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We show that spike timing adds to the information content of
spike trains for transiently presented stimuli but not for com-
parable steady-state stimuli, even if the latter elicit transient
responses. Contrast responses of 22 single neurons in ma-
caque V1 to periodic presentation of steady-state stimuli (drift-
ing sinusoidal gratings) and transient stimuli (drifting edges) of
optimal spatiotemporal parameters were recorded extracellu-
larly. The responses were analyzed for contrast-dependent
clustering in spaces determined by metrics sensitive to the
temporal structure of spike trains. Two types of metrics, cost-
based spike time metrics and metrics based on Fourier har-
monics of the response, were used. With both families of
metrics, temporal coding of contrast is lacking in responses to
drifting sinusoidal gratings of most (simple and complex) V1

neurons. However, two-thirds of all neurons, mostly complex
cells, displayed significant temporal coding of contrast for edge
stimuli. The Fourier metrics indicated that different response
harmonics are partially independent, and their combined use
increases information about transient stimuli. Our results dem-
onstrate the importance of stimulus transience for temporal
coding. This finding is significant for natural vision because
moving edges, which are present in moving object boundaries,
and saccades induce transients. We think that an abrupt
change in the adapted state of the local visual circuitry triggers
the temporal structuring of spike trains in V1 neurons.
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A prevailing view of neural coding is that the meaningful signal
is contained in the mean rate of the action potential discharges of
a neuron, and rate variability is noise. Because this noise can be
filtered out by averaging across time or neuronal populations, rate
coding performs robustly in the presence of noise, but it has
limited information capacity.

An alternative view is summarized by the term temporal cod-
ing; the notion that the timing of individual spikes also carries
information. In principle, selective temporal mechanisms could
exploit the high intrinsic precision of cortical neurons to increase
the efficiency of neural coding.

It is natural to assume that rate coding plays a major role in
neural signaling, given its apparent simplicity. Decoding a rate
code implies temporal summation over periods of time long in
comparison with the mean interspike interval or summation
across a population. On the other hand, coincidence detection
(Abeles, 1982; Bourne and Nicoll, 1993; Softky, 1994; Konig et al.,
1996; Cline, 1997; Volgushev et al., 1998), refractory periods
(Berry and Meister, 1998), activity-dependent synaptic efficacy
(Abbott et al., 1997; Gerstner et al., 1997; Markram et al.,
1997), post-tetanic potentiation (Alonso et al., 1996; Volgushev
et al., 1997), and other forms of temporal integration are just
as much a part of the qualitative description of neuronal signal

processing as is linear summation. Furthermore, neuronal
spike generation is intrinsically precise (Mainen and Se-
jnowski, 1995). Thus, neurons are well equipped to generate
and process temporal codes.

It is well recognized that temporally coded information is
present in spike trains of primate visual neurons (Optican and
Richmond, 1987; Richmond and Optican, 1987, 1990; Victor and
Purpura, 1996, 1997). Although studies in our laboratory
and those of Optican and Richmond (1987) made use of different
stimuli and different analytical tools, they shared two features: a
focus on single spike trains rather than response averages and
transient presentation of stimuli. On the other hand, many inves-
tigators use steady-state stimulation and averaging methods such
as poststimulus time histograms and Fourier analysis, and they
either ignore the possibility of temporal coding or conclude that
it is not present.

Thus, it is unclear whether the apparent presence or absence of
temporal coding is an artifact of the analytical method, or rather,
is related to physiological differences between transient and
steady-state regimens. To settle this issue, we looked for temporal
coding in contrast responses collected from the same V1 neurons
in transient (drifting edge) and steady-state (drifting grating)
regimens. We found strong evidence for temporal coding for the
transient edges but not for the steady-state gratings. The same
results were obtained from cluster analysis of the Fourier har-
monics computed from individual spike trains.

The major conclusion that we draw from this study is that the
nature of the visual stimulus, rather than the particular method of
data analysis, determines whether one finds temporal coding in
the responses of V1 neurons. The finding that transient stimuli
generate temporally coded responses has implications for natural
vision.
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Parts of this paper were presented at the 1997 Annual Meeting
of the Society for Neuroscience (Mechler et al., 1997).

MATERIALS AND METHODS
Physiolog ical preparation. Standard acute preparation techniques were
used for electrophysiological recordings from single units in V1 of ma-
caque monkeys (Kaplan and Shapley, 1982; Hawken et al., 1988, 1996).
Experiments were performed on two adult cynomolgus monkeys, Ma-
caca fascicularis, weighing 1.8–4 kg. Before surgery, animals were se-
dated with acepromazine (0.1 mg/kg, i.m.; PromAce; Fort Dodge, Fort
Dodge, IA) and then anesthetized with ketamine (10 mg/kg, i.m.; Keta-
set; Fort Dodge). Anesthesia was maintained with sufentanil citrate (3–6
mg z kg 21 z hr 21, i.v.; Sufenta; Janssen Biochimica, Titusville, NJ), and
muscle paralysis was induced (after all surgical procedures) and main-
tained with pancuronium bromide (0.1 mg z kg 21 z hr 21, i.v.; Astra Phar-
maceutical Products, Inc., Westborough, MA). Dexamethasone (1 mg/
kg, i.m.; Elkins-Sinn, Cherry Hill, NJ) and gentamicin (5 mg/kg, i.m.;
Steris Laboratories, Inc., Phoenix, AZ) were given to prevent the devel-
opment of cerebral edema and infection, respectively. The animal was
ventilated through an endotracheal tube. Heart rate, electrocardiogram,
blood pressure, and end-tidal CO2 were continuously monitored with a
Hewlett-Packard 78354A patient monitor and kept in the normal physi-
ological range. Core body temperature was maintained at 37°C using a
thermostatically controlled heating pad. The EEG was obtained from
frontal leads and continuously monitored on an oscilloscope.

A limited unilateral craniotomy was made posterior to the lunate
sulcus (the Horsley–Clarke stereotaxic coordinates were 12–14 mm
posterior and 10–20 mm lateral). A 1–2 mm durotomy was made for the
recording electrode, which was stabilized after insertion by agarose gel.

Experiments lasted for 4 d, at the end of which the animal was
sacrificed by infusion of a lethal dose of pentobarbital (Brevital; Eli Lilly
and Co., Indianapolis, IN). After transcardiac perfusion, a block of the
occipital lobe containing the penetration was saved for histological re-
construction of the electrode track (Hawken et al., 1988, 1996). Laminar
positions of the recording sites were estimated in relation to the pattern
of cytochrome oxidase stain and Nissl density in the reconstructed
cortical section containing the track.

Optics. The eyelids were retracted and pupils were dilated with 1%
atropine sulfate (Atrosulf-1; Optics Laboratories, Co., Fairton, NJ). The
corneas were protected with gas-permeable contact lenses (Metro Optics
Inc., Houston, TX). External lenses were used to correct refraction as
first estimated by direct ophthalmoscopy and then confirmed or im-
proved by optimizing the high spatial frequency responses of isolated
neurons. Foveae were mapped by back-projection on a tangent screen
using a reversing ophthalmoscope (Eldridge, 1979). The visual receptive
fields of isolated neurons were mapped on the same screen.

Extracellular recording. Microelectrode [glass-coated tungsten (Merrill
and Ainsworth, 1972); exposed tip, 5–15 mm; typical resistance, 2 MV]
penetrations were driven by a stepping motor in 1 mm steps. The
extracellular electrical signal was fed through a differential amplifier and
then further amplified and bandpass-filtered (0.2–10 kHz). A window
discriminator was adjusted to generate brief (50 msec) pulses on each
occurrence of the isolated spike. The discriminator input and output
were fed to an audio monitor, and the times of occurrence of the pulses
were recorded on a personal computer through a general purpose data
aquisition box (CED 1401 plus; Cambridge Electronic Design, Ltd.,
Cambridge, UK) with 1 msec resolution. Single-unit isolation was aided
by monitoring the window levels multiplexed with the raw signal on an
oscilloscope and displaying the isolated spike on a separate storage
oscilloscope. Isolation criteria used included an audible visually driven
response, a minimum interspike interval consistent with a physiological
refractory period (.1–1.5 msec), and a uniform, stable spike shape.

Only cells that were well and stably isolated throughout the runs
described below were included in this study. This restricted analysis to 22
V1 cortical neurons (11 simple and 11 complex), 25% of all neurons
encountered. Of the two animals in the study, the first yielded nine
neurons (two complex and seven simple), and the second yielded 13
neurons (nine complex and four simple). Simple versus complex catego-
rization was based on (1) the modulation ratio of the fundamental over
the DC component of the response to drifting gratings of near optimal
spatial parameters (Movshon et al., 1978b; De Valois et al., 1982; Skottun
et al., 1991) and (2) the ratio of the first and second harmonics in a spatial
summation linearity test (Enroth-Cugell and Robson, 1966; Hochstein
and Shapley, 1976; Movshon et al., 1978a,b). Receptive field positions

were all located in the parafovea and perifovea, between 1.5 and 6°
eccentricity.

