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Abstract

In their pioneering studies of primary visual cortex, Hubel and Wiesel described the existence of two classes of cells, which they

termed ‘‘simple’’ and ‘‘complex’’. The original classification scheme was based on a number of partly subjective tests of linear spatial

summation. Later, investigators adopted an objective classification method based on the ratio between the amplitude of the first

harmonic of the response and the mean spike rate (or the F1=F0 ratio) when the neuron is stimulated with drifting sinusoidal gratings.
This measure is bimodally distributed over the population and divides neurons into two classes that correspond closely to the

classical definition by Hubel and Wiesel. Here we show that a simple rectification model can predict the observed bimodal distri-

bution of F1=F0 in primary visual cortex when the distributions of the intracellular response modulation and mean are unimodal.

Thus, contrary to common belief, the bimodality of F1=F0 does not necessarily imply the existence of two discrete cell classes.

Furthermore, in reviewing the literature, we find no independent support for a simple/complex dichotomy. These results suggest that

the existence of two distinct neural populations in primary visual cortex, and the associated hierarchical model of receptive field

organization, need to be re-evaluated. � 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Classification; Bimodal distribution; Clustering; Sigmoid non-linearity; V1 neurons

1. Introduction

In their early work on primary visual cortex, Hubel
and Wiesel described the existence of two classes of cells:
simple and complex (Hubel & Wiesel, 1962, 1968). A
simple cell was defined as one that (a) had spatially
segregated ON and OFF subregions, (b) exhibited
summation within each region, (c) had ON and OFF
subregions that were antagonistic and (d) it was possible
to predict the neuron’s response to any stimulus from
the arrangement of excitatory and inhibitory subregions.
If a neuron failed to pass one of these criteria it was
defined as complex. Because some of these tests were
qualitative in nature, difficult to apply consistently
across laboratories, and based on manual plotting of the
receptive field, researchers sought to replace them with
quantitative measures that could be used to differentiate
between simple and complex cells. With the advent of
linear system theory in visual neuroscience it was real-

ized that a key property being tested by Hubel and
Wiesel’s criteria was the linearity of spatial summa-
tion within the receptive field (De Valois, Albrecht, &
Thorell, 1982; Maffei & Fiorentini, 1973; Movshon,
Thompson, & Tolhurst, 1978b; Skottun et al., 1991). A
number of investigators converged to propose that an
appropriate measure of response linearity is the ratio
between the amplitude of the first harmonic of the re-
sponse and the mean spike rate (or the F1=F0 ratio) when
the neuron is stimulated with drifting sinusoidal gratings
(Skottun et al., 1991). These authors showed that the
F1=F0 ratio is bimodally distributed over the V1 popu-
lation. Furthermore, they established that the resulting
classification corresponded closely to the classical defi-
nition of simple and complex cells by Hubel and Wiesel.
The bimodal distribution of the F1=F0 ratio was taken as
compelling evidence for the existence of discrete classes
of simple and complex cells in V1. Due to its simplicity
and ease of measurement, the F1=F0 ratio has become the
standard used by visual neuroscientist to classify simple
and complex cells.

Here we show that a simple rectification model can
predict the observed bimodal distribution of F1=F0 in
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primary visual cortex when the distributions of the in-
tracellular response modulation and mean are unimo-
dal. The basic result of our study can be explained
intuitively with an analogy (Fig. 1). Assume we measure
the height of the world population and observe that the
resulting distribution is bimodal (Fig. 1(a)). One would
conclude that the data indicate the existence of two sub-
populations of individuals (short and tall). It is later
discovered, however, that the ruler used to measure the
heights was non-linear. Fig. 1(b) shows the relationship
between the true and the measured heights of this non-
linear ruler. Such a ruler will cause the shape of the
measured and true distributions to differ. In our exam-

ple, the true distribution is in fact unimodal (Fig. 1(c)),
but after being passed through the non-linear ruler (Fig.
1(b)) it results in the observed bimodal distribution (Fig.
1(a)). The discovery of a non-linear ruler should prompt
a revision of the initial inference about the presence of
two discrete sub-populations. Our main finding can be
stated as follows: neural rectification due to spike gen-
eration, together with the F1=F0 statistic, behaves as a
non-linear ruler with respect to the relevant intracellular
variable.

A main conclusion from our study is that the bimo-
dality of F1=F0 does not necessarily imply the existence
of two discrete cell classes. In addition, in a compre-
hensive survey of the literature, we found no indepen-
dent data to convincingly support the existence of
discrete simple and complex cells classes. Taken to-
gether, these findings weaken the view of the cortex as
being hierarchically organized into discrete classes of
neurons. Instead, the converging evidence supports the
existence of a continuum of cell properties and a uni-
form organization principle of cortical circuits.

2. Results

2.1. The rectification model

We assume that the time-modulation of the mem-
brane voltage in cortical neurons in response to a drifting
sinusoidal grating consists of a sinusoidal waveform of
amplitude A, and mean Vmean, driven at the temporal
frequency of the stimulus (Fig. 2). In addition, the in-
stantaneous rate of firing of a neuron, r tð Þ, is assumed to
be proportional to the supra-threshold membrane po-
tential and zero if the membrane potential is below
threshold,

Fig. 1. The ‘‘non-linear ruler’’ analogy. (a) A bimodal distribution of

measured heights over a population, (b) the non-linear ruler used in the

measurement. The x-axis represents the true physical height and the y-

axis the measured height, (c) the true underlying distribution of heights

that, after being measured with the non-linear ruler, generates the bi-

modal distribution in (a).

Fig. 2. The rectification model. The time-modulation of the membrane

potential in response to a drifting sinusoidal grating is assumed to be a

sinusoidal waveform with amplitude A, mean Vmean and period equal to
that of the stimulus, T. Vrest represents the resting potential and Vth the
threshold potential for spike generation.
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r tð Þ ¼ G Vmean½ þ A cos 2pftð Þ � Vth�þ: ð1Þ

Here, f indicates the temporal frequency of the stimulus,
x½ �þ represents half-rectification ( x½ �þ ¼ x if x > 0 and
zero otherwise), Vth is the threshold for spike generation,
and G represents the gain of the spike generator. The
resting membrane potential of the neuron, when there is
no visual stimulation, is denoted by Vrest. An ideal simple
cell is expected to respond to a drifting sinusoidal
grating with a large modulation amplitude, A, but with
no significant changes in the mean (Vmean � Vrest). An
ideal complex cell will respond with a significant in-
crease in the mean (Vmean 	 Vrest), but little or no mod-
ulation, A � 0. Admittedly, this is a simplified model
that does not capture the details of the biophysics but,
nevertheless, summarizes nicely the relationship between
the intracellular voltage and extracellular firing rates in
cat area 17 (Carandini & Ferster, 2000).

