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First published January 24, 2007; doi:10.1152/jn.00713.2006. Using
drifting compound grating stimuli matched in energy and frequency
spectrum, we previously showed that neurons in the primary visual
cortex (V1) were tuned to line-like, edge-like, and intermediate
one-dimensional features. Because these compound grating stimuli
were drifting, allowing for potential interaction between shape and
motion, we examine here the dependence of V1 feature tuning on drift
speed. We find that the feature selectivity and specificity of individual
V1 neurons strongly depend on speed. A simple model explains these
observations in terms of an interaction between linear filtering by the
receptive field and the static nonlinearity of spike threshold, embed-
ded in a recurrent network. Although the speed-dependent behaviors
in single V1 neurons preclude their acting as extractors of one-
dimensional features, the population as a whole retains a representa-
tion of a full suite of features.

I N T R O D U C T I O N

Lines and edges are salient features and their detection and
discrimination is implicated in processes fundamental to object
vision, including image segmentation, contour continuation
(Field et al. 1993, 2000), and completion (Kovacs and Julesz
1993). Various extrastriate visual cortical areas were previ-
ously physiologically identified as candidates to process as-
signment of boundary ownership, contour integration, figure–
ground segregation (for a thorough review, see, e.g., von der
Heydt 2003), all of which depend on low-level local feature
extraction and manipulation. The local image processing that
takes place in the primary visual cortex (V1) appears to receive
global context by top-down modulatory feedback from extra-
striate areas that extract texture boundaries (Zipser et al. 1996)
or collinear contours (Kourtzi et al. 2003; Polat et al. 1998).
However, bottom-up feature processing might already begin in
earnest at the earliest cortical stage of visual processing: we
provided evidence in our first study of this subject (Mechler et
al. 2002) that typical neurons of the primary visual cortex in
the anesthetized primate already exhibit “feature tuning” to
optimally oriented one-dimensional spatial profiles, including
lines and edges. Although in that study we used drifting
stimuli, we did not examine how those results might have
depended on the drift velocity of the stimulus.

The possible dependence of feature tuning on velocity is
important from several points of view. First, V1 neurons can be
considered to signal the presence of these features only if they
do so in a velocity-independent way. Second, psychophysical
studies show various degrees of degradation of visual perfor-
mance with increasing speed (Burr et al. 1986; Morgan and

Castet 1995). Finally, an increasing number of neurophysio-
logical studies suggest, contrary to previous assertions (Unger-
leider and Haxby 1994) of parallel processing of shape and
motion, that these two streams of scene analysis are not indepen-
dent at various stages of extrastriate visual processing (Desimone
and Schein 1987; Tolias et al. 2005). Our study fits in this
context by seeking to elucidate the velocity dependence of how
single V1 neurons and their ensembles represent the stimulus
attributes that determine one-dimensional spatial features.

The view that single neurons function as feature detectors,
which would imply speed invariance among other characteris-
tics, enjoyed early but not uncontroversial popularity (Barlow
1972; Lettvin et al. 1959) and, when applied to the primary
visual cortex, initially appeared to gain support from influential
early experiments (Hubel and Wiesel 1962) on simple cells.
However, decades of work consistently failed to turn up direct
experimental evidence for the single-neuron-as-detector view
in any cortical area examined. The evidence accumulated in
V1, reviewed most recently by Carandini et al. (2005), instead
favors the current consensus, according to which V1 neurons
represent banks of variously tuned nonlinear filters that adapt
to local contrast energy. The “adaptive filter” view is validated
by results obtained mostly with stimuli confined to a narrow
frequency band such as gratings and Gabor patches. However,
salient features such as lines and edges are defined by phase
coherences across a range of spatial frequencies (Morrone and
Burr 1988). In fact, natural stimuli (which are natural because
of, among other factors, their highly nonrandom local phase
spectra) highlighted the weaknesses of the current adaptive
filter model by pointing to the need for the incorporation of a
pattern-selective modulatory influence (Felsen et al. 2005). In
the absence of a vetted nonlinear model of sufficient accuracy
(Rust and Movshon 2005; Wu et al. 2006), the sensitivity of
cortical neurons to features defined by phase cannot be pre-
dicted from their sensitivity to sinusoidal gratings or Gabor
patches, but rather, must be determined experimentally.

To this end, we use a family of compound gratings (whose
spatial frequencies span a sevenfold range), parameterized by
phase congruence (Morrone and Burr 1988). The stimuli are
matched in spectrum and energy, to eliminate any confounding
effects of spatiotemporal filtering on feature tuning. Using this
stimulus set, we showed earlier (Mechler et al. 2002) that
typical V1 neurons have nonlinearities that allow them to
exhibit “feature tuning” to optimally oriented line-like, edge-
like, and intermediate one-dimensional spatial profiles. Here
we find that speed strongly influenced specificity and depth of
feature tuning of individual neurons. These speed-induced
changes in feature tuning were comparable in simple cells and
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complex cells. We also find that, although the feature tuning of
individual V1 neurons is strongly speed dependent, the popu-
lation as a whole retained a full suite of feature analyzers.

Finally, we analyze a simple model to see how well feature
tuning is explained, in qualitative terms, by the known basic
properties of V1. We consider a recurrent network model for
V1 that was proposed to account for the range of behaviors
across the simple–complex gamut observed in response to
single gratings (Chance et al. 1999). In the model, feature
selectivity essentially arises from the interaction between the
phase-sensitive linear kernel and the static nonlinearity of the
spike threshold. This “iceberg” effect can be either diluted by
a phase-insensitive recurrent pooling or compounded by phase-
biased recurrent pooling or inhomogeneity in the network. We
show that this model accounts for several aspects of responses
to compound gratings that we observed experimentally: at each
speed, there is a full representation within the V1 population of
the entire space of one-dimensional features; there is a com-
parable degree of feature tuning at different speeds and in
simple and complex cells; moreover, this tuning has a compa-
rable degree of speed dependence.

Our results are qualitatively consistent with the consensus
view that V1 neurons are adapting nonlinear filters. Specifi-
cally, our experimental observations constitute direct evidence
against the possibility that individual orientation-selective V1
simple cells function as detectors of oriented lines or edges.
Rather, it appears V1 neurons provide an ensemble with
selectivity and coding properties that depend dynamically on
the stimulus.

M E T H O D S

Physiological preparation

Standard acute preparation techniques were used for electrophysi-
ological recordings from single units in the primary visual cortex (V1)
of the primate (cynomolgus monkeys, Macaca fascicularis) previ-
ously described in detail (Mechler et al. 1998, 2002). All procedures
were in accordance with institutional and National Institutes of Health
guidelines for the care and experimental use of animals.

In brief, extracellular recordings were made with tetrodes (quartz-
coated platinum–tungsten fibers; Thomas Recording, Giessen, Ger-
many) placed in the occipital cortex (near Horsley–Clark 14 mm
posterior, 14 mm lateral) of 14 adult animals under general opiate
(sufentanil) anesthesia and muscle paralysis. The analogue signal
from each tetrode channel was amplified, filtered (0.6–6 kHz), and
digitized (25 kHz). Multiple single units were isolated by cluster
analysis of spike waveforms initially performed on-line (Autocut,
DataWave Technologies) then off-line (custom software; Reich
2001). Isolation criteria included stability of principal components of
spike waveforms and a 1.2-ms minimum interspike interval consistent
with a physiologic refractory period. Spike times were identified to
0.1-ms precision. Recording tracks and the laminar position of record-
ing sites were anatomically reconstructed using standard histological
techniques (Mechler et al. 2002).

Visual stimulation

The pupils were dilated with topical atropine and covered with
gas-permeable contact lenses (Metro Optics, Houston, TX). Artificial
pupils (2 mm) and corrective lenses were used to focus the stimulus
on the retina. Optical correction was optimized by the aid of responses
of isolated single units to high spatial frequency visual stimuli.

Foveae and the receptive fields of isolated neurons were mapped on
a tangent board. Visual stimuli were generated by a special-purpose
stimulus generator (Milkman et al. 1978, 1980) under the control of a
PDP-11/93 computer and displayed on a Tektronix 608 monochrome
oscilloscope (green phosphor, 150 cd/m2 mean luminance, 270.32 Hz
frame refresh). Luminance of the display was linearized with lookup
tables in the range 0 to 300 cd/m2. At the 114-cm viewing distance of
the animal, the stimuli appeared in a 4° circular aperture on dark
background.

The receptive fields of isolated single units fell between 3 and 6°
eccentricity and were always fully covered by the stimulus patch. The
receptive fields were characterized in a standard way using drifting
sine gratings: tuning was measured first for orientation, then for
spatial frequency, and finally for temporal frequency, each parameter
optimized for subsequent tuning measurements. The contrast response
function was measured using the optimal sine grating. With tetrodes,
simultaneous isolation of two to eight (on average, three) single units
per site was routine. To keep experimental time within practical
limits, receptive field characterization (i.e., finding the optimal grat-
ing) was limited to the most responsive one or two units.

In each trial of the main experiment, taken at a fixed stimulus drift
velocity, each of eight compound gratings, each of the four compo-
nent gratings, and one blank stimulus was presented for 4 s in a
randomly interleaved sequence. Trials were rerandomized and re-
peated (typically 12 to 25 times) until a target signal-to-noise ratio
was obtained for at least one isolated unit. The experiment was then
repeated with fourfold increase in the drift speed (by changing the
temporal but not the spatial fundamental frequency).