Visual stimulation. Stimuli were generated by a Silicon Graphics Elan
R4000 computer under the control of the personal computer, displayed
on a Barco CCD 7651B color monitor (60 Hz noninterlaced refresh;
1024 3 768 pixels; 60 cd/m 2 mean luminance, 8-bit intensity control).
The lookup tables controlling the voltages on the guns of the phosphors
in the monitors were linearized with the aid of a Photo Research 703-PC
spectroradiometer. The visual space subtended by the illuminated area
was 13 3 17° at a 114 cm viewing distance. The display area of the
modulated stimulus could be limited to a smaller patch within a 0.5–5°
diameter aperture to optimize the response. Stimuli were always cen-
tered on, and fully covered, the receptive field of the neuron.

For quantitative analysis, we used two types of drifting one-
dimensional luminance waveforms: sinusoidal gratings and square waves
of low spatial frequency for which we hereafter use the term edges. The
luminance profile of the drifting sinusoidal gratings is:

I~ x, t! 5 I0@1 1 C sin~2p~kx 2 vt!!#. (1)

Here, I(x,t) is the luminance (candelas per square meter) at position x
(degrees) along the grating at time t (in seconds); I0 (candelas per square
meter) is the mean luminance of the unmodulated display; C is the
Michelson contrast of the stimulus; k (cycles per degree) is the spatial
frequency; and v (Hertz) is the temporal frequency. Similarly, the
luminance profile of the drifting edges is:

I~ x, t! 5 I0@1 1 C sgn~sin~2p~kx 2 vt!!!#. (2)

This is a square wave with a fundamental spatial frequency of k, tem-
poral frequency of v, and contrast of C.

Stimuli were presented monocularly to the preferred eye in trials that
spanned several cycles of the periodic stimulus and lasted typically 4 sec
(range, 2–16 sec). A brief preliminary qualitative exploration of the
spatiotemporal tuning preferences of a unit was followed by a basic set of
quantitative characterization experiments, in which the tuning for ori-
entation, then spatial frequency, then temporal frequency, and occasion-
ally orientation again, of a unit were measured using drifting sinusoidal
luminance gratings of 64% contrast. The optimal value for each tuning
parameter was assessed sequentially and then kept fixed in subsequent
tuning experiments for the other parameters. In each tuning experiment,
the tuning parameter was varied in random order, and blank trials were
randomly interleaved. The blank condition consisted of a uniform display
at a luminance identical to the spatiotemporal mean of all modulated
stimuli. Orientation and temporal frequency tuning (velocity tuning at
fixed spatial frequency) experiments were also performed with drifting
edges. Edges had a fundamental spatial frequency of 0.1– 0.3 cycles/°.

In the contrast–response experiments, 4 sec trials of drifting gratings
or edges of optimal spatiotemporal parameters were interleaved with
blank trials of equal duration. Patterned stimuli were presented in order
of increasing contrast. Blank trials were intended to minimize the vari-
able effects of contrast adaptation. Each block of trials, representing a
full set of contrast levels, was repeated several (typically two to four)
times in identical trial order, typically yielding 8–16 sec of recorded spike
trains in each condition.

Data analysis: metric spaces and clustering of spike trains. The data
analysis determines the extent to which there is a reproducible depen-
dence of spike counts and spike times on the contrast of the stimulus. It
consists of two separate stages (see in detail below); the construction of
a metric space from a set of responses, followed by an analysis of
response clustering. For the first stage, we use spike counts and a family
of spike time metrics (Victor and Purpura, 1997), both as originally
conceived as well as in a modification that makes them more appropriate
for analyzing responses to periodic stimulation. We will also introduce
new metrics to connect this approach to standard Fourier analysis. We
performed the Fourier analysis in addition to the abstract spike time
metric space analysis because (1) Fourier components are conventionally
and frequently used response measures for periodic stimulation and, (2)
more importantly, they naturally give rise to vector spaces unlike the
cost-based metrics. Because of point 1, some readers will find the Fourier
approach more appealing then the cost-based metric space approach.
Because of point 2, the nontrivial question of whether the two indepen-
dent methods of analysis lead to similar results needs to be answered
empirically, which we do here. Although the result of the analysis of
clustering in the second stage is dependent on the choice of the particular
metric in the first stage, the clustering algorithm itself is not. In this way,
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coding based on spike counts and coding based on temporal pattern can
be compared on an equal footing. The following paragraphs give the
reader the basics of the analyses. A rigorous treatment of this material
has been published (Victor and Purpura, 1997).

Spike time metrics. We assess the extent to which spike trains elicited by
stimuli of different contrasts appear more “dissimilar” than spike trains
elicited by stimuli of the same contrast. This assessment is performed for
multiple notions of dissimilarity, or distance, between spike trains,
known as metrics. We use a family, D spike[q], of metrics of the distances
between spike trains, parametrized by a cost, q, that specifies a presumed
time scale (1/q) for the systematic stimulus dependence of spike timing.

For D spike[q], two spike trains are considered similar if the number of
spikes is similar and if their timing agrees to within 1/q. To formalize this
notion, we define the distance between two spike trains as the “cost” of
transforming one into the other. The transformation from one spike train
into the other is via a sequence of elementary steps, consisting of (1)
spike elimination, (2) spike insertion, and (3) shifting a spike in time.
Each elementary step is associated with a definite cost. For eliminating or
inserting a spike, the cost is unity. To shift a spike, the cost is equal to
qDt, where Dt is the extent of the shift. The factor q has units of
seconds 21. Given these preliminaries, let

Pa 5 $Sa 5 Sa1 , Sa2 , · · · , San 5 Sb % (3)

be a path that leads from Sa to Sb through a finite sequence of interme-
diate spike trains, in which each spike train Saj 1 1

is obtained from the
preceding one, Saj

, via one of the three types of elementary steps
(deletion, insertion, and a finite shift of a single spike). Given a fixed q
cost parameter, let Kq(Saj

,Saj 1 1
) denote the cost of that elementary

transformation. The cost of the transformation of spike train Sa to Sb via
the pathway Pa is the sum of the cost of all the elementary transforma-
tions along that pathway:

Kq~Pa ! 5 O
$aj %

Kq~Saj , Saj11 !. (4)

Then, for a given cost parameter, q, the distance D spike[q](Sa , Sb )
between Sa and Sb in the metric D spike[q] is defined as the minimum total
cost of transforming Sa to Sb:

Dspike@q#~Sa, Sb! 5 min
$ Pa %

$Kq~Pa!%, (5)

where the minimum is taken over all possible pathways that lead from Sa
to Sb via any sequence of elementary transformations.

The cost parameter q is the measure of the sensitivity of the metric to
the timing of individual spikes. Shifting a spike by an amount of time Dt
.1/q is greater in cost than deleting it altogether. In like manner, shifting
a spike by an amount of time Dt .2/q is greater in cost than deleting it
and reinserting it in the new location. Thus, spikes whose times differ by
Dt .1/q sec are viewed by D spike[q] as unrelated. For q 5 0, there is no
cost associated with shifting spikes in time (but inserting and deleting
spikes are still associated with unit cost). Hence D spike[0] is a metric in
which the distance between two spike trains is simply the difference in
the number of spikes they contain, and which therefore we denote D count.

The diagram in Figure 1 A illustrates a sequence of elementary steps
associated with the calculation of the distance in metric D spike[q] be-
tween spike trains Sa and Sb. The arrows indicate shifts of spikes in time.
Spike deletions and insertions are indicated by the asterisk. Depending
on the cost of the shifts (as determined by the cost parameter q) of a
metric, the total cost of transformation may be lower if we deleted a spike
and reinserted it at the exact required time. Train Sa consists of five
spikes, four of which are shifted in time to coincide with spikes in train
Sb. However, the first spike in Sa rather than shifted, is deleted and then
reinserted into Sb as the next to the last spike. Insertions or deletions are
also necessary when the number of spikes in the two trains are not equal.
An example of this is the last spike in Sb. An efficient algorithm is
available to find the sequence of transformations that have minimal total
cost, and thus calculate the distance D spike[q] between spike trains
(Victor and Purpura, 1997).

In summary, some important properties of the spike time metrics are
(1) the distance D spike[q] between two spike trains is small if the number
of spikes in them is similar, and their times match within a temporal
window of width 1/q; (2) if q is zero, only the spike count matters; and (3)
if q is very large, almost all spike trains are far apart, unless the spike
times are almost identical, because the metric considers spikes that differ
by Dt .1/q to be unrelated.

Spike time metrics adapted to periodic responses. We modified the above
procedure for computing distances between spike trains to make it more
appropriate for responses to periodic stimuli. The issue addressed by this
modification is illustrated in Figure 1 B. The first spike in train Sa is
distant from the last spike in Sb , but it is similar in response phase.
Because of the way that D spike[q] is defined, this kind of similarity is
neglected, as a consequence of the partitioning of the response into
successive epochs. But for periodic stimuli, it might make sense to
recognize this kind of similarity by allowing for cyclic wraparound of
spikes. That is, for the purpose of shifting spikes in time, individual
responses are considered to be on a circular time axis, and each circular
segment corresponds to one stimulus cycle. This modification can reduce
the cost of transformation of one spike train to another by allowing a shift
across the point of wraparound. As the diagram (Fig. 1 B) shows, with this
modified spike time metric, D spike,circ[q], it is now cheaper to shift, rather
than to delete and then reinsert, the leftmost spike in spike train Sa.