The F1=F0 ratio of the response is a statistic on the
spike rate modulation, r tð Þ, as measured with extracel-
lular recordings. To see how this statistic depends on the
intracellular variables we can rewrite Eq. (1) as:

r tð Þ ¼ G Vmean½ þ A cos 2pftð Þ � Vth�þ

¼ a cos 2pftð Þ½ � b�þ: ð2Þ

Here, we used G x½ �þ ¼ Gx½ �þ for GP 0, and defined
a 
 GA and b 
 G Vth � Vmeanð Þ. If we denote v ¼ b=a,
the F1=F0 ratio can be written as (see Appendix A):

F1=F0 ¼
�v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
þ arccos vð Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

� v arccos vð Þ
if � 16 v6 1; ð3aÞ

F1=F0 ¼ �1=v if v < �1; ð3bÞ

and F1=F0 is undefined for v > 1, as in this case the re-
sponse is zero. The F1=F0 ratio depends only on the ratio
between b and a, and not their absolute magnitudes. We
denote by F1=F0 ¼ g vð Þ the function mapping v into
F1=F0. Fig. 3(a) depicts a plot of this function, and Fig.
3(b) shows its derivative, which measures the rate of
change of g vð Þ. The function g vð Þ is clearly non-linear; it
has a sigmoid shape. For v < �2 we see that F1=F0 < 0:5
and the function changes at a slow rate. For increasing
values of v, the function g vð Þ accelerates rapidly and
crosses the v; F1=F0ð Þ ¼ �1; 1ð Þ point with maximum
slope (Fig. 3(b)). For v > �1 the curve decelerates. We
observe that g vð Þ is convex in �1;�1ð Þ and concave in
�1; 1ð Þ.
As a consequence of this non-linearity, a unimodal

distribution of a, b, and v, can yield a bimodal distri-
bution of the F1=F0 ratio (note that if one assumes a
constant Vth and G, the shape of the distributions for a
and b are the same as those of the response ampli-
tude, A, and mean, Vmean, respectively). As an exam-
ple, assume that a is distributed as p að Þ ¼ 2=

ffiffiffiffiffiffiffiffiffiffi
2pr2

a

p

exp �a2=2r2
a

� �
for aP 0 and zero otherwise (a half

Gaussian distribution), and that b is independent of a,
and Gaussian distributed, p bð Þ ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
2pr2

b

p
exp �b2=ð

2r2
bÞ. Their ratio, v ¼ b=a, will be Cauchy distributed,

p vð Þ ¼ p�1a= a2 þ v2ð Þ, with a ¼ rb= ra. If we assume v
to have the particular Cauchy density shown in Fig.
4(a), the resulting distribution of the F1=F0 ratio is bi-
modal (Hartigan’s dip statistic (Hartigan & Hartigan,
1985), p < 10�5, significance obtained via Monte Carlo
simulation with N ¼ 105) with a dip at F1=F0 ¼ 1 and
modes at around F1=F0 ¼ 0 and F1=F0 ¼ p=2 � 1:57
(Fig. 4(b)). The reason for this behavior is that the
probability density function of F1=F0 and v are related
by p F1=F0ð Þ ¼ p vð Þ= g0 vð Þj j (Papoulis, 1984). This means
that, in general, there will be a tendency for a low
density in the distribution of F1=F0 in those locations
where g0 vð Þ is large. In this case this happens at v ¼ �1
which corresponds to F1=F0 ¼ 1.

The result can also be understood intuitively. The
mode near 1.57 is due to the concentration of a signifi-
cant mass of v near zero. A value of v ¼ 0 (when the
mean membrane potential equals the threshold for rec-
tification) maps to the F1=F0 ratio expected for half-
rectification of a sinusoid (or p=2 � 1:57). Similarly, the
mode of F1=F0 near zero is formed by the mass of v
present in the long left tail of the Cauchy density that,
for values of v < �2, maps to values of F1=F0 less than
0.5. The right tail of v is not relevant, as values of v > 1

Fig. 3. Non-linear mapping between v and the F1=F0 ratio. (a) The

function g vð Þ mapping v into F1=F0, (b) plot of the derivative g0 vð Þ.
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generate a zero response and the F1=F0 ratio is therefore
undefined. Finally, the dip at F1=F0 ¼ 1 is due to the
relatively large slope of g vð Þ which is maximal at
v; F1=F0ð Þ ¼ �1; 1ð Þ (Fig. 3). This large slope means that
the range of v values that map to values of F1=F0 close
to one is relatively small. Thus, the probability of ob-
serving F1=F0 � 1 is relatively low and one observes a
dip of the distribution at this location. The rectification
model does not only predict a bimodal distribution of
F1=F0 but also the location of the dip at one.

There is nothing peculiar about this example. Other
probability density functions with similar characteristics
would also generate a bimodal distribution of the F1=F0
ratio. We demonstrate below that similar results are also
obtained if the intracellular response is not a sinusoidal
waveform, or if the threshold non-linearity is not a
perfect rectifier. Other choices for these functions will
also yield a sigmoidal mapping function gðvÞ, which by
virtue of the relationship p F1=F0ð Þ ¼ p vð Þ= g0 vð Þj j can
generate bimodal distributions of the F1=F0 ratio for
some unimodal distributions of v. This formula also
makes evident the fact that the shape of p vð Þ, deter-
mined by the distribution of a and b, also influences the
shape of p F1=F0ð Þ.

To compare the predictions of the model with ex-
perimental data, the measured distribution of F1=F0 in
macaque primary visual cortex is shown in Fig. 4(c).
The empirical F1=F0 distribution is bimodal (dip statis-
tic, p < 10�5). Furthermore, the model and empirical
distributions are statistically indistinguishable (single
sample Kolmogorov–Smirnov test, p > 0:14). Thus, one
cannot reject the hypothesis that the data came from the
rectification model. This is remarkable, as it shows that
a one-parameter model can explain the distribution of
F1=F0 in primary visual cortex (the only parameter is the
scale of the Cauchy distribution, a). We conclude that
the bimodality of F1=F0 could originate, in principle,
from a simple non-linear system where both the intra-
cellular response modulation and mean are unimodal.

We note that in the original definition of the F1=F0
ratio the neuron’s spontaneous rate is subtracted from
the stimulus evoked mean spike rate to calculate the
effective F0 component (De Valois et al., 1982; Skottun
et al., 1991). The rectification model does not incorpo-
rate this fact. Effectively we are assuming a spontaneous
rate of zero. This simplifies the mathematical analysis
and is reasonable given that the large majority of cor-
tical cells have very low spontaneous rates. Nevertheless,
we verified via computer simulations that subtracting
the spontaneous spike rate, when the distribution of
spontaneous activity matches the one observed in the
cortex, has little effect on our results (data not shown).

2.2. Robustness of the rectification model

Even though the half-rectifier model provides accu-
rate descriptions of the firing rates of real neurons, both
in vitro (Carandini, Mechler, Leonard, & Movshon,
1996) and in vivo (Carandini & Ferster, 2000), it may
still be perceived as a rather simplified model of the
biophysics of spike generation. This may raise questions
as to the robustness of our findings. First, one may ask
how robust the bimodality of F1=F0 is to changes in the
shape of the spike-generator non-linearity, or when the
shape of the underlying modulation departs from a
perfect sinusoidal function. Second, one may ask what

Fig. 4. The rectification model generates a bimodal distribution of

F1=F0 indistinguishable from experimental data. (a) Distribution of v
assuming normal distributions of a and b for a choice of the scale

parameter a ¼ rb=ra ¼ 2:2, (b) the resulting distribution of F1=F0 ob-
tained from sampling N ¼ 5000 points in the rectification model

(points with v P 1 were discarded, resulting in a total effective count of

N ¼ 3178), (c) distribution of F1=F0 in monkey primary visual cortex

(Ringach et al., unpublished data). These data were obtained with

drifting luminance gratings of optimal spatiotemporal parameters. The

contrast was high (80–99%).
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would be the prediction if we were to consider a more
‘‘realistic’’ biophysical model of a neuron.

