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SUMMARY

We perceive the world based on visual information acquired via oculo-
motor control1, an activity intertwined with ongoing cognitive processes2–4.
Cognitive influences have been primarily studied in the context of macro-
scopic movements, like saccades and smooth pursuits. However, our eyes are
never still, even during periods of fixation. One of the fixational eye move-
ments, ocular drifts, shifts the stimulus over hundreds of receptors on the
retina, a motion that has been argued to enhance the processing of spatial
detail by translating spatial into temporal information5. Despite their ap-
parent randomness, ocular drifts are under neural control6–8. However little
is known about the control of drift beyond the brainstem circuitry of the
vestibulo-ocular reflex9,10. Here, we investigated the cognitive control of oc-
ular drifts with a letter discrimination task. The experiment was designed to
reveal open-loop e↵ects, i.e., cognitive oculomotor control driven by specific
prior knowledge of the task, independent of incoming sensory information.
Open-loop influences were isolated by randomly presenting pure noise fields
(no letters) while subjects engaged in discriminating di↵erent letter pairs.
Our results show open-loop control of drift direction in human observers.
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RESULTS

To test the role of task knowledge in fixational eye movement (FEM)
generation, we examined how ocular drifts di↵ered in a discrimination task
in which the objects to di↵erentiate were known to the subjects in advance.
In separate blocks of trials, subjects were asked to report whether a letter
was an E vs. an F (EF trials) or an H vs. an N (HN trials). Letters were
presented at the center of gaze (1.5 deg in size), superimposed on a 1/f noise
mask. These letter pairs were chosen so that di↵erent features of the letter
were relevant to the discrimination. Importantly, 20% of the trials in each
block contained no target letter but only the 1/f noise (”letter-absent trials”),
allowing us to assay whether task knowledge could operate in the absence of
a visual cue (Figure S1A-C) and thus determine whether, as we hypothesize,
open-loop control is present.

Task knowledge influences ocular drift orientation

We hypothesize that the statistics of drift will depend on the details of
the visual task, namely, the letter pair to be discriminated. The broad basis
for this hypothesis is that drifts move the stimulus on the retina, and neurons
in the primary visual cortex tend to respond optimally when contours move
orthogonal to their preferred orientation. For the specific task studied here,
this leads us to theorize that the ratio of vertical drifts to oblique drifts
(lower-left to upper-right) will be greater for the E vs. F discrimination than
for the H vs. N discrimination.

This idea is explained in Figure 1A. Each of the letter-pair discriminations
depends on a single bar: for H vs. N, whether the central stroke is horizontal
or oblique; for E vs. F, whether a horizontal stroke is present at the bottom
of the letter. A simple cell will respond most strongly when its receptive field
orientation aligns with one of these elements and moves orthogonally across
it. Thus, vertical and oblique motions will support H vs. N discrimination
equally well (top of Figure 1A): the vertical motion will allow for optimal
detection of the horizontal stroke of the H, while the oblique (lower-left to
upper-right) motion will allow for optimal detection of the oblique stroke of
the N.

In contrast, in the E vs. F discrimination, the only critical element is hor-
izontal, and horizontally-oriented neurons will respond more strongly when
moving along the vertical orientation. In this case, vertical drifts should
elicit stronger cortical responses, facilitating discrimination, as illustrated in
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Figure 1A. We, therefore, would expect cognitive control to alter the distri-
bution of drift orientations, favoring vertical over oblique motion when the
subject engages in E vs. F discrimination.

Interestingly, a standard model of retinal ganglion cells (RGCs) leads to
the same prediction. The reason is that motions that cross a bar orthogonally
yields a shorter transit time than motions that cross a bar obliquely. This
di↵erence, coupled with the temporal properties of RGCs, generates a larger
predicted response for motions orthogonal to the critical stimulus features
than for oblique motions (see Figure S1D).

To test this prediction, we compared the amount of drift motion on the
two axes relevant for this task, vertical and oblique. We computed the ratio
of mean-squared drift velocities between the two axes, R = Vvertical/Voblique,
and then compared REF to RHN . Figure 1B shows the average REF and
RHN across all subjects (in black) and for each individual. Supporting our
hypothesis, on average across all trials types (i.e. with stimulus either present
or absent), REF was indeed larger than RHN (p < 0.05, one-tailed paired t-
test), suggesting cognitive control of ocular drift.

Previous work has suggested that ocular drift can be influenced by the
nature of the visual target6,11. These influences may include components
due solely to task knowledge (open-loop), and components that require a
sensory response to the stimulus (closed-loop). By analyzing trials in which
no stimulus was present – but in which the subject blueplanned an H vs. N
or an E vs. F discrimination, we isolated components that are necessarily
open-loop.

