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Abstract The spatial variation of the extracellular action
potentials (EAP) of a single neuron contains information
about the size and location of the dominant current source
of its action potential generator, which is typically in the
vicinity of the soma. Using this dependence in reverse in a
three-component realistic probe + brain + source model, we
solved the inverse problem of characterizing the equivalent
current source of an isolated neuron from the EAP data
sampled by an extracellular probe at multiple independent
recording locations. We used a dipole for the model source
because there is extensive evidence it accurately captures
the spatial roll-off of the EAP amplitude, and because, as
we show, dipole localization, beyond a minimum cell-probe
distance, is a more accurate alternative to approaches based
on monopole source models. Dipole characterization is
separable into a linear dipole moment optimization where
the dipole location is fixed, and a second, nonlinear, global
optimization of the source location. We solved the linear
optimization on a discrete grid via the lead fields of the
probe, which can be calculated for any realistic probe +
brain model by the finite element method. The global
source location was optimized by means of Tikhonov
regularization that jointly minimizes model error and dipole
size. The particular strategy chosen reflects the fact that the

dipole model is used in the near field, in contrast to the
typical prior applications of dipole models to EKG and
EEG source analysis. We applied dipole localization to data
collected with stepped tetrodes whose detailed geometry
was measured via scanning electron microscopy. The
optimal dipole could account for 96% of the power in the
spatial variation of the EAP amplitude. Among various
model error contributions to the residual, we address
especially the error in probe geometry, and the extent to
which it biases estimates of dipole parameters. This dipole
characterization method can be applied to any recording
technique that has the capabilities of taking multiple
independent measurements of the same single units.
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1 Introduction

Spatial sampling of EAP’s has become routine with the use
of various multisite recording techniques (McNaughton et
al. 1983; Drake et al. 1988; Gray et al. 1995; Nordhausen et
al. 1996). As model calculations (Moffitt and McIntyre
2005; Gold et al. 2006; Pettersen and Einevoll 2008)
predict and experimental studies (Drake et al. 1988;
Buzsaki and Kandel 1998; Henze et al. 2000) show, there
is a systematic dependence of the shape and size of the
extracellular action potential (EAP) waveform on the
recording probe’s position relative to the neural source.
Despite its availability, this implicit spatial information
about the spike sources is rarely exploited. Here we focus
on the feasibility of characterizing the current source of
spiking single units, including spatially localizing them.
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Characterizing the action potential source from the EAP
waveform is a classic example of an inverse problem. Like
other inverse problems, it does not have a unique solution
(Helmholtz 1853a), so it is necessary to introduce con-
straints and assumptions about the source and the electrical
medium. Since the results generally depend on these
constraints and assumptions (Malmivuo and Plonsey
1995), accurate source localization requires an adequate
source model.

For modeling the dynamic distributed current sources of
spiking neurons, the choice of a model amounts to a trade-
off based on the number of model parameters. Models with
many parameters can capture the details of the source,
while models with a small number of parameters are more
useful in constraining the inverse problem. At the many-
parameter extreme are the detailed compartmental (forward)
models. These have been used in a few EAP modeling
studies (Moffitt and McIntyre 2005; Gold et al. 2006;
Pettersen and Einevoll 2008) and localization studies
(Drake et al. 1988). This realistic approach is data limited:
it operates with a large number of parameters that are
difficult to verify, diminishing its use in inverse problems.
Moreover, the implied reconstruction of neural architecture
is costly and remains impractical for routine application.

At the other extreme is the simplest source model, the
monopole, determined by 4 parameters, readily suited to
source characterization from recordings made with tetrodes
(Gray et al. 1995; Maldonado et al. 1997; Jog et al. 2002;
Aur et al. 2005; Chelaru and Jog 2005; Aur and Jog 2006;
Lee et al. 2007) and larger multi-contact probes (Henze et
al. 2000; Blanche et al. 2003, 2005; Du et al. 2009). The
monopole model implies a r−1 radial EAP falloff. As
discussed later, the falloff reported in real neurons or their
realistic models is closer to r−2 over the range of typical
recording distances, and thus, the monopole model gener-
ically leads to an underestimation of the cell-probe distance.
The improved accuracy of localization, at the cost of only a
modest increase in complexity (6 parameters instead of 4),
motivates our choice of a dipole source model. The
principle of current conservation makes an additional
argument against the monopole model: currents passing in
and out of the whole neuron sum to zero at all times,
making the monopole an increasingly poor approximation
as the distance from the currents is increased. Acquisition
of the data necessary to fit a dipole model is readily
achieved with contemporary polytrodes (Blanche et al.
2005; Du et al. 2009) or (as in this study), by tetrodes in
multiple recording positions. (The quantitative stepping
method using a single electrode was pioneered by
Rosenthal et al. (1966)).

With this as motivation, here we solve the inverse
problem of dipole spike source characterization. We use a
three-component realistic probe + brain + source model to

find the position and the moment vector of the equivalent
dipole current source of single neurons from multisite
recording. We model the brain with a homogeneous,
isotropic, resistive volume conductor because evidence in
our data (and elsewhere) supports these simplifications and
because they make our goal to solve our phenomenological
localization task greatly more convenient. However these
are not essential assumptions: our approach requires only
that the medium is quasi-static and linear, and that the
conductivity tensor is symmetric. We separate the dipole
optimization into the linear optimization of the dipole
moment from the nonlinear optimization of the dipole
location. Dipole moments were locally optimized on a
discrete spatial grid using a linear operator built of the lead
fields. The lead fields summarize, independent of the
source, the electrical properties and geometry of the volume
conductor and the probe. They were numerically solved in a
reciprocal forward problem by the finite element method
(FEM). On the discrete space of local solutions, the
globally optimal dipole was solved for by Tikhonov
regularization, the joint minimization of error norm and
dipole moment norm. We used a variant of the L-curve
method to identify the optimal relative weight of the two
norms.

We demonstrate the method applied to recordings made
with tetrodes (Thomas Recording, Gmbh) from neurons in
the visual cortex. We address how model error in probe
geometry could influence the accuracy of neuron locali-
zation and discuss the applicability of the method to
multisite recording technologies that use different contact
configurations.

2 Methods

2.1 Data acquisition and spike preprocessing

The physiological preparation, data acquisition apparatus,
and preprocessing of extracellular action potentials (EAP’s,
or simply “spikes”) were described in detail in a companion
paper (Mechler et al. 2011). Briefly, spike activity of
neurons was visually stimulated and recorded repeatedly at
positions of incremental depths (5–10 μm apart) along the
tetrode penetration in the visual cortex of anaesthetized cats
and monkeys. The recording tetrodes were commercially
acquired from the manufacturer (Thomas Recording
GmbH). Using the Cheetah (Neuralynx) multichannel spike
acquisition system, analogue extracellular potentials were
amplified, filtered (300-to-9,000 Hz pass-band), digitally
sampled (at 22,222 Hz) and, if above a threshold, stored.

Before source localization analysis, recorded spike
waveforms were preprocessed in a three-stage off-line
procedure. First, spikes were sorted into clusters that
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corresponded to putative single cell sources, done separately
for each recording location of the probe. An automated
clustering algorithm (Klustakwik, by Ken Harris) was used
to identify spike clusters for candidate single-units. The
algorithm, operating in a multidimensional “feature space”
that used waveform energy or peak voltages on each
channel as coordinates, was used conservatively, i.e., with
a tendency to err by splitting clusters rather than mixing
them. Next, user input, via a graphical user interface
(SpikeSort 3D; Neuralynx), was used to finalize clusters:
certain candidate clusters were manually fused, and noisy
clusters were eliminated. Our criteria to combine two
clusters were that their corresponding waveforms were
scaled versions of similarly-shaped spikes, and that their
projections into the “feature space” were continuous. The
interspike interval in each final cluster had to be no shorter
than a criterion 1.3 ms absolute refractory period. Second,
these finalized clusters identified at one recording position
were linked with finalized clusters identified at the adjacent
recording positions, on the basis of similarity of spike
waveforms and relationships among the clusters; this was
also aided by the same graphical user interface. Because the
step size was kept small enough (≤10 μm), cluster
configuration in feature space typically changed in an
orderly fashion and provided a useful aid in tracing the
same unit across steps. The relative size of clusters (in
terms of spike counts) was a similarly useful characteristic
of unit identity. These cluster characteristics, unlike
correlations in waveform shape (or a difference-of-
waveform norm), remain robust aids of cluster tracing even
when new clusters appear or an old one disappear across a
pair of consecutive recording positions. Additionally, for
the candidate set of clusters to be linked, the noise
covariance (across the four channels) had to be similar at
each tetrode position. This criterion was included to ensure
that there was no new “noise source” (e.g., a new unit
included in the cluster) as the tetrode progressed. The
linked clusters were taken to represent the spike waveforms
of a single neuron, recorded at all tetrode positions. Third,
for each cell and recording site, spikes were re-sampled and
re-centered via cubic spline interpolation before averaging.

2.2 Spatial and temporal sampling of the EAP

Figure 1(a) is a typical example of the spatial sample of the
EAP waveforms recorded from a single unit. (Note that by
convention negative extracellular potentials, corresponding
to intracellular depolarization or fast sodium influx in the
neuron, are plotted above the zero line.) It illustrates an
important fact about this data, namely that the spatial
variation in the EAP waveform (both across channels at
fixed probe position, and across probe positions) was
dominated by size change.

The spatial variation of the shape (or temporal wave-
form) of the EAP was a secondary phenomenon. This is
shown by the population analysis summarized by the
histograms in Fig. 1(c, d and e). Figure 1(b) defines the
size and shape parameters we selected for the population
analysis. Size was measured by the negative EAP peak
amplitude; shape measured by the relative size of the
positive over the negative EAP amplitude, and the EAP
width defined by the elapsed time between the two peaks.
The spatial variation for any measure was characterized by
the relative spatial modulation, i.e., by the difference
between the maximum and minimum divided by the spatial
mean. The size modulation (Fig. 1(c)) was large in the
sample of 61 visual cortical neurons (median 0.51). In
comparison, the shape modulation was modest: e.g., the
median EAP width modulation (Fig. 1(d)) was only 0.1,
and the median modulation of EAP peak amplitude ratio
was not much larger (0.15). These findings were under-
scored by model-independent quantification of the shape of
the EAP waveforms. From principal components analysis
of the waveforms (with their mean not removed), we have
found that the first principal component (mean magnitude)
accounted for 97% of the variance in the spatial variation of
the EAP temporal waveform. Thus shape modulation
accounted for no more than 3% of the variance, and the
waveforms could be well approximated as spatiotemporally
separable. This approximation was made possible most
likely because the probed brain volume was relatively small
(≈40×40×90 μm3), limiting the frequency-dependent spa-
tial filtering effects that can be observed in spatially more
extensive samples of EAP and LFP (Destexhe et al. 1999).

For dipole characterization, we selected the temporal
sample corresponding to the negative peak on the EAP
waveforms (vertical dotted line in Fig. 1(a)). This choice
assumes that the time of negative peak EAP corresponded
across all recording positions and could be used to align the
waveforms of the different spatial samples. (We had to
make some assumption of this kind to enable a temporal
alignment of EAP’s that were recorded non-simultaneously,
i.e., at sequential tetrode positions). Support for approxi-
mate local synchrony of EAP peaks (coincident within
~0.1 ms for recording sites within ~100-to-200 μm from
the location of the largest signal) comes from multisite
recordings of spikes from pyramidal neurons (Henze et al.
2000; Blanche et al. 2005; Somogyvari et al. 2005; Du et
al. 2009).