To study how the shape of the output non-linearity
influences the results, we computed the predicted F1=F0
distributions for power functions with different expo-
nents (Fig. 5, across columns). These power functions
were chosen to span a range of spike generator non-
linearities: (a) a square-root non-linearity, (b) a linear
or half-wave rectifier, and (c) a half-squaring operator.
To compare them on an equal footing, the three non-
linearities (top row) are fed the same set of inputs
(sinusoidal modulations). Therefore, the associated in-
tracellular ratio parameter, v, is identically distributed in
all conditions (second row). The values of v are passed
through the corresponding non-linear transducer func-

tion g vð Þ : v ! F1=F0 (third row), which transforms the
unimodal distribution of v into the resulting F1=F0 dis-
tributions (bottom row). Bimodality is evident in all
these distributions, with the dip always near one. How-
ever, both the depth and exact location of the dip in the
F1=F0 distribution (indicated by the arrows) systemati-
cally depend on the power of the non-linearity. An in-
creasing exponent of the power function results in a
decreasing peak slope of g vð Þ (vertical arrows in forth
row) and an increase in the value of g vð Þ at all points.
This causes the same v values to be mapped to higher
values of F1=F0, thereby increasing the relative propor-
tion of ‘‘simple’’ cells in the distribution. In general, V1
neurons exhibit a distribution of exponents (Albrecht &
Geisler, 1991; Anzai, Ohzawa, & Freeman, 1999) and

Fig. 5. Dependence of the F1=F0 distribution on the shape of the output non-linearity. Given the intracellular potential, V, the modeled operators

generate spike rate responses rðV Þ that are power functions, with different exponents p, of the supra-threshold intracellular potential rðV Þ ¼ 0,

V < Vth, rðV Þ ¼ ðV � VthÞp, V P Vth. The three selected non-linearities, shown in the first row are (a) square root operator, p ¼ 0:5 (b) half-wave

rectifier, p ¼ 1:0 and (c) half-squaring operator, p ¼ 2:0. Second row: each spike rate operator receives for input a large set of sinusoidal modulations
of the intracellular potential V ðtÞ ¼ a cosðtÞ � b where a and b are independently distributed and normal (or half-normal) and whose associated

ratio parameter v ¼ b=a is identically distributed for all conditions, and Cauchy distributed with a ¼ 2:2, N ¼ 5000 as before. Third row:

gðp; vÞ ¼ v ! F1=F0, the transducer function associated with the power-low operator of exponent p (see Appendix A). Fourth row: g0ðp; vÞ the
derivative of the transducer function. Arrows indicate maximum slope and value of gðp; vÞ. Bottom row: the resulting distribution of the F1=F0 ratio
ðN ¼ 3176Þ.

F. Mechler, D.L. Ringach / Vision Research 42 (2002) 1017–1033 1021



the expected distribution can be thought of as a mixture
of the predicted F1=F0 distributions.

Next, we examine how the shape of the membrane
voltage modulation influences the F1=F0 distribution by
comparing samples from a continuum of distorted co-
sines (Fig. 6). The three functions chosen, shown on the
top row of Fig. 6, represent samples of von Mises
functions and their inverted versions. They are se-
lected to mimic some of the distortions observed in the
postsynaptic membrane potentials (see e.g., Jagadeesh,
Wheat, Kontsevich, Tyler, & Ferster, 1997, Lampl,
Anderson, Gillespie, & Ferster, 2001). The function in
the middle (Fig. 6(b)) is an undistorted cosine. The
voltage modulation on the left (Fig. 6(a)) is a periodic
function with a broad peak and a narrow trough, while
the function on the right (Fig. 6(c)) has a broad trough
and a narrow peak. Each function has zero mean, and is
normalized to have a minimum value of �1. The nor-

malization at the minimum is required to guarantee a
common scale of comparison for the intracellular ratio
parameter, v. To put the comparison on equal footing,
the same threshold non-linearity (half-wave rectifica-
tion) and identically distributed v (second row) are used.
As before, we observe that all resulting F1=F0 distribu-
tions are bimodal with dips near one. However, the
exact location of the dip and the degree of bimodality
varies. The maximum slope of g vð Þ increases as the peak
of the modulation becomes sharper and the trough
broader (Fig. 6, fourth row). This contributes to en-
hance the bimodality in the F1=F0 distribution. We also
see an increase in g vð Þ as the peak of the modulation
becomes narrower. Again, this causes the same v values
to be mapped to higher values of F1=F0 thereby in-
creasing the relative proportion of ‘‘simple’’ cells. In
general one observes a distribution of shapes for the
intracellular modulation (Jagadeesh et al., 1997, Lampl

Fig. 6. Dependence of the F1=F0 distribution on the shape of the intracellular voltage modulation. Top row: three possible shapes of V ðtÞ obtained as
versions of the von Mises function, MðtÞ ¼ C1ðC0 þ sign ðjÞ exp jj j cosðtÞÞ with parameter j. The value of C0 was first chosen so that the mean of the

waveform was zero. The value of C1 was then chosen so that mintðMÞ ¼ �1. Voltage modulations are considered to be of the form V tð Þ ¼ aM tð Þ � b,
where a is the modulation amplitude; b is the mean potential deviation from threshold, where a and b are distributed as before. (a) j ¼ �0:75,
produces a broad peak with a narrow trough, (b) j ¼ 0, an undistorted cosine, (c) j ¼ þ0:75, mirror-symmetric image of (a) around the y-axis. The
rest of the figure follows the same organization as Fig. 5.
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et al., 2001) and the empirical distribution can be ex-
pected to be a mixture of the predicted F1=F0 distribu-
tions.

In the rectification model we assumed that the vari-
ables a and b are independent. However, it is possible
that real data will show a correlation between the DC
and amplitude modulation evoked by visual stimulation.
If a and b are jointly normal with a correlation coeffi-
cient of r 6¼ 0, the resulting distribution of v will not be
centered at zero but at rrb=ra. In Fig. 7(a–c) we explore
how the shape of F1=F0 changes when the variables a
and b are positively correlated (Fig. 7(a), r ¼ þ0:45),
uncorrelated (Fig. 7(b), r ¼ 0), or negatively correlated
(Fig. 7(c), r ¼ �0:45). For a ¼ rb=ra ¼ 2:2 the selected
correlation values induce a unit step shift in the distri-
bution of v in either the positive or negative directions.
In these simulations, we assumed half-wave rectification
and a perfect sinusoidal modulation. A bimodal distri-
bution F1=F0 is observed in all three cases, with a dip
near one in all conditions. The exact location of the dip
and the degree of bimodality depend on the correlation.
As a and b become positively correlated the bimodality
is enhanced and the relative number of ‘‘simple’’ cells
increases.

There are further departures from the assumptions of
the basic rectification model one may want explore, such

as changes in mean and shape of the distributions of
a and b. For example, global changes in cortical excit-
ability may be represented in the model as a change in
the mean of b. Similarly, the fact that many cortical
neurons receive a substantial (time-modulated) input
from the lateral geniculate nucleus may imply a distri-
bution of a that has a mode at a location above zero. We
have explored changes in these variables in some detail
and found, once again, that the degree of bimodality
and the relative number of simple versus complex cells
can be altered by a manipulation of these parameters
(data not shown).