Figure 1C shows the results from this analysis. The variance ratio is esti-
mated from just the letter-present (left) or just the letter-absent (right) trials.
Both conditions show a trend towards more vertical drifts in the EF condi-
tion, but the di↵erence is significantly more prominent in the letter-absent
condition (p=0.0014 for letter-absent, p=0.06 for letter-present, p=0.018 for
comparison between conditions, one-tailed paired t-test in all cases because
our hypothesis specifies the direction of the change). Thus, we confirm that
task knowledge influences ocular drift orientation, and that this influence is
primarily via open-loop control.

Individual di↵erences in drift modulation
Figure 1 shows that, on average, observers change their drift behavior

according to the specific discrimination they engage in. Since drift charac-
teristics are also known to vary considerably across individuals, the question
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emerges of how each subject tuned their idiosyncratic pattern of eye move-
ments to the task. We therefore turned to a more comprehensive measure
of drift statistics than the ratio of two directional velocities. In keeping
with previous observations12, drift velocity distributions were well approxi-
mated by two-dimensional Gaussians (Figure S2A). We, therefore, summa-
rized these distributions by their covariances, visualized as covariance ellipses
(Figure 2A). This displays the dominant drift orientation as the major axis
of the covariance ellipse (indicated by the arrow’s orientation) and the de-
gree of anisotropy as its deviation from circularity (indicated by the arrow’s
length).

This analysis showed that three observers (S1, S2, S3) exhibited a dom-
inant orientation that was more nearly vertical in the EF trials, either in
direction, magnitude, or both. S6 exhibited a similar trend in the letter-
absent trials, although this change did not reach statistical significance. S4
showed very little change across trial types, whereas S5 exhibited a di↵erent
behavior, namely a dominant oblique orientation in the HN trials and a hor-
izontal orientation in the EF trials. We will show below that these seemingly
disparate behaviors can all be explained by a common visuomotor strategy
shared across subjects (see Figure 4).

To measure the overall influence of task on drift statistics in individual
observers, we measured the dis-similarity between covariance matrices in the
two conditions. This measure (standard for comparing 2 ⇥ 2 symmetric
matrices, see Methods) considers di↵erences in size, shape, and orientation,
and weighs orientation more strongly with increasing eccentricity. Figure 2B
shows the probability that this dis-similarity between HN and EF trials would
have arisen by chance, given the observed trial-to-trial variability of ocular
drift. Statistically significant di↵erences (p < 0.05) were present in 5 out of
the 6 subjects in the letter-present trials. Strikingly, statistically significant
di↵erences also occurred in the letter-absent trials (Figure 2) in 4 subjects.
Thus, our results indicate that most subjects change their drifts based on
prior knowledge of the discrimination to be made, and in most subjects, this
di↵erence is present in the letter-absent trials (open-loop) as well.

Conversely, by comparing drifts during the periods in the H trials and the
N trials when the letter is present, or by making the parallel comparison in
the EF blocks, we isolated components that are necessarily closed-loop. No
subject showed a di↵erence between FEM statistics in these comparisons.

We also found that there was no di↵erence in drift trajectory curvature
for HN vs. EF trials (Figure S2B) (two-tailed Wilcoxon signed rank test, p >
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0.05 within each subject; two-tailed paired t-test across subjects, p > 0.05).
Given our hypothesis, this was not surprising: while curvature increases in a
high-acuity task6, it does not measure drift direction.

Drift velocity distribution changes are independent of microsaccades and block-
to-block di↵erence

Microsaccades can be influenced by cognitive factors6,13,14, and indeed,
we found that microsaccade landing points di↵ered in HN vs. EF trials (see
SI & Figure S3). However, this was not the basis of the di↵erences in drift
statistics: repeating our analysis, restricted to drifts that were at least 100
ms away from any other type of eye movement (Figure S4A-D), as well as
excluding trials with any microsaccade, showed the same shift in drift statis-
tics between HN and EF trials reported in Figure 2, for both letter-present
and letter-absent trials. Thus, the cognitive influence on drift statistics is
distinct from any cognitive influence on microsaccades.

Our findings were also not due to block-to-block di↵erences in eye move-
ments independent of the letter pair to be discriminated. To show this, we
compared the di↵erence between HN and EF consensus ellipses with that of
surrogate data sets in which entire blocks were relabeled in a balanced ran-
domized fashion. Statistical significance (p < 0.05) was present in 4 subjects
in one or both of the two trial types (letter-present, letter-absent) (Figure S4E
& F).

