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We  present  a method  for  power  spectral  estimation  based  on  robust  statistics.
Compared  to standard  methods,  the  new  approach  is  resistant  to  transient  artifacts.
Confidence  intervals  estimated  in  a Bayesian  fashion  have  appropriate  coverage.
The  approach  is computationally  efficient.
Software  is  provided  in the form  of  a MATLAB  toolbox.
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a  b  s  t  r  a  c  t

Background:  Typical  electroencephalogram  (EEG)  recordings  often  contain  substantial  artifact.  These  arti-
facts, often  large  and  intermittent,  can  interfere  with  quantification  of the  EEG  via its  power  spectrum.
To  reduce  the  impact  of  artifact,  EEG  records  are typically  cleaned  by  a preprocessing  stage  that  removes
individual  segments  or components  of the  recording.  However,  such  preprocessing  can  introduce  bias,
discard  available  signal,  and  be labor-intensive.  With  this  motivation,  we  present  a  method  that  uses
robust  statistics  to reduce  dependence  on preprocessing  by  minimizing  the  effect  of large  intermittent
outliers  on  the  spectral  estimates.
New  method:  Using  the  multitaper  method  (Thomson,  1982)  as  a starting  point,  we  replaced  the  final  step
of  the  standard  power  spectrum  calculation  with  a quantile-based  estimator,  and the  Jackknife  approach
to confidence  intervals  with  a Bayesian  approach.  The  method  is  implemented  in provided  MATLAB
modules,  which  extend  the  widely  used  Chronux  toolbox.
Results:  Using  both  simulated  and  human  data,  we show  that  in  the  presence  of  large  intermittent  outliers,
the  robust  method  produces  improved  estimates  of  the  power  spectrum,  and  that  the  Bayesian  confidence
intervals  yield  close-to-veridical  coverage  factors.

Comparison to existing  method:  The  robust  method,  as compared  to the  standard  method,  is  less affected
by  artifact:  inclusion  of  outliers  produces  fewer  changes  in the  shape  of  the power  spectrum  as  well as
in  the  coverage  factor.
Conclusion: In  the  presence  of  large  intermittent  outliers,  the  robust  method  can  reduce  dependence  on
data  preprocessing  as compared  to standard  methods  of  spectral  estimation.

© 2016  Elsevier  B.V.  All  rights  reserved.
Abbreviations: EEG, electroencephalogram; PDF, probability density function;
DF, cumulative density function.
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1. Introduction

Electroencephalography (EEG), a technique for recording the
electrical activity of the brain via surface electrodes, is a com-
monly used assay of brain activity in research and clinical settings.
Well-recognized advantages of the EEG include its high temporal

resolution, noninvasive nature, and ease of use (Bunge and Kahn,
2009). However, it is also highly sensitive to electrical activity from
non-neural sources, such as eye movements (Gasser et al., 1992),
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uscle activity (Whitham et al., 2007), electrode movement, and
lectric fields from the environment (Tatum et al., 2011). These
ources generate signals that corrupt the underlying neural signal,
nd are difficult, if not impossible, to avoid.

For many research applications, and increasingly for clinical
pplications (Schiff et al., 2014), spectral measures are used to ana-
yze EEG characteristics (Mitra and Pesaran, 1999). Since activity in
pecific frequency bands often has direct biological interpretations
Penfield and Jasper, 1954), the power spectrum is of particular
nterest. However, since the raw EEG signal is contaminated by non-
eural sources, obtaining reliable estimates of the power spectrum
hat reflect underlying brain activity is not straightforward.

Computation of the power spectrum typically involves seg-
enting the continuous signal, applying Fourier analysis to each

egment, and calculating the mean over segments of the power
t each frequency. The data segments, typically of duration 1 s or
ore, may  be determined arbitrarily (e.g., for records of sponta-

eous EEG), or based on events in a behavioral paradigm (e.g.,
or event-related potential studies). Fourier components arising
rom segments contaminated by typical artifacts (e.g., muscle and
ye movements) are typically large relative to those of segments
hat only contain the neural signal, and therefore bias the mean
pwards. This problem is usually addressed by removing these
rtifacts, by a combination of manual identification of artifact-
ontaining segments and automated means, such as independent
omponent analysis (ICA) (Makeig et al., 1996); however this can
e labor- and time-intensive, subjective, and can discard portions
f usable data.