We used both the original spike time metric (D spike[q]) and the
modification that allowed for cyclic wraparound (D spike,circ[q]) on all data
sets, with no noticeable difference in the results. Only the results of
analyses with the modified D spike,circ[q] are presented.

For a periodic stimulus, there is some arbitrariness inherent in the choice
of the phase to use as the cut point for partitioning the spike train into
individual responses. One approach is to choose the onset time of the
stimulus cycle as the cut point. A second approach is to position the cut
point in a region of low firing rate, i.e., between the peaks of the response
histogram. We used this second approach, although a control computation
on a few data sets showed no significant dependence on this choice.

Metrics based on Fourier components. For the purpose of Fourier analysis,
an action potential at time tj is treated as a unitary event described by a
delta function d(t 2 tj ) centered at tj , and a spike train is described by the
sum of delta functions centered on the time of occurrence of each spike in
the train. A set of m responses may be represented by

rl~t! 5 O
j51

hl

d~t 2 tj
l!, 0 , t1

l · · · , thl

l # Ts, l [ $1, · · · , m%, (6)

Figure 1. Quantifying the dissimilarity of spike trains via the spike time
metrics D spike[q] and D spike,circ[q]. The distance between spike trains Sa
and Sb is the minimum cost of transforming Sa into Sb via a sequence of
elementary steps, as detailed in Materials and Methods. A, Spike time
metric D spike[q]. Spike trains are considered to be segments of time, and
the periodicity of the stimulus is ignored. The direction of time is
indicated at the bottom lef t. Transformation of spike train Sa into Sb
involves the deletion of the first spike of Sa (marked by asterisk), insertion
of the last two spikes of Sb (also marked by asterisk), and shifts of the other
spikes, as diagrammed by the arrows from Sa to the virtual spike train S9.
B, The spike time metric adapted to periodic stimuli, D spike,circ[q]. The
spike trains Sa and Sb are now considered to be cyclic, with a period
corresponding to that of the stimulus. This modification allows shifts of
spikes to wrap around across the cycle boundaries. In the example
illustrated, this modification changes the minimum-cost set of transfor-
mations to one in which the initial spike of Sa (marked by asterisk) is
shifted across a cycle boundary to coincide with the last spike of Sb. For
spike trains that differ in the illustrated manner, the distances in this
modified “circular” D spike,circ[q] metric will be smaller than those defined
by the open-ended form, D spike[q].
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corresponding to m cycles of the stimulus s of period Ts (and temporal
frequency v 5 1/Ts ). We calculate the first n Fourier harmonics of these
m responses,

Rl
k 5 O

j51

hl

exp~2i2pvktj
l!, k [ $0, 1, · · · , n%, l [ $1, · · · , m%. (7)

We considered families of metrics based on these Fourier components.
For each harmonic of the stimulus cycle, the corresponding Fourier
component can be thought of as a two-component vector (the real and
imaginary parts). A set of k Fourier components thus corresponds to a
real vector space of 2k dimensions. In a vector space, a natural distance
is defined by the Pythagorean rule, and this Euclidean vector–space
distance can also serve as a metric. We explored four families of such
metrics, each parametric in n, the largest Fourier harmonic considered:
(1) F single[n], the Pythagorean distance based on the nth harmonic
alone; (2) F all[n], the Pythagorean distance based on all of the first n
components; (3) F even[n], the Pythagorean distance based on the even
harmonics up to n; and (4) F odd[n], the Pythagorean distance based on
the odd harmonics up to n. The temporal frequency of the nth har-
monic, nv, plays a role similar to that of the cost parameter q; for both,
the reciprocal specifies the time scale over which details in the tem-
poral structure of the spike train affect the corresponding metric. With
this in mind, we allowed nv to span a comparable range to that of q in
our calculations (see below).

Cluster analysis. Each of the above metrics formalizes a notion of
similarity between spike trains. A candidate notion of similarity is only
relevant to coding if the observed responses to distinct stimuli tend to be
more dissimilar than responses to the same stimulus (Victor and Purpura,
1997). The goal of the second step in our analysis is to ask, for each of the
metrics, the extent to which this is the case. The answer is summarized
by a single value, the transinformation (Abramson, 1963). We use
transinformation as a measure of stimulus-dependent clustering for each
metric. If it is high, then each stimulus leads to distinct response clusters
in the abstract space defined by the metric under consideration. That is,
the responses to different contrasts are much more dissimilar (i.e., lie in
distinct clusters) than responses to the same contrast. If the transinfor-
mation is low, then (for the particular metric under consideration),
responses to stimuli of different contrasts are largely overlapping. Note
that we use transinformation to quantify the extent to which clustering of
spike trains, not spikes, in metric spaces of responses systematically
depends on a stimulus parameter (contrast).

The experiment is considered to consist of C stimuli s1 , s2 , . . ., si . . ., sC.
We classif y an individual spike response S according to its average
distance from all the responses S a 5 {S9} elicited by each particular
stimulus sa. A spike train S e S i elicited by stimulus si will be classified
as belonging to response class rj if it was closer on average to the
S j responses elicited by stimulus sj than to the responses elicited by
any other stimulus. For this purpose, the average distance between
a spike train S and all the responses S a elicited by stimulus sa is de-
fined by:

d~S, Sa! 5 F ^~D~S, S9!!22&S9[SaG2
1
2 (8)

for any metric D, which may include D spike,circ[q], F single[n], F all[n], etc.
This classification procedure is then applied to each spike train.

Results are summarized in a confusion matrix, N(si , rj ), which tallies the
instances in which a stimulus si elicited a response that was categorized
as belonging to response class rj. That is, N(si , rj ) is the number of
instances in which a response to stimulus si would be confused with a
response to a stimulus sj , based on the similarities of the recorded spike
trains. If this matrix is diagonal, responses are in perfect correspondence
to the stimuli that elicited them, and the extent of stimulus-dependent
clustering is maximum. If, on the other hand, the confusion matrix
elements are all equal, then the metric leads to an apparently random
association between stimuli and responses. In this instance, the extent of
stimulus-dependent clustering is minimum.

The confusion matrix N(si , rj ) depends on the metric via the clustering
algorithm. The transinformation indicates, for any metric, where be-

tween the extremes of stimulus-dependent clustering the confusion ma-
trix N(si , rj ) lies. It is given by

H 5
1O

a,b

N~sa, rb!
O
i,j

N~si, rj !F log2N~si, rj ! 2 log2 O
a

N~sa, rj !

(9)

2 log2 O
b

N~si, rb ! 2 log2 O
a,b

N~sa, rb !G
H takes on non-negative values (in bits), with H 5 0 corresponding to
minimum clustering. The maximum value of H depends on the choice of
stimuli. (For this reason, we used sets of comparable contrasts for the
edge and grating experiments.) For C equally likely stimuli, perfect
stimulus-dependent clustering corresponds to H 5 log2C. In our data
sets, stimuli of different contrast were not equally likely. Each stimulus of
nonzero contrast was presented an equal number of times, but the blank
(zero contrast) was presented a number of times equal to the total
number of nonblank presentations. For C 2 1 nonblank stimuli and 1
blank presented with these probabilities, perfect contrast-dependent clus-
tering corresponds to H 5 1 1 0.5 log2(C 2 1). For C 5 7, H ;2.29, the
ideal maximum for our contrast experiments. However, much smaller
values of H indicate significant stimulus-dependent clustering. For exam-
ple, a 70% correct performance in a two-alternative forced choice
situation corresponds to H 5 0.12.

When the set of available responses is limited, as in real data, the
estimate of the transinformation H contains a positive bias (Carlton,
1969; Treves and Panzeri, 1995). This is because even if clustering is at
chance levels, there may not be an equal number of counts in each cell of
the confusion matrix. A conservative approach to correction of this bias
is to subtract an empirical estimate of the bias in H caused by chance
clustering. We derived this estimate by recalculating the transinforma-
tion after several random reassignments (typically 10) of the responses
across stimuli. We found that this bias estimate for H was small compared
with H and also relatively independent of q. Hence, our results would not
change had we elected to not subtract the correction. Further discussion
of the bias and the algorithm to compute H is given in Victor and
Purpura (1997).

The shape and maximum of the H(q) function describes the temporal
coding capabilities of the neuron. If, for example, the spike count carries
all of the potential information in a response of a neuron, then H(q) will
achieve its maximum at q 5 0, because timing of individual spikes [which
affects H(q) for q . 0] does not depend systematically on the stimulus and
thus degrades clusters. On the other hand, if the timing of spikes
systematically depends on the stimulus, then we expect that H(q) will be
maximal in the neighborhood of q, which is the inverse of the meaningful
temporal precision of the firing of the neuron. We computed H(q) at q 5
0 and typically 14 additional points in logarithmic steps along the q axis
from 1 to 512, corresponding to increasing temporal sensitivities from the
order of a second through a few milliseconds. For the metrics based on
Fourier harmonics, the characteristic frequency nv takes the role of q.
For H(nv), nv was varied, in a range comparable to that of q, in 14 steps.