Decoding single-trial trajectories

The above results identify specific task-driven influences on ocular drifts
during letter discrimination. Given that these influences occurred in most
subjects, we wondered whether the resulting di↵erence in velocity distribu-
tions su�ces to identify the task (HN vs. EF) from a single trial eye trajec-
tory. To focus on the shape di↵erence of covariance ellipses, we normalized
their size and computed their dis-similarities (Figure 3A & B). Subtle but
significant shape di↵erences of the normalized covariances were seen in HN
vs. EF conditions for letter-present (4 subjects) and letter-absent (2 subjects)
trials.

We built a decoder that compared the velocity covariance measured in
an individual trial to the normalized covariances estimated across all HN or
EF trials (omitting the decoded trial). As described above, covariances were
estimated from 300 ms of drifts during each trial and normalized. The de-
coder then assigned the held-out trial to the EF or HN block according to
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whether its covariance ellipse was more similar to the subject’s HN average,
vs. the EF average. Figure 3C shows that this ”similarity decoder” identified
the task (HN vs EF) from the drift trajectory at above chance levels when-
ever a subject showed a di↵erence in drift covariances between HN and EF
blocks, both in the letter-present trials or the letter-absent trials (Figure 3B).
Very similar results were obtained by decoding the trials by maximum like-
lihood, i.e., by comparing the likelihood of a given trial’s trajectory, given
the consensus ellipse for each trial type. Thus, in the subjects that exhibit
cognitive drift modulations, it is possible to predict with better-than-chance
accuracy the task that the subject prepares to tackle just by looking at the
drift covariances.

A shared transformation across subjects

The task-dependent changes in drift statistics seen in Figure 2 vary across
subjects, both in quality and magnitude. We hypothesized that there might
be a single underlying transformation that accounts for all subjects’ changes
in drift velocity distributions: for the vertical dominance in EF trials in
some subjects, and the oblique dominance in HN trials in others, and for
the changes in anisotropy of the velocity signals (Figure 3A & B). That
is, we sought a single coordinate transformation, which, when applied with
a subject-specific strength, would account for the change from HN to EF
normalized covariance ellipses in all subjects. Formally, this corresponds (see
Methods) to seeking a common coordinate transformation L and subject-
specific strengths sk, so that the coordinate transformations eskL account for
the transformations between the HN and EF ellipses. This transformation
L could produce a combination of rotation and stretching. The search for L
was done by minimizing the dis-similarity between covariance ellipses after
applying this transformation.

Figure 4A shows the inferred shared transformation of the velocity dis-
tribution by progresssively applying graded amounts of this transformation,
using the HN ellipses of subjects S1 and S5 as a starting point. This shows
that the shared transformation encompasses two behaviors: (1) If the covari-
ances for the HN condition are close to isotropic (as for S1, top row of panel
A), the full transformation leads to a covariance ellipse which has a dominant
vertical orientation for the EF condition. (2) If the covariances are strongly
anisotropic in the oblique orientation (as for S5, bottom row of panel A), the
ellipse does not attain a vertical orientation and passes through a transitional
stage with a nearly horizontal dominant orientation — accounting for this
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subject’s data in Figure 2A. Interestingly, irrespective of covariance patterns,
application of this common transformation always increases the ratio of hor-
izontal/oblique motion (Figure 4B). This holds even when graded amounts
of the transformation yields an ellipse with a dominant horizontal direction,
as in the transitional stages in the bottom row of Figure 4A.

Moreover, application of the shared transformation in varying degrees
(Figure 4C) also accounts for the range of findings in all subjects who ex-
hibited significantly di↵erent drift behaviors between in HN and EF blocks,
including S5, in which the dominant direction in the EF condition is hori-
zontal.

To understand whether top-down cognitive influences on eye drifts re-
sults in similar changes, we applied the same transformations to the cor-
responding letter-absent trials. Figure 4D shows the dis-similarity changes
after applying the transformation, and Figure 4E shows the transformation
strength applied. Interestingly, this shared transformation (along with the
same subject-dependent strengths sk) e↵ectively decreased the dis-similarity
in most subjects, as shown in Figure 4D. This implies that the task-dependent
change is at least partially independent of visual stimulation. Thus, despite
the large individual variability, there is a common open-loop strategy for
controlling drift velocity distributions according to the letter pair to be dis-
criminated.