Here we describe an alternative approach to this outlier prob-
em, via the use of robust statistics. Specifically, we  focus on the

edian and other quantile-based statistics. Via simulations and
pplication to real EEG data, we show that this approach can recover
he power spectrum of the underlying signal even in the presence
f substantial artifact. Finally, we provide code that extends the
hronux (Bokil et al., 2010; Mitra and Bokil, 2008), toolbox to carry
ut these computations, including the calculation of Bayesian con-
dence intervals.

. Methods

.1. Algorithm

.1.1. Modified multitaper method
A power spectrum is typically estimated from a measured time

eries by cutting the time series into segments, applying Fourier
nalysis to these segments, and averaging the power in each fre-
uency bin across segments. The true value of the power spectrum

s the limit of this process as the length and number of the data
egments tend to infinity. However, in practice these segments are
nite in length and limited in number, so power spectral estimates
re necessarily biased (resulting from spectral leakage due to the
nite length of the data segment) and imprecise (due to the finite
umber of data segments).

The multitaper method (Prieto et al., 2007), a power-spectral
stimator that we use as a starting point for our approach, tackles
he tradeoff between this bias and variance in a way that is opti-

al  for Gaussian signals. The method minimizes spectral leakage
the artifactual spreading of power from one frequency bin into its
eighbors), by windowing each segment by an orthogonal set of

unctions, the Slepian tapers. For further background on the multi-
aper method see Thomson (1982), Mitra and Pesaran (1999) and
itra and Bokil (2008). Chronux is a freely available MATLAB tool-
ox that provides convenient implementations of the multitaper
ethod, which we extend with an implementation of the robust

pproach.
cience Methods 268 (2016) 14–22 15

The standard multitaper method consists of the following steps:
(1) multiplying each data segment by each of the tapers, (2)
applying Fourier analysis to these products, (3) averaging over
tapers within each segment, and (4) averaging over segments. To
formalize this, we  denote the original signal by X (t),  with B seg-
ments cut from the signal denoted as x1 (t) , . . ., xb (t) , . . .,  xB (t),
each of length T . These segments are non-overlapping, but
need not be contiguous. We denote the K Slepian tapers by
a1 (t) , . . .,  ak (t) , . . .,  aK (t) (the choice of K is driven by the desired
spectral resolution and data length; a common choice for 3-s-long
segments, and the Chronux default, is K = 5). With this notation,
the standard multitaper estimate of Sx (ω),  the true spectral power
at frequency ω, is defined as:

Ŝ
standard

(ω) = 1
B

B∑
b=1

K∑
k=1

1
T

∣∣∣∣∣∣
T∫
0

xb (t) ak (t) e−iωtdt

∣∣∣∣∣∣
2

. (1)

We denote the power estimate for a single sample b and a single
taper by Sb,k (ω):

Sb,k (ω) = 1
T

∣∣∣∣∣∣
T∫
0

xb (t) ak (t) e−iωtdt

∣∣∣∣∣∣
2

. (2)

With this notation, the standard spectral estimate takes the form

Ŝstandard (ω) = 1
B

B∑
b=1

1
K

K∑
k=1

Sb,k (ω) . (3)

Thus, the standard multitaper estimate is a nested mean: first a
mean over the K tapers within each segment to obtain the estimate
Ŝb (ω) = mean

({
Ŝb,k (ω)

})
, and then a mean over the B segments:

Ŝstandard (ω) = mean
({
Ŝb (ω)

})
. (4)

Since our goal is to reduce the effect of outlier estimates
from each segment, we  replace the mean over segments by a
robust estimator, resulting in the estimated power spectral quan-
tity Ŝrobust (ω). There are many possible choices for the robust
estimator—for example: an estimator based on the hth quantile,
a trimmed mean, a Winsorized mean (Huber, 1963), or iterative
rejection of outliers. While the present framework applies to all of
these choices, estimators based on quantiles are more amenable to
computation of Bayesian confidence intervals (see below), and we
therefore focus on these, both in the illustrations below and in the
MATLAB toolbox. We  denote the estimator based on the hth quan-
tile as Ŝquantile h (ω). Note that h = 1/2 corresponds to the median;
this is the default value in the code.