In order for the spatial variation of the EAP to be
informative about the location of the source, it must be
sampled over a sufficiently large spatial extent and with
sufficient resolution so that its spatial dependence can be
determined. As shown in Fig. 2(b), EAP spatial variation
can be characterized by two indices: the index of
non-monotonicity and the index of peak distinctness. The
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non-monotonicity index measures (in μm) the average
absolute distance of the channel peaks from the nearest
extreme sample position; small values indicate that the EAP
sample is approximately monotonic increasing (e.g., cell 6;
its EAP data shown in Fig. 2(a)) or decreasing (e.g., cell
20), and high values indicate that the EAP sample has a
discernible peak on one or more channels (e.g., cells 4 &
45). The index of peak distinctness measures (in μm) the
average lag of the z-coordinate of the channel maxima
behind the maximum on the leading channel; large values
indicate that EAP maxima on the lagging channels are
spatially well separated from the leading channel (e.g., cells
4 & 6) and low values indicate that they overlap (e.g., cells
20 & 45). The joint distribution of these two indices in the
entire sample is shown on the right. The two indices are

uncorrelated and the data scatter widely, indicating great
shape diversity in the spatial variation of the EAP of
neurons of visual cortex as probed by the tetrode in a
limited range. Each of the 4 examples shown in Fig. 2(a) is
characteristic of a particular subset of the sample in which
one or the other index takes a high or low value. Only in
about half of the cells did the EAP sample have a discernable
spatial peak on most channels; the EAP sample varied
monotonically in the other half of the cells. As explained by
the stick and ball model of random penetrations in Fig. 2(c),
this is expected (scenarios t1 and t4 and corresponding
histograms and fractions). In the majority of those cells
whose EAP sample on most channels had discernable peaks,
the peaks on the lagging channels were spatially well
separated (by >10 μm) from the leading channel. An average
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Fig. 1 Analysis of the spatial variation of the size and shape of the
extracellular action potential (EAP) waveform. (a) Example data set
recorded from a single unit (cell 4) with a tetrode (06–3200, see
Table 1) in 9 equally spaced positions. Rows, labeled by nominal
depth along the penetration, show the mean spike waveforms
registered by the 4 channels of the tetrode; data from different
channels are organized in separate columns. The vertical line indicates
the sampling spatial EAP amplitudes at a fixed moment in time (here
at the peak). By convention, negative extracellular potentials are
plotted above the zero line. (b) Definition of the positive and negative
peaks and the width of an EAP. We define an index of the spatial

variation of these features by their relative spatial modulation, i.e., by
the ratio of the difference of the spatial maximum and minimum to the
spatial mean. (c) The distribution of the index of spatial variation of
EAP size (the negative EAP amplitude) in the entire sample (N=61) of
visual cortical neurons. The sample median was 0.51. (d) The
distribution of an index of the spatial variation of EAP shape (the
relative size of negative peak over positive peak) in the entire sample.
The sample median was 0.15. (e) The distribution of another index of
the spatial variation of EAP shape (width). The sample median was
0.10. Note that the horizontal scales in panels (c), (d), and (e) differ
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≈ 25 μm EAP peak separation is expected for our tetrodes
(given their size and tetrahedral contact configuration) if we
assume that the EAP was well behaved, but peak separation

could be blurred by physical processes (e.g., noise and field
distortions, including the possibility of a partial fluid shunt)
that are at work under experimental conditions. As a result
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Fig. 2 Characterization of the diversity of the spatial variation of the
EAP amplitude recorded with a stepped tetrode. (a) EAP variation is
shown for four cells (tetrode channels are labeled by color); each
represents high or low values of either of two shape indices: the index
of non-monotonicity and the index of peak distinctness (see text for
their definition). The continuous lines are the predictions from the
optimal dipole fit. (b) The joint distribution of two indices of spatial
EAP variation in the entire sample (N=61). Each symbol represents
one cell: up triangles, monotonic increasing EAPs; down triangles,
monotonic decreasing EAPs; 'x' symbols, discernible EAP peaks. The
vertical line separates the cells of monotonic EAPs from cells of
peaking EAPs. Examples featured in the text are numbered. (c) The
linear spatial span of EAP’s. Analysis of the distribution of the

measured linear span of detectable signal levels in the entire sample
(‘All’). The stick and ball model (inset) helps to explain how such
distributions depend on the relative size of the full linear span of
spatial samples (sticks with fixed length l) and the detectability radius
of neurons (ball with radius r). The thickened portion of a stick
indicates the range of detectable EAP’s recorded from an isolated
single cell within the full linear span of spatial samples. Their relative
position defines 4 subsets of neurons: neurons whose spikes were
isolated either (t1) at all positions sampled; or (t2) beginning with the
first sample and ending before the last; or (t3) beginning after the first
sample and continuing through to the last; or (t4) beginning after the
first sample, and ending before the last. The vertical axes in (t1)–(t4)
are omitted for clarity but the same vertical scale applies as in ‘All’
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of these processes, a spatial overlap of discernable EAP
peaks can occur (e.g., cell 45), but this is not typical of our
sample, as the scattergram of Fig. 2(b) shows. We add that
since the localization procedure assesses the spatial
gradients from the collection of recording channels, the
source localization problem can be solved even if the data
do not include a discernible peak or if peaks are not
cleanly separated.

For spatial extent, a reasonable rule of thumb is to match
the neuron’s detection radius. In these experiments, spatial
sampling was accomplished by stepping through multiple
recording positions in visual cortex. The total linear sample
range, averaged over 12 tracks, was l=90±10 μm. This
choice was informed by our prior informal observations of
the spatial range over which individual single neurons
could be isolated in visual cortex, and by data from other
brain areas (Gerstein and Clark 1964; Rosenthal et al. 1966;
Drake et al. 1988; Blanche et al. 2005).

As seen in Fig. 2(c), this choice does, in fact, cover the
typical range over which a neuron’s spike waveform can be
recorded. The neuron “cell 45” in Fig. 2(a) was held in
isolation along a 60-um-long segment of the penetration,
typical of our sample. The top histogram in Fig. 2(c) shows
the distribution of the total length of the tracks along which
a cell was held isolated (mean track length 54 μm, N=61
neurons). This histogram, and those of the 4 disjoint subsets
analyzed further below, shows that our choice of ≈ 100 μm
for the total linear range of spatial samples was commen-
surate with the detection radius for the recorded neurons.

For spatial sampling, our choice of a 5–10 μm step along
the tetrode track was determined by an empirical tradeoff
between two factors. If the distance between two recording
sites is too large (in our experience, >10–15 μm in visual
cortex), changes in the size and the shape of action potentials
recorded from most single units may be too large to make
reliable matches between the waveforms recorded at different
step positions. If the step size is too small (<5 μm in visual
cortex), adjacent steps are redundant, and there is a risk of a
larger accumulated positional error due to starting and stopping
the microdrive. (We used a Thomas Recording apparatus that
has an accuracy of a few microns over a course of several
hundred microns, as measured under the light microscope).

We arrive at a similar estimate of the useful range of step size
by considering, in an alternative to the empirical approach, the
1/r2 falloff of the dipole potential. Between two recording
sites separated by 20 μm at an average distance of ≈ 50 μm
from a dipole source, the dipole potential could change
dramatically, by up to 125%, depending on step direction. The
corresponding change would be rather modest, no more than
25%, if the sites were only 5 μm apart. Such fast, dipole-like,
spatial attenuation of EAP is indicated by extracellular
recordings (Henze et al. 2000) and realistic model simulations
(Gold et al. 2006) of pyramidal neurons in rat hippocampus.

2.3 Signal statistics

To provide a benchmark for the sizes of spike waveforms
necessary for source analysis, and also to help interpret the
goodness of model fits, we determined the RMS noise in
the recordings. We estimated this noise from the difference
between individual samples of a spike waveform and its
average, which typically represented hundreds of samples.
This yielded an RMS noise in single tetrode channels that
ranged between 12 and 35 μV (Fig. 3, histogram in dark
bars); the mean, averaged across channels, tetrodes and
recording sites, was 21 μV. These relatively large noise
levels likely reflect the high level of neuronal background
activity that characterizes visual cortex even under anes-
thesia. The estimated amplitude of the component of this
noise that is due to thermal fluctuations was in the 10–
17 μV range, as determined by Johnson’s equation of noise
power at room temperature from the per channel tetrode
input impedance (1–2 MOhm) and the recording bandwidth
(6-to-9 kHz). Assuming that thermal noise is independent
of other noise sources, we therefore estimate that thermal
noise and the combination of all other noise sources (non-
thermal instrumentation noise and background electrical
activity) contributed comparably on average.

To analyze the signal-to-noise of detection and isolation,
we define signal level as the spatial minimum of EAP peak
amplitude on the tetrode channel that registered the largest
peak. The open bars in Fig. 3 show the distribution of the
signal thus defined. Reliable single unit discrimination of
the typical single unit in this sample demanded that the
EAP amplitude on the channel with the largest EAP
amplitude exceeded ~91 μV or 4.3 times the RMS noise
(Fig. 3). (For comparison, spike detection i.e., spike-
background discrimination, was already reliable at a ratio
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Fig. 3 Distribution of signal (open bars) and noise (dark bars) in
extracellular action potential (EAP) data recorded from single units
with Thomas tetrodes in visual cortex (N=61). Noise level is defined
by per-channel RMS amplitude; the mean (range) was 21 (12–35) μV.
Signal level is defined by the spatial minimum of EAP peak amplitude
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of 2 or larger). Because of the large spike sample size
(ranging from several dozens to several thousand per
neuron per recording position) the mean spike waveform
estimates were quite reliable in spite the considerable noise
(95% confidence limits were typically ± 2 μV, a small
fraction of the amplitudes).

These signal statistics are similar to what other labora-
tories reported for their tetrode or polytrodes (Henze et al.
2000; Musial et al. 2002; Blanche et al. 2005; Du et al.
2009).

2.4 Finite element model of lead fields

A concept key to our solving the inverse problem is the
lead field (Malmivuo and Plonsey 1995). The lead field of
an electrode quantifies the electrode’s sensitivity to a point
dipole current source as a function of the source location.
Each contact of a tetrode has a lead field that summarizes
the electrical properties and geometry of the volume
conductor and the probe from that contact’s point of view.
To determine the lead fields we used FemLab (Comsol AB,
Sweden), a finite-element model toolbox implemented in
the Matlab environment. A critical aspect of this computa-
tion is determining the mesh. We used the following
procedure. First, a tetrahedral mesh (~10^5 elements) was
set up on the 4×4 mm cylindrical volume of the entire
brain-tetrode model. Volume element size was then adapted
to the characteristic curvature of the tetrode shaft and wires,
to maintain a FemLab quality control parameter of 0.3 or
higher, as recommended for 3-D problems. (Further details
of the analysis of mesh quality are presented for a tetrode
example in Fig. 7). The resulting large number of volume
elements reflects the need for the mesh to accommodate
smooth element variation between the vastly different
spatial scales and curvatures characterizing the vicinity of
the probe contacts and the homogeneous peripheral regions
of the brain block; a similarly high element count was
reported for an FEM model of a silicone probe inserted in
rat brain (Moffitt and McIntyre 2005). The lead field is the
solution of a forward problem, described by the Poisson
equation (see Eq. 1c in Results), with the boundary
condition that current is injected through the lead. Using
Quadratic Lagrange elements, an incomplete LU factor-
ization or a geometric multigrid preconditioner, and
an iterative stationary linear (Good Broyden) solver
(tolerance ~10−6), the solution converged in a few dozen
steps, based on this mesh. The typical lead field computa-
tion required a few hundred megabytes of memory and was
completed within a few hundred seconds on a workstation
with an Intel Core Duo (2.4 MHz) CPU. The lead fields were
then interpolated on a regular cylindrical mesh with the
azimuth sampled in 10-deg steps, and the z-axis in 5-μm
steps. The radial samples, {5,10,15,…,50, 60,70,…,150,

165,180,…,300, 350,400,…} um, were piece-wise equidis-
tant but asymptotically logarithmic. Our mesh sampling
strategy reflects a tradeoff between the conflicting require-
ments of preserving the equidistant z-axis resolution of the
EAP data, preserving the approximate radial symmetry of the
probe, keeping spatial resolution constant within the entire
region of interest, and keeping the size of the numerical
problem manageable. The resulting mesh resolution was
reasonably similar (radial samples were <=10 um apart and
tangential samples <=26 μm apart), and at least a factor of 2
better than the measured scatter radius, everywhere within
the volume of 150-μm radius around the tetrode tip where
95% of the cells isolated in this study were localized.

We chose as the region of interest a spherical volume of
300-μm radius, centered on the tetrode tip, and set the
radius of the modeled brain volume to 2 mm. The 300 μm
radius was thought to be larger than the anticipated largest
cell-probe distance (the localization results verified this
assumption), and the 2-mm radius of the modeled brain
volume was large enough to ensure that the grounding
artifact, a distortion in the lead fields arising from the finite
model size, was negligible within the region of interest. We
arrived at this choice via auxiliary simulations. We varied
the model size and estimated the upper bound of the size of
the grounding artifact as the distortion of the potential of a
monopole placed at the center of the region of interest. The
monopole attenuates as ~1/r, more slowly than any other
multipole, and it is thus the most sensitive to distortions. In
a model cylinder of 0.5 mm radius, the distortion (excess
attenuation) of monopole potential could exceed 50%
towards the boundary of the region of interest. However,
in a model cylinder of 2 mm radius, the distortion was
capped at 8%. So we chose this radius for all lead field
calculations. The error in the lead fields relevant to our
results had to be much smaller because the distortion in the
monopole potential gradient, which is the analogue of lead
fields, was <1% at ≈ 150 μm, the estimated cell-probe
distance of the furthest-localized cell in our sample.