RESULTS
In previous work, evidence for temporal coding of contrast in V1
neurons was obtained in experiments that used several types of
transient stimuli, including flashed gratings and patterns (Victor
and Purpura, 1996, 1998; Richmond et al., 1997). Those experi-
ments did not include steady-state grating stimuli–stimuli, which
are commonly used in vision research but which are not typically
analyzed for the presence of a temporal code. This leaves open
the question of whether the transient nature of the stimulus is
essential for temporal coding, or, alternatively, whether the ap-
parent presence of temporal coding is primarily attributable to
the analytical approach. To address this question, we compared
(for the same neurons) the coding of contrast in responses to two
classes of stimuli: drifting sinusoidal gratings and drifting low-
frequency square waves, or edges. The drifting square waves were
presented with at most one edge within the receptive field at any
time. Unlike sustained presentation of drifting gratings that pro-
vide a spatiotemporal steady-state input for the local cortical
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circuit, a drifting sharp edge engages only parts of that same
circuit at any time, and only in a transient manner.

Contrast responses to drifting sinusoidal gratings as well as
drifting square waves (edges) of 22 isolated neurons were extra-
cellularly recorded in the primary visual cortex of the anesthe-
tized macaque monkey. For stimuli of both classes, the orienta-
tion, direction, and temporal frequency (and, for gratings only,
spatial frequency) were optimized for the selectivity of the re-
ceptive field of each neuron. Details of the optimization are given
in Materials and Methods. The contrast levels spanned a wide
range in approximately logarithmic steps, 8–78% for gratings and
11–90% for edges. (Note that the contrast of the first harmonic
component of an edge was approximately equal to the contrast of
a corresponding grating in the set. We needed to explore a similar
response range for edges and gratings. With the convention we
used, the contrasts, response sizes, and clustering estimates for
the two stimulus classes were comparable.) Thus, a complete data
set for one neuron consists of a set of responses at six nonzero
contrast levels and the blank condition, for both gratings and
edges. We first present results of the analysis based on spike time
metrics and then those based on Fourier components. For each
set of metrics, we begin by showing the analysis of responses from
several typical units, and then present results across the popula-
tion of neurons in our sample.

Cluster analysis based on spike time metrics
Single-unit example: complex cell
Figure 2 shows the data obtained from a complex cell, typical of
our sample. For this cell, a nondirectional layer 6 neuron, the
stimulus parameters were 0.2 cycle/°, 1 Hz (edge), and 1.6 cycles/°,
5 Hz (grating). Responses to edges (Fig. 2A–C) and to gratings
(Fig. 2D–F) are presented in identical format. This complex cell,
when measured with both gratings and edges, had a threshold
contrast of ;5% (data not shown) and a monotonically increasing
response up to 60–80% contrast. For gratings, the contrast–
response function saturated at the highest contrasts (Fig. 2E).

The raster plots in Figure 2A show the cycle-by-cycle responses
to drifting edges. Each of the six runs contained four cycles of the
stimulus; the illustrated rasters were obtained by segmenting each
of these runs at the onset of each stimulus cycle, for a total of 24
cycles. This neuron, like most complex cells, had nonzero spon-
taneous activity in the presence of the blank (zero contrast) and
responded to the passage of edges of both polarities with similar
bursts. (Each cycle of the drifting square wave introduces two
edges of opposite contrast, half a cycle apart.) The average
number of spikes in these bursts monotonically increased with
increasing contrast. There is a moderate phase advance, more
noticeable in the first response of each raster line, as contrast
increases. The usefulness of this form of temporal information
about the stimulus contrast is unclear, because of trial-to-trial
variability.

The DC component of the responses (for each contrast, the
average spike count divided by the stimulus period) was used to
construct the contrast–response function in Figure 2B. The error
bars (61 SD of the mean firing rate) indicate a considerable
cycle-by-cycle variability in the responses. This variability limits
the ability of the cell to discriminate contrast levels based on the
spike counts in its response.

To compare the usefulness of changes in spike counts and spike
timing, we used the cost-based metric approach described in
Materials and Methods. This procedure results in a function H(q)
that measures the extent to which changes in contrast result in

reproducible changes in firing pattern. When q 5 0, the assess-
ment of firing pattern ignores spike timing altogether and is
sensitive only to the number of spikes in each response. For q .
0, the assessment of firing pattern is sensitive to spike timing, with
a precision of 1/q.

Thus, in examining H(q), we focus on the temporal precision
qmax at which the level of contrast-dependent clustering is maxi-
mal, Hmax 5 H(qmax), and we compare Hmax with the level of
contrast-dependent clustering obtained by spike counts alone,
Hcount 5 H(0). The difference DH 5 Hmax 2 Hcount is a measure
of temporal coding in responses of a neuron. If spike timing does
not contribute to coding of contrast, then we would find that qmax

5 0 and DH 5 0. We emphasize that we are not so much
interested in the absolute transinformation values H, as in how
H(q) depends on temporal sensitivity (q), and in how the relative
temporal contributions compare across the two classes of stimuli.

For the edge responses of this cell, the calculated H(q) is shown
in Figure 2C by the thick line and the plus symbols. The cost
parameter q (seconds21) was sampled at 0, and from 1 to 512 in
14 logarithmic steps, with the extremes corresponding to equiv-
alent temporal precision of a second and two milliseconds, re-
spectively. As seen in Figure 2C, H(q) rises from a low value at
q 5 0 (Hcount 5 0.35) to a maximum (Hmax 5 0.83) at qmax 5 64
sec21, indicating that the level of clustering is maximal for a
temporal sensitivity of the underlying spike time metric of ;16
msec (1/q). H(q) takes a sharp downward turn for q . 100 sec21.
This cutoff at the high end indicates that paying attention to
details of spike timing on the order of #10 msec makes spike
trains elicited by the same stimulus seem too dissimilar in the
underlying metric to allow meaningful clustering.

The dashed line in Figure 2C indicates the estimate for the
level of chance clustering which, as previously reported (Victor
and Purpura, 1997), is relatively insensitive to q. Thus, the fea-
tures described above (the location of qmax and the large positive
DH 5 Hmax 2 Hcount ), remain after subtracting the correction for
chance clustering. We thus conclude that, for this response of this
neuron to edges, taking into consideration spike timing yields
much greater levels of stimulus-dependent clustering than would
be obtained by counting spikes alone. That is, stimulus contrast
may be determined from the responses with greater certainty if
the timing of spikes is not ignored. This finding is typical of the
complex cells in our sample.

The same analysis was also applied to the responses elicited
from this complex cell by the gratings, the steady-state stimuli
(Fig. 2D–F). This neuron, like most complex cells, responds to
gratings of optimal frequency with a rather unmodulated eleva-
tion of the spike rate. The response rasters (Fig. 2D) show a
relatively irregular distribution of spikes over the time course of
the stimulus and a considerable variation of their timing from
trial to trial. As in the edge responses, the contrast–response
function has a monotonic rise over most of the available contrast
range (Fig. 2E), with a large variance of spike counts, as indicated
by the error bars. The clustering analysis is shown in Figure 2F.
Unlike what was seen for edges, for gratings H(q) (thick line with
filled circles) is maximal at q 5 0 (Hcount 5 0.63). As q increases,
H(q) runs a rather flat course up to q ;50 sec21, after which there
is a sharp cutoff. The important difference between edge re-
sponses and grating responses in this neuron is that for drifting
grating responses, Hcount maximizes H(q). This indicates that
once spikes are counted, the temporal structure of the grating
responses provides no additional information concerning their
contrast.
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Given the mostly flat, irregular response time course with little
discernible systematic variation with increasing grating contrast
of the complex cell, this is perhaps not a surprising result, but it
is not merely confirmation of the intuition that there are no spikes
with precise timing buried in the raster. As we see below, the lack
of a temporal contribution to the level of contrast-dependent
clustering of grating responses was found in most of the neurons
in our sample, including simple cells that gave strongly modulated
responses to gratings.

Single unit example: simple cell
Figure 3 shows an analysis of edge responses (Fig. 3A–C) and
grating responses (Fig. 3D–F) for a typical simple cell, in the
same format as the analysis of complex cell responses in Figure 2.
For this cell, a nondirectional layer 6 neuron, the stimulus pa-
rameters were 0.3 cycle/°, 3 Hz (edge); 1.2 cycles/°, 5 Hz (grating).
For both gratings and edges, contrast sensitivity was typical for
our sample (threshold contrast was ;5%), and response was
monotonic up to 30–40% contrast. At higher contrasts, the con-
trast–response function saturated and perhaps even turned down
(Fig. 3B,E).

This neuron, like most simple cells, had no spontaneous activ-
ity in the presence of the blank (0% contrast in Fig. 3A,D). For
edges of increasing contrast, the response consisted of a burst of
spikes of increasing intensity up to a saturating level near 30%
contrast. Like most simple cells, it responded to the passage of an
edge of one polarity but not the other. That is, there is only one
response transient in the rasters (Fig. 3A), unlike the pair of
transients seen for responses of typical complex cells to the
drifting low-frequency square wave (Fig. 2A). There is also a
moderate phase advance in the responses with increasing con-
trast, as was seen in the responses to edges of the complex cell.
Because this shortening of latency (Gawne et al., 1996) occurs for
contrasts in which the spike count has saturated, it might be
especially useful in discriminating among the higher contrast
levels. However, given the trial-to-trial variability of the response
onset, the utility of latency in signaling contrast is unclear from
mere inspection of the rasters. The response magnitude is also
quite variable, as indicated by the error bars in Figure 3B.

