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Interacting Linear and Nonlinear Characteristics Produce
Population Coding Asymmetries between ON and OFF Cells
in the Retina

Zachary Nichols,' Sheila Nirenberg,? and Jonathan Victor2>
'Department of Physiology and Biophysics, 2Institute for Computational Biology, and *Brain and Mind Research Institute, Weill Cornell Medical College,
New York, New York 10065

The early visual system is a model for understanding the roles of cell populations in parallel processing. Cells in this system can be
classified according to their responsiveness to different stimuli; a prominent example is the division between cells that respond to stimuli
of opposite contrasts (ON vs OFF cells). These two cell classes display many asymmetries in their physiological characteristics (including
temporal characteristics, spatial characteristics, and nonlinear characteristics) that, individually, are known to have important roles in
population coding. Here we describe a novel distinction between the information that ON and OFF ganglion cell populations carry in
mouse—that OFF cells are able to signal motion information about both light and dark objects, while ON cells have a selective deficit at
signaling the motion of dark objects. We found that none of the previously reported asymmetries in physiological characteristics could
account for this distinction. We therefore analyzed its basis via a recently developed linear-nonlinear-Poisson model that faithfully
captures input/output relationships for a broad range of stimuli (Bomash et al., 2013). While the coding differences between ON and OFF
cell populations could not be ascribed to the linear or nonlinear components of the model individually, they had a simple explanation in
the way that these components interact. Sensory transformations in other systems can likewise be described by these models, and thus
our findings suggest that similar interactions between component properties may help account for the roles of cell classes in population

coding more generally.

Introduction

The structure of visual system is a prime example of parallel
organization in the brain (Masland, 2001; Wissle, 2004). At mul-
tiple levels within this system, information is processed simulta-
neously in different cell populations. A canonical case of this
parallel processing is the separation of ON and OFF responses
(Hartline, 1938), which first occurs at the bipolar cell synapse
(Werblin and Dowling, 1969) and continues into the brain. The
utility of this separation is indicated by its conservation across
the retinas of vertebrates, from cartilaginous fishes (Dowling
and Ripps, 1970) to amphibians (Hartline, 1938; Schwartz,
1974) to mammals (Kuffler, 1953; for review, see Schiller,
2010). But despite its ubiquity and presumed selective advan-
tage, the functional implications of this separation are incom-
pletely understood.
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An important aspect of this incomplete understanding is the
fact that ON and OFF pathways are not simply equal and oppo-
site. Asymmetries begin at the retinal level and include spatial
filtering properties (Chichilnisky and Kalmar, 2002; Balasubra-
manian and Sterling, 2009), temporal filtering properties (Chi-
chilnisky and Kalmar, 2002; Sagdullaev and McCall, 2005;
Pandarinath et al., 2010), and nonlinear properties (Chichilnisky
and Kalmar, 2002; Zaghloul et al., 2003; Molnar et al., 2009).
Asymmetries also continue downstream, where circuitry devotes
unequal resources to processing lights and darks (Zemon et al.,
1988; Jin et al., 2008; Yeh et al., 2009).

These asymmetries contribute to the challenge of understand-
ing the roles of the ON and OFF channels for two reasons. First,
they complicate approaches that rely on the design of stimuli that
selectively activate one or another of the channels. But more
importantly, these asymmetries raise the possibility that the
functional roles of the two classes are not restricted to a simple
partitioning of scenes into light and dark components, since
the two cell classes also have different spatial and temporal
characteristics.

Here we used a data-driven computational approach—the
virtual retina (Bomash et al., 2013)—that addresses both of these
issues. First, it allows for clean isolation of the information car-
ried by ON and OFF ganglion cell populations, by reconstructing
or decoding the responses of just one population. Second, as
presented by Bomash et al. (2013), it allows for rapid in silico
screening of hypotheses concerning the functional roles of ON
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and OFF populations, so that physiological experiments can be
focused on ones that are viable.

Using this approach, we identified an unexpected selective
deficit for motion processing in ON cells and analyzed its physi-
ological basis. In particular, we first found that model-based
stimulus reconstruction experiments suggest that OFF popula-
tions are able to transmit information about the motion of both
light and dark objects, while ON populations have a deficit in
transmitting information about the motion of dark objects. We
then designed a motion-decoding task that allowed us to confirm
this difference with electrophysiological recordings directly, in-
dependently of models. Finally, we analyzed the source of this
difference and found that it results from an interaction between
asymmetries that involve the linear and nonlinear components of
ganglion cell processing.