The simulations presented here are not exhaustive in
the sense that many possible combinations of the vari-
ous factors mentioned above have not been studied. It
should be evident, however, that a complete study of all
possible combinations is unfeasible given the number of
parameters involved. Nevertheless, we feel the numerical
studies presented here provide a full account of the types
of departures in the F1=F0 distribution one could expect
from that obtained with the basic rectification model.
The bimodality of the F1=F0 ratio appears to be a rather
robust phenomenon that is observed under a wide va-
riety of conditions.

Finally, it has recently been shown that a realistic
large-scale model of primary visual cortex, which takes
into account V1 micro-anatomy and uses conductance-
based integrate-and-fire neurons, can yield a bimodal
distribution of the F1=F0 (Tao, Shelley, Shapley, &
McLaughlin, 2001). In this detailed model, however, all
the parameters governing the intrinsic dynamics of the
neurons and the connectivity between them have uni-
modal distributions. Thus, detailed biophysical models
can also exhibit the type of phenomenon discussed in
this study. We think the simple rectification model
provides a parsimonious explanation of these results
and, despite its simplicity, captures the key mathemati-
cal aspects underlying the bimodality of the F1=F0 ratio
in more detailed biophysical models.

2.3. Relationship between the intracellular and extracel-
lular modulation ratios

Carandini and Ferster (2000) defined a quantity
analogous to the F1=F0 spike modulation ratio based on
the time-modulation of the intracellular membrane po-
tential. We follow their work and define f1=f0 as the
intracellular modulation ratio, where f1 ¼ a and f0 ¼
Vmean � Vrest. A final question of interest we want to ad-
dress here is the relationship between the extracellular
F1=F0 and the intracellular f1=f0.

First, notice that f0 ¼ Vth � Vrestð Þ � b. Therefore f1=
f0 is not simply proportional to 1=v ¼ a=b ¼ a= Vth�ð
VmeanÞ. Instead, f1=f0, unlike F1=F0, depends on both a
and b, not just their ratio (see Appendix A). This means,
that the f1=f0 ! F1=F0 mapping is not a one-to-one

Fig. 7. Dependence of the F1=F0 distribution on the correlation be-

tween a and b. A correlation between a and b produces a shift in the

distribution of v. (a) Cauchy, with shape parameter a ¼ 2:2 and cor-

relation r ¼ 0:45 is centered at v ¼ þ1, (b) Cauchy, with shape pa-

rameter a ¼ 2:2 and correlation r ¼ 0 is centered at v ¼ 0, (c) Cauchy,

with shape parameter a ¼ 2:2 and correlation r ¼ �0:45 is centered at

v ¼ �1.
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function. To avoid potential confusion, it is useful to
keep in mind that while the f1=f0 ratio might be an
appropriate quantity to define ‘‘simple’’ and ‘‘complex’’
cells––with f1=f0 > 1 indicating the predominance of the
linear response, and f1=f0j j < 1, the predominance of
spatiotemporal non-linearities––it is the v variable that
is the mathematically relevant intracellular quantity for
determining the extracellular F1=F0 modulation ratio.

To examine how f1=f0 relates to F1=F0 we construct a
model along the same principles as above. As before, we
assume a half-wave rectifier and sinusoidal inputs. The
intracellular parameters are the modulation amplitude
a (half-Gaussian, with standard deviation ra) and the
voltage distance from threshold b (Gaussian, with
standard deviation rb). These variables are assumed to
be independently distributed, so their ratio, v ¼ b=a, is
Cauchy distributed with a scale parameter of a ¼ rb=ra.
The parameter a measures the relative spread of the DC
distribution with respect that of first-harmonic ampli-
tude. We also define a second parameter, b, as b ¼
ra= Vth � Vrestð Þ. Notice that b measures the degree of
intracellular amplitude modulation in units of the volt-
age ‘‘distance’’ from threshold. In this model, the pa-
rameters a and b can be varied independently.

The f1=f0 ! F1=F0 mapping is dependent on both a
and b. Fig. 8 illustrates this dependence obtained by
simulating N ¼ 106 data points for each case. Each
panel in the matrix of Fig. 8 shows results for a different
combination of a; bð Þ, whose corresponding values are
indicated at the margins (sampled in logarithmic steps).
The double-logarithmic scatter-plot shows the resulting
distribution in the joint f1=f0; F1=F0ð Þ plane for the
corresponding value of the parameters. The resulting
gray-scale of a region in the scatter-plot is therefore
proportional to the probability of occupancy in that
region. Dark lines represent theoretical boundaries of
the region that points can occupy in the f1=f0; F1=F0ð Þ
plane (see Appendix A). Vertical dotted line depicts
the conventional simple/complex boundary F1=F0 ¼ 1.
The horizontal dotted line corresponds to a constant
intracellular modulation ratio f1=f0 ¼ 0:5, suggested as
boundary separating between simple and complex neu-
rons (see Fig. 11 in Carandini & Ferster, 2000). In each
case, the distribution of f1=f0, obtained as the marginal
distribution of the scatter-plots along the y -axis, is in-
cluded as an inset. As already shown, the distribution of
v and that of F1=F0 depend only on the value of a and do
not change across the rows of the matrix. Thus, we plot
these distributions as the bottom two rows in Fig. 8.

First, notice that for a ¼ 1, 1.5 and 2.2 the distribu-
tions of F1=F0 are bimodal with dips near one. However,
all the corresponding intracellular distributions of f1=f0
are unimodal. Thus, a unimodal f1=f0 does not imply
a unimodal F1=F0. We also observe that the relative
numbers of ‘‘simple’’ versus ‘‘complex’’ cells in the F1=F0
distribution increases as a decreases.

Second, notice that the distribution of f1=f0 depends
on b. As b increases the amount of mass probability
around the mode at f1=f0 ¼ 0 decreases and the tails
become heavier. Therefore, if intracellular measure-
ments are used to define a simple cell as one for which
f1=f0 > rcrit, for a fixed criterion ratio rcrit, the relative
number of simple versus complex cells will necessarily
increase as b increases. On the other hand, the ratio
between ‘‘simple’’ and ‘‘complex’’ based on F1=F0 will
remain constant, as it depends solely on a. This provides
another example demonstrating that a classification
scheme based on the intracellular f1=f0 and the extra-
cellular F1=F0 are not equivalent.

Third, if the shape of threshold non-linearity and the
voltage modulation are known, the distribution of a and
b can be estimated from the distribution of f1=f0 and
F1=F0. To our knowledge, the only set of such data
published is by Carandini and Ferster (2000) in cat area
17. To facilitate the comparison between the model’s
predictions with the neuronal data we generated the
scatter-plots in Fig. 8 to resemble their Fig. 11. Unfor-
tunately, because their data set is rather limited (N ¼ 28)
and biased (75% of their recordings were obtained from
simple cells), it is not possible to perform such estima-
tion nor to verify whether the intracellular f1=f0 distri-
bution over the entire V1 population is unimodal or
bimodal.

The rectification model can show a bimodal distri-
bution for F1=F0 when f1=f0 has a unimodal distribution.
However, the model does not rule out the possibility
that f1=f0 is bimodal. Perhaps, sufficiently large and
unbiased measurements of f1=f0 could demonstrate the
existence of two discrete classes on neurons in V1.