DISCUSSION

FEMs are an essential part of the machinery that actively collects and
process visual information during fixation. It is known that FEMs are modu-
lated by the general characteristics of a visual task — for example, they slow
in high-acuity tasks, and this maps higher spatial frequencies into the retina’s
temporal sensitivity range6. Here we found a qualitatively di↵erent level of
control: ocular drifts are influenced by the detailed characteristics of visual
stimuli, and this influence can occur in an open-loop fashion based on specific
task knowledge. When discriminating between two known-in-advance letters,
subjects alter their drifts to emphasize orientations orthogonal to the distin-
guishing features of the letter pairs. Importantly, these e↵ects were observed
in most subjects even when no target was present, indicating the influence
of task knowledge independent of visual information. In addition, this open-
loop influence was comparable or even larger than the closed-loop e↵ect (see
Figure 2B & Figure 3B). Based on the modulation in individual trials, we
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showed that it is possible to identify the ongoing task, i.e., the letter pair
being discriminated. Finally, we found that the drift velocity di↵erences be-
tween the two kinds of letter-pair trials (HN, EF) could be accounted for by
a shared transformation of drift velocity distributions, indicating a common
strategy across subjects despite well-known idiosyncratic di↵erences in drift
characteristics.

The level of FEM cognitive control we discovered is highly specific and
indicative of its possible purpose: increasing the luminance transients driven
by the stimulus features that are task-relevant. Independently, the top-down
control of microsaccades helps spatial selection within the foveal field, select-
ing the portion of the stimulus that is most relevant for the task. Together,
both benefit visual perception by using cognitive strategies, knowledge, and
experience to better acquire visual information.

It is worth noting that our findings indicate a commonality of drift control
across subjects, despite the intersubject variability in FEMs during letter
discrimination. Specifically, speed of drifts and speed change vary across
subjects, and some subjects frequently make microsaccades, whereas others
do so only rarely. These di↵erences may in part reflect variation in subjects’
eye structure. For example, di↵erent densities of the cone mosaic15 could
favor di↵erent magnitudes of drifts. Although it remains unclear what exactly
determines the characteristics of each drift period, our data show a within-
subject dependence of drift statistics based on the specific task and that the
individual di↵erences can be understood in terms of a shared transformation
of the coordinates in which drifts are controlled.

Our findings concerning the influence of cognitive factors on FEMs need
to be integrated into current understanding of neural mechanisms of eye
movement control. Since amplitudes of microsaccades and saccades form a
continuum12,14,16,17, the obvious hypothesis is that cognitive influences over
microsaccades and saccades travel along the same pathways. Several stud-
ies have probed the neural basis of how saccade and microsaccade genera-
tion depend on visual cues18–20, but little is known about how microsaccade
generation and drift generation interact. Additionally, since alterations of
fixational eye movements are present in a range of ophthalmological21 and
neurological disorders22,23, characterization of FEMs and their control has
the potential to be a clinical diagnostic tool.

Lastly, our findings raise the question of which brain structures are in-
volved in open-loop control of drifts. Drift control is likely to involve the
same cortical18,19,24,25 and cerebellar10,26 regions that are involved in control
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of fixation. But one cannot rule out direct cognitive control of brainstem
circuitry. Critically, to account for our findings, the control pathway must
provide task-specific directional information.
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FIGURE LEGENDS

Figure 1. Schematic simple cell responses as a function of drift
direction and human drift statistics. (A) Time course of the response
of a model V1 simple cell during drifts. Eye motion was simulated as vertical
(bottom to the top) or oblique (lower left to upper right). Schematics of
the firing profiles are illustrated. Note that the two directions of drift yield
signals that discriminate equally well between H and N (left). But to dis-
criminate between E and F, vertical drift yields a stronger signal than oblique
drift (right). (B) Comparison of measured vertical and oblique drift veloc-
ities. The ordinate is the ratio of the mean-squared velocity in the vertical
direction to the mean-squared velocity orthogonal to the oblique stroke of the
N estimated across all trials. p=0.03. (C) Same analysis as B, but separat-
ing the trials with letter-present and letter-absent. p=0.06 for letter-present,
p=0.0014 for letter-absent, p=0.018 for comparison between letter-present
and letter-absent conditions. One-tailed paired t-tests in (B) and (C). See
also Figure S1.
Figure 2. Individual drift velocity pattern depends on stimulus
set. (A)Drift velocity covariance ellipses from HN trials(blue) and EF trials
(red). Top: letter-present trials. bottom: letter-absent trials. Covariance el-
lipses cover 95% of the probability distribution of drift velocities; the arrow’s
orientation is the major axis of the ellipse and its length is the anisotropy,
measured as the square of the eccentricity. (B) Dis-similarity between HN
and EF covariance ellipses in each subject. Green: letter-present trials. Or-
ange: letter-absent trials (Error bars: 1 standard deviation. * p<0.05, **
p<0.01). See also Figure S2, S3, and S4.
Figure 3. Decoding single trials via their drifts. (A & B) Analysis
of Figure 2 applied to covariance ellipses after normalizing to the same total
area. In Panel A, the direction of the arrows indicate the dominant orien-
tation of drift velocities, and their lengths indicate the degree of anisotropy.
(C) Drifts from 300-ms periods of individual trials were decoded into task
(HN vs. EF blocks) based on the similarity of the single trial covariance to
the covariance estimated form all trials of each condition. The panel shows
the performance of the similarity decoder across subjects; * indicates fraction
correct higher than chance (p < 0.05) by binomial statistics.
Figure 4. A common control strategy despite individual di↵erences
in drift characteristics. (A) Visualization of the shared transformation
by applying graded amounts of the transformation to the HN ellipses from
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subject 1 (top row) and subject 5 (bottom row). Arrows indicate the domi-
nant direction of the drift velocities, and their lengths indicate the degree of
anisotropy. (B) The ratio of the mean-squared velocity in the vertical direc-
tion to the mean-squared velocity orthogonal to the oblique stroke of the N
in each graded transformation in panel A. (C) HN (blue) and EF (red) co-
variance ellipses for each subject before and after applying varying amounts
of the shared transformation. See Methods for details. (D) Dis-similarities
of HN and EF covariance ellipses before and after applying the shared trans-
formation. Left: target present trials. Right: target absent trials. (E) The
amount of transformation applied in each subject.
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STAR METHODS