The function H(q) is plotted in Figure 3C (thick lines with plus
symbols). H(q) has an initial jump from Hcount 5 0.61 (at q 5 0)
to a higher value at q 5 1 sec21, the lowest nonzero value of q
examined. The course of H(q) is a plateau over most of the
sampled range, with a suggestion of a maximum near q 5 50
sec21 (Hmax 5 0.82). H(q) declines sharply above q 5 250 sec21.
Subtracting the correction for the level of chance clustering
(dashed line) does not change these general features. That is, a
positive DH 5 Hmax 2 Hcount remains, indicating the presence of
temporal coding of contrast in the responses of a simple cell to
edges. As in this example, most other simple cells in our sample
also had evidence of a temporal contribution to coding edge
contrast, but the relative size of this contribution was usually
smaller than in complex cells.

Figure 3D–F shows the results obtained in this simple cell with
gratings. Unlike the complex cell of Figure 2, the response time
course is not uniform. As contrast increases, the rasters (Fig. 3D)
indicate increasingly compact responses, and there is the sugges-
tion of a burst structure at the highest contrasts. The contrast–
response function saturates at intermediate levels (Fig. 3E). Trial-
to-trial variability is large, both in terms of onset time (Fig. 3D)
and spike counts (Fig. 3E). Despite the similarity in the response
waveforms seen for this simple cell to both gratings and edges,
H(q) has a different shape. For gratings (Fig. 3F, filled circles and
thick line), H(q) is maximal at Hcount 5 H(0). That is, the changes
seen in the response time course with increasing contrast are not
reliable enough to add to the signaling of contrast. As in the case
of the complex cell of Figure 2, the details of the temporal
structure of spike trains do not add significantly to the contrast-
dependent segregation of clusters of responses to gratings.

Other examples
This difference in temporal contribution to contrast information
for edges and gratings was found in most of the neurons in our
sample. Figure 4, A and B, shows examples of this for two more
neurons. For each cell, the measure of stimulus-dependent clus-
tering, H(q), based on the circular spike time metrics, with the
level of chance clustering subtracted, is presented for edges ( plus
symbols) and gratings ( filled circles). Figure 4A shows results
from a layer 4Ca nondirectional complex cell. For edges, H(q) has
a maximum, Hmax 5 0.72, at qmax 5 22 sec21, yielding a large DH,
several times larger than Hcount 5 H(0). This is an example in
which the spike count severely underestimates the ability of the
neuron to signal contrast of edges. The position of qmax indicates
that the level of contrast-dependent clustering is optimal for a
temporal resolution of 45 msec; note that the period of the edge
was 2000 msec. For the response of the same cell to gratings, H(q)
is maximal at q 5 0 (Hcount 5 0.56, see arrowhead), indicating that
spike counts carry the maximum contrast information. The anal-
ysis for the simple cell in Figure 4B is a variation on this theme.
For this neuron, there is evidence for the presence of temporal
coding of contrast for both edges and gratings, but DH, the
maximum increase in H(q) over H(0) associated with temporal
coding, is larger for edges (0.28, 120% of Hcount ) than for gratings
(0.08, 14% of Hcount ). For both gratings and edges, Hmax values
are comparable in magnitude and occur at similar positions qmax

;20 sec21 (corresponding to ;50 msec precision). This neuron
had the largest DH among the simple cells in our sample.

The simple cell in Figure 4C is one of three neurons in our
sample that showed evidence for temporal coding for gratings but
not for edges. This simple cell had the largest DH (0.26, 300% of
Hcount ) for gratings among all the neurons in our sample, whereas
the other two neurons (a simple and a complex cell) both exhib-
ited very small DH for gratings. The peaks in the two clustering
curves in Figure 4C are comparable in height. The curve for the
edges is maximized by Hcount , whereas clustering for gratings

4

Figure 2. Analysis of temporal coding in contrast responses of a layer 6 nondirectional complex cell (mt926). A, Cycle-by-cycle raster plots of responses
to edges (0.2 cycle/°, 1 Hz, 24 cycles at each contrast) at the seven different contrasts indicated on the right. Only a subset of the blank runs are shown.
B, Semilogarithmic plot of the contrast–response function for edges based on the DC component of responses. Error bars are 61 SD. C, Level of
contrast-dependent clustering (uncorrected for chance clustering), H(q), for edge responses (thick line with plus symbols), and the estimated level of
chance clustering (dashed line) for the metrics D spike,circ[q], as a function of the cost parameter (q). For the estimate of the level of chance clustering,
10 random reassignments were used, and the SE values of these estimates are indicated by the shaded region. D, Cycle-by-cycle raster plots of responses
of the same complex cell to gratings (1.6 cycle/°, 5 Hz, 40 cycles at each contrast) at seven different contrasts. Only a subset of the blank runs are shown.
E, Contrast–response function for gratings, based on the DC component of responses. F, H(q) for the grating responses, plotted as in C.
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reaches its peak near q 5 100 sec21 (equivalent to a temporal
resolution of 10 msec).

Analysis across cells
In most neurons, evidence for temporal coding of contrast was
stronger for edges than for gratings. To quantify this difference
across the population of the 22 V1 neurons in this study, we
plotted (Fig. 5) the level of contrast-dependent clustering ob-
tained with spike count alone (Hcount ) on the horizontal axis
against the maximum level (Hmax) on the vertical axis. The
estimate of the level of chance clustering was subtracted from
each value. In this plot, each neuron is plotted twice, with plus
symbols for edges and with filled circles for gratings. If the
stimulus dependency of clustering is most reliable at q 5 0, then
Hmax 5 Hcount , and the corresponding symbol falls on the identity
line (diagonal). This indicates the absence of a detectable tem-
poral contribution to the coding of contrast. If, however, stimulus-
dependent clustering was most reliable at q . 0, then Hmax .
Hcount , and the symbol falls above the identity line. This indicates
a temporal contribution to the coding of contrast. Most of the
points corresponding to gratings fell on or near the diagonal, and
the largest vertical displacements from the diagonal are seen for
edges.

Table 1 summarizes the average level of contrast-dependent
clustering based on spike counts (Hcount ), the average peak level
of clustering (Hmax) obtained with the metrics D spike,circ[q], the
average relative contribution at the peak level from temporal
coding (DH/Hcount ), and the number of cells with significantly
positive DH. These averages are given for edges and gratings and
for simple and complex cells. The level of chance clustering is
subtracted in all cases. For most neurons, the stimulus depen-
dency of clustering of responses to edges became more reliable
when the underlying metric was sensitive to the temporal details
of the spike trains. The average size of the increase was 47% of
the average Hcount (60% in complex cells, 33% in simple cells;
two-sample t test, significant difference at p , 0.05). However, for
gratings, the spike count metric usually provided the most reliable
stimulus-dependent clustering. Only a minority of neurons
showed evidence for a temporal contribution to the coding of

grating contrast, and the size of this improvement was small (7%
on average over spike counts).

The average contrast-dependent clustering estimated as the
population mean 6 1 SD of Hmax , was 0.60 6 0.26 for gratings
and 0.56 6 0.23 for edges (n 5 22), not significantly different
(paired t test, p . 0.14). This difference across stimulus types
tended to be larger for simple cells than for complex cells, but was
not statistically significant in either case. In keeping with the
above difference in temporal contributions for gratings and edges,
there was a significantly greater ( p , 0.01) level of clustering via
spike counts alone for gratings (0.57 6 0.27) than for edges
(0.38 6 0.23).

Figure 5 and Table 1 provide an estimate of the contribution of
temporal coding for gratings and edges but do not allow the
comparison within cells. Figure 6 shows the contribution of tem-
poral structure to the peak levels of clustering of responses to
gratings (DHG) and edges (DHE) for each neuron. Open symbols
represent simple cells, and filled symbols represent complex cells.
For most of the neurons the measured contribution of temporal
structure to contrast-dependent clustering was greater for edges
than for gratings. Nine neurons exhibited a positive contribution
exclusively for edges, but only three neurons (two simple and one
complex cell) showed temporal contribution exclusively for grat-
ings, and in only one of these three (Fig. 4C) was the contribution
large. Four neurons had no significant temporal contribution to
the level of contrast-dependent clustering for either stimulus
class. Figure 6 sums up, in essence, the major finding of this study.

We characterized the resolution of the temporal structure that
contributes to the level of stimulus-dependent clustering via the
cost parameter that maximizes H(q), qmax. The distribution of
qmax is shown in Figure 7A. Each of the 22 neurons yielded two
values of qmax: one derived from the edge responses, and one
from the grating responses. Two-thirds of the data sets exhibited
temporal coding (Hmax . Hcount , qmax . 0). For these, the
distribution of qmax is wide, sampling a range of equivalent
temporal resolution (1/qmax) from 10 msec to 1 sec. The geomet-
ric mean of qmax was 17 sec21 overall (18 sec21 for edges and 16
sec21 for gratings; not significantly different, p . 0.7), indicating,

4

Figure 3. Analysis of temporal coding in contrast responses of a layer 6 nondirectional simple cell (mt928). Data are plotted as in Figure 2. A–C, Edge
responses (0.3 cycle/°, 3 Hz, 24 cycles at each contrast). D–F, Grating responses (1.2 cycle/°, 5 Hz, 40 cycles at each contrast). A, D, Cycle-by-cycle rasters
of spikes. Only a subset of the blank runs are shown. B, E, Contrast–response function. C, F, H(q) (uncorrected, thick lines with symbols; correction for
the level of chance clustering, dashed line; SE values of the correction estimates, shaded region).