Materials and Methods

Tissue preparation and recording. Electrophysiological recordings were
obtained in vitro from the isolated retinas of C57BL/6 mice. All proce-
dures were performed with approval of the Institutional Animal Care
and Use Committee of Weill Cornell Medical College (protocol
#0807-769A).

Central retinal ganglion cell (RGC) responses were recorded on a
64-channel multielectrode array using methods described previously
(Pandarinath et al., 2010). Briefly, 7- to 9-week-old female mice were
dark adapted for 1-3 h, after which they were killed and their retinas
dissected under dim red light into oxygenated Ringer’s solution. The
central retina (adjacent to the optic nerve) was then isolated, yielding
a piece 1.5 to 3 mm on a side, which was placed onto the multielec-
trode array for recording. Spike waveforms were amplified and digi-
tized via a Plexon Instruments Multichannel Neuronal Acquisition
Processor. A standard spike sorting method (Fee et al., 1996) was used
to identify individual cells.

Only units that were well isolated, as measured by refractory period
violations (fewer than 2% of the spikes occurring within 1.5 ms of the
previous spike), and whose firing rate was stable over the course of the
experiment were included in the analyses. (The mean drop in firing rate
over the course of the experiment was 5% of the initial recorded firing
rate; cells whose firing rate fell by >30% were discarded.) Overall, data
were recorded from 58 retinas, yielding 512 ganglion cells that met these
criteria.

Stimulation. Retinas were presented with spatiotemporally varying
grayscale stimuli (mean luminance of 0.24 uW/cm?) using a Sony LCD
computer monitor. This yielded photoisomerization rates in the central
retina as described previously: 1.8 X 10> R*/rod/s, 900 R*/M cone/s, and
40 R*/S cone/s (Pandarinath et al., 2010). Note, however, that cones in
the mouse central retina coexpress M and S opsins (Applebury et al.,
2000; Nikonov et al., 2006), and that near the optic disk, the proportion
varies substantially along the ventral to dorsal axis (Wang et al., 2011).
Since the exact regions recorded in these experiments are unknown, the
rates 900 R*/M cone/s, and 40 R*/S cone/s constitute the range of cone
photoisomerizations at this light level.

Stimulus frames were presented at 15 Hz; each frame consisted of
20 X 18 checks, each subending 80 X 80 um on the retina. This
corresponds to a total stimulus area of ~77.5 X 70° of visual angle,
and 3.9 X 3.9° per check. The spatial and temporal resolution given by
this system covers the response range for mouse ganglion cells under
photopic conditions, as measured by their responses to spots and
gratings (Stone and Pinto, 1993; Carcieri et al., 2003; Umino et al.,
2008; Pandarinath et al., 2010).

Three types of stimuli were used: binary spatiotemporal white noise
(WN), natural scene (NS) movies, and coherent motion (CM) stimuli.
WN and NS stimuli were used to build models of neuronal responses;
CM stimuli were used to test the ability of populations to transmit infor-
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mation about moving objects. All stimuli were presented at grayscale,
with 8 bit resolution.

For the WN stimulus, checks were randomly and independently as-
signed to either of two luminances, 0.15 or 0.33 wW/cm 2. This yielded a
root-mean-squared (RMS) excursion of 0.087 wW/cm ? about the mean.
For the NS stimulus, a movie filmed in Central Park of New York City [as
in the study by Meytlis et al. (2012)] was digitized at the spatial and
temporal resolution of the display by block averaging. The WN and NS
movies were linearly scaled to have the same mean luminance and RMS
excursion. The NS movie had a temporal power spectrum of 1/f**
(where fis temporal frequency) and a spatial power spectrum of 1/
(where w is spatial frequency).

For the CM stimuli, two versions were constructed: dark objects mov-
ing on a lighter background and light objects moving on a darker back-
ground (see Fig. 2A). Each consisted of an array of 16 objects (disks with
diameter of 6.5° of visual angle) centered on a 4 X 4 grid. The CM stimuli
were presented at the same size and display resolution as the WN and NS
stimuli. Light objects had a maximum luminance matching the light
checks of the WN stimulus, and their background had the luminance of
the dark checks; the reverse was true for the dark objects. To create
coherent motion, a subset of these objects moved either left or right at a
constant speed (17.5° of visual angle per second). Each motion stimulus
lasted 1.4 s, so the total distance moved by each object was 24.5°, ~140%
of the distance between object centers. Since the background luminances
for the light-object and dark-object CM stimuli differed (0.15 vs 0.33
wW/cm?), the Weber contrasts differed as well, by a factor of 2.2:1 (the
inverse of this ratio).