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and

will be fulfilled by the lead contacts, Yen-Chu Lin (yel2005@alumni.weill.cornell.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Anonymized data created for the study are available in a persistent reposi-

tory upon publication (Data Type: human eye movement tracing; Repository
Name: Zenodo; DOI: https://doi.org/10.5281/zenodo.7647536). Any addi-
tional information required to reanalyze the data reported in this paper is
available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects
6 healthy subjects participated in the study (4 females and 2 males; av-

erage age: 27; age range: 22–31). Subjects were naive about the purpose of
the study, were compensated for their participation, and provided informed
consent. To qualify, subjects had to possess at least 20/20 acuity in the
right eye (after correction if needed), as assessed by correct identification of
at least 75% of the optotypes in the 20/20 line of a standard Snellen test.
All procedures were approved by the Research Subjects Review Board at the
University of Rochester and the Institutional Review Board of Weill Cornell
Medical College.

METHOD DETAILS

Apparatus
Stimuli were displayed on an LCD monitor (Acer Predator XB272) at a

refresh rate of 240 Hz and spatial resolution of 1920×1080 pixels and a back-
ground mean luminance of 18 cd/m2. Subjects performed the task monoc-
ularly with their right eye; the left eye was patched. A dental-imprint bite
bar and a headrest were used to minimize head movements. The movements
of the right eye were measured by means of a custom digital Dual-Purkinje
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Image (dDPI) eye-tracker27, a system with subarcminute resolution and in-
ternal noise of 0.07 arcsec28,29. The eye position signals were sampled at 340
Hz.

Task & stimuli
Healthy human subjects performed two-alternative letter discrimination

tasks, with stimuli presented on an LCD monitor in a dark room. Blocks of
trials (each consisting of 50-100) were of two types, one in which they dis-
criminated H vs. N and one in which they discriminated E vs. F. We refer to
these as HN and EF trials, respectively. Blocks were presented in interleaved
order and subjects were informed of the letter pair to be discriminated at
the start of each block. In all blocks, each letter was presented in 40% of the
trials, and 20% of trials contained only noise. Letters were in Helvetica font
and subtended approximately 1.5�. They were presented in positive contrast
and superimposed on a 2�square patch of 1/f noise (f from 1 to 16 cycles
per degree), with a root-mean-squared contrast of 0.195 (see Figure S1C for
examples).

To keep task di�culty comparable across subjects and over time, we
manipulated the contrast of the letter so that performance was 75% in
preliminary trials on each day. The same contrast was used for the HN and
EF trials.

Subjects initiated the trial with a button-press, which triggered the ap-
pearance of fixation point, a small white square. Once the subject maintained
fixation of the center within 0.5 deg for 600 ms, the trial began with the pre-
sentation of stimulus at the center of the display. Contrast (letter and noise)
was ramped up linearly for 1 sec, held at a plateau for 500 ms, and then o↵
(see Figure S1B). Subjects had to respond within 5 seconds after the stimulus
reached plateau by a button-press.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis
Data analysis began with a pre-processing stage in which trials were

parsed into periods of microsaccades and drifts, along with rejection of tri-
als with poor tracking, artifacts, blinks, or large saccades. Following this,
we carried out several quantitative analyses of drifts and microsaccades and
their relationship to the task, visual stimuli, and performance.

