional scaling, there is no need to identify coordinates or 
to conceptualize the spike trains as points in a vector space.  When applied to a cost-based distance, 
multidimensional scaling approach often leads to a representation of the neural responses that 
recapitulates the geometry of the domain being represented (e.g., spatial phase (Aronov et al. 2003) or 
sound location (Victor & Purpura 1997)).  

The global geometry of cost-based distances is typically non-Euclidean (Aronov & Victor 2004). As a 
consequence, standard multidimensional scaling can at best approximate these (and perhaps other) spike 
train distances.  One approach to this problem is to apply multidimensional scaling to a monotonic 
function of the distance (such as pd  for 0 1p  ), rather than the raw distances themselves. For a 
sufficiently small but data-dependent p , these derived distances can be exactly embedded into a 

Euclidean space. An alternative approach is to seek an embedding that focuses on local geometry: the 
isomap (Tenenbaum et al. 2000) or local linear embedding (Roweis & Saul 2000) approaches can be used 
to expand a locally-Euclidean representation to a non-Euclidean manifold.   The t-distributed stochastic 
neighbor embedding (t-SNE) is another such non-linear dimensional reduction approach, which is 
particularly suitable for sampled data and also focuses on local geometry.  Specifically, combining spike 
train metrics with t-SNE (van der Maaten & Hinton 2008) has been found to be effective for single-
neuron and multineuronal datasets (Vargas-Irwin et al. 2015), as well as for non-neural data -- bat 
biosonar, an acoustic emission that can be considered as a sequence of pulses (Accomando et al. 2018).  

Information-theoretic analysis 

Spike train distances are also the starting point for information-theoretic analyses of neural coding.  For 
example, they can be used as a way to estimate the mutual information between a set of stimuli and a set 
of responses, by determining the extent to which neural responses to a set of stimuli form reliable clusters.  
The dependence of this estimate on the kind of spike train distance used (e.g., one that is sensitive to 
spike times, vs. spike intervals, or the degree of temporal precision of the distance) points to the features 
of the neural response that carries the information (Satuvuori & Kreuz 2018, Victor & Purpura 1997).  
Spike train distances can also be combined with the Kozachenko-Leonenko estimator (Kozachenko & 
Leonenko 1987) to provide estimates of mutual information, without the need for explicit clustering 
(Houghton 2015, Houghton 2019, Shapira & Nelken 2013). It is important to note, however, that these 
approaches typically yield underestimates of mutual information, since they focus on a single timescale, 
and use a very limited number of parameters to describe the possible relationships between spike trains 
(Lopes-dos-Santos et al. 2015).  

 

Model evaluation 
 



Spike train distances provide a way to measure the quality of a neural model, by determining the distance 
between experimentally observed spike trains and models of them (Kameneva et al. 2015). Extending this 
idea, a spike time distance can also be used as a cost function to be minimized by adjusting model 
parameters (Lynch & Houghton 2015), or as a cost function to drive learning algorithms that shape 
artificial networks to  process temporal patterns (Florian 2012). They can also provide a way to quantify 
whether a model accounts for neuronal variability, by determining the distances between members of a 
set of spike trains that represent samples of spontaneous activity or samples of responses to the same 
stimulus.   

 Applications to Neuroscience 

As spike train metrics are metrics on sequences of events, they can be applied to any problem where the 
data are sets of event sequences. However, they are primarily designed to express the metric structure of 
spike trains that is functionally or mechanistically relevant, and are most often applied to the analysis of 
electrophysiological data.  

One frequent application is as a tool for quantifying how information is coded in spike trains. In 
describing the different spike train metrics it has been noted that they often have a parameter interpolating 
between a spike count pseudometric and metrics in which the precise timing of individual spikes is very 
significant. In the case of the embedding metrics, this parameter is the width of the kernel used in the 
embedding, for example, if the kernel is given by Eq. (7), it is 0t ; in the case of the cost based metric, it is 

q , the cost of moving a spike (see discussion following Eq. (11)). This parameter can be fitted to 

stimulus-evoked spike train data by choosing the value where the metric-based clustering best matches 
clustering according to stimulus. This gives an indication of the temporal scale relevant to the coding of 
information about the stimulus in the spike trains. This approach was used, for example, in analyzing 
visual responses in V1, V2 and V3 in monkey in (Victor & Purpura 1996) and in analyzing auditory 
responses in zebra finch in (Narayan et al. 2006). Another approach is used in (Brasselet et al. 2009, 
Brasselet et al. 2011b) where a metric analysis combined with a novel definition of mutual information is 
used to argue for the primacy of the latency of first spike in encoding tactile information in human 
microneurography data. 

In multineuronal spike train metrics, there is often a parameter which specifies how significant the 
individual neurons are in coding; this parameter interpolates between a population code where the identity 
of the neuron firing a spike has no effect on the distance, and a “labeled line code” where the spike train 
distance between a pair of multineuron spike trains is effectively the sum of the distances between the 
individual pairs of spike trains for individual neurons. This was used, for example, in (Clemens et al. 
2011) to analyze the degree of population coding of auditory information in grasshoppers. 