Further analysis—the dipole optimization—is a focus of
this paper and these methods are presented in detail in
Section 3. The computations were all done by custom
software written in Matlab.

2.5 ‘Exact-probe’ and ‘approximated-probe’ sets

We define as the “exact-probe” set the cells (N=43) for
which the tip geometry of the tetrode that recorded them
was scanned and used in the FEM model. To document the
effect of error in model geometry, we have included in the
analysis cells that we recorded with tetrodes whose tips
could not be scanned. For these neurons, defined as the
‘approximated-probe’ set (N=21), we substituted for tetrode
geometry in the FEM model the reconstructed tip of the
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tetrode that represented the median contact separation
among the measured tetrodes in our study (listed 2nd in
Table 1.).

2.6 Sharing data and code

Upon publication, lead field models along with the Matlab
code of the dipole optimization algorithm described in this
study will be made available on the ModelDB public
database (http://senselab.med.yale.edu/ModelDB/default.
asp).

3 Results

3.1 Dipole characterization—theory

In overview, our approach is as follows. We frame the 3-d
localization of a spiking neuron in terms of characterizing
the equivalent single dipole current source. That is, we seek
the size and location of the current dipole moment that,
given the material properties and geometry of multi-contact
probe and the brain, best accounts for the extracellular
action potentials measured at the contact sites of the probe.
Because of noise and because the model is approximate,
solutions are sought via optimizing some objective func-
tion. Conveniently, dipole optimization is separable into a
linear component (optimization of the dipole moment
assuming a particular source location) and a nonlinear
component (optimization of the source location). We frame
the linear problem in terms of a “lead field matrix”, which
summarizes the geometry and the electrical properties of
the tissue and the probe. (A rigorous introduction of the

lead field is given further down in this section). We frame
the nonlinear optimization as a Tikhonov regularization
problem that jointly minimizes the error norm and dipole
size, and we solve it with a variant of the L-curve method.

To formalize these notions, cortical gray matter is
modeled by a volume conductor of finite dimensions, its
material properties characterized by the conductivity, σGM,
generally a tensor. Embedded in the volume conductor is a
multi-contact probe (e.g., tetrode or polytrode) built of
some good insulating material (||σinsulator||≪||σGM||), which,
in turn, encapsulates the electrode wires, made of some
metal of high ohmic conductivity (σelectrode≫||σGM||). The
electrode wires are exposed to the volume conductor at the
positions of the contacts (measurement locations). Thus
different material domains in this system are defined by
their different conductivity. The default coupling between
two contiguous domains is current continuity, where the
normal current outflow of one domain is equal to the inflow
into the domain on the other side of the boundary (i.e.,
n12(σ1∇V1) = n12(σ2∇V2), where Vk, σk is the potential and
the conductivity, respectively, inside domain k, n12 is the
unit surface normal pointing from domain 1 to 2, and ∇ is
the gradient operator). On the external boundaries of the
system, the boundary conditions are current- or voltage-
clamped, depending on the component that contacts the
boundary. Where an insulator contacts the boundary, the
boundary condition is that no normal current flows, i.e.,
that n(σ∇V) = 0. Where a probe wire contacts the
boundary, the boundary condition is that n(σ∇V) = jinj,
where jinj is the amount of current injected (nonzero only
for the wire whose lead field is being calculated). Where
the brain meets the boundary, the boundary condition is that
V=0, i.e., that the brain is grounded.

Table 1 Parameters used to model tetrode geometry

dcore �tip/2 htip Acont rCE SCE SEE dshaft hshaft
Tetrode (μm) (deg) (μm) (μm2) (μm) (μm) (μm) (μm) (μm)

03-0591 7 18.5 11 121 17 54 36 63 95

06-3200 8 25 9.5 118 17 40 36 56 60

07-0087 5 26.5 5 44 13.5 30 28 50 50

07-0088 6.5 25 7 78 13.5 32 28 50 54

dcore: diameter of lead wires;

�tip/2: half cone angle;

htip: cone height of exposed central contact (=1/2dcore tan(�tip/2);

Acont: exposed contact area (¼ pd2core= sin ftip=2
� �

for both center and eccentric);

rCE: the distance between the center and the eccentric wires, measured center-to-center;

SCE: center-to-center separation of center-eccentric contacts (=rCE/sin(�tip/2));

SEE: center-to-center arc separation of eccentric-eccentric contacts, (=2πrCE/3);

dshaft: shaft diameter;

hshaft: cone height of entire tip below shaft cylinder.

Note that SCE and SEE (~30-to-50 μm) are comparable to 2–3 cell body diameters in neocortex
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Since our goal is to develop a phenomenological model
of the EAP for the purpose of localizing neurons, we do not
intend to provide a fully realistic biophysical model of EAP
generation and propagation in the extracellular medium.
Towards this goal, we make certain simplifying assump-
tions about the source and the media. By doing so, we do
not intend to imply that the phenomena we ignore by these
assumptions do not exist, merely that their presence in our
data is limited and that modeling them is not essential to
our goal. We make 3 basic assumptions and 4 non-essential
simplifying assumptions about the electrical properties of
the tissue.

The 3 basic assumptions are quasi-stationarity, linearity,
and symmetry of material tensor; they hold for most
bioelectric phenomena (certainly for the spatio-temporal
scale of the EAP records we model) and, crucially, they
make the lead field approach possible (Plonsey 1963;
Plonsey and Heppner 1967; Malmivuo and Plonsey 1995).

The quasi-stationary approximation assumes that we can
ignore the induction of magnetic fields by changing electric
fields, and vice-versa, and also that the field develops
instantaneously at all points. It is guaranteed to hold at the
low temporal frequencies (102 to 104 Hz) that characterize
action potential waveforms. As a consequence, the electric
field, E, is the gradient of the potential, 6, i.e., E = −∇6.

Linearity is the principle of superposition and it holds at
the low field strengths characteristic of bioelectrical
phenomena. It has two important consequences. First, the
relationship between current, j, and electrical field is linear,
i.e., j = −σE, where the conductivity, σ, is a tensor in
general. Second, it guarantees that the “forward problem”,
i.e., the relationship of sources and resulting electric fields,
is a linear one.

The third assumption is that the conductivity tensor in
the above equation is symmetric; this is not known to be
violated in biologic tissue. Because of these 3 assumptions,
the principle of reciprocity, which is required by the lead
field approach (see below), holds.

If no further assumptions are made, then the material
properties of the medium are summarized by the conduc-
tivity tensor, bσ x;wð Þ, which is complex-valued and depends
on both temporal frequency and spatial position. Capac-
itive, non-ohmic, phenomena are handled by including
permittivity in the model as the imaginary part of the
conductivity, i.e., bσ ¼ σþ iwεεε. Anisotropy is handled by
the tensor formalism of the material properties. Inhomoge-
neity and frequency-dependence are formalized by allowing
the dependence on these variables as arguments, i.e., as in
σ(x, ω) and ε(x, ω).

We first consider the general forward problem: given
some probe geometry, the material properties of the tissue
and the probe, the above boundary conditions, and a
general current source distribution, Q, what is the spatial

distribution of the voltage? The governing equation of the
quasi-stationary linear forward problem, stating current
conservation, takes the form

r � bσ x;wð ÞreVw;x

� �
¼ Qw;x: ð1aÞ

The eVw;x Fourier components of the potential can be
solved by integration, frequency-by-frequency, and the
potential in the temporal domain can be obtained by an
inverse Fourier transform. Numerical (e.g., finite element
method or FEM) implementation of this general model is
straightforward: FEM can handle a complex, frequency-
dependent, conductivity tensor. In inhomogeneous media
the lead fields are not translation invariant and they must be
calculated for each contact in each position, which may be
slightly inconvenient but the associated computational
burden is manageable.

The non-essential assumptions amount to neglecting
any one of the above 4 dependencies in bσ x;wð Þ: they are
not required by our approach that utilizes lead fields.
Isotropy neglects directional variation of conductivity, and
thus simplifies conductivity to a scalar, bs x;wð Þ, that may
be complex and may retain the spatial and temporal
dependence. High degree of isotropy in the gray matter
(but not in white matter) of neocortex is empirically well
supported (Logothetis et al. 2007), making this assump-
tion likely to have the least associated error of the four.
Homogeneity is also well-approximated in the gray matter
of neocortex (Logothetis et al. 2007) (if not in hippocam-
pus (Lopez-Aguado et al. 2001)), and this justifies
eliminating spatial dependence in the conductivity, which
in turn simplifies the governing equation of the forward
problem to the Poisson equation

bs wð Þr2eVw ¼ Qw; ð1bÞ
where bs wð Þ is a complex frequency-dependent scalar.

Neglecting frequency dependence reduces conductivity
to a (complex-valued) constant and permits seeking a
solution in the time domain. The assumption of resistive
(ohmic) media neglects permittivity (and all capacitive and
phase-related phenomena), and simplifies conductivity to a
real-valued constant. Thus, with this assumption we neglect
a host of biophysical mechanisms in the tissue that give rise
frequency-dependent spatial filtering by the extracellular
media (Bédard et al. 2004, 2006; Bédard and Destexhe
2009). However, the resistive volume conductor approxi-
mation is justified for EAP modeling in the gray matter of
neocortex by experimental evidence that suggest either that
the associated error is negligible (Logothetis et al. 2007), or
that it is small, <10% (Plonsey and Heppner 1967; Gabriel
et al. 1996). (In our model, this is the most costly of the
four non-essential assumptions in terms of associated
errors.) Note that this small error depends on the specifics
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of the spectrum of the material properties: models of local
field potentials (LFP), in contrast to EAP’s, may not afford
neglecting the capacitive contributions to the conductivity
at frequencies <100 Hz (Gabriel et al. 1996). Furthermore,
analysis of our own data provides assurance that the impact
of the resistive volume conductor approximation on the
accuracy of cell localization is limited. Since our dipole
source is free to change position, size, and direction at each
point in time, the dipole localization (analyzing each time
point separately) allowed the model to retain a phenome-
nological capacity to generate spatiotemporally inseparable
EAP’s at the cost of localization inaccuracy. Yet we report
that the scatter of the dipole location over the duration of
the action potential is quite limited (see Fig. 10). This is
likely because within the small brain volume (≈[50 μm]3)
to which our EAP samples are typically confined, shape per
se accounts for only a small fraction of EAP variation (see
Fig. 1.).

When all 4 non-essential assumptions are adopted,
conductivity is reduced to a real-valued constant, σ, and
the forward problem is governed by the Poisson equation in
the time domain:

sr2V ¼ Q: ð1cÞ

This is the version of the forward problem that we
consider here, with the current source distribution Q
reduced to a single dipole current ps at a known location
xs, so Q = ps at xs, and Q = 0 elsewhere. (The specific
material properties and the geometry of the model of the
brain and probe are given below in separate sections
entitled “The volume conductor model of cortex” and
“Modeling a multi-contact probe and its lead field”.)
Because Eq. (1) is linear, we can calculate its solution for
a general dipole moment ps by superimposing the solution
for the projection of this dipole moment onto each of the
three coordinate axes. This superposition is conveniently
carried out in terms of a vector-valued kernel, Lek bxð Þ.
Lek bxð Þ has three components, each indicating the potential
generated by a unit dipole along one coordinate axis. The
subscript ek indicates the contact at which the potential is
measured, and the argument bx indicates the dipole position
relative to the contact position, xek (i.e., bxs ¼ xs � xek ). With
this notation, the potential recorded by electrode ek located
at xek for a dipole moment ps located at xs is given by:

Vek ¼ Lek xs � xekð Þ � ps: ð2Þ

The kernels Lek bxð Þ, which are meant to realistically
capture the non-negligible field distortions from the non-
ideal probe, quantify the sensitivity of the probe contacts to
various source configurations. Thus, they are appropriately
called the lead fields (owing to the concept’s origins in
EKG studies).