The preprocessing stage uses standard techniques reported in previous
publications6,13, and is summarized here. The raw position signal on each
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channel (horizontal and vertical) was first filtered and di↵erentiated by means
of a Savitzky-Golay filter with cuto↵ frequency at approximately 30 Hz,
and an e↵ective smoothing window of 20 ms. The eye trajectory was then
parsed into periods of large saccades, microsaccades, and fixational drifts.
As in previous publications using the DPI eye-tracking method, movements
with maximum speed higher than 3�/sec and amplitude larger than 0.5�were
classified as saccades. The amplitude was defined as the distance between
the locations at which eye velocity became greater (onset) and lesser (o↵set)
than 2�per sec. Microsaccades were defined as saccades with amplitudes
smaller than 30 arcmin. The segments between saccades or microsaccades
were labeled as periods of fixational drifts. Trials with large saccades and
with eye movements that moved fixation beyond the bounds of the stimulus
were discarded. See Table S1 for the summary of the numbers of trials given
conditions in all six subjects.

To select trials for FEM analysis, we excluded trials containing blinks
or artifacts from head movements or the eye tracker. All occurrences of
microsaccades during the entire stimulus presentation (including the contrast
ramp) were analyzed. For analysis of drift, we further excluded trials with
drift velocities over 5 deg/s, so that the analysis would not be contaminated
by small undetected microsaccades. For each valid trial, we then extracted
the first available 300 ms period that did not include times within 50 ms of a
saccade or microsaccade, beginning with the time at which stimulus contrast
was maximal. The exclusion of times near saccades or microsaccades was to
control for possible artifacts in the estimation of the instantaneous in velocity
of ocular drift resulting from these rapid movements. All such 300 ms periods
of drifts from valid trials were then pooled together for further drift analysis.

Ocular drift analysis. To compare two drift velocity distributions, we first
estimated drift velocity covariance ellipses from all trials, and then quantified
the dis-similarity between conditions as described below. The best-estimate
ellipses illustrated (e.g., in Figure2A & Figure 3A) were 95% probability
contours.

Statistical significance of the di↵erence in covariances was determined by
comparing the observed di↵erence in covariances to an empirical null dis-
tribution. The empirical null distribution was created from 1000 surrogate
datasets, each generated by randomly relabeling trials as HN or EF, regard-
less of the actual stimulus. We then computed the dis-similarity between
the covariance ellipses derived these surrogate datasets, and determined the
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fraction of the surrogate dis-similarity values that exceeded the dis-similarity
value computed from the actual data.

To include the e↵ects of block-to-block variations in eye movements (Fig-
ure S4E & F), surrogate datasets were computed by balanced block relabeling
of half of the blocks (6-11 blocks in each condition, 1000 draws).

Comparison of shapes of 2-D distributions. To quantify the di↵erence in the
shape of two-dimensional distributions between conditions, e.g., between drift
velocity distributions in HN and EF trials (Figures2B & 3B), we proceeded
as follows. We first parameterized the shape of each distribution by fitting
it with a two-dimensional Gaussian. Since the shape of a two-dimensional
Gaussian is determined by its covariance matrix, we quantified the di↵erence
in shape by a standard distance on the set of two-dimensional symmetric
positive definite real matrices30. For covariance matrices C1 and C2, this
distance is defined by

d0(C1, C2) =
p

log2(�1) + log2(�2) (1)

where �i are the two eigenvalues of C�1
1 C2. Note that the distance is zero

only if the �i are both 1, i.e., if C1 = C2.
The distance is appropriate for comparing shape since it takes into the

account size di↵erences, eccentricity di↵erences, and orientation di↵erences,
and considers orientation more strongly when the shape becomes more eccen-
tric. In addition, the distance remains unchanged if both covariance matrices
are multiplied by the same scale factor or rotated by the same amount.

To compare 2-D distributions after normalization by size (Figure3B), the
covariance matrices of the two distributions were each divided by the square
root of their determinants (i.e., the areas of the corresponding ellipses) before
computing the above distance.

Curvature (k) of drift trajectories on individual trials was determined
from the first and second derivatives of the eye position (x, y) at each time,
using code kindly provided by J. Intoy and used in Intoy et al.6.

k =
|x0

y
00 � y

0
x
00|

(x02 + y02)3/2
(2)

Microsaccade analysis. To study the properties of microsaccades, we com-
pared the scatter of landing position distributions between HN and EF trials.
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All the microsaccades made during stimulus display were analyzed. To char-
acterize landing position distributions (FigureS3), we found the minimum-
area ellipse covering 95% of the landing points31,32. To compare landing
point locations, we computed the Euclidean distance between the centers of
these ellipses. Statistical significance of these measures was determined by
comparison to an empirical null distribution computed by trial shu✏ing (100
draws).

