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Supplemental Experimental Procedures 

Probabilistic Estimation of the Power Spectrum 
The model expressed by Eq. 1 relies on two assumptions: (a) the statistics of the observed images are 
spatially homogeneous; and (b) fixational eye movements do not depend on the stimulus.  For notational 
simplicity, we consider one spatial dimension, but the analysis applies equally to two dimensions. 

In general, given a zero-mean image ( )I x  and a trace of eye movements ( )t , the autocorrelation 
function of the retinal input is given by: 
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where the angle-bracket indicates averaging. 

We specify the eye movement process by a conditional probability  0 2 0 1( ) | ( ) .p t x t x       The 

autocorrelation function can then be expressed as: 
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Under the above two assumptions (statistical homogeneity of the images, and independence of fixational 
eye movements and the stimulus), we obtain: 
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where we substituted 0 1y x x   and 2 1Δx x x  . 

That is, 

      , , ,Is x c x q x  å  

where ( )Ic x  is the autocorrelation function of the observed images,  ,q x   is the probability that the eye 

moved by x  in the interval   (averaged over all starting positions), and å  is spatial convolution.  The 
power spectrum of the retinal stimulus, ( , )S k  , is given by the Fourier Transform of its autocorrelation 

( , )s x  .  Since the Fourier Transform replaces convolutions by products, 

 

 
     , ( , )S k I k Q k   (2)

where ( , )Q k   is the Fourier Transform of  ,q x  . 

In two dimensions, the same analysis holds, and the above equation applies, with the Fourier 
Transform variable k  interpreted as a spatial frequency vector ( ,x yk k ). 

 

Input Power Spectrum during Brownian Motion 
Eq. 2 enables closed-form estimation of the input power spectrum when the eye movement process is 
two-dimensional Brownian motion.  In this case, the probability distribution of retinal displacement obeys 
the diffusion equation: 
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where D  is the diffusion constant. 

For the initial condition that q  is concentrated at the origin at 0t  , the solution of Eq. 3 is well-
known: 
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This function has Fourier Transform 
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Substitution of ( , , )x yQ k k   from Eq. 5 into Eq. 2 gives the power spectrum of the retinal stimulus, as 

plotted in Figs. 2B – D.  To obtain the value of D  from the recorded eye movement data, we measured 
the empirical standard deviation of the eye displacement as a function of time, for intervals from 0 to 
500 ms.  We then chose the value of D  for which the standard deviation of the probability distribution 

( , , )q x y t  in Eq. 4, namely 2Dt , provided the least-squares best fit to the data.  This yielded 

40D   arcmin2/s. 

 

 

Influences of Fixational Eye Movements on Neural Responses 
The maps in Fig. 4B, C summarize the influences of fixational eye movements on the contrast sensitivity 
functions of retinal ganglion cells.  These functions are typically measured in physiological preparations 
which eliminate eye movements.  Eq. 2 allows estimation of how sensitivity measured with a retinally-
stabilized stimulus is affected by the presence of fixational eye movements. 

Let ( , )SF k   represent the contrast sensitivity function of a ganglion cell measured in the absence of 
eye movements.  With presentation of a stimulus ( )I k , this cell produces a response with power spectrum: 
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When the same image ( )I x  is examined in the presence of fixational eye movements, Eq. 2 gives the 

spectral density, ( , )S k  , of the resulting input to the retina.  Thus, the power spectrum of the cell's 
output will be given by: 
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Comparison between Eqs. 6 and 7 reveals that the impact of eye movements is summarized by the 
term ( , )Q k  , which multiplies the neuron's contrast sensitivity function.  Therefore, the contrast 
sensitivity of the neuron to any external stimulus I  during normal fixational instability is fully described 
by the function: 
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so that 
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Thus, DF  represents the neuron's sensitivity to static external images when the redistribution of power 
caused by fixational eye movements has been taken into consideration.  The maps in Fig. 4B and C were 
obtained by combining neurophysiological measurements of contrast sensitivity functions in macaques 
[24,31,32] with the eye movement function ( , )Q k   shown in Fig. 3B, as described in Eq. 8. 