To use CM stimuli to test transmission of information about moving
objects, they were constructed at several levels of difficulty. Difficulty was
controlled by varying the number of nonmoving objects from 2 (easiest)
to 10 (hardest). For each polarity (light and dark objects) and each level
of difficulty (2, 4, 6, 8, and 10 nonmoving objects), we constructed a
library containing 32 examples of left-moving stimuli and 32 examples of
right-moving stimuli. Members of the library varied according to the
(random) choice of the specific objects that moved. Stimuli were ex-
cluded from the library if the distribution of moving objects was highly
nonuniform; our criterion was that the minimum and maximum num-
ber of moving objects within any 2 X 2 subsection of the grid differed by
no more than 2.

Models. Models were constructed from neural responses to the WN
and NS stimuli using a procedure that was shown to accurately repro-
duce neural responses to a wide variety of stimuli (Nirenberg and
Pandarinath, 2012; Bomash et al., 2013). The models were composed
of a linear—nonlinear-Poisson (LNP) cascade: a given spatiotemporal
pattern of light was transformed by a linear filter (L); the output of the
linear filter fed into a spline nonlinearity (N), and the output of the
spline nonlinearity was the instantaneous firing rate of the model (for
general reviews of LNP models, see Simoncelli et al., 2004; Pillow et
al., 2008). This firing rate is then used as the generator for an inho-
mogeneous Poisson process, allowing the model to simulate spike
trains in response to the given stimulus.

Mathematically, the instantaneous firing rate A at the time ¢ is repre-
sented as follows:

2.09

A1) = N[X*L(D)], (1)

where * denotes convolution, X is the stimulus, L is the cell’s linear filter,
and N is the cell’s nonlinearity.

Each cell’s linear filter consisted of the product of a spatial function
specified on a grid of 10 by 10 checks and a temporal function specified
on 18 time bins (of 67 ms each), examples of which are shown in Figure
8A. The temporal function’s dimensionality was reduced by constraining
it to a linear combination of 10 basis functions (raised cosines) as in the
studies by Nirenberg and Pandarinath (2012) and Bomash et al. (2013),
following Pillow et al. (2008). The nonlinearity was parameterized as a
cubic spline with six knots, with knots covering the range of output
values from the linear filter.

Asin the studies by Nirenberg and Pandarinath (2012) and Bomash
etal. (2013), parameters for the model were fit from neural responses
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to WN and NS stimuli, using a maximum likelihood approach. The
quantity maximized is the log-likelihood of the model given the re-
sponse (Z):

end

Z = E E log[)\m(Tm(i))] - J’ )\nx(t)dt s (2)

t=0

where A, is the firing rate, and 7,,, is the spike train of cell m.

Each model cell was constructed from responses of a cell to 20 min of
spatiotemporal stimulation (10 min of NS and 10 min of WN). As re-
ported previously (Nirenberg and Pandarinath, 2012, their supporting
information), the rationale for this strategy is that the WN and NS stimuli
work in a complementary way (for example, the NS stimulus has more
power at low spatial and temporal frequencies, while the WN stimulus
has more power at high spatial and temporal frequencies), so that the
combination constrains the model fitness landscape better than either
stimulus alone.

Descriptive parameters. Response latency, response duration, and bias
index were defined as in the study by Carcieri et al. (2003). Response latency
was quantified as the time to peak firing rate after presentation of optimal
spot, and response duration was quantified as the time for this response to
decay to half of its peak. The preference for light versus dark stimuli was
quantified by the bias index: BI = (Ryy — Ropp)/(Ron  Ropp)> Where Ry
is the peak response to an ON spot and R is the peak response to an OFF
spot, with —1 corresponding to a pure OFF cell, 0 corresponding to an
ON-OFF cell, and 1 corresponding to a pure ON cell. To determine these
values, we simulated the responses to optimal spot stimuli [defined as in the
study by Carcieri etal. (2003) as spots with diameter yielding the highest peak
response for each individual cell] according to Equation 1, using the model
derived from WN and NS responses. The distributions obtained for these
descriptive parameters based on the simulated response to an optimal spot
responses match previously reported distributions (Carcieri et al., 2003).