Even for Gaussian data, the median power of the tapered esti-
mates does not equal the mean power. This is because spectral
estimates are approximately distributed as chi-squared, which
is positively skewed. As shown in Appendix A, we  can take the
skewing into account by dividing the median power by a data-
independent scale factor. Furthermore, scale factors can be derived
that convert not just the median (0.5 quantile), but any quan-
tile, into mean power. Appendix A details the calculation of these
scale factors, which is implemented in the MATLAB module analyt-
ical scalefactor Robust().

Including this scale factor yields our main result, the robust
spectral estimate:

Ŝquantile h (ω) =
quantile h

({
Ŝb (ω)

})
, (5)
C (h, d, B)

where C (h, d, B) is the scale factor for quantile h; d is the number of
degrees of freedom (d = 2K for typical frequencies, d = K for DC and
the Nyquist frequency); and B, as above, is the number of segments.
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Notably, the quantile is applied to the B power estimates from
ach segment (replacing the outer operation in Eq. (3)); within seg-
ents, the step of computing the mean over the tapers remains

nchanged from the original method. There are two reasons for this
hoice: (1) if artifact is present in a segment b, it is likely to affect
any of the tapered estimates from that segment; and (2) the K

lepian tapers were designed to be used together to capture all of
he power within a frequency bin. The toolbox supports the alter-
ative strategies of computing either the one-tiered median across
ll tapered estimates or the “two-tiered” median across tapers and
hen across segments, but as we see no principled reason for this,
t is not the default. The robust approach is also applicable to other
pectral estimation methods, such as Welch windowing.

.1.2. Confidence interval estimation
Standard nonparametric approaches to confidence interval esti-

ation (Thomson, 2007) are based on resampling strategies, such
s the jackknife or the bootstrap. These approaches are appropri-
te for the mean, which depends smoothly on the data—a necessary
ondition for the jackknife or bootstrap to be valid. However, since
uantile-based estimates do not depend smoothly on the data, an
lternative approach is needed.

Our approach is as follows. Let Q (ω, h) denotes the true value of
he hth quantile of estimates at frequency ω. We  seek the prob-
bility distribution P (Q (ω, h) |data): the distribution of the true
alue of the hth quantile, given the observed data. To find this, we
se a Bayesian approach with the conservative choice of an unin-

ormative (flat) prior for the power spectral value. Using Bayes’
heorem, we can express P (Q (ω,  h) |data) in terms of the probabil-
ty of drawing the data from a distribution with known hth quantile,
r P (data|Q (ω, h)):

P (Q (ω, h) |data) = P (data|Q (ω, h)) × P (Q (ω, h))
P (data)

∝ P(data|Q (ω, h)) . (6)

To be consistent with our prior reasoning for implementing a
wo-tiered approach, we implement the Bayesian approach to con-
dence intervals by considering the data to be the set of spectral
stimates Ŝb (ω) derived from each segment (taking the mean of
he tapered estimates within each segment, Eq. (4)).

We then use order statistics to compute P(data|Q (ω, h)). Specif-
cally, we re-label each Ŝb (ω) as Y1, . . .,  YB, where Y1 is the smallest
anked value in

{
Ŝb (ω)

}
. We  also denote Y0 = −∞ and YB+1 = +∞,

s this will allow us to account for the possibility of Q (ω, h) lying
elow the smallest ranked value or above the largest. The probabil-

ty that Q (ω, h) lies between Yi and Yi+1 is equal to the probability
hat exactly i of the Ŝb (ω) estimates are below this quantile, and

 − i are above it. Since the chance of any single estimate lying
elow the hth quantile of the estimates is exactly h, this probability

s determined by the binomial distribution:

(Yi < Q (ω, h) < Yi+1) =
(
B

i

)
hi(1 − h)B−i. (7)

Thus, to ensure that the probability that Q (ω, h) lies between
wo ordered values, Yl and Ym (where m > l) is at least 1 − ˛, we
eed to find indices l and m for which

m−1∑
P (Yi < Q (ω, h) < Yi+1) ≥ 1 − ˛. (8)
i=l

We choose the intervals in descending order of probability to
etermine the smallest number of intervals in Eq. (8) for a given
overage 1 − ˛. The union of these intervals is the desired confi-
cience Methods 268 (2016) 14–22

dence interval. Fig. 1 illustrates this procedure for  ̨ = 0.05 (i.e.,
95% confidence intervals).