Note that the well-known spatial dependence of the
dipole potential in an infinite homogeneous volume
conductor is

Vek ¼
1

4ps
xs � xekð Þ � ps
xs � xekk k3 ; ð2aÞ

implying that the lead field of an ideal point probe is
Lidealprobe bxð Þ ¼ 1=4psð Þbx= bxk k3:

A lead field, according to the reciprocity principle of
lead field theory (Helmholtz 1853b; Plonsey 1963) is the
solution of a “reciprocal” forward problem, namely, the
forward problem that results from interchanging the roles of
current source and measuring device. In the present context,
the reciprocal forward problem consists of injecting a
current, Ie at the position of the electrode contact, Xe, and
measuring the electric field, Es = ∇Vs, at the position of the
dipole. According to the reciprocity principle,

Es � p ¼ VeIe: ð3Þ
By substituting Eq. (3) in Eq. (2), we find that the lead

fields are the current-normalized electric field solutions in
the reciprocal forward problem in which current is injected
through the electrode:

Le ¼ Es=Ie: ð4Þ
Once the lead fields are calculated, they can be used with

Eq. (2) to obtain a fast solution of the forward problem for
any dipole source configuration.

We note that an analogous treatment can be formulated
for monopole sources and the lead potential, of which the
lead field is the gradient. Specifically, if the current source
is a monopole volume current js (a scalar) at location xs, we
can re-write Eq. (3) of the reciprocity law via two
substitutions: the monopole is substituted for the dipole
source and the potential 6s is substituted for electrical field
Es at the source location that results from injecting the
current Ie to electrode. With these, we get the lead potential

Lek ¼ 6 s=Ie; ð4’Þ
a scalar valued kernel, that solves the forward problem for
monopole source(s):

Vek ¼ Lek xs � xekð Þ � js ð2’Þ
Consistency of Eqs. (2) and (2’) is readily obtained by

using Eq. (2’) with two equal monopole sources of opposite
polarity that are spatially removed, and attaining the dipole
limit by spatial differentiation at the location of the source.
Furthermore, all equations describing dipole optimization
below will be valid for monopole optimization by substi-
tuting a monopole (scalar) for the dipole moment (vector)
and the lead potential matrix (of scalars) for the lead field
matrix (of vectors).
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The great advantage of lead fields is that it focuses
on the critical element for the solution of forward
problems: the relative spatial position (emphasized by
the notation bx) of the current source and the lead. That is,
within the interior of a sufficiently large homogeneous
volume conductor medium, the lead field kernels rigidly
translate as the probe is repositioned. This property of lead
fields is particularly advantageous for analyzing multisite
arrays whose contacts are related by a combination of
translation and rotation: it is only necessary to calculate
the lead field for one probe; the remainder can be obtained
by symmetry. Numerical techniques to solve the lead
fields with the finite element method and the results for
various probe examples are presented below in a separate
section.

We next assume that the lead fields have been obtained,
and turn to the problem of optimizing dipole parameters.
Let UE = {Ue1,…,UeN}

T denote the spatial sample of an
EAP recorded by probe contacts in fixed measurement
positions XE = {xe1,…,xeN}

T. Suppose that we want to
determine the location xs (in electrode-independent coor-
dinates) and dipole moment vector p = [px, py, pz]

T that best
accounts for these measurements. Each electrode contact,
ek, at its location, xek , has its corresponding lead field,
Lek bxSð Þ, and the corresponding dipole potential at xek is
given by Eq. (2). Using the notation

LE xSð Þ ¼ Le1 xS � xe1ð Þ; . . . ;LeN xS � xeNð Þf gT ; ð4AÞ

where LE is an [N×3] matrix, we can formulate the dipole
optimization problem as a dual minimization

min
pf g; xsf g

UE � LE xSð Þ � pk k: ð5Þ

Note that for a fixed source location, xS, the problem is
reduced to the dipole moment minimization

min
p

UE � LE xSð Þ � pk k: ð6Þ

The optimization problem in equation (6) is overdetermined
(N>3) and linear, and can be solved by matrix inversion:

ep¼Lþ
E xSð ÞUE

Lþ
E ¼ LE

TLE

� ��1
LE

T
ð7a; bÞ

where Lþ
E denotes the [3×N] left pseudo-inverse of LE

(Unless the probe is a linear array of contacts, Lþ
E is full

column rank.) The logic of the linear optimization procedure
makes use of the rigidly translating lead field as illustrated in
Fig. 4.

We note that from a statistical perspective, it is more
appropriate to use noise normalized error minimization than
the simple residual error measure implicit in Eq. (6). Noise
normalization uses the Mahalanobis distance to weigh the

contribution of the residual error by C−1, the inverse of the
spatial noise covariance matrix, essentially recasting the
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Fig. 4 Schematics of dipole optimization procedure using translated
lead fields of a moving tetrode. (a) During data collection, the tetrode
moves down (down arrows) the path of penetration in steps of size
Δzstep, yielding measurements of the same source at 4nstep spatial points
(black dots). From the probe’s point of view used in the analysis, real
movement of the tetrode is equivalent to virtual movement of the source
in the opposite direction (up arrow). xs and xi, i={0,1,2,3}, denotes the
Cartesian coordinates of the position of the source and the ith lead in the
first step, respectively, relative to the (moving) tetrode tip (x0). (b) The
tetrode lead registers the extracellular action potential of a single unit
that is characterized by a single dipole current source with moment p.
The dipole moment vector is translated to a new position relative to the
probe at each step (xs + kΔzstep). At each step, the model prediction of
the probe potential is the scalar (dot) product of the dipole moment
vector of the source, p, and the lead field vector of the probe at that
relative position, Li(x). Thus for a fixed physical source position, the
dipole interacts with the lead field in a set of translated virtual positions.
See text for the details of dipole optimization
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error norm in terms of levels of significance. Then the dual
minimization problem is formulated as

min
pf g xSf g

C�1=2
n UE � LE xSð Þ � pð Þ�� ��; ð5’Þ

and the linear solution for the optimal dipole is obtained by
the pseudo inverse of the covariance-weighted lead field
matrix:

ep ¼ L
0þ
E xSð ÞUE

L
0þ
E ¼ LT

EC
�1LE

� ��1
LT
EC

�1 ð7’bÞ

To carry the optimization with the above noise
normalization through the regularization step, we need
only to substitute L

0þ
E (Eq. (7’b) for Lþ

E (Eq. (7b)) in every
equation below. This formalism makes it transparent that
noise normalization only makes a difference when the
noise covariance matrix is significantly different from
the identity. Interestingly, for our data recorded with the
stepped tetrode, the noise covariance is nearly the identity
(save for a scale factor), and thus noise normalization
makes no difference to the optimal dipole recovered from
these data. This is a consequence of two special features of
our data: (1) the asynchronous recording at different
tetrode positions, and (2) an approximate translation
invariance of channel noise. Because of (1), spatial noise
correlation was zero between measurements made at
different tetrode positions (thus the only non-zero ele-
ments in the matrix were restricted to the disjoint 4×4
diagonal sub-matrices). Because of (2), per channel noise
levels and channel cross-talk were comparable at all probe
positions. Translation invariance was well approximated
probably only because the probed volume was small
enough and the stimulation was reproducible enough for
the neural noise (often the dominant noise component) to
change little across sites. And of course thermal electrode
noise is expected to be translation invariant. (Notice that
(1), and possibly (2) cannot be expected to hold for the
entire set of recording sites on a spatially extended
stationary multisite probe. Thus noise normalization gains
importance for analyzing data recorded with those
probes.)

After the linear dipole optimization is solved in
separation, the joint minimization over xs and p reduces
to a single minimization over xs, in which the optimal p is
chosen for each xs via Eq. (7). Thus, the joint minimization
(Eq. (5)) reduces to

min
xSf g

UE � LE xSð ÞLþ
E xSð ÞUE

�� ��: ð8Þ

The dependence on xs implied by Eq. (8) is in general
complicated and nonlinear, and there is no analytic solution
to the global optimization problem. Instead, we choose a

large and dense discrete set of trial positions XS = {xS}, and
determine the minimum within that set:

min
xS2XS

UE � LE xSð ÞLþ
E xSð ÞUE

�� ��: ð9Þ

As is generally the case with source localization
problems, the residual error, plotted as a function of model
parameters, typically lacks a robust global minimum. That
is, beyond a certain minimum cell-probe separation, near-
optimal fits can be obtained for widely different source
geometries. As a result, the specific model parameters at
which the minima occur are determined by noise in the
data, and do not represent robust or physically meaningful
solutions. To circumvent this difficulty, we need to impose
constraints other than just error minimization. For this, we
use Tikhonov regularization (Tikhonov and Arsenin 1977):
among all the solutions that have a comparably small error
norm (Eq. (8)), we choose the one that is the most
economical, i.e., the one in which the solution norm (the
source magnitude) is the smallest.

To implement this approach, the objective function (Eq.
(9)) is replaced by one that takes into account both the error
norm and the model norm. The relative weighting of these
factors is controlled by a regularization parameter, j.
Specifically, we consider the objective function

min
xS2XS

UE � LE xSð ÞLþ
E xSð ÞUE

�� ��2 þ j2 Lþ
E xSð ÞUE

�� ��2n o
:

ð10Þ
In the j→0 limit, Eq. (10) turns into Eq. (9) and the

regularized solution is identified by the absolute minimum of
the residual, usually at the cost of an unrealistically large
dipole moment and source distance. In the j→∞ limit, the
regularized solution minimizes the dipole size at the cost of
near-maximal fitting error. Values between these two
extremes represent the tradeoff between the two optimization
principles. Thus, the crux of the problem is to choose the
value of the Tikhonov parameter j in a principled fashion.

To determine the Tikhonov parameter, we used a variant
of Hansen’s L-curve method (Hansen and Oleary 1993).
The starting point is a log-log plot of the two quantities that
constitute the objective function Eq. (10): on the abscissa,
the model norm, Lþ

E xSð ÞUE

�� ��, and on the ordinate, the
error norm, UE � LE xSð ÞLþ

E xSð ÞUE

�� �� (the squaring in Eq.
(10) can be omitted because in log-log coordinates it merely
scales both axis by a factor 2). Each of these quantities are
determined (via Eq. (7)) for dipoles placed at the discrete
set of trial positions XS = {xS}. The lower envelope of this
scatter plot, parametric in j, takes the shape of an “L”, and
the corner of the L provides a natural definition of the
globally optimal solution and the corresponding optimal
regularization parameter. With discrete data (following
(Hansen and Oleary 1993)), the corner point is determined
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by smoothly interpolating through the discrete points at the
vertices of the convex hull, and then choosing the discrete
sample that is closest to the point of largest curvature.

The log-log plot of dipole moment versus fit error is
shown for two examples in Fig. 5(a and c). The L-shaped
lower convex envelop and its encircled corner point are
plotted in red. We found that it was necessary to improve
the robustness of this estimate, since often there were odd
local minima that “trapped” the point with largest
curvature on the convex hull in the range of unrealistically
large dipole moments. For example, the optimal dipole
moment (≈100 pA*m) thus identified for the cell shown in
Fig. 5(c) is ≈ 5 times larger than the more robust estimate
(≈20 pA*m), and ≈ 20 times larger than the typical
moment (≈5 pA*m) in our sample.) We therefore modified
the Hansen procedure as follows. First, we defined a
“lower bound” subset (data points highlighted as black
circles in Fig. 5(a and c)) of the joint distribution of dipole
norm and residual norm. Within the data range where
the lower bound could be well approximated by a piece-
wise linear (“L”-shaped) trace, log10 Lþ