Receptive field size was quantified by fitting a 2D Gaussian to the
spatial component of the model filter L. As in the study by Chichilnisky
and Kalmar (2002), the size parameter is then given by the square root of
the area of the elliptical contour at height 1/e relative to the peak.

The degree of nonlinearity [the nonlinearity index (NI)] was quanti-
fied by the extent to which the model spline nonlinearity N deviated from
astraightline. Specifically, with xs, x5, and x5, respectively, denoting the
5,50, and 95% quantiles of the linear stage’s output, the NI was defined as
the difference between the spline output at x5, and the straight line drawn
from the end quantiles: NI = N(xs5) + [(x50 — X5) X (N(xg5) — N(x5))/
(%95 — x5)] — N(x5,). Responses to WN stimuli were used to determine
Xs, X50, and x5 [to match the convention used by Chichilnisky and Kal-
mar (2002)]. For the case of an exponential nonlinearity [used by Chi-
chilnisky and Kalmar (2002)] rather than a spline nonlinearity (used by
these models), this index yields values roughly proportional to the indi-
ces used by Chichilnisky and Kalmar (2002) and Zaghloul et al. (2003),
which were based on the log ratios of the slopes of the nonlinearity.

The biphasic index (BI) was calculated following Cai et al. (1997) and
Jin et al. (2011b) as the ratio of the refractory amplitude to the peak
response amplitude. Refractory and peak amplitudes were calculated
using the temporal component of the model filter L as an estimate of the
impulse response: the peak amplitude a was given by the height of the
first (positive) lobe of the temporal filter, and the refractory amplitude b
was given by the depth of the second (negative) lobe of the temporal
filter, so that BI = b/a. To accurately estimate the height and depth
values, the temporal filter was interpolated with cubic splines.

Direction selectivity was quantified by the direction selectivity index
(DSI), calculated [following the study by Grzywacz and Amthor (2007)]
as DSI = (Rt = Ryu)/ (Rprer T Ryun)> where R, ¢ is the response (spike
count) for movement in the preferred direction, and R, ,;, is response for
movement in the null direction. Responses used for this measure were
taken from each segment of the CM stimuli in which a single object
crosses the receptive field of the cell. Significance of the DSI measure was
determined by an unpaired, two-sided t test comparing the trials where
movement was in the preferred direction to trials in which movement
was in the null direction, with cells whose DSI was >0.3 with 95% con-
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fidence considered direction selective (DS). Since the CM stimuli present
motion in only two directions and do not stimulate all recorded cells, this
procedure does not identify all directionally selective cells, but it does
identify the cells whose direction selectivity could impact the CM exper-
iments (i.e., cells with a rightward vs leftward bias and whose receptive
fields were in the path of a moving object).

Cell classification. Retinal ganglion cells were classified into four
groups: long-latency cells, short-latency ON cells, short-latency ON-
OFF cells, and short-latency OFF cells. Following the study by Carcieri et
al. (2003), cells were designated as long latency if their simulated peak
response to an optimal spot occurred after 400 ms, and the remaining
(short-latency) cells were classified into ON, ON—OFF, or OFF based on
their BI (ON, BI > 0.5; ON-OFF, 0.5 = BI > —0.5; OFF, BI = —0.5).
Using this criteria, the 512 recorded RGCs were classified into 13 long-
latency cells, 238 ON cells, 121 OFF cells, and 140 ON—OFF cells.

Decoding spike trains. To determine the extent to which responses to
the CM stimuli conveyed information about leftward versus rightward
object motion, they were analyzed using standard Bayesian decoding on
binned responses. To do this, we determined the CM stimulus that was
most likely to elicit each given response (out of all CM stimuli in that
library, sharing the same luminance polarity and the same level of diffi-
culty). These decoded responses were then tabulated into a confusion
matrix, which were used to calculate the fraction of responses that yielded
the correct direction (left vs right).