Note that the confidence interval provided by the above proce-
dure for a coverage 1 −  ̨ typically also applies to coverage factors
somewhat larger than 1 − ˛. This is because the upper and lower
confidence intervals are tethered to discrete values (the observa-
tions Yb), so the confidence bounds that satisfy Eq. (8) typically
also satisfy it for smaller values of  ̨ as well. The relationship of
the predicted coverage factor to the number of samples is shown
in Fig. 2A (for  ̨ = 0.05 and h = 0.5). Note also that if the number of
segments is sufficiently small, then it may  be necessary to include
the intervals (−∞,  Y1] and [YB, ∞) in order to satisfy Eq. (8). Fig. 2B
shows the minimum number of segments required to have finite
confidence intervals, as a function of h.

For comparison purposes, we  also calculated confidence inter-
vals via the jackknife procedure, which is the standard Chronux
approach. Specifically, the jackknife confidence interval is com-
puted by pooling together all estimates from all tapered segments
(for a total of BK estimates) and generating BK subsets of size BK − 1
by dropping one tapered segment from each. The standard or robust
estimator of central tendency (mean for the standard method;
quantile for robust) is then applied to each subset. The standard
deviation is calculated and significance is determined according to
the t-distribution with BK − 1 degrees of freedom. The provided
Chronux extension includes jackknife-based confidence intervals
as well as bootstrap-based confidence intervals for the robust esti-
mators; however these are not intended for routine use, only for
purposes of comparison with the Bayesian confidence intervals.

Finally, we note that the above approach to confidence limit
estimation is distinct from the naïve strategy of choosing the ˛/2
and 1 − ˛/2 quantiles of the spectral estimates Ŝb (ω), rather than
the ranked values whose indices are identified by Eq. (8). With the
naïve strategy, confidence intervals do not narrow as the amount
of data increases. Moreover, the impact of outliers is not removed
if the outlier fraction in either tail is at least ˛/2.

2.2. Method validation

We  applied the above procedures to (1) a synthetic signal of a
known power spectral distribution corrupted by artifact, and (2)
an EEG record from a human subject, with the typical artifacts of
clinical recordings.

2.2.1. Simulated data
The simulated data consisted of a Gaussian signal of known

power spectral distribution, to which we added a controlled
amount of simulated artifact. The signal was synthesized from
random-phase, Gaussian-distributed Fourier components, whose
mean power was proportional to 1/ω (over the range 1/3 to 100 Hz
in steps of 1/3 Hz), where ω is the frequency. That is, at each fre-
quency ω in the above range, we  set the Fourier component of
the signal, x̃ (ω), to have real and imaginary values each inde-
pendently drawn from a normal distribution of variance equal
to 1/ω: Re (x̃ (ω)) ∼N

(
0, ω−1/2

)
and Im (x̃ (ω)) ∼N

(
0, ω−1/2

)
. We

then inverted the transform to create the time-domain signal x (t)
in that segment. Artifacts, which were added in the time domain,
consisted of bursts of Gaussian signal with a flat (constant) power
spectrum. The artifact power per unit bandwidth was 3.3 times
greater than the signal power per unit bandwidth at the lowest
frequency, 1/3 Hz—so the maximum signal:noise was 1/3.3. The
burst length was 0.5 s (while samples were simulated to be 3 s
in duration), and bursts were added to the signal x (t) at Poisson-

distributed intervals, with an average of 0.25 bursts per segment.
We studied the performance of the two methods for data with, and
without noise added. Sample data, both with and without artifact,
are shown in Fig. 3. Since the power spectrum of the underlying
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Fig. 1. Procedure for determination of confidence intervals based on order statistics. The bar graphs show the distribution of probabilities of the true hth quantile falling
between the ith and (i + 1)th order statistic for a set of B = 20 values. The first and last bars (i = 0 and i = B) indicate the probability of the true quantile value falling in the
intervals (−∞,  Y1] and [YB, ∞, ),  respectively, where Y1, . . ., YB are the order statistics corresponding to the B spectral estimates. The white bars indicate inter-order-statistic
intervals whose probabilities sum up to 1 − ˛, representing the region between the 1 −  ̨ confidence intervals.