Compound gratings

Compound gratings were of near-optimal orientation and drifting in
the optimal direction for the V1 neurons. As in our previous study
(Mechler et al. 2002), each of our compound-grating stimuli was a
superposition of the first four odd harmonics of a common fundamen-
tal, each with a contrast inversely proportional to the harmonic
number. Here, a brief formal description of the stimuli follows.

Let � denote the spatial frequency; f, the temporal frequency; and C,
the Michelson contrast of the fundamental component. Thus formally,
the spatiotemporal light intensity variation around its mean for the mth
component grating is given by

Gm�x, t; v, f, �� �
C

�2m � 1�
cos ��2m � 1�2��vx � ft� � ��

m � �1, 2, 3, 4� (1)

and, for a compound grating, summing the above components, it is
given by

W�x, t; v, f, �� � �
m�1

4

Gm�x, t; v, f, ��

� C �
k��1,3,5,7�

1

k
cos �2�k�vx � ft� � �� (2)

The parameter � is the phase of each component grating at the origin.

CONGRUENCE PHASE. Across a stimulus set, with the spatial and
temporal frequencies and the contrasts of the four components fixed,
the phase � was varied systematically to specify the shape of the
compound waveform. With the spatial origin (x � 0) centered on the
display, all component gratings share the same phase � at the center
of the display at time t � 0. If � � 0, each component peaks at x �
0. Because they reinforce each other, they produce a line-like shape.
If � � �/2, the components’ sharpest rising parts coincide at x � 0
and, reinforcing each other, produce an edge-like shape—as expected
because they constitute the truncated Fourier approximation of a
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square wave. Following Morrone and Burr (1988), we therefore
designate � the “congruence phase” of the compound grating.

The feature space, defined by the congruence phase, is periodic in
�. Because compound gratings are sums of only odd harmonics, two
stimuli whose congruence phases differ by � have identical spatial
waveforms save for a half-cycle shift, which makes them equivalent
as periodic stimuli. As shown in Fig. 1, we sampled the congruence
phase in eight equal steps on the [0, �) phase interval to construct
eight different rigidly drifting compound waveforms.

EQUAL ENERGY. The compound gratings thus constructed constitute
a set of equal-energy stimuli because the amplitudes of the compo-
nents were the same for each stimulus. The root-mean-square contrast
was 0.38 for each compound grating, corresponding to C � 0.5 in Eq.
2. Note that the Michelson contrast varies with the congruence phase
� � cos (�) �, with the maximum (0.84) realized by the line and the
minimum (0.47) by the edge. The reader is referred to the preceding
paper (Mechler et al. 2002) for a fuller discussion of the mathematical
properties of these compound gratings.

DRIFT VELOCITY. Two drift velocities were used to determine how
stimulus speed interacted with a neuron’s sensitivity to congruence
phase. Drift velocity, V � f/�, was changed from V � 3.1 deg/s “low”
speed to V � 12.4 deg/s at “high” speed. This was done by increasing
the temporal frequency of each component grating fourfold while
keeping their spatial frequency fixed (the fundamental was at � � 0.25
c/deg). The specific temporal frequencies used for the fundamental
and the higher harmonics were (values in Hz) f � 0.78, 3f � 2.34,

5f � 3.90, and 7f � 5.46 at low speed; and f � 3.12, 3f � 9.36, 5f �
15.6, and 7f � 21.84 at high speed. Because all recordings were at
approximately the same eccentricity, this choice allowed all four
components of the compound grating to be within the spatiotemporal
pass-band of each cell at a “low” speed. A “data set” denotes
recordings of responses of one cell to the eight compound gratings at
a single drift velocity.

Selection and classification of neurons

The 63 cells with 100 data sets (out of a total of 226 data sets
recorded in 137 cells) selected for analysis were those that 1) main-
tained good spike isolation throughout the experiment and 2) passed
a signal-to-noise criterion in the compound-grating experiments. Sig-
nal variance was defined for each Fourier component as the squared
Fourier amplitude of the trial-averaged response to each compound
grating summed over all stimuli. Noise was defined as the trial-by-trial
variance of the same component summed over all stimuli. The
selection criterion required that the median ratio of signal over noise
variance taken over the first eight Fourier components of the response
be 	0.3.

This data set substantially overlaps with that presented earlier
(Mechler et al. 2002), but the two are not identical. The earlier paper,
which focused on analyzing single-response harmonics but did not
look into the influence of speed, used a different signal-to-noise
criterion (it was based on a d
 threshold placed on the Fourier
components in comparison to the blank) and also included data sets
that were obtained with stimuli of different fundamental frequencies.
As a result, the 100 data sets analyzed here included 78 of the 121
presented in the earlier paper and 22 from the same pool that were not
analyzed earlier.

Cell classification is based on the modulation ratio (Skottun et al.
1991). According to this convention, the fundamental (F1) of the
response to a single drifting grating of near-optimal spatial parameters
was compared with the DC component after subtraction of the
maintained rate of firing (F0) and a cell was labeled simple if F1/F0 	
1 and complex otherwise. Accordingly, there were 24 complex and 13
simple cells in the speed-paired sample. We analyze and report
dependence on the modulation ratio F1/F0 both categorically and
parametrically.

Recurrent network model

Chance et al. (1999) introduced a network model for V1 with
variable recurrent gain. In response to drifting gratings, this model
produces phase-modulated, simple-like responses at low gain and
phase-invariant, complex-like responses at high gain. We asked
whether this model could account for various aspects of the feature
tuning we observed experimentally. As detailed below, only minor
changes to this model were made: we changed the time constant of the
feedforward impulse response and we varied the nonlinearity to
include nonzero firing thresholds and half-squaring.

In this model, the continuous firing rate of the ith neuron, ri, is
instantaneously boosted by the sum of the input from its feedforward
sources (I i

ff ) and those from its recurrent connections (Ii
rec) and relaxes

with a time constant �r (set to 1 ms)

�i

dri

dt
� I i

ff � I i
rec � ri (3)

Note that there is no spontaneous activity in the model. The effect
of including spontaneous activity would be to allow for negative
thresholds, but would not alter the simulation results.

A two-stage linear–nonlinear (LN) operator acting on the stimulus
supplies the feedforward input I i

ff

F1 = f

F3 = 3f

F5 = 5f

F7 = 7f

Fourier
harm.

1

2

3

4

comp.
m

4π/8

2π/8

6π/8

φ

5π/8 7π/8

3π/8 1π/8

“edge” “line”

0π/8

FIG. 1. Thick curves: one spatial period of the 8 equal-energy compound
luminance gratings used in our experiments. Each stimulus had the same set of
4 sinusoidal components (thin lines), the first 4 nonzero components of an edge
( f through 7f ), but in different phase combinations. Identical relative phase of
the components at the location of the spatial feature (indicated by vertical
dotted lines for each compound grating) is called the congruence phase �. We
sampled � in 8 equal steps counterclockwise around the phase circle [0, �).
Spatial waveform of the compound gratings varies smoothly with �, from
line-like (� � 0) through edge-like (� � �/2) back to line-like (� � �)
through intermediate transient waveforms. Line-like waveform obtained with
� � � (not shown) is a half-cycle–shifted version of the waveform obtained
with � � 0. This is a consequence of a general property of these stimuli:
shifting the congruence phase by � is equivalent to a half-cycle shift in the
compound waveforms. Because all stimuli were presented as drifting wave-
forms, stimuli on the [�, 2�) phase interval duplicate those in the [0, �) phase
interval.
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Ii
ff � A���

0

�

dt
H(t
)�
��

�

dxGi�x�W�x, t � t
; v, f, �� � ��



�n

(4)

Here the linear filter stage is represented by the convolution of the
compound grating W(x, t; �, f, �) (Eq. 2), with the separable spatio-
temporal kernel Gi(x)H(t). The scale factor A sets the absolute re-
sponse magnitude. The nonlinear operator has two stages. The first is
a static nonlinearity that consists of a threshold � and a rectifier [x]
 �
max (0, x); the second is a power function with an exponent n 	 1. As
an example, � � 0 and n � 1 represent perfect half-wave rectification
and � � 0 and n � 2, half-squaring. The value of � was chosen to be
zero for some networks; for other networks, a nonzero � was chosen
such that the response of the neurons with the smallest receptive field
to the fundamental component (presented alone) was half-maximal.

Gi(x), the spatial filter of the ith cell, is a Gabor function

Gi�x� � exp�� x2

2
 i
2� cos �2�ki x � �i� (5)

whose shape is fully determined by the envelope size 
i, the carrier (or
Gabor) frequency ki, and the carrier (or Gabor) phase under the
envelope �i. The model included nk � 7 spatial frequency channels,
with the Gabor frequency k sampled in equal steps of 0.5 c/deg from
0.5 to 3.5 c/deg, a 3-octave range. For each Gabor frequency, the
Gabor phase was evenly sampled in steps of �/32 radians from the
entire [��, �] interval (n� � 33). Thus the network size was N �
nkn� � 231.