3. Discussion

Our result could be considered an ‘‘existence proof’’
that a simple model, where all the physical parameters
have unimodal distributions, can generate a bimodal
distribution of the F1=F0 ratio that is indistinguishable
from empirical data. The bimodality of the F1=F0 ratio,
long considered as disproving the null hypothesis of a
continuum of cell properties, should not be accepted as
such. The findings do not prove conclusively that the
‘‘non-linear ruler effect’’ is indeed what is happening in
V1. However, as we argue next, there appears to be no
independent data to convincingly support the existence
of discrete simple and complex cells classes. Thus, in our
opinion, the question of whether there are simple and
complex cell classes in V1 remains open.

Several measures have been proposed in the literature
to distinguish between simple and complex cells. Be-
cause the concept of ‘‘spatial summation’’ was the basic
idea behind Hubel and Wiesel’s original classification
scheme, the large majority of these investigations fo-
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cused on some aspect of spatial processing of the re-
ceptive field. Other measures, not directly linked to the
spatial structure of the receptive field (such as sponta-

neous rate of activity, response variability, temporal
tuning, color sensitivity, and ocular dominance) have
been studied as well. If one of these measures showed a

Fig. 8. Relationship between the f1=f0 intracellular (potential) modulation ratio and the F1=F0 extracellular (spike) modulation ratio predicted by the
rectification model. Each panel in the matrix illustrates results for a different combination of a; bð Þ whose corresponding values are indicated at

the margins. The double-logarithmic scatter-plot shows the resulting distribution in the joint f1=f0; F1=F0ð Þ plane for the corresponding value of the
parameters. The distribution corresponds to a simulation of N ¼ 106 points. For each a; bð Þ case, the distribution of f1=f0 obtained as the marginal

distribution of the scatter-plots along the y-axis, is included as an inset. Note that this marginal distribution is on linear scale and includes cells whose

mean potential response was hyperpolarizing and could not be shown in the scatter plot. The distribution of v and that of F1=F0 (the marginal
distribution along the x-axis) depend only on the value of a and do not change across the rows of the matrix. Thus, they are plotted separately as the
two bottom rows of the Figure. The simple versus complex cell ratio obtained for the different values of a were (from left to right) 0.66, 0.53 and 0.42.

See text for details.
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bimodal distribution in V1 that corresponded closely to
the classical definition by Hubel and Wiesel, and the
measure were not subject to the phenomenon described
here or other criticisms, one would have independent
evidence for the existence of simple and complex classes
of neurons. We reviewed the literature in search for such
evidence.

Table 1 provides a summary of studies that have
measured some property of visual responses in V1 and
reported their results for the entire population. Some of
these results are already reviewed in Dean and Tolhurst,
1983 and Skottun et al. (1991). The vast majority of
studies do not show a bimodal distribution in V1 or the
distributions were not reported and their shapes cannot
be assessed. In cases where a dichotomy was reported,
the measures used were often qualitative in nature. We
focus the following discussion on studies that reported a
bimodal distribution of a statistic and/or claimed sepa-
ration between simple and complex cells.

A measure of receptive field linearity that has been
argued to show a bimodal distribution in V1 is the ratio
between the mean of the second harmonic amplitude to
the maximum first harmonic amplitude ðF2=F1Þ in con-
trast reversing sinusoidal gratings (Hawken & Parker,
1987). The mean and maximum are computed across
a set of equally spaced spatial phases of a contrast re-
versing grating. Complex cells are expected to have
F2=F1 > 1, while simple cells are expected to have
F2=F1 < 1. We re-examined these data, which are re-
plotted in Fig. 9(a) for convenience. The degree of bi-
modality in the F2=F1 ratio is much less pronounced than
the one observed in the F1=F0 distribution, and a sta-
tistical test reveals that dip in the F2=F1 distribution is
not statistically significant (dip-statistic, p > 0:4).

Another statistic, derived from the original Hubel
and Wiesel’s criteria, is the separation (or discreteness)
of ON and OFF subfields. To the best of our knowledge,
Schiller et al., 1976c is the only study reporting a sig-
nificant bimodal distribution of subfield segregation (the
data in their Fig. 20, statistic, p < 10�2). These authors
found that subfield separation is bimodally distributed
with a dip at 0.1�. The method used to establish the
separation between subfields involved drifting bright
and dark edges across the receptive field at constant
velocities. Time differences between the peaks in the
PSTHs for bright and dark bars were converted into
differences in space by multiplication with the stimulus
velocity. This method is problematic because it con-
founds space and time: differences in the temporal re-
sponse of ON and OFF subfields will be converted into
differences in subfield segregation. As an example, a
neuron with a single subfield but a biphasic tempo-
ral response may appear as having two segregated
subregions. Another study (Dean & Tolhurst, 1983) es-
timated subfield segregation (or ‘‘discreteness’’) from
line-weighting functions measured with bars of opposite

contrast polarity and they reported a unimodal distri-
bution in V1.

A number of studies have used the F1=F0 ratio (or a
qualitative judgment of receptive field linearity) to first
classify cells into simple and complex classes and then
proceeded to test if these two groups differ statistically
along other receptive field properties, such as their
spontaneous spike rates (Gilbert, 1977), receptive field
size (Hubel & Wiesel, 1962), ocular dominance (Schiller
et al., 1976b) and color bandwidth (Thorell et al., 1984),
among others. While such analyses may reveal statistical
differences among simple and complex cells, the results
should be interpreted with caution, as they could be a
consequence of a correlation between a measure of re-
ceptive field linearity and the property under consider-
ation. Specifically, these results could arise in systems
where all the physical variables have (correlated) uni-
modal distributions. Such possibility is illustrated in Fig.
10. Assume the intracellular f1=f0 is correlated with P
another measurable property of the receptive field (Fig.
10(a)). The distribution of f1=f0 in this example is uni-
modal (Fig. 10(b)). The distribution of P (not shown) is
also unimodal and very similar to that of f1=f0 (Fig.
10(b)), which is a consequence of these two variables
being correlated. However, when the F1=F0 ratio is cal-
culated for this same population the distribution is bi-
modal (Fig. 10(c)). Importantly, the F1=F0 ratio and P are
also correlated, as expected from the relationship be-
tween f1=f0 and F1=F0 (Fig. 8). This means that if simple
and complex are now defined in terms of the F1=F0 ratio
statistic (or an equivalent subjective classification), one
finds that the mean value of the property P differs sta-
tistically between these two groups (Fig. 10(d)). This
finding, however, should not be interpreted as meaning
that ‘‘simple’’ and ‘‘complex’’ cells could be segregated
using the property P. The distribution of P over the en-
tire population should be evaluated first and, as we al-
ready pointed out, the distribution in this numerical
simulation is unimodal and does not indicate the pres-
ence of two sub-populations. One of the several studies
that have carried out such an analysis is considered next.