Fig. 2. (A) The nominal coverage factor of a Bayesian confidence interval exceeds 1 − ˛, and this excess depends on the number of samples. Here this relationship is shown
for  the median (h = 0.5) estimator. (B) The minimum number of samples necessary in order to obtain finite 95% confidence intervals for a range of quantile values.

F ignal 

o tion.

s
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ig. 3. Representative simulated signal segments. (A) Three seconds of a simulated s
f  simulated artifact-containing signal, containing a white noise burst of 0.5-s dura

ignal was 1/ω, signal:noise decreases further with increasing fre-

uency, from its maximum of 0.3 (at 1/3 Hz). Thus, we  anticipate
hat at sufficiently high frequencies, the noise bursts will lead to
nacceptable corruption of the spectral estimates.
with a 1/ω power spectrum. Inset enlarges a portion of the trace. (B) Three seconds

2.2.2. Human data

The human EEG data were obtained from a healthy control sub-

ject (23 year old male). Data were recorded with an FS128 headbox
and an XLTEK acquisition system (Natus Medical, Pleasanton, CA
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ig. 4. Typical segments of recorded human EEG. The first panel shows an example o
nd  third panels show examples of segments containing significant artifact: myoge

4566) using an augmented 10/20 montage. The sampling fre-
uency was 250 Hz. Input impedances were ≤5 k�. The subject
as awake during testing, and generated spontaneous movement

rtifacts and eye blinks. Low-pass and high-pass filters of 0.01 and
00 Hz, respectively, and a 60 Hz notch filter, were applied. For anal-
sis, 40 segments (either 1 or 3 s in duration) were selected from

 recording of 8 min: 20 of these segments, labeled “significant
rtifact,” contained EMG, eye-blinks, or other artifacts, as deter-
ined by visual inspection of the EEG and simultaneously-recorded

ideo (carried out by an experienced EEG analyst). 20 other seg-
ents were labeled “minimal artifact,” as they contained little or

o visible artifact. Fig. 4 shows one example of a “minimal artifact”
egment and two examples of “significant artifact” segments. To
enerate datasets with 25% artifact, we drew 5 significant-artifact
egments and 15 minimal-artifact segments randomly from these
wo subgroups.

Human subject participation was approved by the Institutional
eview Board, and was consistent with the Declaration of Helsinki.

. Results

We  first compare the standard multitaper method and the
obust method for simulated signals. Because the true underlying
pectrum is known, this allows rigorous assessment of accuracy
nd the coverage factors of the estimated confidence intervals. We
hen apply the standard and robust methods to a sample of human
EG, and show that the robust method is less sensitive to typical
EG artifact encountered in clinical recordings.

.1. Simulated EEG results

Fig. 5 compares power spectral estimates via the standard and
obust multitaper methods on a simulated EEG signal. Each method
as applied to two data sets that differed in the average num-

er of noise-contaminated segments per data set: a clean dataset,
nd a dataset with an average of 25% artifact-containing segments,

espectively (see Section 2 for details). For the standard method,
hen artifacts were present the expected high-frequency decline

f the power spectrum is corrupted by the flat spectrum of the
oise bursts. This shows that the artifact significantly affects the
nimal-artifact segment, taken to consist predominantly of neural signal. The second
d eye blink artifacts.

estimated spectrum. In comparison, results from the robust method
shown in the right panel reveal that even over frequencies at which
the power spectrum of the standard estimate is dominated by the
noise bursts, the robust estimate reflects the underlying signal’s
spectrum. In sum, in a data set where outliers significantly affect
spectral estimates from the standard method, the estimate from
the robust method can capture the underlying spectrum.