If the shape of receptive field profiles were independent of their
size, then 
i would be proportional to 1/ki. That is, the dimensionless
combination 
k, which measures the average number of cycles of the
optimal grating “seen” by the neuron within the aperture of its
receptive field, would be constant. An alternative to this picture (
 �
const/k) would be that receptive field size is independent of the
optimal spatial frequency, i.e., 
 � const. Macaque V1 neurons
apparently represent a compromise between these two possibilities.
This is based on the observation of a weak negative correlation
between size (
) and optimum spatial frequency (k) (D Xing, MJ
Hawken, and RM Shapley, personal communication). To endow the
model with a bit of realism but keep its details simple, we imple-
mented the compromise between constant shape and constant size by
allowing two shape factors, a smaller one, that held at large scales
(
i2�ki � 2.5, ki � 1.5 c/deg), and a slightly larger one that held for
small scales (
i2�ki � 2.7, ki 	 2.0 c/deg). In equivalent terms, the
high spatial frequency channels in this model have somewhat nar-
rower frequency bandwidths than the low spatial frequency channels.

H(t), the temporal response, is a single-parameter biphasic function

H�t� � exp��
t���
t�5

5!
�

�
t�7

7! � (6)

scaled by the time constant 
. The time constant was set identical for
each unit (
 � 66 s�1) except as noted.

The recurrent input to each neuron is pooled from all other neurons
in the entire network by a kernel defined as a difference of two
Gaussians in the space of the Gabor frequencies ki of the feedforward
inputs

Ii
rec �

gi

�N � 1�
�
j�i

N

rj�2 exp��
(ki � kj)

2

2
 c
2 �� exp��

(ki � kj)
2

2
 s
2 �� (7)

This pooling kernel is shaped like a Mexican hat, with the excitatory
center and inhibitory surround centered on each cell’s own Gabor
frequency. The characteristic widths of center and surround are
identical for each unit (
c � 0.5 c/deg and 
s � 1 c/deg, respectively).
The bandwidth of the resulting spatial-frequency tuning curve is
similar for all units because it is primarily determined together by 
c

and 
s, and less dependent on 
i, the width of the Gabor envelope of

the feedforward input. The gain term gi, normalized by the network
size, sets the strength of the recurrent input that each neuron receives.
In homogeneous-gain networks, all cells behave like ideal simple cells
when g � 0, and increasingly like ideal complex cells as g 3 gmax,
where gmax denotes the maximum gain attainable in homogeneous-
gain networks. For gains g 	 gmax, recurrent amplification makes the
network unstable. Numerical values of recurrent gain are presented,
even for inhomogeneous-gain (“mixed-gain”) networks, as g/gmax,
relative to gmax of the homogeneous-gain networks. However, in
mixed-gain networks, g is not bounded by gmax. This is because the
true maximum gain is a parameter that depends on other network
parameters, including the distribution of gains. In particular, the true
maximum gain in a mixed-gain network can be made arbitrarily large
if the number of units with very high gain are kept sufficiently low,
and this in turn permits some units to have gains g 	 gmax.

Data analysis

Firing rate responses for each neuron in the network were analyzed
in exactly the same way as the spiking responses collected experi-
mentally from V1 neurons. Off-line data analysis and statistical tests
were performed using Matlab (The MathWorks, Natick, MA) toolbox
functions and custom software written in Matlab.

R E S U L T S

The 100 data sets selected for analysis in this paper were
obtained from 37 cells that provided data suitable for analysis
at both drift velocities (74 data sets), 18 cells that provided data
at the low drift velocity only (for two of which high-speed
responses were measured but excluded by selection criteria),
and eight cells that provided data at the high drift velocity only
(for all of which low-speed responses were measured but
excluded by selection criteria).

Feature tuning and its dependence on speed

Earlier we showed (Mechler et al. 2002) that V1 neurons are
tuned to the congruence phase of compound gratings, and that
response energy and other response measures based on har-
monics beyond the DC are especially sensitive to this tuning.
Here we demonstrate that in most V1 neurons, feature tuning is
dependent on the drift velocity of the compound gratings.

It is tempting to analyze the responses to compound gratings
in terms of the responses to their components and a nonlinear
response model. However, as indicated in our earlier study
(Mechler et al. 2002), the accounting for the compound-grating
responses requires a highly nonlinear model; idealized rectifi-
ers and energy mechanisms do not suffice. This is further
illustrated in Fig. 2. It shows the time histograms of the
responses of three representative V1 neurons to the compound
gratings (arranged along the phase circle in the same way these
stimuli were introduced in Fig. 1), as well as to the four
component gratings presented alone (stacked in the center, as
labeled in Fig. 2A). For each cell, the set of responses on the
left correspond to the stimuli drifting at low speed, and the set
on the right, to stimuli drifting at high speed. Other examples
(not paired for speed) can be found in Mechler et al. (2002).

These examples, especially the complex cells (A and B)
illustrate the difficulties that prevent a simple prediction of the
responses to the compound stimuli from the responses to the
single components. The responses to compound gratings are
much more peaked than responses to the components and the
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magnitude of these peaks is selective for specific congruence
phases. Qualitatively, simple thresholds would not account for
this kind of behavior, in that peaks in the compound-grating
responses occur even though all of the component-grating
responses are characterized by a weakly modulated steady
firing rate. As analyzed in detail in Mechler et al. (2002), such
behavior is also qualitatively inconsistent with global energy
models. Note also that overall gain controls cannot confer the
observed response selectivity either because all compound
grating stimuli are equated for power.

On the other hand, local squaring operations (Burr and
Morrone 1992) can provide some feature selectivity. Addition-
ally, the behavior of Fourier components of the response as a
function of congruence phase implies the presence of high-
order nonlinearities (order 	3), for both complex and simple
cells (Mechler et al. 2002). Another way to rescue a linear-

static nonlinear model would be to add phase-sensitive (Felsen
et al. 2005) or strongly dynamic nonlinearities. However,
specific forms for such nonlinearities have not yet been pro-
posed, so it is difficult to test models of this kind from the data
of individual cells.

The example cells of Fig. 2 typify another feature of our
data. They exhibit, to various degrees, a more low pass spatial
sensitivity at the (fourfold) higher temporal frequency, indicat-
ing that spatiotemporal sensitivity of these neurons is not
separable in the two frequency domains. On the other hand,
their spatial frequency optimum does not seem to decrease in
inverse proportion to the temporal frequency change, indicat-
ing that these neurons were not exactly tuned to velocity either.
Cells like these, whose sensitivity was neither separable in
spatial and temporal frequency nor tuned to velocity when
assayed with single gratings, were found to constitute a large
fraction of cells in V1 (Priebe et al. 2006). This mixed behavior
in the responses to single gratings (spatiotemporal inseparabil-
ity) further complicates predictions of the responses to com-
pound gratings when their drift velocity is varied.

In sum, a cell-by-cell approach to fitting the compound
grating responses from the single-grating responses is insuffi-
ciently constrained by existing models that could conceivably
work (spatiotemporally inseparable models with high-order
phase-sensitive and/or dynamic nonlinearities). For this reason,
our analytical approach will consist of an attempt to account
for the range of behaviors across the population from a mini-
mal network model, rather than the details of individual cells.

The first step is the extraction of indices that describe the
responses to the compound gratings. Figure 3 shows the tuning
to congruence phase (feature tuning) for the three cells in Fig.
2. The three illustrate the observed range of behavior and are
ordered (from top to bottom) by increasing difference between
the optimal phases at the two stimulus speeds. Each panel
shows the response (total energy) of a single cell at low speed
(open symbols) and high speed (filled symbols). Total response
energy is defined as the summed squared amplitudes of the DC
(after subtracting the baseline level) and the first eight Fourier
components of the mean response. It is one of many alternative
scalar response measures that were shown in our earlier paper
to be consistent in identifying the feature optimum and com-
parable in their sensitivity (depth) of feature tuning.

As in Mechler et al. (2002), we fit these tuning curves with
a family of even-harmonic functions of the congruence phase �

R��� � a0 � a1 cos (2� � 
1) � a2 cos (4� � 
2) (8)

by adjusting the five parameters—a0, a1, a2, 
1, 
2—to mini-
mize the mean squared error of the fit. This family is a natural
choice for the empirical description of feature tuning because
it encompasses contributions of nonlinearities up to and includ-
ing fourth-order and captures much of the variance in the
tuning. The best-fitting function from Eq. 8 (thick continuous
lines in Fig. 3) was used to extract objective measures of tuning
curves and their change for further analysis.

We defined the optimal stimulus by its congruence phase,
�opt, at the peak position of the tuning curve (Fig. 3, thin
arrows for low speed, thick arrows for high speed). The
congruence phase, �, which parameterizes the feature space, is
periodic with period �. �opt � 0 corresponds to a line-like
stimulus; �opt � �/2 corresponds to an edge-like stimulus; and

FIG. 2. Response histograms from 3 representative primary visual cortex
(V1) neurons, recorded at different sites, obtained for stimuli drifting at low
speed (v � 3.1 deg/s) on the left and a 4-fold higher speed (v � 12.4 deg/s) on
the right. Responses to the compound stimuli are arranged around the phase
circle exactly as the stimuli themselves in Fig. 1; those to component gratings
are stacked in the center, as labeled in A. Spontaneous firing rate is indicated
by the stand-alone histogram. Its vertical scale bar, common to both speeds,
indicates response magnitude. Horizontal span (timescale) is 1,263 ms for the
low-speed sets (left) and 316 ms for the high-speed sets (right). A: L450205.u,
complex cell (F1/F0 � 0.57; vertical scale 60 impulses/s). B: L431103.s,
complex cell (F1/F0 � 0.1; 65 impulses/s). C: L450101.t, borderline complex/
simple cell (F1/F0 � 1; 90 impulses/s).
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intermediate values of the congruence phase correspond to
intermediate one-dimensional features.