A neuron’s spectral bandwidth has been argued to
segregate simple and complex cells, with complex cells
being more broadband tuned than simple cells (Thorell
et al., 1984). These authors used the F1=F0 ratio to
classify neurons and plotted separately the distribution
of spectral bandwidth for simple and complex cells,
which were statistically different. However, as described
above, this result could be expected from a correlation
between a unimodal f1=f0 and color bandwidth and does
not necessarily imply that color bandwidth segregates
simple and complex cells. Indeed, when the data in Fig.
5 in Thorell et al., 1984 are re-plotted across the entire
V1 population the distribution of spectral bandwidths is
unimodal (Fig. 9(b), dip-statistic, p > 0:6) and does not
suggest the existence of two discrete classes of neurons.
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Table 1

Some of the quantitative measures previously used to distinguish between ‘‘simple’’ and ‘‘complex’’

Measure Classification

methoda
Animalb Distribution

reported?

N Claimed

segregation?

Source

F1=F0 1 M Yes 94 Yes Schiller, Finlay, and Volman (1976a)

3 C Yes 1061 Yes Skottun et al. (1991)

3 C Yes 391 Noc Dean and Tolhurst (1983)

2 M Yes 336 Yes Cumming, Thomas, Parker, and

Hawken (1999)

3 M Yes 343 Yes De Valois et al. (1982)

Intracellular F1=F0 2 C Yes 28 No Carandini and Ferster (2000)

Spatial phase null test 4d M Yes 138 Yes Hawken and Parker (1987)

ON/OFF segregation 1 C No 303 Yese Hubel and Wiesel (1962)

1 M No 272 Yese Hubel and Wiesel (1968)

1 M Yes 296 Yes Schiller, Finlay, and Volman (1976c)

3 C Yes 74 No Dean and Tolhurst (1983)

Number of RF regions 3 C Yes 110 No Movshon, Thompson, and Tolhurst

(1978a)

RF size 1 C Yes 112 No Hubel and Wiesel (1962)

1 M Yes 422 No Schiller, Finlay, and Volman (1976c)

1 C Yes 56 No Hammond and Munden (1990)

Length summation 1 M Yes 355 No Schiller et al. (1976c)

1 C Yes 87 No Swindale and Cynader (1989)

End/side inhibition 2 C Yes 82 No De Angelis, Freeman, and Ohzawa

(1994)

Area summation 2 M Yes 85 No Sceniak, Ringach, Hawken, and

Shapley (1999)

Spatial frequency tuning 3 M Yes 87 No Schiller et al. (1976a)

3 M Yes 358 No De Valois et al. (1982)

4d M Yes 138 No Hawken and Parker (1987)

1 C Yes 149 No Movshon et al. (1978b)

Orientation selectivity 1 M Yes 354 No Schiller, Finlay, and Volman (1976b)

1 C Yes 77 No Heggelund and Albus (1978)

Direction selectivity 4d M Yes 147 No Hawken, Parker, and Lund (1988)

3 C Yes 176 No Casanova, Nordmann, Ohzawa, and

Freeman (1992)

Preferred phase/disparity 3 C Yes 109 No Ohzawa, De Angelis, and Freeman

(1996, 1997)

Vernier offset 1 C Yes 87 No Swindale and Cynader (1989)

Spontaneous firing rates 4f C Yes 99 No Pettigrew, Nikara, and Bishop (1968)

NA C No 185 No Tomko and Crapper (1974)

1 M Yes 382 No Schiller et al. (1976c)

Response variability 1 M Yes 333 No Schiller, Finlay, and Volman (1976d)

1 C Yes 83 No Heggelund and Albus (1978)

NA C No 185 No Tomko and Crapper (1974)

Bursting 1 C No 57 Yes Cattaneo, Maffei, and Morrone (1981)

NA C Yes 507 No De Busk, De Bruyn, Snider, Kabara,

and Bonds (1997)

Contrast threshold and gain 3 C Yes 43 No Dean (1981)

Contrast sensitivity 1 C+M No 114 No Albrecht, Valois, and Thorell (1980)

Contrast threshold 2 C Yes 48 No Skottun, Bradley, Sclar, Ohzawa, and

Freeman (1987)

Contrast gain control 3 C Yes 36 No Bonds (1991)

3 C Yes 83 No Ohzawa, Sclar, and Freeman (1985)

Temporal frequency tuning 2 M Yes 75 No Hawken, Shapley, and Grosof (1996)

Response latency NA M Yes 298 No Maunsell and Gibson (1992)

Cone weights and ratios 2 M Yes 104 No Lennie, Krauskopf, and Sclar (1990)

Color/luminance sensitivity 1 M Yes 171 No Thorell, De Valois, and Albrecht

(1984)

1 M Yes 167 No Johnson, Hawken, and Shapley (2001)

Spectral bandwidth 1 M Yes 121 Yes Thorell et al. (1984)

Spectral peak 1 M Yes 121 No Thorell et al. (1984)

(continued on next page)
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Two groups have proposed that multivariate statistics
might be required to distinguish between simple and
complex cells (Dean & Tolhurst, 1983; Schiller et al.,
1976e). This idea has not been tested rigorously, as no
adequate statistical tests were provided in these studies
to demonstrate a significant clustering in the distribu-
tions. For example, Schiller and colleagues (Schiller
et al. (1976e)) used two independent measures for clas-
sifying simple and complex cells. One was based on a
measurement of subfield segregation (already discussed
above) and another was based on an optimal linear
combination of several variables, which provided an
optimal canonical measure, Z, obtained by linear dis-
criminant analysis (Table 5 in Schiller et al., 1976e).
When the distribution of Z is assessed over the entire
population the result is not significantly bimodal (Fig.
9(c), dip-statistic p > 0:4). The claimed ability of this
measure to classify cells into simple and complex with
little errors (Table 3 in Schiller et al., 1976e) might again
be a consequence of a correlation between Z and the
measure of subfield segregation. Dean and Tolhurst
(1983) plotted the joint distribution of two pairs of
variables on the plane (their Fig. 7) for a small sample
without any statistical analysis of grouping. However,
the pair of statistics more suggestive of clustering in-
cluded the F1=F0 ratio and is subject to the problems
discussed here.

A possible approach to circumvent the complications
introduced by rectification is to analyze the intracellular
potentials of V1 neurons in vivo. As discussed above,
the intracellular distributions of response modulation

and mean in response to drifting gratings may help de-
cide if two distinct classes of cells indeed exist in the
cortex. The only data available do not show such a di-
chotomy (Carandini & Ferster, 2000), but this could be
the result of the small sample in this study. Interestingly,
these authors conjectured, without elaboration, that
thresholding might enhance the intracellular modulation
ratio to generate an extracellular bimodal distribution.
Our study shows that this is indeed a possibility.

We conclude that, at present, the notion that V1
contains two discrete classes of simple and complex cells
remains without convincing experimental support. A
recent study of a recurrent network model of the visual
cortex showed that simple and complex cells could
emerge as the low- and high-gain limits of the same basic
cortical circuit (Chance, Nelson, & Abbott, 1999), which
is supported by preliminary experimental evidence
Rivadulla, Sharma, and Sur (2001). This more uniform
view of the cortical architecture stands in sharp contrast
with the classical hierarchical scheme, where complex
cells are built from simple cells. Our findings indicate
that the possibility of a continuum of cell properties and
a more uniform cortical architecture should be consid-
ered seriously. One may also conjecture that the relative
variation in the number of ‘‘simple’’ and ‘‘complex’’
neurons across the V1 layers may reflect variations in
the ‘‘gain’’ of the local feedback circuitry.