The simulated data allowed for an assessment of confidence
interval estimation methods (Fig. 6), and for a comparison of the
Bayesian confidence intervals to the confidence intervals computed
by the standard Chronux approach. The first column of the figure
shows results for the standard approach, i.e., the standard multi-
taper estimates with jackknife confidence intervals. As expected,
when no noise is present (top panel), the spectral estimates are
close to the true value, and confidence interval coverage is approxi-
mately 95%. When noise is added, the spectrum is upwardly biased
by the noise, and the coverage factors drop. The third column of
the figure shows that for the robust method, the confidence inter-
val coverage determined by the Bayesian procedure described in
Section 2 remains at approximately 95%, even when noise is added.

The middle column shows that the jackknife approach fails
when there are outliers, even when the robust method is used.
Specifically, when a jackknife procedure is applied to the robust
method, the confidence intervals have a lower-than-veridical cov-
erage factor, and they are also more irregular than the Bayesian
confidence intervals. As mentioned in Section 2, the failure of con-
fidence intervals based on resampling is not surprising, since the
median depends in a non-smooth fashion on the data. However,
even under these circumstances – and when artifacts are not explic-
itly removed – the Bayesian confidence intervals are approximately
veridical.

3.2. Human EEG results

Fig. 7 shows that the robust method can be successfully applied
to human EEG data. Fig. 7A compares spectra determined by stan-

dard analysis of minimal-artifact (hand-cleaned) EEG segments
with a set of EEG segments for which 25% contained significant
artifact. As expected, there were substantial deviations of the spec-
tra obtained when significant artifact was  present. These included
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Fig. 5. Power spectral estimates (left: standard method, right: robust method) for simulated datasets with 0% and 25% artifact-containing segments, respectively. The thin
sloping black line is the true value of the power spectrum (1/ω).  Spectra were estimated with 5 tapers and a time-bandwidth product of 3.

Fig. 6. Coverage factors of confidence intervals obtained via several methods, for simulated data. Simulations as in Fig. 3: spectra are estimated for data sets of 20 samples
with  5 tapers and a time-bandwidth product of 3. (A) Minimal-artifact data; (B) 25% of segments on average contaminated by significant artifact. Left column is the standard
multitaper estimate of power spectrum, with jackknife confidence intervals. Right column is the robust multitaper estimate of power spectrum with Bayesian confidence
intervals. Middle column is the jackknife with the robust method for comparison (see Section 2 for details). In the power spectral plots, the thin black line represents the
1/ω  signal spectrum, and the gray line with light gray error bars represents the method’s estimate of the power spectrum. In the plots of coverage factor vs. frequency, the
t over 3
m gnific
o  of 95%
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hin  gray line represents the empirical coverage factor at each frequency, averaged 

ethod  (also indicated by the number displayed on each graph). Note that when si
nly  one for which the empirical coverage factor approaches the nominal coverage

eviations at low frequencies in frontal channels, presumably due
o eye movement artifact, and deviations and at high frequencies
n frontal and posterior channels, presumably due to myogenic
rtifact. Fig. 7B shows that these deviations, especially at high fre-
uencies, are largely eliminated when the robust method is used.

Fig. 7C shows that on cleaned data the robust method gives
esults that are very close to that of the standard method. Thus,
he resistance of the robust method to corruption by artifact is not
t the expense of a distortion of the result. Fig. 7D demonstrates
hese same findings when the data are cut into 1-s segments.

. Discussion

Above we have shown that a simple modification of the standard

pproach to spectral estimation – substituting a robust estimator
or the mean across segments – can substantially improve spectral
stimates of EEG signals in the presence of artifact. The basic ratio-
ale is that robust estimators are insensitive to outliers, and many
0 simulations; the thick gray line represents the mean empirical coverage for each
ant artifact is present, the robust method with Bayesian confidence intervals is the

 (thick horizontal black line).

sources of artifact behave as outliers. When combined with the
multitaper method (Thomson, 1982), key advantages of the latter
are retained: spectral leakage is minimized, and reliable confidence
intervals can be estimated.

The proposed data-driven approach reduces the reliance on
removal of artifact by other means. This has several advantages:
with less preprocessing, fewer data will be discarded, potentially
enabling the capture of subtle EEG dynamics. A reduced reliance on
preprocessing methods also has the benefit of reducing the depen-
dence on ad hoc or subjective methods of artifact identification, and
may  also accelerate the data-processing pipeline.