To quantify the change in the optimal stimulus, �opt, in-
duced by a change in the drift velocity, we determined

��opt � ���opt,high � �opt,low � �/2� mod �� � �/2 (9)

the signed minimum phase-shift. ��opt must lie between ��/2
and �/2. A value of ��opt � 0 indicates no speed-dependent
change in optimal congruence phase; values of ��opt � ��/2
are the maximum possible changes. We also consider the
unsigned quantity � ��opt �, which indicates the change in
feature selectivity independent of the direction of change (0 �
� ��opt � � �/2).

To quantify the overall similarity of two tuning curves
measured at different velocities, we use the Pearson correlation
coefficient, r, which is sensitive to the shape of the phase
variation but not to the size of the untuned part (mean eleva-
tion) of the tuning curves. For a pair of sinusoidal tuning
curves, maximum positive and negative correlation (r � �1)
correspond to minimum (��opt � 0) and maximum (� ��opt � �
�/2) phase shifts, respectively, and minimum correlation (r �
0) corresponds to the intermediate shifts (��opt � ��/4). The
latter are quarter-cycle shifts of tuning curves in this feature
space, defining quadrature pairs. Although r � 1 implies that
there is no change in the peak of the tuning curve (��opt � 0),
the converse is not true because the tuning curve may peak in
the same position (��opt � 0) yet change in shape (r � 1).

For most neurons, �opt depended on stimulus velocity, but
the extent of this dependence varied widely across the popu-
lation. The same was true for the relative size of the responses
to a given spatial waveform. Exemplifying one extreme is the
neuron shown in Fig. 3A. This cell responded about twice as
vigorously at high velocity (filled symbols) as at low velocity
(open symbols). Despite this overall change in responsiveness,
the tuning curves at the two velocities were similar in shape
(Pearson correlation coefficient, r 	 0.8). Correspondingly, the
optimal stimulus was line-like (�opt � 0), at both stimulus
speeds (� ��opt � � 0.11�). Illustrating the other extreme, the
neuron shown in Fig. 3C was tuned to almost perfectly oppo-
nent congruence phases at the two velocities (� ��opt � � 0.4�).
Its tuning curves at the two speeds were strongly anticorrelated
(r � �0.6). This neuron decreased, rather than increased, its
response magnitude from low speed (open) to high speed
(filled). The neuron shown in Fig. 3B was approximately
halfway between these extremes. Its phase preference at
the two stimulus speeds approximated a quadrature pair
(� ��opt � � 0.25�), and the correlation coefficient (� r � � 0.3)
was small, as expected for a quadrature shift. This neuron
responded equally vigorously at both speeds.

The range of the speed-induced changes of the optimal phase
and of the shape and size of tuning curves in the examples
shown in Fig. 3 is representative of the range observed in the
entire V1 sample. (The sign and magnitude of the velocity-
induced change in response size were not correlated with the
velocity-induced change in feature preference, although the
three examples of Fig. 3 may give an impression of correla-
tion.) These and other aspects of feature tuning are shown for
the entire V1 sample in Fig. 4. The plot on the left (Fig. 4A)
summarizes how the optimal congruence phase depends on the
drift velocity of the compound gratings. Note that these scat-
tergrams are periodic in � on both dimensions, corresponding

FIG. 3. Feature tuning, derived from the responses of the 3 V1 neurons
shown in Fig. 2. Total response energy is plotted as a function of congruence
phase. Tuning functions are paired for low velocity (open symbols) and high
velocity (filled symbols). Continuous curves are the optimally fitting 4th-order
harmonic functions of the form of Eq. 8. Error bars indicate 95% confidence
limits. Arrowheads indicate the optimal stimulus, thin arrows for low speed,
thick arrows for high speed.
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to the periodicity of the stimulus space. In these plots, speed
invariance would correspond to a concentration of data points
near the diagonal and a constant phase shift from low to high
speed would correspond to a concentration of data points on a
line that is parallel to the diagonal. The pair of dotted off-
diagonal lines traces the locus of maximum phase offset
(� ��opt � � 0.5�). In our sample, the optimal features obtained
at low speed (�opt,low) and high speed (�opt,high) exhibited no
significant (linear) circular association as measured by the
circular correlation modulus (Fisher 1993) (� r � � 0.1, P 	
0.5). Because the modulus of the circular correlation is not
significant, there is no observed tendency for an average
speed-induced ��opt. In sum, we find no evidence either for
speed invariance or a net speed dependence of feature tuning in
V1. Rather, we find a scattering of tuning at low and high
velocities, which, from our finite data sample, is indistinguish-
able from random.

Simple cells have traditionally been considered as better
suited than complex cells for reliably signaling phase informa-
tion. It is thus natural to ask whether simple cells signal these
one-dimensional features (formalized as relative spatial phase)
in a more speed-invariant manner than complex cells. The
summary answer, derived with limited statistical power from
evidence shown in the middle plot (Fig. 4B), is that simple
cells’ phase preferences are not more speed invariant. This plot
shows how the speed-induced change in feature preference
(measured by 0 � � ��opt � on the vertical axis) varies with the
F1/F0 modulation ratio, a traditional index of nonlinearity and
the simple–complex type (Skottun et al. 1991). F1/F0 is ex-
pected to form a bimodal distribution as the result of a
nonlinear effect of the spike threshold (Mechler and Ringach
2002), and it does in our sample, too. However, both complex
cells (n � 24) and simple cells (n � 13) were broadly scattered
with respect to � ��opt � and the negative correlation between
� ��opt � and F1/F0 was not significant (Pearson correlation
coefficient �0.3 � r � 0 and P 	 0.08). Moreover, the
distributions of the speed-induced phase-shifts, both the signed

and unsigned quantity, were statistically indistinguishable in
simple and complex cells (Kolmogorov–Smirnov two-sample
test, P 	 0.05 for � ��opt �, P 	 0.2 for ��opt). However, these
statistical results are not robust given the rather small sample
size. It is possible that with a larger sample size one would find
a significantly stronger tendency among simple cells to main-
tain their phase preference or that the size of speed-induced
change in feature preference negatively correlated with the
index of cell type.

The meaning of the optimal feature parameter depends on
the selectivity of tuning. Therefore we also analyzed the
selectivity of the tuning, as measured by the circular variance
(CV) of the tuning curve. (Here CV denotes 1 minus the usual
measure. For calibration, a delta function of a circular variable
has CV � 1 and the CV of a cosine raised to a constant
pedestal is about half the modulation depth measured by the
Michaelson contrast.) The CV indicated that at both speeds,
most cells were broadly tuned: CV � 0.3 for all but two cells.
Unlike the preferred feature, tuning selectivity as measured by
the CV was highly correlated at the two speeds (r � 0.71). The
median CV at low speed was 0.11 and increased to 0.13 at high
speed, a slight and marginally significant change (paired sign-
rank test, P � 0.1). Also unlike the preferred feature, both the
CV and the speed-induced change in the CV were uncorrelated
with F1/F0 and these measures were similarly distributed in
simple and complex cells (Kolmogorov–Smirnov two-sam-
ple test, P 	 0.5).

The CV, unlike the bandwidth or the depth of modulation, is
a good measure of the overall shape of a tuning curve. The
above results were not dependent on the measure of selectivity,
though: the same conclusions were reached when the measure
was the depth of modulation of the tuning curve. Thus the
relative magnitude of the feature-independent and the feature-
modulated components of the compound-grating responses of
V1 neurons are essentially independent of stimulus speed.

In principle, a speed-induced change in feature tuning could
be attributable to a shift in optimal phase, a change in the shape
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FIG. 4. Population analysis of the speed dependence of feature tuning in V1 (n � 37). Response magnitude was measured by total response energy. In each
plot, the circles indicate complex cells (F1/F0 � 1) and the triangles indicate simple cells (F1/F0 	 1). A: scattergram comparing the optimal congruence phase
obtained for each neuron with compound gratings drifting at low speed (horizontal axis) and at high speed (vertical axis). Maximal phase offset is indicated by
the pair of off-diagonal dotted lines, set off from the identity line by ��opt � ��/2. Only paired (�opt,low, �opt,high) data sets with measurable tuning at both
speeds were included in the circular association analysis; these were plotted inside the box of the coordinate frame. Paired data sets with measured but no
significant response at one speed were not included in the analysis but were plotted outside the coordinate frame at a nominal negative coordinate for the speed
to which the cell was not responsive. B: dependence of ��opt � � �opt,high � �opt,low �, the speed-induced shift in the optimal congruence phase, on F1/F0, the
cell-classifying index (horizontal axis). There were 24 complex and 13 simple cells in the sample. C: dependence of rhigh,low, the Pearson correlation coefficient
of the feature tuning curves obtained at low and high stimulus speed (vertical axis) on ��opt � � �opt,high � �opt,low �, the speed-induced shift in the optimal
congruence phase. A pure speed-induced shift that preserved the shape of the tuning would confine the scatter of the data within a sigmoid domain (see text).
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of the tuning curve, or both. The third plot (Fig. 4C) examines
this issue. If the tuning curves at low and high velocities were
related by a pure shift in optimal phase �� (i.e., a translation,
permitting a rescaling of the tuning curve), it follows that the
correlation coefficient r of the two tuning curves is given by

r �
a1

2 cos (2��opt) � a2
2 cos (4��opt)

a1
2 � a2

2 (10)