Table 1. Summary of the population averages of measures of contrast-dependent clustering

Type of data
set and units

No. of
units

No. of units:
Hmax . Hcount DH/Hcount Hcount

Hmax

Dspike,circ F all F even F odd

Edge
All 22 15 0.47 0.38 6 0.26 0.56 6 0.23 0.56 6 0.25 0.55 6 0.27 0.48 6 0.22
S 11 6 0.33 0.36 6 0.27 0.48 6 0.19 0.45 6 0.21 0.45 6 0.21 0.45 6 0.22
Cx 11 9 0.60 0.40 6 0.27 0.64 6 0.24 0.66 6 0.26 0.66 6 0.29 0.50 6 0.23

Grating
All 22 9 0.07 0.57 6 0.27 0.60 6 0.26 0.60 6 0.26 0.59 6 0.27 0.60 6 0.26
S 11 5 0.08 0.53 6 0.27 0.58 6 0.24 0.57 6 0.23 0.55 6 0.25 0.58 6 0.23
Cx 11 4 0.05 0.60 6 0.28 0.63 6 0.30 0.62 6 0.30 0.62 6 0.29 0.62 6 0.30

DH 5 Hmax 2 Hcount, the contribution by temporal structure, obtained with the metrics Dspike,circ[q], is averaged across cells before taking the ratio (DH/Hcount). Hmax, the
average maximal level of clustering, is listed for the metrics Dspike,circ[q] and three families of metrics based on cumulative use of Fourier components: F all, F even, and F odd.
The level of chance clustering is subtracted in all cases.
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on average, a temporal resolution for contrast of ;60 msec.
Although overall temporal resolution was not significantly differ-
ent in simple and complex cells, we found a significantly finer
temporal resolution for edges in complex cells (29 sec21) than in
simple cells (10 sec21; p , 0.02). Within complex cells, temporal

resolution for edges was significantly higher than for gratings (11
sec21, p , 0.01).

The relative contribution (;50% of the average Hcount ) of
temporal structure to Hmax of edge responses is comparable to
what we found for contrast responses of V1 neurons to stationary
gratings flashed for 256 msec in the anesthetized macaque [con-
trast data of Victor and Purpura (1998) pooled across spatial
phase]. In that study, which included responses to gratings of
nonoptimal spatial frequency and orientation, population aver-
ages (after correction for the level of chance clustering) were
Hcount 5 0.044, Hmax 5 0.068, DH 5 54% of Hcount , with a
positive DH in 28 of 32 data sets. A data set comprising 15
contrast–response functions of V1 neurons of the awake behaving
macaque (Victor and Purpura, 1996; reanalyzed) yielded some-
what larger values for these average quantities and for the relative
contribution of temporal structure: Hcount 5 0.10; Hmax 5 0.31;
DH 5 210% of Hcount. In 12 of 15 data sets there was a positive
DH. The stimulus conditions in the latter study were the same as
those of Victor and Purpura (1998).

The geometric mean value of qmax obtained in the present
study (17 sec21) agrees well with values found for contrast coding
of flashed stimuli in V1 of awake [21 sec21; Victor and Purpura
(1996), their Fig. 6A] and anesthetized macaques [18 sec21;
contrast data of Victor and Purpura (1998), pooled across spatial
phase].

Results of the present study and the previous two cited above
indicate that the stimulus-dependent temporal contribution to
contrast coding is too large (;50% or more) to be overlooked in
evaluating the function of a neuron. Comparable contributions of
temporal structure were also found for stimulus modalities other
than contrast, such as spatial frequency and orientation, both in

Figure 4. Comparison of the level of contrast-dependent clustering, H(q),
for edges ( plus symbols), and gratings ( filled circles), for three V1 neurons.
H(q) is determined for the metrics D spike,circ[q], and the level of chance
clustering has been subtracted. An arrowhead points to the maximum of
each H(q) curve. A and B are typical examples, C is an exceptional cell for
which temporal structure contributes more strongly to the maximum of
H(q) for responses to gratings than to edges. A, Layer 4Ca nondirectional
complex cell (mt918). Edges, 0.3 cycles/°, 0.5 Hz, 12 cycles at each contrast;
gratings, 4 cycles/°, 6 Hz, 48 cycles at each contrast. B, Layer 4Ca nondi-
rectional simple cell (mt838). Edges, 0.2 cycle/°, 3 Hz, 24 cycles at each
contrast; gratings, 0.6 cycle/°, 5 Hz, 80 cycles at each contrast. C, Layer 4B
nonoriented simple cell (mt942). Edges, 0.15 cycle/°, 3 Hz, 24 cycles at each
contrast; gratings, 0.5 cycle/°, 10 Hz, 80 cycles at each contrast.

Figure 5. Comparison of the levels of contrast-dependent clustering
obtained with spike counts and spike time metrics in 22 V1 neurons.
Hcount , the level achieved with D count 5 D spike,circ[0], is plotted against
Hmax , the level achieved with the optimal spike time metric D spike,circ[qmax].
Each neuron is represented by two data points: one for edges ( plus
symbols) and one for gratings ( filled circles). Symbols lying above the
diagonal Hcount 5 Hmax indicate a contribution of the temporal pattern of
spikes to coding of contrast.
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the awake study of V1 and V2 neurons (Victor and Purpura, 1996)
and in the study in anesthetized macaques (Victor and Purpura,
1998). The implication is that classical tuning curves based on the
average firing rates can seriously underestimate the potential for
visual neurons to signal characteristics of the stimulus. Such
estimates critically influence our understanding of the neural
mechanisms underlying behavior. For example, underestimating
dynamic range in V1 neurons would result in overestimating the
minimum size of the neuronal population over which pooling of
signals is necessary to explain behaviorally measured contrast
discrimination.

Cluster analysis based on Fourier components
The above results demonstrate that within the same neuron,
temporal coding (i.e., a systematic dependence of the temporal
structure of the response on a nontemporal aspect of the stimu-
lus) is prominent for one class of stimuli (drifting edges) and
much less important for another (drifting gratings). It is conceiv-
able, however, that the identification of temporal coding is in
some way related to the unconventional analysis technique, i.e., a
metric-space embedding in which any possible additive structure
is simply ignored.

For these reasons, we also analyzed our data in a manner based
on Fourier components of the response. As will be seen below,
Fourier components can be used to define several sequences of
metrics, each of which forms the basis for a clustering calculation.
In contrast to the spike time metrics, the Fourier metrics are also
Euclidean distances that respect the additive and Euclidean struc-
ture of a vector space of responses. Thus, we will be able to
determine whether the above results depend on the use of a
nonEuclidean distance. On the other hand, if temporal coding is
robust, it should be manifest in the analysis based on Fourier
metrics as well.

Because the Fourier metrics and the spike time metrics look at
the same signals (the former in the frequency domain and the
latter in the time domain), intuition suggests that the results
obtained by the two approaches should closely correspond. How-
ever, this correspondence is not guaranteed because the algo-
rithms involved in the Fourier approach are not simply trans-
forms of algorithms used in the spike time analysis. Thus, a
secondary motivation for the Fourier-based analysis is to deter-
mine whether the temporal coding we have identified in the time

Figure 6. Comparison of the temporal contribution to the maximum
level of contrast-dependent clustering in the responses of 22 V1 neurons
to gratings (DHG 5 Hmax, Grating 2 Hcount, Grating) versus edges (DHE 5
Hmax, Edge 2 Hcount, Edge). Neurons for which temporal pattern contributes
to contrast-dependent responses for edges but not gratings occupy the top
lef t region along the DHE axis in the scatter plot. Neurons with the
opposite behavior are represented by symbols scattered near the DHG
axis. As the scatter shows, most V1 neurons belong to the first group.
Simple cells are represented with open symbols, complex cells with filled
symbols.

Figure 7. A, Distribution of the cost parameter (qmax , plotted logarithmi-
cally except for qmax 5 0) that maximizes H(q) based on D spike,circ[qmax].
Each of the 22 neurons is represented by two values, one for edges and
one for gratings. The geometric mean of the nonzero values of qmax was
17 sec 21, indicating an average temporal resolution of 60 msec for the
optimal spike time metric in those neurons in which temporal pattern
contributed to stimulus-dependent clustering. The dark portion of the
histogram is the distribution of complex cells. B, Distribution of the
temporal frequency (tfmax 5 nmaxv) of the highest Fourier harmonic that
was needed to maximize H(nv) based on the metric family F all (Fig. 8).
The geometric mean of the nonzero values of tfmax was 9.6 Hz. Distribu-
tion of complex cells is indicated by the dark portion as in A.
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domain corresponds to specific harmonics or specific frequency
ranges within the response.