Finally, the non-linear phenomenon described here
might be perceived as being particular to the F1=F0 sta-
tistic and unlikely to emerge in other contexts. This is
not the case. For example, a second measure that suffers

Table 1 (continued)

Measure Classification

methoda
Animalb Distribution

reported?

N Claimed

segregation?

Source

Ocular dominance 1 C Yes 223 No Hubel and Wiesel (1962)

1 M Yes 272 Yesg Hubel and Wiesel (1968)

1 M Yes 351 Yesh Schiller et al. (1976b)

1 C Yes 272 No Le Vay and Voigt (1988)

2 C Yes 89 No Chino, Smith, Yoshida, Cheng, and

Hamamoto (1994)

2 M Yes 239 No Smith, Chino, Ni, Ridder, and Craw-

ford (1997)

Multivariate statistics 4i M Yes 76 Yes Schiller, Finlay, Volman (1976e)

3 C Yes 62 Yes Dean and Tolhurst (1983)

The studies highlighted in bold are discussed in the text.
a Classification method is coded as follows: 1 ¼ classification based solely on Hubel and Wiesel criteria, 2 ¼ Classification based solely on F1=F0,

3 ¼ classification based on Hubel and Wiesel criteria cross-validated by the F1=F0 ratio, 4 ¼ Other (specified in a footnote), NA (classification

method not reported in the study).
bAnimal species was coded as follows: C ¼ cat, M ¼ monkey.
c cf. Skottun et al. (1991).
d F2=F1 for contrast reversing gratings.
eNo quantitative data was reported to support this conclusion.
fUnconventional method based on moving bars.
gA subjective rating was used. Also, Fig 14 in Hubel and Wiesel (1968) shows no bimodality of ocular dominance (no dip in the distribution

between fully monocular and fully binocular neurons).
hA subjective rating was used. Also, Fig. 10 in Schiller et al. (1976b) shows no bimodality of ocular dominance for the entire population.
i A measure of sub-field overlap was used.
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from a non-linear distortion effect is the ‘‘orientation
bias’’ or ‘‘circular variance’’ (Mardia, 1972) widely used
to quantify the degree of orientation or direction selec-
tivity in cortical tuning curves (Leventhal, Thompson,
Liu, Zhou, & Ault, 1995; Sato, Katsuyama, Tamura,
Hata, & Tsumoto, 1996; Worgotter & Eysel, 1987,
among others). This measure is mathematically equiva-
lent to the F1=F0 ratio, except that the independent
variable is stimulus orientation (or direction) instead of
time. The bimodality of circular variance recently re-
ported in simple cells (Ringach, Shapley, & Hawken,
2001) could, in principle, have a similar explanation to
the one offered here for the distribution of F1=F0. Thus, a
general lesson from these results is that appropriate care

should be given to the definition of measures and indices
based on extracellular activity and in the interpretation
of the resulting distributions.
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Appendix A

A.1. Half-rectification

Given the instantaneous spike rate of the neuron,
r tð Þ ¼ a cos 2pftð Þ � b½ �þ, we would like to calculate the
mean response, F0, the first harmonic amplitude, F1, and
the ratio F1=F0. Without loss of generality we can as-
sume f ¼ 1=2p. For �1 < b=a < 1, when r tð Þ < 0 for
some value of t we have:

F0 ¼
1

2p

Z 2p

0

a cos t½ � b�þ dt ¼ 1

2p

Z h

�h
ða cos t � bÞdt

¼ 1

2p
2a sin hð � 2bhÞ; ðA:1Þ

where h is defined as the positive angle for which r tð Þ ¼
0. This occurs when h ¼ arccos b=að Þ ¼ arccos vð Þ. Sub-
stituting h in Eq. (A.1) we obtain:

F0 ¼
1

p
a sin h½ � bh�

¼ 1

p
a sin arccos b=að Þð Þ½ � b arccos b=að Þ�

¼ 1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

ph
� b arccos b=að Þ

i
¼ a

p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p�
� v arccos vð Þ

	
: ðA:2Þ

The first harmonic amplitude is given by:

F1 ¼
1

p

Z 2p

0

a cos t½ � b�þ cos tdt

¼ 1

p

Z h

�h
a cos2 t
�

� b cos t
�
dt

¼ 1

p
ah½ þ a sin 2hð Þ=2� 2b sin h�

¼ 1

p
ah½ þ a sin hð Þ cos hð Þ � 2b sin h�: ðA:3Þ

Fig. 9. (a) Distribution of F2=F1 in response to contrast reversing

gratings in the macaque monkey (adapted from Fig. 4 in Hawken &

Parker (1987)), (b) distribution of spectral bandwidths re-plotted from

Fig. 5 in Thorell et al., 1984, (c) distribution of the canonical variable

from Table 5 in (Schiller, Finlay, & Volman (1976e)).
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By substituting h ¼ a cos b=að Þ we get

F1 ¼
1

p
a arccos b=að Þ



þ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b=að Þ2

q
b=að Þ

� 2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b=að Þ2

q �

¼ 1

p
a arccos b=að Þ



� b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b=að Þ2

q �

¼ a
p

arccos vð Þ
h

� v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p i
: ðA:4Þ

Thus, the F1=F0 ratio, when �16 v6 1, is given by

F1=F0 ¼
�v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
þ arccos vð Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

� v arccos vð Þ
: ðA:5Þ

When v < �1 the modulation is never rectified (r tð Þ > 0
for all t) and we have that F0 ¼ �b and F1 ¼ a. Thus, in
this case,

F1=F0 ¼ �1=v: ðA:6Þ

A.2. Half-squaring

Because half-squaring is a commonly used non-
linearity in modeling (Heeger, 1992) we present a closed-

form solution for this case as well. Here, the instanta-
neous spike rate is given by

r tð Þ ¼ a cos tð Þ½
�

� b�þ
�2
:

Again, F1=F0 is only defined for cases in which r tð Þ > 0.
We employ the same notation as above and denote
v ¼ b=a and h ¼ arccos vð Þ. For �1 < v < 1, r tð Þ > 0 if
�h < t < h, and for v < �1, r tð Þ > 0 if �p < t < p. The
mean spike rate in the first case is given by:

F0 ¼
1

2p

Z þh

�h
ð � bþ a cos tð ÞÞ2 dt

¼ a2

p

Z h

0

b
a

 �2
 

� 2
b
a
cos tð Þ þ cos2 tð Þ

!
dt

¼ a2

p
v2h



� 2v sin hð Þ þ h

2


þ 1

2
sin hð Þ cos hð Þ

��

¼ a2

p
h v2



þ 1

2

�
� sin hð Þ 2v


� 1

2
cos hð Þ

��

¼ a2

p
1

2
2v2
�


þ 1
�
arccos vð Þ � 3

2
v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p �
: ðA:7Þ

and the first harmonic amplitude is given by

Fig. 10. Differences between ‘‘simple’’ and ‘‘complex’’ cells in other receptive field properties could be due to a correlation between the property

under study and the f1=f0 ratio. (a) Scatter-plot of a hypothetical receptive field property P and the f1=f0 ratio, (b) distribution of the f1=f0 ratio. The
distribution is unimodal and, due to the correlation with P, very similar to the distribution of P itself, (c) the distribution of F1=F0 is bimodal and can
be used to define ‘‘simple’’ and ‘‘complex’’ cells, (d) separate distributions of P for simple and complex cells as defined using the F1=F0 ratio. The
means of the distributions are significantly different.
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F1 ¼
1