Here a1 and a2 are the parameters in Eq. 8 that describe the
shape of the tuning curve. Because typically a1 	 a2, Eq. 6
predicts that the relationship between r and � ��opt � is domi-
nated by declining sigmoid. This accounts for the general
shape of the scattergram in Fig. 4C. Thus a �� shift accounts
for a substantial component of the velocity-induced change in
tuning. On the other hand, if a shift in �� were the sole cause
of the velocity-induced change in tuning, then an appropriate
translation in the tuning curve measured at high velocity should
bring it into coincidence with the tuning curve measured at low
velocity (permitting rescaling). We determined this “correc-
tive” phase shift as the phase shift that ��corr maximizes the
correlation coefficient r of the tuning curve measured at low
velocity and the tuning curve measured at high velocity after a
translation by ��corr. Not surprisingly, ��corr is highly corre-
lated with the speed-induced shift in the optimal congruence
phase ��opt (r 	 0.9). However, this translation does not bring
the low- and high-velocity tuning curves into coincidence.
Rather, the median correlation coefficient between the speed-
paired tuning functions was r � 0.73. Thus a translation of the
tuning curve accounts for only about half of the variance (r2 �
0.5). A change in shape of the tuning curve, as well as
measurement error, constitutes the other half of the variance.

As a final point, we mention that feature preference or tuning
depth did not correlate with relative cortical depth. Laminar
location was identified histologically for most cells, but possi-
ble laminar variations could not be studied because of the small
sample size.

A model of feature tuning

Many aspects of the behavior of real V1 neurons can be
understood in terms of some variant of the “iceberg effect,”
i.e., in terms of the interaction between a linear filter (the
spatiotemporal kernel of the receptive field) and a static non-
linearity (that of spike threshold). As we show later, this
mechanism is also fundamental in endowing V1 neurons with
feature tuning. We now examine to what extent this can
account for our data.

A linear operator scales the amplitude and shifts the phase of
the frequency components present in the stimulus but adds no
new frequency components. Moreover, the amplitude in the
output of a linear transform depends only on the frequency but
not the phase of the input. Thus neither the amplitude nor its
square (the energy), taken in any combination of output com-
ponents, can exhibit feature tuning for the stimuli used here:
feature tuning signifies nonlinearity.

By general considerations similar to those laid out in
Mechler et al. (2002), one can show that an isolated linear–
nonlinear (rectified) simple cell receptive field model is ex-
pected to exhibit feature tuning, that the tuning is periodic in
twice the congruence phase, and that the dominant term in its
harmonic expansion in phase is � cos [2(� � �opt)]. Further-

more, the energy model of complex cells that sums with equal
weight the squared output of two quadrature pairs of simple
cell (rectified linear) subunits (one even symmetric and one
odd symmetric as well as their opposites in contrast polarity)
will by design produce no phase tuning because the subunits’
outputs combine to a phase-independent constant DC eleva-
tion. The key premise necessary to reach these conclusions is
that, by design, the congruence phase is the same in each
component of a given compound grating. The key observation
in the analysis is that for a nonlinear contribution of order n,
the output phase is the sum of the phases of the interacting
components.

However, simple LN models cannot account for the re-
sponses to compound gratings—for example, the peaking of
the responses seen in Fig. 2 or the manner by which the
response Fourier components depend on the congruence phase
(Mechler et al. 2002). Adding phase-sensitive nonlinearities or
dynamic gain controls might recover such features within the
context of a feedforward model, but concisely parameterized
models of this sort capable of predicting responses to moving
stimuli are not yet in hand. An alternative approach to deter-
mine whether the critical features of our responses could be
derived from a physiologically reasonable elaboration of
idealized LN models is to incorporate idealized LN neurons
into a simple recurrent network (Chance et al. 1999). This
model departs from the Hubel and Wiesel (1962) hierarchical
(feedforward) model of V1 in which complex cells pool their
inputs from simple cells that have complementary receptive
field profiles and reflects the growing consensus that cortico-
cortical interactions are critical to understanding responses of
individual cortical neurons. Chance et al. (1999) proposed that
complex-cell responses arise through recurrent amplification of
simple-cell responses and that simple and complex cells rep-
resent the weakly and highly coupled regimes of the same basic
cortical circuit. We now ask whether the same basic network
model can account for the characteristics of feature tuning that
we observe.

Although the isolated linear–nonlinear receptive field model
is tractable (as outlined earlier), interconnection of such units
requires numerical simulation to determine the contributions
from single-cell receptive fields and network mechanisms that
shape feature tuning.

We implemented several variants of the above network
model (as detailed in METHODS). Briefly, the network consists of
interconnected rectified Gabor units whose receptive fields are
identically centered and oriented. Gabor frequency and phase,
representing the linear feedforward input to the network, tile
the space of spatial frequency and phase. The recurrent gain
relative to the strength of the linear kernel can be varied.
Previously, we showed that this model could account for much
of the diversity of feature preference and selectivity seen in V1
responses to compound gratings (Ohiorhenuan et al. 2004).
Here we report that this model captures most of the qualitative
behavior of V1 neurons to one-dimensional features and,
specifically, the model can explain the pattern of speed depen-
dence of V1 responses to this stimulus set.

To develop an intuition for how the recurrent model leads to
feature tuning, we begin with homogeneous-gain models, in
which the gain of recurrent feedback is the same for every cell.
Figure 5 shows tuning to compound gratings drifting at low
and high speeds for model neurons in three homogeneous-gain
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networks that differed only in the gain parameter. In each data
set, neurons are organized in rows by k, their Gabor spatial
frequency, and in columns by �, their Gabor phase. The
network of neurons is evenly subsampled for display. For each
model neuron, tuning curves are plotted analogously to Fig. 3.

In the simulated experiments, the fundamental grating compo-
nent’s spatial frequency was 0.25 c/deg and its temporal
frequency was 1 Hz at low speed, 4 Hz at high speed; each
parameter value was chosen to be similar to those used in our
V1 experiments.

At the zero-gain extreme (Fig. 5A), the decoupled network
becomes a set of isolated simple cells. The most important
observation for these model units is that the nonlinear interac-
tion between the spike threshold and the feedforward kernel
results in feature tuning. There are several characteristics of
feature tuning, detailed later, that are commonly observed in all
our simulations and demonstrate the fundamental role of the
rectified feedforward input in the genesis of feature tuning in
V1. These key results are not particular to the choice of
parameters used in the simulations. In the model units shown
the threshold was set to a moderate level (defined in METHODS)
and the exponent used for the static nonlinearity was n � 2.
However, similar feature tuning resulted for other static non-
linearities (not shown). The notable exception is the piecewise
linear perfect half-wave rectifier (� � 0 and n � 1), which
uniquely precludes tuning to equal-energy compound gratings
because its output preserves the equal-energy property of the
input. Next, we describe the characteristics of feature tuning
that are common to all model networks studied.

First, at any given stimulus speed, feature sensitivity in each
simple cell varies approximately as � cos [2(� � �opt)]
function of congruence phase, with a distinct feature prefer-
ence, �opt. Thus the simulation of the zero-gain network
affirms the qualitative inferences made earlier for the shape of
feature tuning in an isolated rectified feedforward unit.

Second, at a given drift velocity, for any particular cell, the
feature preference monotonically depends on the receptive
field’s Gabor phase, i.e., �opt(�) � (� 
 const) mod �. This
dependence on Gabor phase survives increased recurrent inter-
actions and points to the critical role that the symmetry of the
feedforward kernel plays in shaping feature preference in V1.
Furthermore, although the form of this dependence does not
change with a change in stimulus velocity, the constant offset
and thus the tuning optimum itself depends on speed: changing
the drift speed V of the stimulus results in a drift-dependent
shift, ��opt(V), in the preferred stimulus, i.e., �opt(�, V) �
[� 
 ��opt(V)] mod �.

The dependence of the constant offset is the signature of the
complex multipliers of the spatiotemporal kernel. The kernel
need not be separable in the frequency domain to have this
effect. The phase offset depends on the complex amplitudes
(and thus phases) of the spatial and temporal transfer functions
of the feedforward kernel. In the simulations discussed so far,
all units in a network had identical temporal integration prop-
erty, which translates into identical complex multipliers in the
time domain. Model neurons in different Gabor channels are
expected to differ in their spatial complex multipliers, but
because of the similar overall shape of their spatial tuning
function this difference does not alter the phase dependence
very much (its extent is reflected by the scatter in Fig. 7B)—
thus the approximately constant phase offset at a fixed stimulus
velocity.