To determine the most likely CM stimulus given a multineuronal
response r, we applied Bayes’ theorem:

psi | 1) p(r | s) plsi), (3)

where p(s|r) is the a posteriori probability of a stimulus s; given the
response 1, p(rs;) is the probability of a response r given a stimulus s; and
p(s;) is the a priori probability of the stimulus s; occurring. Since all p(s;)
are uniformly equal (to 1/64), finding the stimulus that maximizes the a
posteriori probability p(s|r) is equivalent to maximizing p(r|s;).

To calculate p(r|s;), each neuron’s response was considered to be
conditionally independent—which for natural scenes does not result in sig-
nificant loss of information (Oizumi et al., 2010; Meytlis et al., 2012)—
enabling the probability of a multineuronal response to be written as a
product of the probabilities of the responses of the individual neurons.
Each cell’s responses were then treated as an inhomogeneous Poisson
process, i.e., as a Poisson process whose rate could vary across time. To
capture this time-dependent firing rate, the response period was divided
into eight bins of 125 ms width (bin sizes both larger and smaller than 125
ms have been shown to produce similar decoding results for gratings and
natural scenes; Jacobs et al., 2009; Pandarinath et al., 2010; Bomash et al.,
2013), starting at 400 ms after stimulus onset (see Fig. 2A). Spikes occur-
ring over the initial 400 ms of stimulus presentation were not included as
part of the binned response, so that the previous stimulus would not
influence the data used for decoding.

The response distribution p(r|s;) for each stimulus was estimated by
taking 20 randomly chosen trials as the training set and using the sample
mean number of spikes per bin to construct the binwise Poisson distri-
butions for each neuron. The remaining 20 trials were then used as a
testing set for decoding.

Spatiotemporal reconstructions. For movie reconstructions, Bayesian
decoding was also used (using Equation 3 as above), again using a uni-
formly flat prior (i.e., all possible spatiotemporal movies considered a
priori equally likely) and again assuming that the response distribution
was described by an inhomogeneous Poisson process whose instanta-
neous rate function depends on the stimulus. Since we required this rate
function for all possible movies s (in contrast to the CM decoding de-
scribed above, in which we required the rate function only for the 64
alternative stimuli), here it was necessary to use models of the cells to
calculate p(rs).

To obtain the spiking data required for the reconstructions, virtual
populations were created (using the LNP model of Equation 1, obtained
as described above). The density of model cells in the virtual populations
was matched to reported ganglion cell density in the mouse retina (Jeon
etal., 1998). Model cell parameters were drawn from previously recorded
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experiments (Bomash et al., 2013) and were chosen to have approxi-
mately the same mean firing rate (~12 Hz). To keep the computation
tractable, a small number of example cells were used (six total); these cells
were replicated and positioned with their centers covering the stimulus in
the desired density.

Reconstructions were performed using gradient ascent to find the
maximum likelihood stimulus, given the simulated population re-
sponses [via Eq. 3, again setting p(s) as uniform]. The likelihood that the
observed response was elicited by a candidate movie, which is propor-
tional to p(rs) in Equation 3, was calculated using Equation 2, where the
instantaneous firing rate is again given by Equation 1. Maximization was
performed using the scaled conjugate gradients library provided by SciPy
(http://www.scipy.org). To keep the calculation tractable, reconstruc-
tions were performed independently in adjacent blocks of seven by seven
checks (18.2° of visual angle) over 15 frames (1 s). To ensure that con-
vergence was to a global maximum, multiple random seeds were used for
each block.

The above calculations were performed in parallel on a 72 CPU cluster.

Organization of physiological experiments. We recorded the RGC re-
sponses from each retina to two groups of stimuli: modeling stimuli and
decoding-task stimuli.

All recordings included the same modeling stimuli, consisting of 10
min of nonrepeating spatiotemporal WN and 10 min of nonrepeating
spatiotemporal NS, together used for model fitting, and an out-of-
sample 5 min sequence of a repeated NS stimulus (30 presentations of a
10 s scene) used for validation, as in the studies by Meytlis et al. (2012)
and Bomash et al. (2013). To keep the recording time within practical
limits, each recording included only a subset of the decoding-task stim-
uli: either the light or dark CM, and either difficulty levels 2, 6, and 10 or
difficulty levels 4 and 8. Thus, the retinas (58 in total) were subdivided
into four cohorts (12 to 19 per cohort): one subdivision based on whether
a light or dark CM experiment was run and a second subdivision based
on the two sets of difficulty levels (2, 6, and 10 or 4 and 8).