E xSð ÞUE

�� ��� �
was

densely binned. Within each bin the data point with
minep log10 UE � LE xSð ÞLþ

E xSð ÞUE

�� ��� �� �
was selected, and

the union of these bin-by-bin minima defined the lower
bound subset. We chose a bin width (< 0.01 log units) that

allowed a dense sampling of the log model norm but still
yielded a large enough sample within each bin to reliably
estimate the minimum log error norm. Then, we fit a
smooth function to this lower bound subset: either two
intersecting line segments in log-log coordinates (shown
as the cyan curves in Fig. 5(a and c)), or a descending
parabola and its smooth linear continuation in the log-
linear coordinates (not shown but yielding very similar
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Fig. 5 L-curve regularization of the optimal dipole for a single visual
neuron. (a) The joint distribution of the size (abscissa) of the locally
optimal dipole source and the associated residual error (ordinate)
between the predicted and measured EAP’s. Each of these model
dipoles (fine dots) was calculated by Eq. (7) at one of the node points
of a regular cylindrical mesh covering a finite volume surrounding the
recording tetrode. Large dots mark data in the lower bound subset, the
red line indicates the tangent envelope, and the smooth cyan curve is a
4-parameter empirical L-curve fitted to the lower bound. The L-
shaped pattern suggests two model regimes. On the steep left segment,
models increasingly well capture genuine physical features of the data
at the cost of small increases in the dipole size (and, implicitly, cell-
probe separation). The shallow segment to the right corresponds to the
noise limit that allows no further improvement in capturing physical
features. The optimal equivalent dipole is defined as the data point
nearest to the corner point of the L (open circle). The cyan circular
halo indicates the neighborhood of the 30 data nearest to the corner
point. The point with the largest curvature on the tangent envelope
(red circle) corresponds to a similar dipole. (b) Dipole localization of
neurons via L-curve regularization is robust. The mapped locations of
the locally optimal dipoles that fell within the lower bound subset are
plotted in small symbols; the open circle marks the globally optimal
dipole. Confirming that the optimization principle was realized, the 30
nearest neighbors of the L-curve corner (indicated by cyan halo in
(a)), are mapped in a compact volume (cyan symbols) that represents a
choke-point in the distribution; dipoles from the noise-limited flat
right limb of the L-curve are mapped in an explosively expanded
volume. Cell 10. (c)-(d): another example, illustrating the unstable
nature of the prediction by the tangent envelop in discrete sample. In
contrast to the corner of the L-curve (cyan circle), the point with the
largest curvature on the tangent envelope (red circle) corresponds to
physiologically unrealistic dipole parameters). Cell 37

�
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results). Finally, the globally optimal dipole (highlighted
as a white circle in Fig. 5(a and c)) was defined by the data
point that was closest to the corner point on the fitted
curve. The metric we used for L-curve fitting in the log-
log coordinates weighted the two coordinates equally
(representing equal multiples with equal weights), and the
metric we used in log-linear coordinates normalized both
coordinates by dividing them with their full range used in
the L-curve fitting. But this choice was not critical: the
relative weights assigned to the two data coordinates had
negligible influence on the resulting globally optimal
dipole, because the densely sampled vicinity of the corner
point of the L-curve (highlighted by a cyan disk) mapped
compactly in space (dipole location coordinates plotted in
cyan symbols in Fig. 5(b and d)). The empirical L-curve fits
were generally very good (they explained on average more
than 90% of the variance in the lower bound set).
Furthermore, the L-curve fits had a much smaller scatter
than the estimates from the convex envelope (standard
deviation and range of log dipole moment was reduced by
60% and 1 log unit, respectively). This great improvement in
confidence in the estimates of optimal dipoles did not come

at a price of bias towards larger moments: the difference
between the sample medians of the dipole moments
estimated with the two methods was <8% and not significant
(p>0.8, Wilcoxon’s ranksum-test). (The slight but consistent
offset apparent between the descending limbs of our
empirical L-curve and the lower convex envelope might
suggest, misleadingly, such a bias but the offset between the
two curves is generated by an essentially vertical shift) .

3.2 Volume conductor model of cortex

As reasoned in Section 3.1, we approximated the extracel-
lular action potential in cortex in a quasi-stationary manner
and modeled brain tissue as a linear, isotropic and
piecewise homogeneous, frequency-independent, resistive
medium. Some of the implications and validity of these
assumptions are also discussed below in Section 4.5.

The model brain block was a 4-mm high cylinder, with
the top 2 mm representing homogeneous gray matter and
the bottom 2 mm representing homogeneous white matter.
Control calculations indicate that including or omitting a
WM domain makes essentially no difference to our results.
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Fig. 6 The geometry of a Thomas tetrode and its finite element
model. This tetrode is the first one listed in Table 1. (a) Scanning
electron microscopy images of the cleaned, untreated tip of the tetrode
with axial view (top) and lateral view (bottom). The lighter contact
surfaces of the PtW wire leads contrast well with the quartz coat. (b)
The critical geometry parameters used in the tetrode models (defined
and listed for each reconstructed tetrode in Table 1). (c) The

tetrahedral mesh of the finite element model of the probe-brain
system, viewed in three cross-sections; top, vertical on-axis cut
showing overall dimensions; middle, same cut but zoomed-in on the
tetrode tip area where elements representing the lead wires are visible;
and bottom, cut in the x-y plane at the z-level where the core wires are
exposed as contacts. Note that element size varies extensively; it is
smallest near the tetrode tip

J Comput Neurosci



The probe penetrated the brain along the axis of the brain
cylinder and its tip was positioned at halfway down the
gray matter. The block diameter (4 mm) was chosen large
enough to make outer boundary effects negligible within a
smaller volume of interest (≈0.6 mm diameter) centered on
the site of the recording probe. The outer boundary of the
brain cylinder was grounded, except at the top where it was
insulated; a selected tetrode lead was clamped at a unit
voltage or current, and all other domain boundaries on the
probe were insulated.

We choose the geometric mean of two extremes, white
matter (σWM = 0.15 S/m) and cerebrospinal fluid (σCSF ≈
1.35 S/m) for the gray matter conductivity. This choice
(σGM = 0.45 S/m) reflects values measured for σGM in
various cortices and species (Ranck 1963; Li et al. 1968;
Vigmond et al. 1997; Lopez-Aguado et al. 2001). Other
recent modeling studies used somewhat lower values
(σGM = 0.30−0.38 S/m (Moffitt and McIntyre 2005; Gold
et al. 2006, 2007)). The value of the scalar conductivity
has no effect on the dipole location, only the dipole
moment size (see Section 4).

3.3 The multi-contact probe model and its lead fields

Single unit recording made with multi-contact probes
typically occur at cell-probe separations that are a few
multiples of the characteristic contact separation. Since at
these short distances, the details of the probe geometry may
crucially influence the lead fields, we created a numerical
model of the recording probe—in our case, a tetrode.
We used tetrodes commercially acquired from the manu-
facturer, Thomas Recording GmbH, and the parameter
range reported here reflects specifications tailored to use in
our laboratory.

The contacts are in a tetrahedral configuration on the
Thomas tetrode. The probe geometry is shown by the
scanned eletronmicroscopy images in Fig. 6(a). The overall
shape is that of a sharpened pencil: the cylinder of the
quartz-insulated shaft is ground to a cone at the tip in a
sharp angle to expose the contacts in a tetrahedral
configuration; the 4 embedded parallel microwires are
made of platinum-tungsten alloy (PtW); one microwire
placed in axial position, emerging as the central contact at
the center of the tip (the point of the pencil); three are at
equal angles in a concentric arrangement around the central
one, emerging as eccentric contacts along the tip’s sloping
portion. The geometry of the design guarantees approxi-
mate equality of the exposed areas of the three eccentric
contacts and the central contact, and approximate equality
of their input impedances.

The manufacturer supports adjustment of several shape
parameters (Fig. 6(b)). These include the diameter of the
wires and the quartz cylinder within the last several

hundred microns of the conical tip (5-to-9 μm and 50-to-
90 μm, respectively), and the angle of the conical tip,
adjusted by grinding (18–25 deg range, half-angle mea-
sured in the plane of the long axis). These values yielded
contact impedances of 1.4±0.25 MOhm at 1 kHz (individ-
ually tested by Thomas Recording), and good selectivity in
single unit isolation. The cone angle and the inter-wire
separation together determined the inter-contact separation.

For 4 of the 7 tetrodes used in this study, the critical
geometric details of the tetrode tip and shaft were
reconstructed from high-resolution scanning electron-
microscopic (SEM) images that were taken after the
completion of the stepping experiments, as in Fig. 6(a).
The contact surfaces of the PtW wire leads were easily
discernable, and the resolution (spatial dimensions are
indicated by horizontal scale bar) allowed precise measure-
ment of the critical geometry parameters (Table 1) The
tetrode of Fig. 6(a) is listed as the first row in Table 1.

The core wires were modeled as thin cylinders shaved at
the exposed contact area to mesh with the conical tip
surface. The specific conductivity of the model conductor
(σPtW =1.5×107 S/m) was set to the mean conductivity of
the platinum (σPt = 0.94×107 S/m) and tungsten (σW =
1.78×107 S/m), reflecting a real alloy that contained an
equal mix of the two components. The infinitesimal
conductivity of the insulating quartz shield (σqz = 10−14 S/
m) was modeled by the ideal insulator (σvacuum = 0 S/m), to
reduce the accumulation of numerical rounding errors. The
overall dimensions and the relative scale of the various
components of the finite element model (FEM) are
illustrated by images in Fig. 6(c).

High computational accuracy requires (a) that element
size is small enough, i.e., size is adapted to the character-
istic size of the compartmental features in the model and (b)
that element quality is high, i.e., the distortion of tetrahedral
volume elements from the ideal equilateral shape is small.
Both criteria are important, but they need not correlate.
Therefore we examined the distribution of both element
size and element quality, both as a function of the distance
from the tetrode tip (where the smallest feature and the
largest curvature were located). As the analysis below
details, both criteria were met.

The two criteria are analyzed in Fig. 7. We examine the
quality of the mesh (~1.6*106 elements) used to model
tetrode 06–3200 (the second in Table 1; similar results were
obtained for the other tetrodes). Because element size needs
to adapt to the characteristic size of model features, we plot
the distribution of element size separately for three kinds of
elements: metal wires (7-μm diameter) in red; gray matter
within a 30-μm wide neighborhood of the tetrode in cyan;
everything else in blue. We chose a 30-μm cutoff because
this corresponds to the size of tetrode features of interest
(exposed tip length; tip separation; shaft radius). The two
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vertical lines, one at 7 μm and one at 30 μm, indicate these
scales; the horizontal line at 300 μm indicates the radius of
the region of interest.

Element size (Fig. 7(a)), measured by the longest of the
6 edges of the tetrahedral elements, was well-adapted to the
characteristic size of the compartmental features, and was
progressively smaller for elements nearer to the tetrode tip.
Specifically, element size within the wires domain (red) was
smaller than the wire diameter in 94% of the elements (96%
within the region of interest), and element size within the
gray matter neighborhood of the tetrode (cyan) was smaller
than those features in 90% of the elements (95% within the
region of interest). As shown in the marginal histogram
(Fig. 7(b)), these three subsets correspond to 3 distinct
modes in the distribution of element size, with peaks
at ≈ 5 μm, ≈20 μm, and ≈ 200 μm.

Element quality is defined by the ratio of the volume of
the actual element to that of an ideal element whose edge
equals the root-mean-square average edge length in the
actual element, and is shown in Fig. 7(c). Element quality
was better than the minimum acceptable for 3-d models
(0.3, a criterion recommended by FemLab and shown as a
vertical line, Fig. 7(c)) in all but 20 of the ≈ 21,000
elements within the region of interest. Typical element
quality was much higher (mode ≈ 0.85; median >0.7 within

each of the above spatial domains), as shown by the
marginal histogram (Fig. 7(d)).

The lead fields of all 4 contacts obtained with FEM on
the same random mesh were then interpolated on the same
regular cylindrical grid centered on the tetrode axis. The
lead field was directly computed via FEM for only one of
the three eccentric tetrode contacts; for the other two, fields
were computed from the first by rotation and interpolation,
utilizing the three-fold symmetry in the tetrode design.

Figure 8 shows the lead fields calculated for one of our
measured tetrodes (listed second in Table 1). For the center
lead, there is near-perfect radial symmetry for distances
beyond ≈ 25 μm from the tip, and the distance dependence
closely approximates the ~r−2 expected for the electric field
of a point source. For the eccentric lead, there is a
substantial departure from radial symmetry up to at least
100 μm. Contour lines are kidney-shaped, with lower field
values and a more rapid fall-off in directions behind the
shaft (i.e., opposite to the exposed area of the eccentric lead
analyzed and between the other eccentric contacts). In these
directions, falloff is faster than ~r−2. This behavior is
expected from geometric considerations, and also applies to
planar polytrodes (Moffitt and McIntyre 2005). For the
other tetrodes listed in Table 1, the lead fields were very
similar, despite a considerable difference in contact area
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Fig. 7 (a) The distribution of
element size of the finite ele-
ment mesh, as a function of the
distance from the tetrode tip.
Colors indicate different
domains in the finite element
model: wire domain (red), gray
matter in neighborhood of
tetrode (cyan), and more distant
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features (see details in text). (b)
The marginal histogram of the
data in (a). (c)–(d) Distribution
of the element quality analyzed
similarly to element size. The
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minimum element quality
recommended for 3-d problems
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across tetrodes. This is because away from the shaft,
the ~r−2 falloff dominates, independent of contact area or
the tip angle.