These applications all compare responses by the same neuron, or neurons, across different stimuli. 
Another application of spike train metrics is the detection of cell assemblies, this involves comparing the 
spiking responses of different neurons to the same stimulus (Humphries 2011, Humphries 2017): roughly, 
a network is formed whose nodes correspond to neurons and the links to a measure of similarity derived 
from a spike train metric, assemblies are then identified using community detection algorithms. This 
approach has been applied to CA3 in hippocampus (Li et al. 2010), to reaching tasks in monkey (Newman 
et al. 2011),  and similar ideas can be applied to recordings of activity in the retina (Cutts & Eglen 2014). 
In (Kreuz et al. 2013), the SPIKE-distance is used to study synchrony between recording sites in data 
recorded from epilepsy patients. It is demonstrated that during ictal periods, there is an elevated level of 
neuronal synchrony in the hemisphere containing the seizure focus. 

 



It is important to note that the spike metric framework, by itself, is not a statistical one -- a spike metric 
yields a number that indicates the distance between two specific spike train examples, and not a way of 
assessing whether this difference is statistically significant.  Any assessment of statistical significance 
requires either a model for spike train variability or experimental assessment of this variability, which is 
independent of the choice of the metric.  With a model of variability or a data-driven assessment of it, 
standard statistical techniques (either parametric or nonparametric) can be applied.   

Computation of Spike Train Distances 

Computation of distances based on embeddings is straightforward, as the essential steps are convolution 
and pairwise multiplication.  Houghton and Kreuz (Houghton & Kreuz 2012) introduced a markage trick 
which reduces the computational cost for the regular van Rossum metric between two spike trains of 
similar length, M (A ) ~ M (B ), to order M  M (A )M (B ) from order M 2 . The same markage trick can 

also be used for the multineuron extension. 

For cost-based distances, dynamic programming algorithms modeled after alignment algorithms for 
genetic sequences (Needleman & Wunsch 1970, Sellers 1974) provide an efficient way to identify the 
minimal-cost sequence of transformations in the single-neuron setting and for settings with a small 
number of neurons. The number of computations is approximately 2( )O M  for unlabeled spike trains 

containing M events and 1( )RO M   when R  neurons (labels) are present. These algorithms extend to 

enable simultaneous computation of distances for all values of its parameters (cost to move a spike, cost 
to change a label) (Victor et al. 2007). For the single-neuron scenario and single values of the cost 
parameter, a graph-theoretic approach based on the “Hungarian” algorithm may provide improved 
performance (Dubbs et al. 2010). For five or more neurons, an incremental matching algorithm (Diez et 
al. 2012) is the most efficient approach currently available; the computational complexity (specifically, 
the number of computations required) scales approximately as 6M , independent of the number of 
neurons. 

Finally, the calculation of the time-resolved and timescale independent spike train distances is very 
straightforward since it involves only simple arithmetic. Computational complexity for the ISI-distance 
and the SPIKE-distance is ( )O M ; for SPIKE-Synchronization it is 2( )O M .  

A comprehensive compilation of links to code to calculate spike train distances can be found at 

http://wwwold.fi.isc.cnr.it/users/thomas.kreuz/sourcecode.html.  Additionally, software for the cost-based 
distances may be found at http://www-users.med.cornell.edu/~jdvicto/pubalgor.html, 
http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Dynamic/Edit/, and in the Spike Train Analysis 
Toolkit, at http://neuroanalysis.org/. The latter site also includes modules for information-theoretic 
calculations based on these distances. 

Cross-References/Related Terms 

Edit length distances 

Point processes 

Earth mover distance 

Metric space analysis of neural information flow 

Spike train 

Spike train analysis: overview 



Correlation analysis of parallel spike trains 

Statistics of inter-spike intervals 
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Figure Captions  
Figure 1. Schematic of the three timescale-independent measures. (a) The variables that define the ISI-
distance. The instantaneous interspike intervals are used as estimates of the local firing rate. (b) 
Additional variables employed in the definition of the SPIKE-distance, which is based on spike time 
differences. (c) Coincidence criterion for SPIKE-synchronization. The coincidence window of each spike 
is derived from its two surrounding interspike intervals. The two spikes on the left side are considered 
coincident since both lie in each other’s coincidence windows, while on the right there is no coincidence 
since the spike from the second spike train is outside of the coincidence window from the spike of the 
first spike train.  The quantity ,A B

ij  in the text (eq. (24)) is defined as , min( , )A B A B
ij i j   . Modified with 

permission from Fig. 1 of Satuvuori E, Malvestio I, Kreuz T: Measures of spike train synchrony and 
directionality In: Neuro-Math, Mathematical and Computational Neuroscience: Cell, Network and Data 
analysis (Springer INdAM series, 2018). 
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