It is worth noting that the robust methods described here are
computationally efficient. Since the MATLAB implementations of
median() and quantile() (used for the power spectrum) and sort()
(used for Bayesian confidence intervals) have approximately lin-

ear runtime even for 108 segments, the robust method retains the
linear asymptotic runtime of the standard multitaper approach.
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Fig. 7. Power spectral estimates ((A) standard method, (B) robust method) for 20 channels of EEG from a human subject. Spectra were calculated on data sets consisting of 20
data  segments of 3-s duration, using 5 tapers and a time-bandwidth product of 3. Light color indicates analyses of minimal-artifact segments; dark color indicates analyses of
a  mixture of 75% minimal-artifact segments and 25% significant-artifact segments. Blue indicates standard spectral estimates; red indicates robust spectral estimates. Color
bands  indicate 95% confidence intervals. (C) Detailed comparison at channels FP2-F8 and T6-Oz using 3-s-segments. Color scheme same as in (A) and (B). (D) Same as (C) but
with  1-s segments. Note that for minimal-artifact data (middle row of (C) and (D)), the two  methods give similar results. (For interpretation of the references to color in this
figure  legend, the reader is referred to the web  version of this article.)
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Fig. 8. Determining the order statistics of samples drawn from a non-uniform distri-
bution whose PDF is given by q (x). First, s (x),  the CDF associated with q (x),  is used to
map  samples drawn from a uniform distribution on the [0, 1] interval into samples
T. Melman, J.D. Victor / Journal of N

.1. Caveats

Because the robust method works by separating signals that
re pervasive (e.g., those reflecting background state) from those
hat are infrequent, it may  discard an intermittent signal of neu-
al origin – such as paroxysmal activity – as artifact. The robust

ethod works specifically because it removes outliers. Outliers
nclude many sources of artifact but can also include neural-origin
EG activity that is infrequent.

Although this method greatly improves spectral estimates for
ertain data sets, it should not be treated as a panacea for all
nalysis-limiting noise. Since quantile estimators have a break-
own point of ≤50%, this method may  not show any improvement
ver the standard analysis pipeline for constant or frequent noise
hat affects the same frequency range in most or all segments, such
s 60 Hz line noise from the environment or frequent muscle tics. In
hese cases, alternatives such as notch filtering or artifact removal
y hand must be used. We  also note that the proposed approach
ill not remove pervasive low-level EMG, which can bias spectral

stimates in the gamma  range (Whitham et al., 2007).
For clarity we tested the method here in the absence of other

rtifact removal techniques. However, there are benefits to other
echniques for removing outliers, such as ICA, automated outlier
ejection, or hand-cleaning guided by video assessment of the sub-
ect’s movements. Combining artifact removal techniques with the
obust method may  be more effective than either approach on its
wn.

.2. Epoched data

While we have illustrated the method for a continuous recording
f spontaneous EEG, it is also applicable to an event-related-
otential (ERP) experiment. In this scenario, the data segments can
e determined by the epochs or event markers themselves, and the
pectra calculated as described above. However, we note that the
cale factor calculation (Appendix A) assumes that the spectral esti-
ates are distributed like chi-squared, which in turn means that

here is no time-locked component, as must be the case for spon-
aneous EEG. If, in an ERP experiment, a time-locked component
s significant because of events synchronized to the epoch bound-
ries, caution should be exercised: (a) the power spectrum is no
onger rigorously defined, and (b) the scale factor will be frequency-
ependent, and biased toward 1.

.3. Extension to multichannel analysis

The utility of robust estimators as applied to the EEG spectrum
uggests that robust methods will also be useful in the multi-
hannel domain. In this context, robust estimators of shape, such
s the minimum volume ellipse (MVE) (Rousseeuw and Leroy,
987) or the minimum-covariance determinant (MCD) (Hubert and
ebruyne, 2010), could be used to estimate cross-spectra, much as

he quantile-based estimators here characterize power. While this
pecific robust approach appears to be as yet unexplored, a previ-
us study has shown that using the median instead of the mean

mproves multi-taper coherence estimates (Wong et al., 2011). A
ull-fledged robust estimator of shape could provide phase infor-

ation as well.
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Appendix A. Scale factor

As mentioned in the main text, the raw quantile of a set of spec-
tral estimates is expected to be proportional to the power, but not
equal to it. The proportionality constant is dependent on the quan-
tile h, the number of degrees of freedom d of the underlying �2

distribution describing the expected distribution of spectral esti-
mates for Gaussian data, and the number of samples (segments),
B. Here we derive this scale factor C (h, d, B) by determining the
hth quantile of the tapered spectral estimates, Ŝb (ω), for a Gaussian
signal of unit power.