The form of this dependence of preferred phase on velocity
guarantees that, at any given speed, preferred features cover the
entire feature space in a population of cells in which the Gabor
phases sample the entire phase space.
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FIG. 5. Tuning to compound gratings by a representative subset of model
neurons from 3 simulated homogeneous-gain networks. A: network of isolated
(noninteracting) ideal simple cells (g � 0). B: network of interconnected
complex cells (g/gmax � 0.7). C: very strongly coupled ideal complex cells
(g/gmax � 0.97). For each network, units selected for display are organized in
rows by their Gabor frequency (k), indicated on the left of the rows, and in
columns by Gabor phase (�), indicated on top. � � [�, 2�] range, not shown,
repeats exactly the range shown. Tuning plots and curve fits follow the
conventions used in Fig. 3. Note that the responses (total energy) plotted on the
abscissa are in arbitrary units but their relative size is preserved within a
network. Scale for each spatial frequency channel is indicated for the leftmost
unit shown for that channel.
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Third, within each spatial frequency channel corresponding
to a fixed Gabor frequency k, the magnitude of the response
varies regularly with �, the Gabor phase, approximately as
� cos (2�). Thus the units with the symmetric Gabor kernel
( first column, labeled � � 0, in the plots shown) have the
largest and the units with the asymmetric Gabor kernel (col-
umn labeled � � �/2) have the smallest responses. This pattern
arises through the feedforward input because the even-sym-
metric linear component, taken after rectification, is larger than
the odd-symmetric one. A similar pattern would arise in any
family of kernels that sample a mixture of odd and even
functions.

Because it arises from an interaction between the linear
kernel and the static nonlinearity, this pattern is enhanced by an
increase in the threshold or in the acceleration (i.e., the expo-
nent) of the power function. This mechanism is especially
prominent in the high spatial frequency channels. This is
explained as follows. Stimulus energy, by construction, de-
clines with component frequency. Thus cells of the highest
Gabor frequency (largest k values) respond to the compound
gratings with the smallest magnitude in the entire network,
which, assuming a networkwide constant threshold, makes
them the most sensitive to clipping.

Our simulations also indicate that changing the drift speed
does not affect the � cos (2�) dependence of the magnitude of
the responses across units, but can affect the absolute magni-
tude of the responses as well as the selectivity of the feature-
tuning curve in a spatial frequency-dependent manner.

Chance et al. (1999) showed that for homogenous gain
networks, increasing the gain results in increasing phase-
insensitive pooling and leads to single grating responses that
are progressively more complex-like. The same mechanism
decreases the sensitivity (modulation depth) of feature tuning
to compound gratings, as illustrated by Fig. 5, B and C for
various (high) levels of gain. Thus when pooled phases are
balanced, recurrent pooling acts against the static nonlinearity
of the receptive field by making responses more complex-like.
Underlying the importance of the role that the rectified feed-
forward component plays in setting up feature tuning is the fact
that the recurrent gain must be quite high to generate a
noticeable change in the shape of the feature tuning curves.
Specifically, feature tuning remains stable while the recurrent
gain is raised from zero (g/gmax � 0, all feedforward simple
cells) all the way up to an intermediate level (g/gmax � 0.5, a
value that results in interacting model neurons that are all
borderline simple–complex by the measure of the modulation
ratio; not shown). Thus a point of special emphasis here is that
intermediate gains generate complex cells that exhibit signifi-
cant feature (phase) tuning. This is all the more notable
because the F1/F0 ratio, the index of the simple–complex
continuum, is also a measure of phase sensitivity.

Notice that the preferred feature in each unit is independent
of the choice of the static nonlinearity or the recurrent gain, but
only if the latter is not too high. At very high homogeneous
gains (Fig. 5C), feature tuning becomes homogeneous because
all units begin to behave independently of their own afferent
input and similarly to the units that respond the most strongly.
That is, in the high homogeneous-gain regime, these strongly
coupled networks exhibit winner-take-all behavior, which is
expected from strongly coupled recurrent networks in general.
For these networks, the “winner” among Gabor units of the

same spatial frequency k is the one with a symmetric kernel
(Gabor phase � � 0 or � � �).

This winner-take-all behavior is more prominent when clip-
ping by the rectifier is more severe. This accounts for the more
prominent winner-take-all behavior in the higher spatial fre-
quency channels (Fig. 5C, bottom row) because, in these
channels (see above), the linearly filtered stimulus energy is
smaller. The winner-take-all favoring of the symmetric Gabor
is powerfully reinforced by the recurrent excitation from neigh-
boring frequency channels, where this mechanism is similarly
prominent.

Note that even though the high-gain regime of the model
leads to cells with complex-like behavior in terms of F1/F0
(Chance et al. 1999), the high-gain regime does not lead to
energy-like behavior in terms of feature tuning. This follows
from the biases set up by the feedforward input as explained
earlier, along with the winner-take-all behavior. The selectivity
of tuning remains larger in the higher-frequency channels
because of the relatively stronger effect of clipping in those
channels.

INHOMOGENEOUS (MIXED-GAIN) NETWORKS. Homogeneous-gain
networks illuminate the genesis of feature tuning in model
neurons. However, a single homogeneous gain can produce
only one kind of behavior, not a simple–complex continuum.
Moreover, a well-documented observation about the primate
V1 (Ringach et al. 2002) is that simple and complex cells are
both present in every cortical layer, with slight variation of
their relative abundance across layers but no obvious spatial
segregation within layers. Thus by virtue of its ability to
generate an arbitrary simple–complex continuum, a random-
gain network is likely to be a more realistic model of the V1
population.

Before proceeding to the presentation of the mixed-gain
network simulations, a technical point about the behavior of
the gain parameter needs to be made. In the preceding analysis
of homogeneous-gain networks, we (following Chance et al.
1999) have referenced values of the homogeneous gain g to the
maximum stable value of the gain gmax. An inhomogeneous
network can remain stable even if some cells have g 	
gmax—provided that there are not too many of them. Thus for
inhomogeneous-gain networks g can be sampled in a wider
range than the one limited by gmax of homogeneous networks
of otherwise identical parameters.

To illustrate this point and to examine how gain determines
the simple–complex character in the mixed gain network we
plotted in Fig. 6 the F1/F0 modulation ratio for the optimal sine
grating as a function of the gain. To facilitate comparison with
results for homogeneous-gain networks, we normalized gain
with gmax of homogeneous networks of otherwise identical
parameters (thus g/gmax 	 1 could be realized). Gains were
randomly chosen from a uniform distribution over the g/gmax
� [0, 1.4] range. The functional relationship is a slowly
decaying one, with F1/F0 3 0 at very large gains. (Thus
complex cells with F1/F0 � 0.2 can be realized by recurrent
gains greater than the range sampled in Fig. 6.) The depen-
dence of F1/F0 on gain is parametric in the Gabor frequency, as
indicated by the fine thread-like densities in the scatterplot,
each of which is composed of data from units of a particular
spatial frequency channel. The asymptotic dependence is very
different from the linear relationship (slanted dotted line)
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known for the homogeneous gain networks (Chance et al.
1999). This difference is reflected in the range of gains asso-
ciated with simple cells (triangles) and complex cells (squares).
In homogeneous networks, the class boundary (horizontal
dotted line) intersects in a single point with the linear regres-
sion of data, sharply dividing the continuum of gain between
simple cells (g/gmax � 0.41) and complex cells (g/gmax 	
0.41). In mixed-gain networks, simple cells are confined to a
narrower range of gains and the boundary is not sharp (scatter
of triangles and squares along abscissa overlap in Fig. 6). This is
because the location of the intersection of class boundary (hori-
zontal dotted line) with the data depends on the Gabor frequency.

Figure 7A shows the tuning curves for model units in a

“mixed-gain” network in an arrangement similar to that in Fig.
5. As may be expected from the observations already made,
unit by unit, feature preference in the mixed-gain population
closely resembles that observed in the homogeneous interme-
diate-gain network (Fig. 5B), although there are differences.
Selectivity, but especially response magnitude, response pa-
rameters that are more dependent on recurrent gain are more
varied in the mixed-gain network. A case in point is the lawful
variation of tuning magnitude with Gabor phase observed in
homogeneous networks. That pattern, which survived even in
strongly coupled units in a network of homogeneous high gain
(Fig. 5C), is diluted here. The pattern is expected to be fully
eliminated in a sufficiently inhomogeneous network.

To compare the mixed-gain model with the V1 population,
Fig. 7, B–D presents the same population analyses as in Fig. 4.
In V1 (Fig. 4A), the scattergram of optimal feature at low speed
(�opt,low) versus high speed (�opt,high) showed no statistical
association by linear circular correlation statistics. However,
the simulations (Fig. 7B) for the recurrent network model show
prominent “tracks,” indicating strong correlation between fea-
ture tuning at the two speeds. They signify the monotonic
dependence of feature preference on Gabor phase, a legacy of
the linear kernel. Thus not surprisingly, the tracks were also
seen in homogeneous-gain networks and their pattern and
position were preserved across gain levels (data not shown).
The exact shape of that dependence, and thus the shape of the
track (e.g., the degree of deviation of the data points from a line
of unity slope), depends on the relative spatial frequency of the
stimulus and the Gabor frequency—data from units of the
same frequency channel form fine “fibers” within the track. We
show later (Fig. 8) that the offset of the track along the axes
strongly depends on the temporal integration of the feedfor-
ward kernel. Had we allowed for it, a variation in the temporal
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network. Gain was randomly selected for each unit in the network from a
uniform distribution spanning the range shown on the horizontal axis (normal-
ized with the same gmax as used in Fig. 5). Simple–complex continuum is
indexed by the F1/F0 ratio measured for the optimal grating for each model
unit. Functional relationship is very different from a linear one (slanted dotted
line) that holds in homogeneous-gain networks. Horizontal dotted line indi-
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integration would contribute a much larger scatter to the
pattern in Fig. 7B than the variation in Gabor frequency.