To get a sense of the physiological significance of the
lead fields, we use the forward equation (Eq. (2)) to
determine the distance at which a dipole of a given size
produces a probe voltage of a given size. The size of the
equivalent dipole of a typical neuron recorded in visual
cortex is 5 pA*m (Mechler et al. 2011); we use this dipole
moment magnitude as the standard for lead field compar-
ison. For an optimally-oriented 5 pA*m dipole current
source and voltages registered by the contact in the range
50–250 μV (typical EAP amplitudes in our data) the
distance range is ≈ 50-to-150 μm (the range outside cyan
ring in Fig. 8). For comparison, typical recording noise,
combining neuronal (multiunit) and thermal sources, falls
in the <50 μV range (see Fig. 3); this corresponds to a
source distance of ≈ 150 μm and beyond (the peripheral
deep blue regions of Fig. 8).

To quantify these observations, we used the 5 pA*m
standard dipole source and calculated the r25μV, r50μV, and

r100μV lead field radii with the corresponding criterion
signal level set near the mean noise level (≈25 μV), the
observed empirical signal detection threshold (≈50 μV),
and the median EAP amplitude for single unit discrimina-
tion (≈100 μV), respectively. The three cover the charac-
teristic signal range in our recordings in visual cortex in log
steps. r100μVand r50μV can be thought of as the median and
maximum single unit recording radius of a contact,
respectively, and r25μV as the median radius for multiunit
recording. For each criterion, we calculated the radius along
the principal axes of field symmetry and listed the mean
and range in Table 2 for the 4 reconstructed tetrodes.

Lead fields radii were very similar despite considerable
variation in contact area and tip angle among the tetrodes.
Across the 4 tetrodes listed in Table 2, the variation of lead
field radii of the central contacts (e.g., r50μV range 131–
135 μm) and the eccentric contacts (r50μV range 137–
139 μm) was no larger than the variation with direction for
each contact. The small variation with direction indicates
almost perfect radial symmetry for the entire center lead
field, and in the front hemi-sphere of the eccentric lead. The
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Fig. 8 The lead fields of a Thomas tetrode, calculated by the finite
element method for one of the tetrodes. The parameters of the tip
geometry for this tetrode (#03-0591) are listed in Table 1. The images
show the lead field strength in color scale for two planar cross-
sections for the center lead on the left (x-y plane through the tip point;
y-z plane through the vertical axis of the probe), and for one eccentric
lead on the right (x-y plane through the center point of the exposed

lead surface). The color bar indicates the lead field strength on a log
scale after conversion to equivalent probe potentials (μV) that the
probe would register for a dipole source whose dipole moment equals
5pA*m (see text for explanation) and whose vector is iso-oriented
with the lead field vector at each position in space. The lead field
vectors at each point in space are oriented approximately in the
direction of the gradients
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almost exact doubling of radius for a 4-fold drop in signal
level indicates that at these distances the lead fields are well
approximated by a perfect point source (r−2 falloff). All
these together confirm that these criterion distances are far
enough and the geometry details of the tetrode tip do not
affect the lead fields.

There is one notable exception to this rule: the lead field
radii of the eccentric leads differ significantly from the
central lead. Indicating elevated sensitivity compared to the
central lead, the eccentric field spreads out 5–10% more in
front of the tangent plane of the eccentric lead (compare,
for each tetrode in Table 2, the ‘CTR’ radius with the larger
of the two ‘ECC’ radii). Conversely, indicating reduced
sensitivity, the eccentric field is 20–30% more compressed
on the opposite side of the tetrode (compare, for each
tetrode in Table 2, the ‘CTR’ radius with the smaller of the
two ‘ECC’ radii (in parenthesis)). These distortions result in
the kidney-shaped equipotential contours shown in Fig. 8.

To better understand how lead field radius depends on
tip geometry of the electrode, we simulated the lead fields
for sharp microelectrodes modeled with various tip geom-
etries (Fig. 9), ranging from very fine sharp tips (M1-M3)
approximating the reported shape of single electrodes
traditionally used in cortical electrophysiology to blunt tips
that are identical to the central lead of a one of our tetrodes
(M5). The parameters of these models are listed in Table 3.
Although the exposed tip area ranges over two orders of
magnitude, the lead field radius r50μV barely changes. This

indicates that the geometry of the tip per se has little
influence on the sensitivity of single electrodes. The same
principle extends to multi-contact probes as well (see
Section 4).

3.4 The dipole account of EAP and localization error

We used the lead fields of reconstructed tetrodes, in
conjunction with the L-curve regularization method, to
solve the optimal equivalent point dipole source for each of
61 visual cortical neurons. The dipole fit to the EAP data
was characterized by the fractional mean squared error
(fMSE), i.e., the ratio of the spatial mean of the squared
errors over the spatial mean of the squared EAP amplitudes.
The quality of the fit is indicated by two examples in the
insets of Fig. 10(a). The one on the left was a slightly better
than typical fit (cell 68; fMSE 0.009), the one on the right
was an atypically poor fit (cell 28, fMSE 0.094). Further
examples of what was typical in the sample are illustrated
by the 4 cells shown in Fig. 2(a) (all with fMSE in the 0.02-
to-0.04 range).

The histogram in Fig. 10(a) shows the distribution of the
fMSE in our sample (N=61). The sample is the sum of the
two subsets (open and dark bars, respectively, shown
stacked), that will be discussed below. In the entire sample,
fMSE was, very small (mean ≈ 0.04) except in a minority
of cells (range: 1% to 30%).The sample means for the two
sets were not significantly different (2-sample t-test, p>
0.05).

The residual error lumps together data error (noise,
neuronal spike variability, errors in spike sorting and probe
position) with modeling error (in tetrode geometry; volume
conductor; source model; regularization of discrete data).
The fMSE indicates that all these factors were small in most
cells. However, a goodness-of-fit statistic (a sum of F-
statistics across spatial positions) that characterized the
optimal dipole fit was significant for each cell in our
sample. This test (not shown) indicated that error in the fit
was more than could be accounted for by errors in the
voltage measurements. Moreover, in the exact-probe set
(dark bars; Fig. 10(a)), there was a weak negative
correlation between fMSE and inferred cell-probe distances
(slope = −0.3, p-value ~0.11; not shown). That is, the
dipole model gave a slightly poorer fit for the nearest cells.
Since the details of the true source and/or probe geometry
are likely to be more significant for the cells nearest to
the probe, the latter analysis suggests that at least some of
the MSE represents error contributed by model error in the
source model.

In line with the above, the error in the dipole fit was a
poor predictor of the error in dipole localization. To
estimate the latter, we defined the scatter radius of the
smallest spherical volume that includes the dipole locations

Table 2 Tetrode lead field radii

r100μV r50μV r25μV

Tetrode Lead (μm) (μm) (μm)

03-0591 CTR 92±4 131±4 187±3

ECC 101±2 (71) 139±3 (109) 195±3 (167)

06-3200 CTR 93±3 132±3 187±2

ECC 99±3 (64) 139±4 (108) 194±5 (167)

07-0087 CTR 95±2 134±2 189±1

ECC 99±2 (74) 138±4 (116) 194±5 (175)

07-0088 CTR 93±3 132±3 187±2

ECC 98±2 (75) 137±3 (116) 193±5 (171)

Field radii are defined at 3 criteria: r100μV, for characteristic (median)
single unit signal levels required by unit isolation (at 4 times the
characteristic noise levels), r50μV, for characteristic signal detection
threshold (at 2 times the characteristic noise levels), and r25μV, for
characteristic noise levels. The criterion field strengths are in
equivalent probe potential (μV) obtained with a 5pA*m dipole source
(typical for neurons in visual cortex) aligned with the field
everywhere. Entries are mean ± the half-range of the radii measured
along the x- and z-axis for the center lead, and along the cardinal
directions within the tangent plane and along its surface normal in
front for the eccentric lead. The smaller radii enclosed by the
parenthesis are along the surface normal pointing behind the tetrode;
they highlight the asymmetry specific to the eccentric leads
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estimated at 5 different characteristic moments in the time
course of the action potential (as illustrated in Fig. 10(b)).
The sample median of the scatter radius (vertical dotted line
in Fig. 10(c)) was 51 μm (and not significantly different in

the two subsets). Figure 10(c) shows the joint distribution
of the scatter radius and the fitting error—they were
uncorrelated. Arrows indicate cells 6 (third example in
Fig. 2(a)) as well as cells 28 and 68, the same two as in (a).
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Fig. 9 The lead fields of sharp
electrodes modeled with a wide
variety of tip shapes. Spatial
scale and field strength are as in
Fig. 8. Lead field geometry
depends only weakly on the
details of the tip geometry. The
radius of the lead fields defined
at a criterion field strength (or
equivalent signal strength) is
weakly anti-correlated with
exposed tip area (models are
vertically ordered with increas-
ing tip area) and with the cone
angle of the shaft, and does not
depend significantly on the cone
angle of the exposed tip. Most
notably, the typical lead fields of
our tetrodes (e.g., M5) are very
similar in size to those of typical
sharp electrodes (all other
panels). Specifically, M1 and
M2 are similar to tips fabricated
by Hubel (Hubel 1957), and M2
and M3 are similar to tips
fabricated by Ainsworth
(Ainsworth et al. 1977). The
varied geometry parameters and
the resulting field radii are sum-
marized in Table 3. Other details
of the lead field modeling were
the same as used for the tetrodes
(see Fig. 8) and text
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3.5 The effect of probe geometry error

One source of modeling error is an error in the probe
geometry; this is of practical importance since often the
probe geometry is not known exactly and must be
estimated. As the above analysis of the approximated-
probe set (open bars; Fig. 10(a)) shows, this source of error
is a significant contributor to the residual.

Figure 10(a) shows the distribution of the fractional
MSE separately in the exact-probe dataset (N=43; dark
bars) and the approximated-probe dataset (N=18; open
bars); the two are stacked. The sets were defined in
Section 2. To recap, for the exact-probe set, the tip
geometry of the recording tetrode was scanned and used
in the FEM model. For the approximated-probe set, this
was not possible and, as the best guess approximation, we
used the reconstructed geometry of the tetrode that
represented the median contact separation (row 2, Table 1.)
in our study. In the exact-probe set, MSE was, on average,
3% (range: 1% to 11%), but in the approximated-probe set
the error blows up to more than double (mean 6%, range
1% to 30%), with the difference likely indicating the
contributions by model errors in probe geometry.

The lower quality fits raise the possibility that model error in
probe geometry could also result in a bias in dipole localization.
To address this issue directly, we introduced probe geometry
errors in a controlled fashion. For this analysis we selected
neurons that were recorded with one of 3 tetrodes whose
geometry was known (from SEM), and with which at least 10
neurons were recorded. For each cell, we compared the dipole
fit obtained with a model based on the tetrode actually used
(‘true data’), with the dipole fit obtained with a model based
on one of the other reconstructed tetrodes (‘pseudo-data’).
Since the “true-pseudo” sample pair of fitted parameters
strongly correlated, the slope of their regression was extracted
as their pseudo vs. true ratio. (There are 3 tetrodes, thus there
are 3*2=6 possible distinct pseudo-data pairings of spike

data collected with one tetrode and the geometry of another
of the 3 tetrodes. Thus the number of distinct pseudo vs. true
ratio comparisons is 6, one for each of the pseudo-data sets,
even though there are only 3 unique true data sets.) Since the
three tetrodes differed in mean contact separation, we could
determine whether there was a systematic dependence of
dipole parameters on this specific geometrical factor.

Figure 11(a) shows, as expected, that the pseudo-data
always produced a larger fractional MSE than the true data.
Figure 11(b and c) show that this error is, in fact, associated
with a bias in the dipole fit. If the true probe separation is
smaller than assumed (pseudo/probe ratio >1), the distance
to the source is overestimated (Fig. 11(b)), as is the
estimated dipole strength (Fig. 11(c)). These biases, and
the observation that the bias in the estimated dipole strength
is more severe, can be understood from an analysis of the
nature of the EAP (see Section 4).

4 Discussion

The principal contribution of our study is the recognition
that the dipole is an appropriate source model for localizing
neurons from spatial samples of their extracellular action
potentials, and the development and implementation of a
method, combining lead field theory and Tikhonov regu-
larization, to carry out dipole localization. To demonstrate
the capabilities of the method, we applied it to recordings in
visual cortex, obtained with a tetrode probe moved to
multiple recording positions along a track.