Decoding
We tested two decoding strategies to identify single-trial trajectories based

on the task-driven influences, a similarity decoder and a maximum likelihood
decoder. For both decoders, the HN and EF consensus covariance ellipses
were estimated by pooled drift segments but omitting the trials to be de-
coded.

For the similarity decoder, the single-trial covariance was estimated based
on 300 ms of drift segment. The decoder then assigned the trials based on
the least distance (eq.1) between the normalized single-trial covariance and
the normalized consensus HN or EF covariances.

The maximum likelihood decoder identified single-trial trajectories based
on the estimated log-likelihood of the single-trial drift velocities (~v) emerging
from the distribution of either the HN or EF velocity distribution. This in
turn was determined by considering each of the measured velocities in the
trial to be decoded as independent draws from a Gaussian with the consensus
covariance matrix (CHN or CEF ). For example, the probability that a velocity
~vj is drawn from the HN distribution is given by

PHN(~vj) =
1

2⇡
p
det(CHN)

e

�~v
T

j
C
�1
HN

~vj

2 , (3)

so the log likelihood for a velocity sequence ~v = {~v1, ...,~vN} is given by

1

N
log p(~v|CHN) = � log (2⇡)� 1

2
log (det(CHN))�

1

2N

X

j

(~vT
j
C

�1
HN

~vj). (4)

Identifying a shared coordinate transformation underlying changes in covari-
ance ellipses

As described above, the strategy for comparing the drift velocity distri-
butions in HN vs. EF conditions is to compare their normalized covariances
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CHN and CEF , which was done by computing C
�1
HN

CEF and then determin-
ing the distance between this matrix and the identity matrix. To test the
possibility that the di↵erent covariance changes observed in each subject re-
sulted from the same basic coordinate transformation, but with each subject
applying it in di↵erent amounts, we proceeded as follows. First, we note that
a coordinate transformation Z, where Z is a potential combination of rota-
tion, stretching, and scaling, results in a transformation of the covariance
CHN to Z

T
CHNZ. To formalize the idea of varying amounts of the same

coordinate transformation, we define the infinitesimal of the transformation
Z as a transformation L for which Z = e

L. In this way, the set of coordi-
nate transformations e

sL can be viewed as the transformations that result
from applying Z with variable strength: the original Z = e

sL for s = 1, and
Z

2 = e
sL for s = 2, the result of applying the transformation Z twice. More

generally, esL is the result of applying the transformation Z s times, and e
sL

is meaningful even when s is not an integer.
With this in mind, we sought a coordinate transformation L common to

all subjects, along with values of the strengths sk specific to each subject k,
that minimized the total of the squares of the distance between the subject’s
observed covariances CHN,k and the subject’s observed covariances CEF,k,
after transformation of CHN,k by e

skL. To treat the two conditions equally,
we implemented this by applying half of the transformation to the HN ellipse
(e

s
k

2 L)TCHN,k(e
s
k

2 L) and half of the inverse transformation to the EF ellipse

(e
�s

k

2 L)TCEF,k(e
�s

k

2 L), and then carried out a nonlinear optimization that
minimized the sum of squares of the distances defined in eq.1 between them
(the ”residual dis-similarity”). The results of this calculation are shown in
Figure 4C & D. Since the overall size of s and L trade o↵, we added the
requirement that tr(LT

L) = 1.
A challenge in evaluating the statistical evidence for a shared transforma-

tion is the lack of an a priori model for the repertoire of drift patterns that
a subject can make. We therefore resorted to an exceedingly conservative
hypothesis: that each subject’s repertoire of covariances for each condition
is limited to the anisotropy we observed, and that the ability of a subject
to shift their covariance was limited to the observed changes between tasks.
Based on this hypothesis, we generated surrogate data in which covariance
patterns were randomly associated with each task. We then used these sur-
rogate datasets to assess the likelihood that a shared transformation would
reduce the dis-similarity by the amount we observed in the actual data (Fig-
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ure 4D). Specifically, surrogate datasets were generated by random applica-
tion of three manipulations within each subject: swapping the covariance
ellipses between the two conditions, rotation of the two ellipses by the same
amount, and mirroring the ellipses across the y-axis. For each surrogate
dataset, we determined the shared transformation and then computed the
reduction in dissimilarity that it accounted for. Remarkably, even with this
exceedingly conservative approach, the observed consistency across subjects
(i.e., the reduction in dis-similarity due to the shared transformation deter-
mined from the actual data) was found in only 14% of the surrogate data –
strongly suggesting the presence of a shared transformation, given the overly
stringent nature of the test.