p

Z þh

�h
cos tð Þð � bþ a cos tð ÞÞ2 dt

¼ 2a2

p

Z h

0

b
a

 �2

cos tð Þ
 

� 2
b
a
cos2 tð Þ þ cos3 tð Þ

!
dt

¼ 2a2

p
v2 sin hð Þ



� 2v
h
2


þ 1

2
sin hð Þ cos hð Þ

�

þ sin hð Þ


� 1

3
sin3 hð Þ

��

¼ 2a2

p
v2 sin hð Þ



� 2v
h
2
� 2v

1

2
sin hð Þ cos hð Þ

þ sin hð Þ
3

2
�

þ cos2 hð Þ
��

¼ 2a2

p



� varccos vð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
v2


� v2 þ 2

3
þ 1

3
v2
��

¼ a2

p



� 2varccos vð Þ þ 2

3
2
�

þ v2
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p �

; ðA:8Þ

which yields,

F1=F0 ¼
4

3

2þ v2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
� 3v arccos vð Þ

�3v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
þ 2v2 þ 1ð Þ arccos vð Þ:

ðA:9Þ

When �1 < v < �1, the mean spike rate is given by:

F0 ¼
1

2p

Z p

�p
ð � bþ a cos tð ÞÞ2 dt

¼ a2

p

Z p

0

b
a

 �2
 

� 2
b
a
cos tð Þ þ cos2 tð Þ

!
dt

¼ a2

p
pv2
h

� 0þ p
2

i
¼ a2

2
2v2
�

þ 1
�

ðA:10Þ

and the first-harmonic response is,

F1 ¼
1

p

Z p

�p
cos tð Þð � bþ a cos tð ÞÞ2 dt

¼ 2a2

p

Z p

0

b
a

 �2

cos tð Þ
 

� 2
b
a
cos2 tð Þ þ cos3 tð Þ

!
dt

¼ 2a2

p
0
h

� 2v
p
2
þ 0
i
¼ a2

2
ð � 4vÞ; ðA:11Þ

so, in this case, their ratio is given by

F1=F0 ¼
�4v

2v2 þ 1
: ðA:12Þ

A.3. General solution for a power non-linearity

It is possible to provide general solutions for the case
where the non-linearity is power-law. We provide these
expressions here for completeness, without a full deri-
vation. We denote by g p; vð Þ the first-harmonic to DC
ratio at v for a power-law non-linearity with exponent p.
First, if p is a non-negative real the following recursive
relationship applies:

g p; vð Þ ¼ 2p
p þ 1

2� vg p � 1; vð Þ
g p � 1; vð Þ � 2v

for p 2 Rþ: ðA:13aÞ

The initial condition is easy to obtain for p ¼ 0

gð0; vÞ ¼ 0 if v < �1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
= arccosðvÞ if � 1 < v < 1:

�
ðA:13bÞ

Thus these equations allow one to easily calculate
g p; vð Þ recursively for any power-law with an integer
exponent ðp ¼ 1; 2; 3; . . .Þ. Note that an exponent of
p ¼ 0 corresponds to a step non-linearity.

A more complex closed form expression applies for
the general case of a real exponent. In this case we ob-
tain, with help from the Mathematica symbolic package
(Wolfram Research), the following expressions. For
v < �1:

g p; vð Þ ¼ 2
ðA� BÞ � v � 1ð Þp þ ðC � DÞð1� vÞp

B � v � 1ð Þp þ C 1� vð Þp ;

ðA:14Þ
where

A ¼ 2F1ð3=2;�p; 2; 2=ðv þ 1ÞÞ
B ¼ 2F1ð1=2;�p; 1; 2=ðv þ 1ÞÞ
C ¼ 2F1ð1=2;�p; 1;�2=ðv � 1ÞÞ
D ¼ 2F1ð3=2;�p; 2;�2=ðv � 1ÞÞ ðA:15Þ

and 2F1 a; b; c; dð Þ is the Gauss hypergeometric function.
For �1 < v < 1 the result is:

g p; vð Þ

¼ 2 v � v � 1ð Þ p þ 1ð Þ2�FF1 1=2; p þ 2; p þ 5=2; v � 1ð Þ= v þ 1ð Þð Þ
2
�FF1 1=2; p þ 1; p þ 3=2; v � 1ð Þ= v þ 1ð Þð Þ

( )
;

ðA:16Þ
where 2

�FF1 a; b; c; dð Þ ¼ 2F1 a; b; c; dð Þ=C cð Þ is the regular-
ized hypergeometric function.

A.4. Relationship between the intracellular and extracel-
lular modulation ratios

In the main text, we have shown that, for a large class
of threshold operators, including half-rectification, the
F1=F0 extracellular ratio is a function of a single di-
mensionless parameter v. Let us denote the intracellular
modulation amplitude f1, and the mean by f0. With the
notation already introduced, and by rescaling the po-
tential V ¼ v0 Vth � Vrestð Þ we write:
f0 ¼ Vmean � Vrest ¼ Vthð � VrestÞ � Vthð � VmeanÞ

¼ Vthð � VrestÞ v0th
�

� b0
�

f1 ¼ a ¼ Vthð � VrestÞa0 ðA:17aÞ

or

f 0
0 ¼ 1

�
� b0

�
f 0
1 ¼ a0 ðA:17bÞ
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so we can write for the intracellular modulation ratio

f1
f0

¼ f 0
1

f 0
0

¼ a0

1� b0
¼ a0

1� a0v
; ðA:18Þ

because v0 ¼ a0=b0 ¼ a=b ¼ v. Notice that in addition to
the ratio of modulation and mean, the intracellular
modulation ratio depends also on the magnitude of the
modulation. For a fixed v, the intracellular modulation
ratio is a function of the modulation amplitude:

f1
f0


 hv a0
� �

¼ a0

1� va0
: ðA:19Þ

On the other hand, the extracellular modulation ratio,
for a given v, is constant. Therefore, the intracellular
and extracellular modulation ratios are not related by
one-to-one mapping.

Eq. (A.19) can be used to derive theoretical bounds
within which points in the F1=F0; f1=f0ð Þ plane should
fall. We have already established that �1 < v < 1. We
consider the following cases:

Case 1. 0 < v < 1. Then, f1=f0 ! 1 as a0 ! 1=v from
the left. Thus, all points within the region g 0ð Þ ¼ p=
2 < F1=F0 < 2 ¼ g 1ð Þ and f1=f0 > 0 are admissible.

Case 2. �1 < v < 0. In this case, all points within the
region g �1ð Þ ¼ 1 < F1=F0 < p=2 ¼ g 0ð Þ and 0 < f1=f0 <
�1=v are admissible.

Case 3. �1 < v < �1. In this case, all points within
the region g �1ð Þ ¼ 0 < F1=F0 < 1 ¼ g �1ð Þ and 0 < f1=
f0 < �1=v are admissible. In this interval we have that
F1=F0 ¼ �1=v and the upper bound of f1=f0 at that lo-
cation is also given by f1=f0 < �1=v. Therefore, the top
boundary in the F1=F0; f1=f0ð Þ plane when �1 < v <
�1 is the unity line.

The resulting theoretical boundaries produced by
these considerations are summarized in Fig. 11.
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