The first step in construction of the Fourier-based metrics is
cycle-by-cycle Fourier analysis of the responses of a neuron to
each trial of a particular stimulus at integer multiples of the
fundamental stimulus frequency. A set of estimates of k Fourier
components of a response can be considered to be a set of 2k real
numbers, representing the cosine and sine components at each of
the k harmonics. These 2k-tuples are points in a 2k-dimensional
vector space, and as such, are associated with a natural distance:
the Pythagorean rule. This distance is Euclidean, but it depends
on the number of harmonics (k), and on which k harmonics are
chosen. Once these distances were calculated, we used the same
clustering algorithm and measure of stimulus-dependent cluster-
ing (H) that we used for the spike time metrics, thereby allowing
for a direct comparison of results obtained using the different
kinds of metrics.

We considered four families of Fourier metrics, all parametric
in a single frequency parameter, the highest (nth) response har-
monic included in the analysis. These families are (1) F single[n],
which includes only the single nth harmonic; (2) Fall[n], which
includes all harmonics up to the nth harmonic; (3) Feven[n], which
includes all even harmonics up to the nth harmonic, including the
DC component; and (4) Fodd[n], which includes all odd harmonics
up to the nth harmonic and the DC component as well. Analysis
based on the family F single[n] quantifies the relative importance of
single response harmonics in temporal coding of contrast. For n 5
0, 1, and 2, it considers only the DC, first, and second harmonics
of the response, which are commonly used to describe responses
of V1 neurons to periodic visual stimulation. The other three
families (Fall[n], F even[n], and Fodd[n]) provide a fuller charac-
terization of the spike responses than single harmonics. For
example, typical complex cell responses to drifting edges are
double-peaked, but not necessarily sinusoidal, a feature that mo-
tivates F even[n]. On the other hand, typical simple cell responses
to both gratings and edges are approximately half-wave rectified,
indicating the presence of a mixture of at least one significant odd
harmonic (the first) and perhaps several significant higher even
harmonics. In both cases, analysis based on these metrics will
indicate the extent to which the distinct harmonics have the
potential to provide independent information concerning
contrast.

For each metric, the highest temporal frequency considered is
equal to nv, where v is the temporal frequency of the stimulus.
This combination plays a role that is similar to the role of the cost
parameter q in the analysis based on spike time metrics. Both
parameters have dimensions of reciprocal time (sec21) and both
specify, in the inverse sense, a temporal scale above which details
of the temporal structure in spike trains affect the calculated
distance between them. We therefore analyze the level of
stimulus-dependent clustering H as a function of the frequency of
the nth harmonic, and we will display the results as a function of
nv. The main quantities of interest will be the relative contribu-
tion of temporal pattern to the maximum level of clustering, as
quantified by DH 5 Hmax 2 Hcount , as well as the temporal
frequency at which maximum is obtained. (Note that for all four
families, n 5 0 considers only the DC response and is thus
identical to the spike count metric.)

Single-unit examples
The two illustrated cells (Fig. 8), one complex (top panels) and
one simple (bottom panels), are typical and illustrate the main

points of the Fourier-based cluster analysis. For each cell, data
obtained with gratings are shown in the left panels, and data
obtained with edges are shown in the right panels. The five curves
in each panel indicate the level of stimulus-dependent clustering
H(q) obtained with the family of D spike,circ[q] of spike time
metrics (thick solid line), and H(nv) obtained with the four
families of Fourier-based metrics (dotted line for F single[n]; thin
lines with asterisks for Fall[n]; thin lines with plus symbols for
Feven[n]; and thin lines with open circles for Fodd[n]). For the
Fourier metrics, H is plotted as a function of nv, where v is the
temporal frequency of the stimulus (in Hertz) and n is the highest
harmonic of this frequency used in the metric. For all curves, the
estimated level of chance clustering has been subtracted.

All curves share the same value of H(0) because this is the
measure of contrast-dependent clustering based on spike counts
only. In each panel, H(nv) obtained with one or more of F all,
F even, and Fodd run a course similar to that of the H(q) curve.
However, H(nv) based on F single always has a very different
course; it decreases after the first few harmonics but then main-
tains a relatively constant low level thereafter, often crossing the
other curves after they decline at high frequencies. The H curves
based on the metric family F single exhibit low levels of information
content and more variation than those based on cumulative use of
Fourier harmonics because of the low signal-to-noise in single
harmonic components at intermediate-to-high temporal
frequencies.

The peak of the H(nv) curve based on F single was always at one
of the first three (n 5 0, 1, or 2) harmonics. Except for data sets
in which there was no evidence of temporal coding (i.e., those in
which maximal level of clustering occurred for the spike count
metric), this peak was not as high as the peaks attained by one or
more of the other Fourier metric series or by the series of spike
time metrics. Thus, using a single response harmonic results in
underestimation of temporal coding, even if much of the signal in
the response power is at one or only a few frequencies. In other
words, distinct Fourier components of the response are not re-
dundant and contain at least partially independent contrast
information.

The other common feature of the data is that at very high
frequencies and values of q, H(nv) based on F single exceeds H(nv)
based on the other metrics. Most likely, this is because at high
frequencies, all response amplitudes are very small, but there is
likely a persistent small stimulus-related signal carried in the
phase. The lack of a sharp decline in H(nv) calculated with F single

is consistent with this notion because phase differences tend to
scale in proportion to frequency. On the other hand, the high-
frequency cutoff in H(nv) obtained with metrics that use harmon-
ics in a cumulative manner indicates that the stimulus-related
signals across high-frequency harmonics are redundant and that
their cumulative use mostly accumulates noise. Thus, the curves
of H(nv) based on Fall, Feven, and F odd decline rapidly at high
frequencies and cross the curve of H(nv) based on F single.

The three metric families that make cumulative use of the
Fourier harmonics show differences in the H(nv) function for the
edge data that shed new light on the known properties of simple
and complex cells. For the complex cell, Feven shows evidence of
temporal coding to an extent comparable to D spike,circ, but the
persistent low values of H(nv) for F odd indicate that the odd
harmonics have no consistent stimulus-dependent behavior (Fig.
8B). For the simple cell (Fig. 8D), the reverse is seen: Fodd and
D spike,circ give rise to comparable values of H(nv), but F even gives
rise to smaller values of H(nv). The result for complex cells is
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Figure 8. Comparison of H(nv) based on four families of Fourier metrics (F single, thin dotted lines; F all, thin line with asterisk; F even, thin lines with plus
symbols; F odd, thin lines with open circles), and H(q) based on spike time metrics (thick line with no symbols) in two typical V1 neurons. A, B, Analysis
of grating (A) and edge (B) responses of a layer 4Ca complex cell (mt918, stimulus conditions as in Fig. 4A). C, D, Analysis of grating (C) and edge
(D) responses of a layer 6 simple cell (mt829; edges, 0.36 cycle/°, 1.25 Hz, 15 cycles at each contrast; gratings, 6.1 cycles/°, 4 Hz, 32 cycles at each contrast).
For each data set, the five H curves are shown on comparable abscissae; for the Fourier metrics, as a function of the frequency (in Hertz) of the highest
harmonic used, for the spike time metrics, as a function of the cost parameter q (sec 21).
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expected because it responds almost equally well to passes of both
polarities of an edge, so its response is concentrated in the even
harmonics. This also explains the strong magnitude alternation
between odd and even harmonics up to the eighth harmonic seen
in the H curve based on F single (Fig. 8B). For the simple cell, it is
not surprising that the odd harmonics contribute to signaling.
However, two points are unexpected: for both kinds of cells,
different low-harmonic components are nonredundant (i.e., com-
bining multiple components leads to a greater level of stimulus-
dependent clustering than any single frequency alone), and for
simple cells, even-harmonic components do not provide any in-
dependent temporal information.

In the grating data (Fig. 8A,C), analysis based on Fourier
components confirms what was found with spike time metrics: the
DC component (or spike count) gives rise to similar or higher
values of H to those obtained with metrics that, in using the
higher harmonics, exploit temporal structure. For the complex
cell (Fig. 8A) neither H(q) nor any of the Fourier metrics showed
evidence for temporal coding. The sharp drop in F single for all
nonzero frequencies is not surprising, because a typical complex
cell responds to a drifting sinusoidal grating near its spatial
frequency optimum primarily by elevating its spike rate (Movs-
hon et al., 1978a; Skottun et al., 1991).

For the simple cell (Fig. 8C), the first harmonic alone leads to
a greater level of stimulus-dependent clustering than the DC
component, as seen in the initial two values of H(nv), obtained
with F single (dotted line in bottom lef t). Significant levels of
stimulus-dependent clustering based on the first harmonic is
expected because a typical grating response of a simple cell
typically resembles a half-wave rectified sinusoid, which is dom-
inated by a DC component and its first harmonic. A metric that
uses the DC and the first harmonic component together (Fodd for
n 5 1, plotted at 4 Hz) leads to the maximal level of H(nv) within
Fodd and also across the other Fourier metrics. However, the
difference between the maximum in H(nv) and Hcount is slight,
indicating little temporal coding.

Analysis across cells
To make an overall comparison between the time-domain
analysis and the Fourier metrics, we compared H(q) based on
D spike,circ with H(nv) based on F all. As seen in Table 1, the extent
of the contribution of temporal structure was comparable for both
stimulus classes and both cell types. Across the sample of complex
cells, Hmax based on Fall and Feven were similar and, for edges,
greater than the maximum levels of contrast-dependent cluster-
ing based on F odd, as in the example of Figure 8B. Across the
sample of simple cells, Hmax based on Fall, Feven, and Fodd were
similar.