A standard model of RGCs
In Figure S1D, we simulate the neuronal activity elicited in the early

visual pathway by the retinal stimuli using previous published spatiotemporal
receptive field models of RGCs33–37. These models specify both spatial and
temporal filtering properties at the LGN level that transform the retinal
input into a firing rate. The receptive field model (K) contains the center and
surround, each with its own separable spatial and temporal components36.

K(x, y, ⌧) = Fc(x, y)Gc(⌧)� Fs(x, y)Gs(⌧) (5)

The center and surround spatial profiles Fc or Fs are described by a 2-D
circular Gaussian distribution:

F (x, y) = Ce
�(x2+y

2)

2⇡�2 (6)

The parameters (C & �) were taken from experimental recordings in
macaque monkeys and typically di↵er for center and surround35. Following
the work of Victor in 198737 , we use a series of low-pass and high-pass stages
with transfer function to describe the temporal filtering properties.

G̃(!) = Ae
�i!D

✓
1� Hs

1 + i!⌧s

◆✓
1

1 + i!⌧L

◆NL

(7)

The parameters (A,D,Hs, ⌧s, ⌧L, NL) were taken from experimental record-
ings in macaque monkeys and typically di↵er for center and surround33,34.
See Lin (2022) for more details of the model38.
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Figure 1: Schematic simple cell responses as a function of drift direction and

human drift statistics. (A) Time course of the response of a model V1 simple cell
during drifts. Eye motion was simulated as vertical (bottom to the top) or oblique (lower
left to upper right). Schematics of the firing profiles are illustrated. Note that the two
directions of drift yield signals that discriminate equally well between H and N (left). But
to discriminate between E and F, vertical drift yields a stronger signal than oblique drift
(right). (B) Comparison of measured vertical and oblique drift velocities. The ordinate
is the ratio of the mean-squared velocity in the vertical direction to the mean-squared
velocity orthogonal to the oblique stroke of the N estimated across all trials. p=0.03.
(C) Same analysis as B, but separating the trials with letter-present and letter-absent.
p=0.06 for letter-present, p=0.0014 for letter-absent, p=0.018 for comparison between
letter-present and letter-absent conditions. One-tailed paired t-tests in (B) and (C). See
also Figure S1.

23



Figure 2: Individual drift velocity pattern depends on stimulus set. (A)Drift
velocity covariance ellipses from HN trials(blue) and EF trials (red). Top: letter-present
trials. bottom: letter-absent trials. Covariance ellipses cover 95% of the probability
distribution of drift velocities; the arrow’s orientation is the major axis of the ellipse and
its length is the anisotropy, measured as the square of the eccentricity. (B) Dis-similarity
between HN and EF covariance ellipses in each subject. Green: letter-present trials.
Orange: letter-absent trials (Error bars: 1 standard deviation. * p<0.05, ** p<0.01). See
also Figure S2, S3, and S4.
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Figure 3: Decoding single trials via their drifts. (A & B) Analysis of Figure 2
applied to covariance ellipses after normalizing to the same total area. In Panel A, the
direction of the arrows indicate the dominant orientation of drift velocities, and their
lengths indicate the degree of anisotropy. (C) Drifts from 300-ms periods of individual
trials were decoded into task (HN vs. EF blocks) based on the similarity of the single trial
covariance to the covariance estimated form all trials of each condition. The panel shows
the performance of the similarity decoder across subjects; * indicates fraction correct
higher than chance (p < 0.05) by binomial statistics.
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Figure 4: A common control strategy despite individual di↵erences in drift

characteristics. (A) Visualization of the shared transformation by applying graded
amounts of the transformation to the HN ellipses from subject 1 (top row) and subject
5 (bottom row). Arrows indicate the dominant direction of the drift velocities, and their
lengths indicate the degree of anisotropy. (B) The ratio of the mean-squared velocity in the
vertical direction to the mean-squared velocity orthogonal to the oblique stroke of the N
in each graded transformation in panel A. (C) HN (blue) and EF (red) covariance ellipses
for each subject before and after applying varying amounts of the shared transformation.
See Methods for details. (D) Dis-similarities of HN and EF covariance ellipses before and
after applying the shared transformation. Left: target present trials. Right: target absent
trials. (E) The amount of transformation applied in each subject.
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