To further compare the randomized gain model with the
observed V1 population responses, Fig. 7C shows (exactly as
in Fig. 4B) the speed-induced change in feature preference
(� ��opt �) versus the F1/F0 modulation ratio. Most values of
� ��opt � are near the average phase difference determined by

the track pattern seen in Fig. 7B. We show later that this
average strongly depends on the time constant of the temporal
impulse response function of the feedforward kernel. The
range of scatter around the average � ��opt � depends on both
the random variation of gain and the diversity of the spatial
frequency channels in the sample. In the horizontal scatter, the
data with the lowest values correspond to the sampled highest
gain values shown in Fig. 6. At the high end, the theoretical
upper bound is a constant �2, defined by the largest F1/F0
associated with the static nonlinearities used by units in the
network (F1/F0 � 1.7 for the half-squaring in Fig. 6).

The pattern seen in Fig. 7C suggests independence between
F1/F0 and � ��opt �, but the very small negative correlation
(Pearson r � �0.067) is statistically significant (P � 0.001).
The distributions of � ��opt � and gain are similarly independent
(not shown). Moreover, there is no statistically significant
difference between simple and complex cells in the distribu-
tions (Kolmogorov–Smirnov two-sample test, P 	 0.5) or the
medians (Wilcoxon rank-sum test, P 	 0.3) of the � ��opt �.
This model prediction—that the speed-induced change in fea-
ture preference is similar across the simple–complex contin-
uum—is robust with the choice of the temporal integration
properties of the units and is consistent with the results in the
real V1 sample.

We also compared feature selectivity, as measured by the
CV of the tuning curve, between the model and data. The
selectivity of feature tuning depends on both the Gabor fre-
quency and the recurrent gain. The medians and spreads of the
CV in the entire population of model units were comparable at
the two simulated velocities. It appears that the model is able
to capture, in the low-to-intermediate frequency channels and
at intermediate gains, both the spread of the distribution of the
CV and its relative speed invariance that are observed in V1.

Figure 7D shows (exactly as in Fig. 4C) the relationship
between the correlation coefficient r of the two tuning curves,
taken at low and high speeds, and � ��opt �, the difference in the
preferred features. The model predicts a declining sigmoid
(thin line in Fig. 7D), r � cos (2� ��opt �), which, as discussed
with respect to Fig. 4C, is expected when the tuning curve
changes in preferred phase and depth, but not in shape. That the
model predicts no speed-induced change in the shape of the
tuning curves is also implied by the earlier observation (Fig. 5)
that all simulated feature-tuning curves are dominated by a
single cos (2�) component. However, in the measured V1
population, tuning functions also changed in shape. These
recurrent network models cannot account for this component of
the observed responses.

DIFFERENCES BETWEEN V1 AND MODEL. One aspect in which the
physiologic and simulated data are distinct is the range of
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speed-induced phase shift (cf. the scatter along the ordinate in
Fig. 4B and Fig. 7C). As we subsequently demonstrate (Fig. 8),
the model can achieve arbitrary ranges of speed-induced phase
shift with an appropriate variation of the parameter of temporal
integration that was kept fixed for the simulations shown in
Fig. 7B.

Another, more important, difference between the model and
V1 neurons is in the detailed shape of their feature-tuning
curve. We observe that whereas feature tuning in many V1
neurons exhibits higher even-harmonic distortions (e.g., Fig.
3B), in Gabor units the � cos [2(� � �opt)] term is by far the
dominant one.

The tuning curves of both model units and V1 neurons are
well fit by a five-parameter harmonic function (Eq. 8) and their
shape could be quantified by a2/a1, the amplitude ratio of the
fourth harmonic over the second harmonic component of the
fit. As seen in the examples in Fig. 5, the feature tuning in
model neurons is dominated by the second harmonic compo-
nent. The relative contribution by the fourth harmonic is
negligible (a2/a1 � 0.07) for all units in each of the explored
model networks. This was true in both homogeneous-gain and
random-gain networks independent of the threshold and the
nonlinearity used. However, in almost all (36/37) real V1
neurons, this ratio was sizeable (all a2/a1 	 0.07, median 0.9).

This dominance by a � cos [2(� � �opt)] term in model
neurons arises, in large part, from the low-pass property of the
Gabor envelopes. Biasing the linear kernels toward high-pass
(e.g., by asymmetric envelope) does enhance the higher-order
even-harmonic distortions in the tuning curves, especially in the
low-frequency channels of the model (numerical simulations not
shown). Thus receptive fields that have high-pass kernels with
respect to the stimulus could generate tuning curves whose shape
differs noticeably from � cos [2(� � �opt)].

Other possibilities could be realized in a recurrent network.
For example, a model neuron in which pooling of recurrent
input is asymmetric or biased in the Gabor phase could exhibit
distortions from the basic cosine shape of feature tuning
curves. However, this effect alone cannot explain the shape
of tuning curves in physiologic data because such a mecha-
nism would lead to distortions in complex but not simple
cells (because the latter receive little or no recurrent input).
This prediction is inconsistent with the observation that large
a2/a1 	 1 ratios were equally prevalent in real V1 simple and
complex cells. Moreover, there was no significant correlation
of the a2/a1 ratio with cell category (P 	 0.5 by t-test) and
this ratio is uncorrelated with the F1/F0 modulation ratio (r �
0.07, NS).

Another possibility is that the shape of the static nonlinearity
can be very different from neuron to neuron in the network.
Because the shape of the nonlinearity is an important factor
determining the shape of the feature tuning function, such
network inhomogeneity of the nonlinearity could explain some
of the diversity in V1 feature tuning, especially if compounded
with an inhomogeneity of the linear kernel (as mentioned
earlier). We did not explore this systematically.

THE EFFECT OF VARIED TEMPORAL INTEGRATION. We now return
to the nature of the “tracks” in Fig. 7B and their absence in the
experimental data. We observed that the positions of these
tracks did not depend on the recurrent gain (whether homoge-
neous or random) or the type of static nonlinearity (assumed

the same for all units in a network). Therefore we hypothesized
that the position and slope of these tracks would depend on the
spatiotemporal response function of the feedforward input. To
isolate this factor, we simulated a series of homogenous zero-
gain (all simple cell), homogeneous half-squaring networks,
each with the same range of spatial scales and a different
(homogeneous) time constant, including the value (
 � 66
s�1) used in Figs. 5–7.

Each panel on the left in Fig. 8A corresponds to one such
network (labeled with its value of 
). The scatterplots show the
optimal phase at low versus high speed, with each symbol
corresponding to one neuron of a particular k Gabor frequency
and � Gabor phase. As the Gabor phase varies, so does the
phase of the optimal feature: the optimal feature phase
traverses its [0, �] range two times as the Gabor phase varies
over its [��, �] range, and this is true at both speeds. There is
thus an approximate constant phase difference between optimal
features at the two velocities and the plot of optimal feature at
high versus low speed forms a “track” that is approximately
parallel to the main diagonal.

Any single such track is characterized by a significant linear
circular association, but superimposing many such tracks (at
different offsets) would dilute this association and cover the
domain. The �opt,low versus �opt,high scatterplot in Fig. 8B is a
superposition of data contributed by all panels shown in Fig.
8A. The data fill almost the entire rectangular range. Scatter is
increased and blending is more complete in the more realistic
mixed-gain network (Fig. 8, C and D). Blending is incomplete
if, as in Fig. 8, large numbers of cells are modeled for each of
only a few distinct samples of 
, although a more realistic
sampling approach, in which only a few units are modeled for
a large number of distinct samples of the 
 parameter, will
eliminate the appearance of distinct tracks. This suggests that a
network in which spatial and temporal integration properties of
units are defined by parameter values that are drawn randomly
and independently from a broad range could account for the
observed absence of correlation between �opt,low and �opt,high
(Fig. 4A).

D I S C U S S I O N

This study extends our first investigation (Mechler et al.
2002) of V1 neurons’ tuning to one-dimensional spatial wave-
forms by experimentally probing the dependence of such
tuning on stimulus drift velocity. Morrone and Burr (1992,
1988) argued forcefully that the essence of one-dimensional
features is phase congruence, i.e., the correlation of phase
across multiple spatial scales. We use equal-energy compound-
grating stimuli that permit studying sensitivity to phase con-
gruence in isolation from spatial filtering. Despite this advan-
tage, only a few earlier physiological studies (Levitt et al.
1990; Pollen et al. 1988) used these stimuli. Our primary
finding here is that the feature selectivity of typical neurons is
highly speed dependent and this lack of speed invariance
makes it impossible to regard single V1 neurons as feature
detectors per se. We also demonstrate that the existence of
feature tuning and its dependence on stimulus velocity are both
predicted by a recurrent network model of V1, in which single
neurons are modeled as rectified linear feedforward kernels.
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Feature tuning and speed

In Mechler et al. (2002), we introduced a novel stimulus set
that consists of one-dimensional compound gratings that have
identical spectral distribution of contrast energy but have
different waveforms, including those resembling lines or
edges, and others with intermediate shapes. We reported that
many V1 neurons were selectively tuned to one or another
feature in this space, but the distribution of the optimal features
in the V1 population represented the full feature space with
little bias. Here, we show that these population results hold at
different stimulus speeds, at least for speeds well within the
range of velocity tuning optimum in V1 neurons (Priebe et al.
2006). Importantly, we also find that the feature preferences of
single V1 neurons can be radically altered by a change in the
drift velocity of the stimulus and there is no detectable corre-
lation between feature preferences at two (sufficiently differ-
ent) velocities. This contrasts with the orientation preference of
individual V1 neurons, which is largely speed invariant. Thus
because the specificity of individual neurons is thoroughly
scrambled as velocity changes, V1 neurons cannot signal edges
and lines by themselves. It is an open question whether single
neurons in any given extrastriate visual cortical area could do
that or whether they too represent these features by a popula-
tion code, as in V1.