To correlate the estimates of the temporal resolution, we com-
pared qmax as determined from H(q), based on D spike,circ, with the
frequency tfmax for which H(nv), based on Fall, achieves maxi-
mum (Fig. 7B). (tfmax 5 nmaxv, where nmax is the harmonic for
which Fall[n] achieves maximal clustering, and v is the funda-
mental temporal frequency of the stimulus.) The geometric mean
of tfmax is very nearly half of the geometric mean of qmax. This
twofold difference was seen within individual neurons, too (Fig.
8). This factor of two likely reflects a difference in the way that the
quantities q and nv enter into their respective metrics; shifting a
spike by an amount 1/q is equivalent to removing it altogether, but
shifting it by only 1/(2nv) (half of the period 1/nv) results in a
maximal change in the nth Fourier component. Another way of
looking at this is that the minimum temporal interval required to

sample a single frequency is half of its period (i.e., the Nyquist
limit).

The following features of the Fourier-based analysis of tempo-
ral coding were found in all cells of our sample. Evidence for
temporal coding (i.e., DH . 0) was found for the Fourier-based
metrics when and only when it was found with the spike time
metrics. Moreover, provided that the appropriate family of Fou-
rier metrics was used (i.e., edge responses for complex cells,
assessed with Feven, and for simple cells, assessed with F odd),
Hmax was within 10% of the maximum of H(q) determined from
the spike time metrics D spike,circ[q]. The temporal frequency at
which H(nv) had its maximum Hmax was correlated well with
1/qmax (r 5 0.82; p , 0.01), and the shapes of H(nv) and H(q)
were similar, up to the factor of two translation discussed above.

DISCUSSION
We use the term temporal coding to indicate the presence of
reproducible stimulus-dependent changes in the temporal struc-
ture of a spike train. This work focuses on the identification and
characterization of such changes. The rate coding versus tempo-
ral coding distinction is not a dichotomy; rather, it is a matter of
identifying the time scale over which instantaneous firing proba-
bility depends systematically on the stimulus. If this interval is
short, then the detailed temporal pattern contains information
about the stimulus. If this interval is long (i.e., comparable to the
entire response duration), then the temporal code effectively
reduces to a rate code. The idealized properties of neurons (i.e.,
linearity of spatial and/or temporal summation) provide mecha-
nisms for rate coding. Well documented and prominent devia-
tions from these ideal behaviors (i.e., thresholds and time- and
voltage-dependent conductances, among others) provide mecha-
nisms for temporal coding.

Despite the potential advantages and plausibility of temporal
coding (see introductory remarks), the extent to which the brain
actually makes use of it is unclear. In other sensory systems, in
audition (Abeles and Gerstein, 1988; Middlebrooks et al., 1994)
and in olfaction (Laurent et al., 1996; Wehr and Laurent, 1996),
temporal pattern can convey information that firing rate over-
looks. A direct demonstration that temporal coding is used is very
difficult: it would require experimental manipulation of the de-
tailed structure of spike trains without changing their mean rate
and observation of the presence (or absence) of a behavioral
change. The technical difficulties of such an experiment are com-
pounded by the fact that temporal coding and rate coding are not
mutually exclusive; indeed, stimulus-dependent changes in tem-
poral structure typically occur along with stimulus-dependent
changes in firing rate (Victor and Purpura, 1996). Thus, changes
in temporal structure (e.g., synchrony) might contribute to the
behavioral changes that are observed when rate is manipulated
(Salzman and Newsome, 1994). Furthermore, physiological
changes in temporal structure might be coupled to changes in
mean rate, thus precluding a direct experimental dissection.

Several studies (Purpura et al., 1993; Victor and Purpura, 1996;
Richmond et al., 1997; K. Purpura and L. M. Optican, unpub-
lished observations) have provided evidence for temporal coding
of contrast in neurons of the macaque visual cortex. In these
studies, transiently presented static stimuli (textures or gratings)
were used. Because drifting sinusoids are commonly used in
vision research, but responses are not analyzed for temporal
coding, it is unclear whether the transient nature of the stimulus
is essential for temporal coding, or, alternatively, whether appar-
ent “temporal coding” is merely an artifact of complex analytic
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techniques. We resolve this question by comparing, within the
same V1 neurons, responses to transient stimuli (drifting square
waves of low spatial frequency, called edges) and steady-state
stimuli (optimal drifting sinusoidal gratings).

It appears that temporal coding is present under circumstances
in which the dynamic contrast gain control mechanism (Albrecht
and Geisler, 1991; Bonds, 1991; Heeger, 1992; Victor et al., 1997)
is active. This mechanism (which could be viewed as short-term
contrast adaptation) is a prominent nonlinearity in V1 that acts
on the order of #1 sec. The area over which the contrast signal is
pooled by the gain control is local, comparable to a receptive field
size (DeAngelis et al., 1992). For edges and flashed stimuli, the
contrast signal changes rapidly and provides a dynamic input to
the nonlinearities of the contrast gain control. For gratings, how-
ever, the contrast signal is constant and does not engage the
nonlinearities of the gain control. Contrast-reversed standing
gratings may represent intermediate stimuli in that the temporal
modulation function determines whether there is an abrupt
change in contrast adaptation level.

We show here that drifting edges generate responses in which
the temporal pattern of spikes robustly contributes to the signal-
ing of contrast, especially for complex cells. Responses to drifting
gratings, even if phasic, show almost no evidence of temporal
coding. These results were obtained by two types of analysis: a
time-domain approach that used non-Euclidean spike time met-
rics, and a frequency-domain approach that used a vector space
(Euclidean) metric. Thus, temporal coding is not an artifact of the
particular choice of the analytic approach but is rather associated
with the nature of the stimulus.

Our results provide evidence for robust temporal coding of
contrast information in V1 responses for transients. The temporal
contribution to contrast coding is too large to be overlooked in
evaluating the function of a neuron. Underestimating the dy-
namic range in V1 neurons (by reliance on spike counts alone)
might result in overestimating the minimum size of the neuronal
population necessary to explain behavioral contrast discrimina-
tion (Parker and Newsome, 1998).

Regardless of the method of analysis, the temporal resolution
of the code for contrast transients was found to be, on average,
;50 msec, with a range of 10–100 msec, in agreement with earlier
estimates in V1. It has been argued that the latency of V1
neuronal responses, which can change by as much as 50 msec
across contrasts, is important for coding of contrast (Gawne et al.,
1996). Given our precision estimate, response latency (or phase at
any single frequency) is not the only form of the available tem-
poral information. The typical response of a V1 neuron to a
drifting edge contains several (up to a dozen or more) response
harmonics. For most neurons, combining phases and amplitudes
at several harmonics, up to a certain frequency, increases the
ability of the neuron to discriminate contrasts.

One of the most enduring issues in the physiology of vision is
the function of V1 neurons classified as simple and complex.
Simple cells have long been viewed (Hubel and Wiesel, 1962,
1968) as excellent candidates for edge or feature detection,
whereas complex cells have been considered to be better suited
for Fourier-based texture analysis (Albrecht et al., 1980; De
Valois and De Valois, 1980; De Valois et al., 1982, 1985). Our
work shows that complex cells are as well equipped as simple cells
to distinguish edges on the basis of contrast, provided that the
temporal structure of the response is considered. (This does not
necessarily imply that complex cells signal the contrast polarity,

position, or time of passage of an edge more precisely than simple
cells).

In natural viewing, the world is presented to our visual system
in a succession of transients because of moving object boundaries
and also because of saccadic eye movements (Viviani, 1990).
Transients and object boundaries are salient natural features that
effectively direct attention and trigger saccades (Yantis and
Jonides, 1996). The neuronal mechanism involved in attention
grabbing must be fast, efficient, and reliable. In the V1 neurons of
this study, consistent with other studies (Gawne et al., 1996),
higher-contrast transients triggered quicker and brisker onset
signals that were often burst-like. Several lines of evidence indi-
cate that bursts are more reliably transmitted across central syn-
apses than single spikes (Lisman, 1997). Thus bursts may provide
the substrate for such fast, efficient, and reliable low-level neural
mechanisms that must underlie the effectiveness of transient
stimuli at orienting attention.

It is worthwhile to consider how the appearance of temporal
coding might be associated with stimulus transience. At the time
of a transient visual input (either attributable to a saccadic eye
movement or to a transient visual stimulus), many neurons fire a
burst of spikes. This burst, although perhaps not specific to the
visual stimulus, nevertheless provides a reset or reference point in
time, thereby enhancing the informative value of the timing of
later spikes (Victor and Purpura, 1996). With the exception of an
ideal Poisson process, the information in the timing of a single
spike increases if there is knowledge of the time of the preceding
spike. The integrate-and-fire neuron (Knight, 1972) provides an
example: the interspike interval precisely indicates the mean level
of the stimulus over this interval. A more elaborate example of
this idea is contained in a model recently proposed (Hopfield,
1995) in which delay times represent sensory quantities. The
cortex has neural mechanisms that may exploit the resetting effect
of a stimulus transient. These mechanisms include not only sen-
sitivity to coincidences but also long inhibitory time constants
that could extend the time over which a subpopulation of neurons
remains reset by the stimulus (Buzsaki and Chrobak, 1995; Doug-
las et al., 1995).
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