Although dipole models are commonly used for source
localization in EEG and related techniques (see, e.g.,
(Malmivuo and Plonsey 1995)), it is new to single neuron
source characterization. While at first glance these prob-
lems might appear quite similar, there is a fundamental
difference: in EEG source localization, the recording
geometry is well within the far-field regime. That is, the

Table 3 Single electrode models

dcore ϕ tip/2 dtip htip Atip ϕ shaft/2 dshaft hshaft r100μV r50μV r25μV
Model (μm) (deg) (μm) (μm) (μm2) (deg) (μm) (μm) (μm) (μm) (μm)

1 24 3.5 2 10 43 5 36 200 92±2 132±3 186±4

2 12 3.5 1.6 10 30 5 36 200 86±2 123±3 175±3

3 12 3.5 0.8 3 4 5 36 200 97±0 139±0 201±0

4 12 3.5 1 5 8.5 5 65 90 106±2 150±3 217±4

5 7 19 7 10 116 19 65 90 89±4 126±5 179±5

6 12 19 12 16.7 322 19 65 90 85±5 122±5 176±6

7 6 90 6 0 26 19 65 90 97±2 136±1 192±2

M1-M3: sharp tips and shafts; M4-M7: wider shafts and variously sharp tips. The varied geometry parameters included the core diameter (dcore),
exposed tip diameter at its top (dtip), exposed tip cone height (htip), cone angle of the shaft (ϕ tip), exposed tip area (Atip), shaft diameter (dshaft),
shaft cone height (hshaft), the cone angle of the shaft (ϕ shaft). Lead field radii are defined at 3 criteria, as in Table 2. Entries are mean ± the half-
difference of the radii measured along the horizontal (x-dir) and vertical (z-dir)
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recording electrodes are several cm from the source, and the
current flow (within a sheet of cortical neurons) is over
distances that are orders of magnitude smaller. Thus, the
equivalent dipole model is a direct representation of the
source. Here, the recording geometry is very different: the
spatial extent of the current source is comparable to its
distance to the recording electrode. This has implications
both for the optimization procedure (the need for a robust
regularization procedure), and the interpretation of the
optimal dipole that it identifies. Specifically, even though

the geometry is not within the far-field regime, the
equivalent dipole accounts for the spatial dependence of
the potential, and thereby provides an accurate estimate of
the location of the source. These considerations favor the
use of a dipole model over simpler alternatives, such as a
monopole. Furthermore, current conservation requires that
the true equivalent current monopole of the whole neuron is
zero at all times. Thus, the monopole approximation, unlike
any other multipole approximation, is expected to fail as the
distance from the currents is increased.
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Fig. 10 (a) The error in the optimal dipole fits. The histogram shows
the sample distribution of the fractional mean-squared error, i.e., the
summed squared difference between model fit and EAP data, as a
fraction of the summed squared data. Histograms from the “exact-
probe” cells (dark bars; N=43), to the “approximated-probe” cells
(open bars; N=18) are stacked. For definition of these subsets, see
Section 2. The quality of the fit and the size of the error are indicated
by two examples in the insets, one with a slightly better than typical fit
(cell 68; fMSE 0.009), and the other with an atypically poor fit (cell
28, fMSE 0.094). Further examples of the typical in the sample are

illustrated by the 4 cells shown in Fig. 2(a); the fMSE for those cells
were 0.034 for cell 4; 0.015 for cell 45; 0.039 for cell 6; 0.018 for cell
20. (b) Definition of the scatter radius—a measure of the error in
dipole localization (see text for details). (c) The joint distribution, in
log-log coordinates, of the fMSE error in the dipole fit (horizontal
axis) and the error in dipole localization (vertical axis). Arrows
indicate cells 6 (third example in Fig. 2(a)) as well as cells 28 and 68,
the same two as in (a). The horizontal and vertical dotted lines
indicate the sample medians. Note that the localization error (abscissa)
and the fitting error (ordinate) are not correlated.
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In the following, we discuss the support, interpretation,
and limitations of the dipole localization, the use of the lead

fields, and the adaptability of the method to other multi-
contact probes.

4.1 Support for the dipole source model

The basic objective of the inverse problem approach to
neural source characterization is to obtain an accurate
estimate of the cell location relative to the probe position.
Because inverse problems are ill-posed, a model must be
imposed—and different source models may fit the data
equally well. For example, a monopole model can fit a
locally sampled, moderately noisy, dipole field just as well
as the correct dipole model (Supplement 2A). Thus a
goodness-of-fit measure by itself is an insufficient guide to
model selection. In contrast, localization accuracy is
heavily dependent on model selection, because alternative
models differ in their ability to accurately capture the
spatial attenuation of extracellular potential (Supplement
2A). Thus, approximating this attenuation over the range of
typical cell-probe separation becomes the critical issue in
selecting a point multipole for the source model. As we
review below, the available evidence favors the choice of a
dipole source model for cell-probe separations that are
larger than ≈30 to 50 μm.

A standard approach to the analysis of the potential due
to a distributed source is the multipole expansion (e.g.,
(Milstein and Koch 2008)). For a multipole source, the
potential, V, is related to the distance from the source via a
power function, V ~ r−k. The integer exponent is character-
istic of the multipole: k = 1 for the monopole; k = 2 for the
dipole; k = 3 for the quadrupole; etc.

However, the spatial attenuation of the extracellular
potential of real neurons does not fit this simple picture but,
rather, it accelerates with the distance from the cell.
Nevertheless, it can be locally approximated by r−k,
provided that the exponent, k, increases gradually with r.
Thus, even though a real neuronal source may be quite
complex, a single-term multipolar expansion can provide a
good approximation to its radial falloff, within a restricted
range of distances.

With this approach in mind, we have re-analyzed several
published studies (see Supplement 1). As summarized here,
they support the dipole approximation within the distance
range of interest. Evidence comes from two directions:
modeling studies and experimental measurements. The
modeling studies include analytic results of Pettersen and
Einevoll (2008), simulations of simplified models of a soma
plus a passive dendritic arbor (Rall 1962; Pettersen and
Einevoll 2008), and simulations of models with realistic
neuronal morphology and membrane properties (Moffitt
and McIntyre 2005; Gold et al. 2006; Lee et al. 2007;
Milstein and Koch 2008; Pettersen and Einevoll 2008). In
all models, the extracellular potential is characterized by a
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Fig. 11 Determination of errors in dipole characterization attributable
to errors in modeling probe geometry. To analyze the effects of
geometry error in a controlled fashion, we compared localization
calculations based on the tetrode actually used to record each dataset
(“true data”), with parallel calculations carried out as if the recording
tetrode was one of the other two measured tetrodes (“pseudo-data”).
We then summarized this comparison for each pseudo-data vs. true-
data pair by regressing values obtained for three parameters ((a):
fractional MSE, (b): estimated cell-probe distance, (c): estimated
dipole moment) from pseudo-data, against their values obtained from
the true data. The three panels show how these regression slopes
depend on the geometry error, as quantified by the ratio of contact
separation for the pseudo-data tetrode vs. true-data tetrode. Unity ratio
on the horizontal axis means no error in probe geometry; unity ratio
on the vertical axis means no distortion in a dipole measure. The three
tetrodes are the first three listed in Table 1, and their respective mean
contact separation was 45 μm; 38 μm; and 29 μm. The dotted curves
are the prediction of an idealized error analysis (see Section 4)
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dipolar falloff (~r−2) for a range (r0 ≤ r ≤ 200 μm) of radial
distances that covers most of the cell-probe distances
typical in single unit recordings with extracellular probes.
Within the immediate r < r0 neighborhood of the soma,
spatial attenuation is slower than predicted by a dipole and
may or may not be well fit by a monopole model. The
short-distance bound r0 of the dipole regime varied from 20
to 50 μm, depending on cell size and membrane properties:
r0 was larger in models of pyramidal cells in cat layer 5
than in rodent CA1 (the first are 30–50% larger), and larger
in models where dendrites were endowed with active
membrane conductances (probably because this made the
current sources more spread out).

Experimental evidence (also see Supplement 1) is only
available from rodent hippocampus where the cells are
small, but only for cell-probe distances greater than 50 μm,
where it is consistent with the dipole approximation; it does
not permit assessment of the radius r0 below which the
dipole approximation breaks down. These technically
demanding studies consisted of simultaneously recording
from neurons with an intracellular and an extracellular
probe (Cohen and Miles 2000; Henze et al. 2000). Samples
were small (N<25), and each cell only contributed to one or
two distance points over a limited spatial range. Thus, while
these data are demonstrably consistent with the dipolar
approximation in the range (>50 μm), they cannot be used
to distinguish among alternative forms for the radial
dependence. (In rat hippocampus, the extracellular probe
can get very near the cells— ≈ 20 μm (Buzsaki 2004)—
where the dipole regime may not hold.)

4.2 The “local lobe” interpretation of the dipole source
model

The equivalent dipoles identified by the above models for
the short-to-intermediate cell-probe distances differ from
the dipoles that characterize the far-field (r≫500 μm)
potential. Since the apical dendrite defines the cell axis
and it is a relatively large current source among dendrites,
symmetry considerations predict that the in the far-field
regime, the overall dipole of the cell must be aligned with
the soma-apical dendrite axis of the pyramidal neuron. But
within 200 μm from the soma, the probe is within (or close
to) the dendritic arbor. Thus, it more heavily weighs the
contributions from currents in local over distant dendrites
(Gold et al. 2006), and the equivalent dipole at short-to-
intermediate distances mostly reflects contributions from
the soma and the largest basal segments of the dendritic
arbor that are nearest to the probe.

In the companion paper (Mechler et al. 2011), we
analyzed the moment vector of the equivalent dipole in a
population of visual cortical neurons (the same as used here
for the illustration of dipole characterization method

applied to tetrode recordings) and reported that the moment
vector of the equivalent dipole of isolated neurons tends to
point toward the probe. This surprising result contrasts with
the expectation from the standard “far-field” interpretation
of the equivalent dipole (in which the moment vector is
fixed in space by the morphology of the neuron, indepen-
dent of the direction to the probe). However, this near-field
dipole that rotates toward the probe makes sense, once we
recognize that (1) the probe tends to pick up activity in the
nearest lobe of the soma-dendritic arbor, and that (2) the
dendritic arbor of most cortical cells tend to have an
approximate and chunky radial symmetry (see e.g., Sholl
(1953)). Then no matter what direction the probe
approaches from, the nearest lobe of the arbor will be
oriented from the soma toward the probe. These notions are
best summarized by the “local lobe” interpretation of the
near-field dipole.

The local lobe interpretation has quantitative support
from cellular morphology. In terms of cellular geometry, the
“local lobe” is understood to be a portion of the dendritic
tree whose trunk is one of the primary dendrites anchored at
the soma (including but not limited to the primary apical
dendrite). The measured deviations of the moment vectors
from the cell-probe axis are in good correspondence with
the solid angle (≈50 deg cone) that is occupied by the
average dendritic tree of a single primary dendrite (“the
local lobe”) on the typical visual cortical neuron.

The local lobe interpretation has qualitative support from
cellular biophysics. The current contributions of the local
lobe are likely to be dominated by the soma compartment
and the trunk or root segment of the primary dendrite. At
peak AP time, large inward Na+−currents make the soma
region of the neuron act as the dominant sink (−), and while
all dendrites play the role of the (distributed) current source
(+), only the potential contributions from the currents in the
nearest large dendrites of the arbor are large enough to
register at the probe. We can estimate the effective sink-
source separation from elementary biophysical principles,
using the notion of a length constant from cable theory.
Pettersen and Einevoll (2008) analyzed the AC length
constants for ball-and-stick model neurons. Assuming
realistic soma diameter and stick lengths of a few hundred
μm (basal dendrites of neurons in the cortex are about this
long), they calculated a ≈ 50 μm length constant at 1 kHz
(the temporal frequency characteristic of action potentials).
There are two features of real neurons that will tend to
make the effective sink-source separation on the local lobe
shorter than this. First, the real dendrites are branching
trees, not sticks, and currents flowing into the side branches
accelerate the rate of current loss in the radial direction
away from the soma, making the length constant genuinely
shorter. Second, the dendritic arbor on a real neocortical
neuron has many lobes, each corresponding to one primary
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dendrite, and because of symmetry considerations the
superimposed fields of all the other lobes together act to
weaken the field of the local lobe at hand. This makes the
length constant of the effective or equivalent dipole of the
local lobe to appear even shorter than it is. Thus we think
that the characteristic spatial separation of the effective sink
and source currents of the local lobe is short, at most a few
multiples of 10 μm.