For most frequencies ω, with the exception of ω = 0 or the
Nyquist frequency, Fourier estimates are complex numbers. When
ω is greater than the bandwidth of the tapers, the real and imaginary
components are approximately independent and of equal variance
(Percival and Walden, 1993, p. 360), so for

{
Ŝb (ω)

}
the power

is distributed as the sum of 2K squares of Gaussian-distributed
quantities, where K is the number of tapers. For ω = 0 or the
Nyquist frequency the Fourier estimates are real, so the power of
the

{
Ŝb (ω)

}
is distributed as sum of K such quantities. Therefore{

Ŝb (ω)
}

at a particular frequency ω is distributed as �2/d where �2

has d degrees of freedom, and d = K or d = 2K . The proportionality
between the quantiles of this distribution and the mean is the factor
that converts the quantile estimate into an estimate of power.

To compute the expected value of a quantile, we use the
strategy shown in Fig. 8. We  first find a monotonic transforma-
tion from the uniform distribution on the interval [0,1] into the
chi-squared distribution of spectral estimates. Because the trans-
formation is monotonic, the rank-order of the samples drawn from
the chi-squared distribution corresponds to the rank-order of the

corresponding values in the uniform [0,1] distribution. Therefore,
we can take the expected distribution of the hth quantile in the
uniform distribution, and transform it back into the chi-squared
distribution to determine C (h, d, B).
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To determine this transformation, we note that for an arbitrary
istribution with probability density function (PDF) q (x),  the cumu-

ative distribution function (CDF) s (x) is given by

(x) =
x∫

−∞

q (z)dz.

his can be rewritten as

ds (x)
dx

= q (x) .

The cumulative distribution function, by definition, is uni-
ormly distributed between 0 and 1. With q (x) = d�2

d (x), then
 = (1/d)chi2inv (s,  d) is the desired transformation between a
niformly-distributed quantity, s, and the spectral estimates,
here chi2inv (s, d) is the inverse cumulative chi-squared prob-

bility density function at s with d degrees of freedom.
We now apply order statistics to the variable s, which is

niformly distributed on [0 1]. The distribution of the (k + 1)th-
anked value for N + 1 = B draws from the uniform distribution is
iven by

k,N (s) = 1
beta (k + 1, N − k + 1)

sk(1 − s)N−k,

here beta (u, v) is the beta-function,

eta (u, v) =
1∫
0

tu−1(1 − t)v−1dt

David and Nagaraja, 2003).

Transforming back to the distribution of spectral estimates, we
nd:

k,N (x)dx = pk,N (s)ds,

here

k,N (x) = pk,N (s)
ds

dx
= 1

beta (k + 1, N − k + 1)
sk(1 − s)N−k ds

dx
.

he expected value of this quantity is therefore:

x〉 =
∞∫
0

x (s)qk,N (x)dx

= 1
beta (k + 1, N − k + 1)

∞∫
0

xsk(1 − s)N−k
(
ds

dx

)
dx

= 1
beta (k + 1, N − k + 1)

1∫
0

1
d

chi2inv (s, d) sk(1 − s)N−kds
When the quantile h falls exactly on a sample, i.e., when
 = (k + 1)/(N + 1) = (k + 1)/B,  this is C (h, d, B). When the quantile
 falls between two samples, C (h, d, B) is determined by interpo-
cience Methods 268 (2016) 14–22

lating this value between two adjacent values of k. By default, the
code uses the MATLAB convention for quantile interpolation, i.e., a
weighted average of the values at the two adjacent values of k.

As B = N + 1 increases, the above result takes a simple
asymptotic form, since the integrand factor sk(1 − s)N−k becomes
concentrated at s = (k + 1)/N + 1 = h. In this limit,

lim
B→∞

C (h, d, B) = 1
d

× chi2inv (h, d) .

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jneumeth.2016.
04.015.
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