Our results indicate that signaling motion and the shape of
the luminance profile in V1 are interdependent. This implies
that signaling motion by most of these neurons could be
compromised by the variation in stimulus shape. This likely
does not matter though because most neurons in V1, by reason
of their largely independent spatial and temporal frequency
selectivity, are not tuned to the velocity of a moving stimulus
(recently reviewed, e.g., by Lennie and Movshon 2005) and
thus may not be genuinely involved in signaling speed. How-
ever, a distinct minority of direction-selective V1 neurons is
also speed tuned, independent of the spatial frequency of the
stimulus (Priebe et al. 2006). Because direction- and velocity-
selective neurons are the most likely source of motion signals
sent downstream to extrastriate processing (Felleman and Van
Essen 1991), it would be interesting to determine whether
feature tuning in those neurons was different or not as strong as
in the majority of V1 neurons. We do not know what fraction
of our V1 sample may have been speed tuned, but we do know
that about one quarter (16/61 neurons) consisted of direction-
selective neurons (defined by a direction selectivity index DI 	
0.33, where DI is defined based on responses to gratings
drifting in the optimal direction and its opposite in the usual
manner), and a similar fraction (13/61) was directionally bi-
ased (defined by moderate selectivity, i.e., 0.16 � DI � 0.33).
We found that feature tuning (as indexed either by the pre-
ferred phase or the CV) was independent of the direction
selectivity index. This evidence discounts hypothetical scenar-
ios in which feature signaling would differ in motion signaling
neurons from the rest of V1.

There is another result of the Priebe study that warrants
discussion. Priebe et al. (2006) not only used single gratings
but also assayed the responses of direction-selective V1 com-
plex cells with a superposition of two spatial component
gratings that drifted rigidly together at the same velocity. They
found that these neurons combined components linearly, which
would exclude feature tuning as we defined it. The discrepancy

between the results of Priebe et al. (2006) and of ours may be
puzzling, considering the similarity between their stimuli and
ours (we used four components drifting rigidly together).
Because those authors do not report the phases of the frequency
components, a more detailed comparison with our experiments
is impossible.

Feature tuning and the spatiotemporal parameters of
the stimulus

We recorded with tetrodes multiple single neurons and the
stimuli were optimized for the most responsive cell. Thus for
the other simultaneously recorded neurons, the compound
gratings could be of nonoptimal orientations. The most impor-
tant effects of using stimuli of nonoptimal orientation are likely
to be 1) reduced response magnitude together with increased
response variance and 2) a lower high-cut in spatial frequency.
These effects may be greatly enhanced at high speed by further
low-pass temporal filtering. Therefore nonoptimal orientation
could have contributed to diminish the size and modulation
depth of feature tuning at high speed in neurons for which
orientation was not optimized, but it is difficult to see how
nonoptimal orientation might have induced a velocity depen-
dence of feature tuning.

We intentionally did not optimize spatial frequency and
temporal frequency for any of the tetrode-isolated units. By
design, the stimulus fundamentals were below a cell’s opti-
mum (see METHODS), so that their pass-band could accommo-
date at both drift speeds as many components as possible. In
most macaque V1 neurons with parafoveal eccentricities, the
spatial frequency peak falls in the 0.8–5 c/deg range, the
typical spatial frequency pass-band is 0.5–2.5 octaves (De
Valois et al. 1982), the temporal frequency low-cut is �1 Hz,
and the high-cut is between 4 and 32 Hz (Hawken et al. 1996).
Thus our choice of frequencies typically served the stated goal.
With these fixed parameters, there were 8/47 cells (too high-
pass) that responded only at 12 deg/s and 2/47 cells (too
low-pass) that responded only at 3 deg/s speed (the data points
outside the axes of Fig. 4A). These two velocities bracket the
central part of the measured distribution of velocity tuning
optimum in V1 neurons (Priebe et al. 2006), supporting our
choice of parameters.

Nonlinearities implied by feature tuning

Feature tuning and discrimination constitute a phase-sensi-
tive and fundamentally nonlinear operation that must access
more than one spatial frequency. Our model simulation sug-
gests that a combination of the threshold and other static
nonlinear components of the operator that generates the spike
rate output play a crucial role in the genesis of feature selec-
tivity. In this respect, it is noteworthy that experimentally we
found essentially the same feature sensitivity in classically
defined simple and complex cells. Consistent with a broad V1
continuum, the relevant nonlinearities were comparable in both
cell types when exposed to our broadband stimuli. The simi-
larity of responses of simple and complex cells obtained here
with compound gratings is remarkably different from the
categorically distinct responses of these cells routinely ob-
tained with single sine gratings (Skottun et al. 1991), but
concur with recent arguments against a dichotomy in the
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synaptic organization of V1 (Mata and Ringach 2005; Mechler
and Ringach 2002; Priebe et al. 2004). Furthermore, although
feature tuning and the modulation ratio both measure some sort
of phase sensitivity, the two need not be consistent: the mag-
nitude of F1/F0 indicates the sensitivity to the phase of F1,
which is closely related to a notion of position, whereas
congruence phase is more closely related to a notion of shape.

Contrast energy-sensitive gain-control mechanisms operate
at various levels of the early stages of visual processing,
including V1 (Geisler and Albrecht 1992). The fast-acting
contrast gain control active within the receptive field center is
not tuned to orientation and is likely inherited from subcortical
afferents (Bonin et al. 2005; Smith et al. 2006). With increas-
ing contrast, the contrast gain control may advance the re-
sponse phase (by reducing the stimulus-response delay) and
make the temporal filter of the affected receptive fields more
high-pass (Albrecht 1995; Holub and Morton-Gibson 1981;
Shapley and Victor 1981). Although such an operator might
affect feature processing when stimulus contrast is varied, it
cannot account for the feature tuning we observed because we
assayed it by using equal-energy stimuli. However, incorpo-
rating a quantitatively accurate gain-control mechanism is
necessary to explain responses to both compound and compo-
nent gratings in the same model.

Although surround effects were not studied here, it is pos-
sible that our results could be explained by a nonlinear non-
classical surround modulation. Neurophysiological (Bonds
1989; Levitt and Lund 1997; Polat et al. 1998) and psycho-
physical (Polat and Sagi 1994) evidence implicates a modula-
tory surround mechanisms that is sensitive to oriented contours
and one that may also be sensitive to the spatial frequency
content of the surround stimulus (Polat and Sagi 1993). Be-
cause oriented contours, such as the edge and line elements our
stimuli approximated, are jointly defined by components taken
across multiple spatial scales, their ability to exert modulatory
influence may just as much depend on their relative phase as on
orientated contrast energy. However, the involvement of such
mechanisms must be considered hypothetical because their
activity depends on the relative orientation in center and
surround—which is not varied here.

Felsen et al. (2005) hypothesize that the enhanced feature
gain they measured in V1 complex cells in response to stimuli
of natural phase spectra may imply some phase-sensitive non-
linear nonclassical surround modulation, which could encom-
pass phase-sensitive interactions between two gratings of the
same orientation. Our stimuli include close approximations of
naturally occurring salient features that are defined by phase
congruence; thus it is at least possible that our stimuli could tap
into these hypothetical modulatory mechanisms as well. Our
studies differ in the choice of species and in the use of natural
versus “designed” stimuli and, in contrast to Felsen et al.
(2005), we find no significant dependence of feature sensitivity
on the index of the simple–complex continuum.

Cortical circuitry for feature processing

Whereas feature tuning in single V1 neurons depends on
stimulus speed, the V1 population as a whole preserves the
range of tuning. As a result of the shifts of optimum phase, the
feature-specific identities of neurons are shuffled with changes
of stimulus speed. This mechanism allows the V1 population

as a whole to represent a full suite of feature analyzers
independent of stimulus speed.

It is difficult to imagine how these neurons, acting individ-
ually, could serve to represent one-dimensional features. Our
new results mesh with the body of evidence that suggests that
V1 neurons act as tuned nonlinear filters that represent a bank
of spatially localized intermediate processors, rather than the
view that individual neurons serve as detectors. That is, the
information-processing strategy of V1 appears not so much one
of each individual unit serving as a detector, but rather one
providing a range of selectivity realized by an ensemble of
neurons that are dynamically selected by the stimulus.

As inferred from perceptual phenomena, mechanisms that
extract features in a way that is at least approximately inde-
pendent of speed are necessary components of visual process-
ing. A corollary of our results is that those hypothetical feature
detectors must be able to pool their input signals from V1
ensembles (feature analyzers), even though the latter are de-
fined dynamically by the stimulus instead of a static place
code. The considerable variation that we observe in feature
preference in a local ensemble that is confined within the
recording volume of our tetrodes (Mechler et al. 2002) puts
further constraints on the possible potential pooling mecha-
nisms. Thus our results make it difficult to ascribe feature
detection (even of simple one-dimensional elements) to indi-
vidual V1 neurons and highlight open questions regarding the
cortical circuitry necessary to perform this function.
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