In summary, the recovered equivalent dipole is like a
rotating elastic vector pinned at the cell body: it rotates
towards the probe position, and it may stretch to indicate
the size of the nearest dendritic currents, but its location
will continue to approximate the soma independent of the
probe position.

4.3 Localization error due to adopting the dipole as a source
model

Simple computer simulations (Supplement 2B) indicate that
the optimal dipole can well localize a model source whose
radial potential attenuation follows the pattern identified by
studies cited above. However, at sufficiently close distances
to a neuronal source, the dipole regime breaks down: it
overestimates the falloff rate of the potential and, as a
result, overestimates the distance from the source.

The shape of the radial EAP falloff offers an account
for this, and provides for a comparison of the errors
incurred by dipole and monopole models. For a single-term
multipole source model, the exponent of the model
multipole (kmodel = 1 for monopole, kmodel = 2 for dipole)
is the main factor in the localization error. The reason for this
is that a probe array provides two robust quantities: the
average potential V, and its local gradient V′. For a multipole
model, potential falls off as V(r) = cr−k, so r ≈ −kV/V′. Thus,
the average localization error is determined by the ratio of
exponents describing the true local EAP falloff and the one
used in modeling it:

rmodel=rcell � kmodel=kcell: ð11Þ
This is also demonstrated in computer simulations of

realistic spatial sampling of the EAP in Supplement 2A.
As summarized above (see Supplement 1 for details),
the true local EAP falloff exponent, kcell, varies around
2 (1.5 ≤ kcell ≤ 2.5) at the distances 50 μm ≤ r ≤ 200 μm
typical for extracellular probes in neocortex. Accordingly,
the dipole model (kmodel = 2) will keep localization error
within ±25% for most cells, and will have, on average,
very little bias. However, a monopole model (kmodel = 1) will
systematically underestimate the same distances by 50%.
Conversely, at very short cell-probe distances (r ≤ 30 μm) a
monopole is likely the better approximation, and the dipole
would lead to a systematic overestimation of distances by as
much as 100%.

4.4 Localization error due to model error in probe geometry

The above analysis also allows one to understand how
model errors in probe geometry affect localization error.
Again we consider the regime in which the most reliable
measurements provided by the probe are the average
voltage, and its spatial gradient. Assume that the contact
separation is modeled as Δes, but its true value is Δs. Since
voltage gradient is determined by voltage difference
divided by probe separation, the error in probe separation
leads to a reciprocal error in the voltage gradient,eV 0 � ΔV=Δes � V 0 Δs=Δesð Þ, but there is no corresponding
error in the estimate of the average voltage. As seen above,
the estimated source distance is also inversely proportional
to the estimated voltage gradient (r ≈ −kV/V′). Thus, an
error in the estimate of probe separation is expected to
produce a proportional bias in the estimated distance to the
source: er � �kV=eV 0 � rV 0=eV 0, or, by substituting the
above expression for the erroneous voltage gradient,

er=r ¼ Δes=Δs: ð12Þ

Because the equivalent source is forced to account for
the measured EAP amplitudes, V, the bias in the estimated
equivalent source size is expected to be the same fraction
raised to the k-th power:

epk k= pk k ¼ Δes=Δsð Þk : ð13Þ

Because k>1, the error is larger in the source size than
its distance. As seen in Fig. 11, the empirical analysis of
probe model error is qualitatively consistent with this
analysis. The bias in estimated distance (Fig. 11(b)) is
somewhat less than the prediction of strict proportionality,
most likely because there is, additionally, a contribution of
errors in the measured data. The bias in estimated source
size (Fig. 11(c)) is larger than the bias in estimated distance,
in keeping with a dipolar (k=2) model. This analysis of
geometry error is relevant to twisted wire tetrodes, since
their tips can flay (Jog et al. 2002). As a result, model-
based localization methods that use the nominal (i.e.,
smaller than true) contact separation would underestimate
the distance of cells and their equivalent source size.

4.5 Localization error due to error in volume conductor
model

In this subsection, we consider the 4 non-essential
assumptions (resistivity, isotropy, homogeneity, frequency-
independence) of the volume conductor model of gray
matter that are known to be violated by the biophysics of
cortical tissue to some degree. (We do not review quasi-
stationarity, linearity, and the symmetry of material tensors;
these are fundamentally well-grounded approximations of
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the biophysics and required by the lead field approach of
our method).

By far the largest error is in neglecting the capacitive
effect and it is still very small (Plonsey and Heppner 1967):
from the measured spectra of gray matter conductivity and
permittivity (Gabriel et al. 1996), we estimate that the ratio
of capacitive over ohmic contributions to impedance is near
constant (frequency-independent) and small (≤10%) in the
entire frequency band (300-to-6,000 Hz) of EAP’s, and the
related voltage-current phase shift is ≤0.1 rad. (This is in
contrast to the low-frequency band (10–100 Hz) relevant
for LFPs, in which, the same data (Gabriel et al. 1996)
shows, permittivity is non-negligible and its ratio to
conductivity (0.2-to-0.9) is strongly frequency-dependent.

We further assumed that the volume conductor is (1)
isotropic and (2) homogeneous. Both assumptions are
expected to hold as first approximation on the spatial scale
of the cell body of neurons (~10 um), especially within the
same cortical layer. At the core of these assumptions is the
observation that the more conductive, interstitial, space of
the neuropil has a richly interconnected structure on an
order of magnitude smaller scale that permits local
averaging (Robinson 1968). Their validity on larger spatial
scales in gray matter rests on direct biophysical measure-
ments in studies that sought for physiologically realistic
tissue parameters to be used in current source density
analysis of evoked potentials and EEG data (for a review,
see e.g., Mitzdorf (1985)) .

If homogeneity holds, the key model parameter is the
value of the scalar conductivity. This parameter may not be
known precisely, but errors in its value do not influence
localization accuracy. This is because scalar conductivity is
fully absorbed by the estimated dipole moment size: it
scales in proportion with conductivity (||p||~σ). (See also
Eqs. (1c, 4, and 7a,b)) Thus, an error in the conductivity
leads to a proportional error in the size of the estimated
moment, but no error in its estimated position. The
conductivity we used (σGM=0.45 S/m) was 30–50% higher
than in some other studies (e.g., Moffitt and McIntyre
(2005) and Gold et al. (2006)), but we also note that the
passage of an electrode may result in local edema that
elevates conductivity in the electrode’s vicinity.

Strict homogeneity, though, is only an approximation:
laminar changes in density of cell bodies and processes and
extracellular ion concentrations lead to changes in tissue
conductivity by as much as a factor of 2 (Lopez-Aguado et
al. 2001). This distorts cell localization and apparent source
size not unlike the optical distortion of objects by refraction
at a liquid-air boundary. Specifically, a step change in the
tissue conductivity alters not only the potential but also its
gradient near the domain boundary (Moffitt and McIntyre
2005), resulting in a bias in the cell position inferred from
models that assume homogeneity. While the lead field

calculation and regularization methods used here immedi-
ately extend to models that include laminar variations in
conductivity, the bias is likely negligible except in the
vicinity of large conductivity jumps.

4.6 The use of lead fields

Lead fields play a central role in our approach and are very
helpful in understanding probe performance at a conceptual
level. They were originally developed for EKG design, but
because of their conceptual importance they have been
adopted to diverse applications in neurophysiological
investigation. They facilitate the analysis and design of
probe sensitivity in single unit recording both for tetrodes
(as done in this study) and multi-contact probes (see
below), or in chronic neural prosthetics (Mitzdorf 1985).
They are similarly helpful in studying the activation fields
of stimulating electrodes used in deep brain stimulation
(McIntyre et al. 2004; Wei and Grill 2005; Butson and
McIntyre 2006).

Lead fields of a recording probe, in particular, are useful
because they can summarize contact sensitivity to all
possible source positions with the accuracy of the details
of the modeled geometry. Analytic approaches to source
localization ignore the probe geometry and thus are unable
to capture field distortions around the probe, which can be
quite large and hard to intuit (see, e.g., the eccentric lead
fields of the Thomas tetrode in Fig. 8; similar effects were
shown for contacts on a silicon polytrode by Moffitt and
McIntyre (2005)). Because of these field distortions, the
sensitivity of contacts of the probe can be very different to a
source lying in a given direction and distance from the
probe.

Lead field analysis helps determine the recording
volume of a probe. This holds both for single electrodes
and multi-contact probes, but there is an important
distinction rooted in the way that these probes isolate
neurons. What is common to both scenarios is that at a
given signal level, the lead fields of an individual contact
on the multi-contact probe and a sharp single electrode are
very similar in size (Figs. 5 and 6). Furthermore, the size is
largely independent of tip shape and, consistent with the
results of Moffitt and McIntyre(2005), of contact area
beyond a very short distance from the contact (a distance
commensurate with the characteristic length of the contact).
(Tip shape and contact area matter for other electrode
properties: the first determines the mechanics of penetration
and the ability of the probe to get close to cells; the second
determines electrode noise via input impedance). However,
despite the comparable lead field size, the recording radius
of sharp single electrodes is thought to be smaller than of
most tetrodes (e.g., ≈50 μm for single electrode in cat
sensorimotor cortex (Rosenthal et al. 1966) versus ≈ 70 μm

J Comput Neurosci



for wire tetrodes in cat visual cortex (Gray et al. 1995)).
This is likely because the single electrode has to be moved
closer to the source to achieve high S/N that is demanded
by reliable single unit isolation on a single channel.

The shape and size of the recording volume of a multi-
contact probe as a whole depends on the relationship
between the lead fields. Taking advantage of the signal
variation across different contacts, the multi-contact probe
achieves single unit isolation at lower signal levels and thus
in a larger recording volume than single electrodes. To a
first approximation, the recording volume of multi-contact
probes is the union of the recording volume of each contact.
However, synergy between leads may refine this overall
volume. For example, the recording radius measured for the
same tetrodes (from the same data) as used here (Mechler et
al. 2011) could be more closely approximated by the radius
of individual lead fields (as defined above, for the isolation
threshold) than the larger radius of the union of lead fields.

4.7 Applicability to other multisite recording techniques

As is apparent from the discussion above, our approach to
dipole localization is readily applicability to multi-contact
arrays, including silicon blades. The extensive translational
or rotational symmetries of the contact array on these large
probes can be greatly exploited in lead field calculations.
Because of this, and because the regularization technique
does not depend on the specifics of the probe geometry,
dipole localization procedure is applicable.

These probes have a number of advantages over tetrodes
that can help improve spatial localization of neurons. Here
we highlight these probe features; owing to ongoing
technological innovation, the list will doubtless grow in
the future.

One advantage is spatial: a sufficiently long stationary
blade can sample an entire cortical minicolumn without the
need to move the probe (Csicsvari et al. 2003; Blanche et
al. 2005). Furthermore, with these probes the accuracy of
cell isolation (“spike clustering”) may improve (Blanche et
al. 2005) as the number of spatial EAP samples increases,
which can be achieved even if contact density is not as
high as on tetrodes—because spike-triggered averaging
driven by large spikes helps uncover small signals. To
support dipole characterization, the critical requirement is
that contact spacing should be sufficiently dense to allow
for at least 6 but preferably many more EAP samples from
the typical target neuron. Typical polytrodes currently in
use appear to be just short of achieving a sufficient
density. For example, on a probe on which contacts were
50 μm apart in a 3-column rectangular layout, discrimi-
nable spikes were recorded by fewer than 6 contacts in
half of the single neurons in cat visual cortex (Blanche et
al. 2005). This suggests that even a modest increase in

probe density will substantially benefit source localiza-
tion. This is readily achievable: contact separation on
some more recently developed silicon polytrodes is
already approaching ≈ 20 μm (Henze et al. 2000; Bartho
et al. 2004; Buzsaki 2004; Du et al. 2009) that formerly
only tetrodes could reach.

It is important for source localization that the temporal
correspondence of the spatial EAP samples is correct. From
this perspective, multi-contact probes have the additional
benefit that they yield automatically correct temporal
alignment of the spatial sample. The correct temporal
alignment of course extends to all waveforms of the same
source, including the small signals uncovered by spike-
triggered averaging. Since these small samples have a
potentially large spatial span, including them all for source
localization does not immediately translate to improved
localization. This is because a spatially extensive sample
would likely include significant contributions from a
correspondingly larger domain of the distributed source of
the neuron, more than just a local lobe of the arbor. To
accurately capture this would likely require a source model
more complex than the simple dipole.
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