Results

To identify and characterize differences in information carried by
ON and OFF cell populations, we proceeded in several steps.
First, we used model-based reconstructions of spatiotemporal
stimuli to quickly probe for differences between the two cell
classes. We found that ON cell model populations display a se-
lective deficit in carrying information about moving stimuli (a
deficit that OFF cell populations do not exhibit). Next, we used
ideal-observer decoding methods to confirm the presence of this
deficit with in vitro microelectrode recordings. Finally, we
showed that this information coding difference between ON and
OFF cell populations is related to an interaction between their
linear and nonlinear response characteristics.

ON and OFF cell populations differ in a reconstruction task
To survey for deficits in information carried by ON and OFF
RGCs, we used their responses to movies consisting of moving
objects. This was a three-step process (see Materials and Meth-
ods): first, several types of model populations were built, each
containing either ON cells, OFF cells, or both ON and OFF cells
together. Next, responses were simulated for each of the model
populations to spatiotemporal movies. Finally, the responses
were decoded to yield reconstructed spatiotemporal movies.
Fig. 1 shows the results of the reconstruction experiments for
two types of stimuli, a field of moving light objects on a dark
background (Fig. 1A) and a field of moving dark objects on a light
background (Fig. 1B). For each type of stimulus (positive and
negative contrast), objects of various sizes move toward the
viewer (increasing in size as they do so). For each reconstruction
experiment, we simulated responses with a ganglion cell density
roughly matching that in the mouse retina (Jeon et al., 1998),
corresponding to ~20,000 cells for a 120 X 120° field. Recon-
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structions were then performed using gradient ascent to find the
stimulus that most likely accounts for the responses (i.e., the
maximum likelihood stimulus; see Materials and Methods).

Figure 1A shows the three reconstructions (mixed ON and
OFF cells, only OFF cells, or only ON cells) for the moving light
objects. These were of similar quality: for each of these recon-
structions, despite the presence of noise, it is possible to accu-
rately judge the presence and position of all but the smallest
objects (Fig. 1A, compare bottom three rows) .

For the reconstructions of moving dark objects in Figure 1B,
this was not the case (note the difference between the bottom two
rows). While the OFF RGC population (third row) yielded a
reconstruction similar in quality to that of the mixed population
(second row), the ON RGC population reconstruction (bottom
row) contained many errors, including spurious dark regions and
missing objects. Consequently, finding the location and speed of
the original objects in the ON cell reconstruction is more diffi-
cult. The difference between the bottom two rows of Figure 1B,
while subjective in that it relies on a visual interpretation of the
reconstruction, led us to frame the hypothesis that ON RGCs
have a deficit in signaling moving dark objects. This appeared to
be a selective deficit and to represent an asymmetry between cell
classes, as there was no corresponding difference in the OFF ver-
sus ON reconstructions for moving light objects (Fig. 1A, bottom
two rows).

ON and OFF cell populations differ in an object motion
discrimination task

To test the hypothesis that ON RGCs have a selective deficit in
signaling moving dark objects, and to do so in a quantitative way
that did not depend on inspection of model-based reconstruc-
tions, we designed a physiological experiment that allowed us to
quantify the performance of recorded RGC populations in a mo-
tion decoding task.

The task was constructed by adapting the coherent dot-
motion paradigm of Britten et al. (1992) to the needs of Bayesian
decoding of experimentally recorded population responses.
There were two key constraints. First, the two classes of stimuli to
be distinguished (leftward vs rightward motion) needed to con-
tain a sufficient number of examples to show that the decoded
signal captured motion per se, and not idiosyncratic features of
individual stimuli. Second, the number of distinct stimulus ex-
amples could not be too large, as it is necessary to record a suffi-
cient number of responses to each stimulus to have an accurate
empirical estimate of the stimulus-response relationship. To de-
termine design parameters that were able to meet these con-
straints, we used the virtual retina (Bomash et al., 2013)
approach. This led to the specific experimental design shown in
Figure 2A, in which stimuli consisted of an array of 16 objects, a
portion of which moved either left or right. Graded levels of
difficulty were created by altering the number of objects that were
not moving, over the range from 2 to 10. For each level of diffi-
culty, 32 left-moving and 32 right-moving stimulus examples
were used (for further details, see Materials and Methods, Stim-
ulation and Decoding spike trains).

To visualize and quantify the reliability of the directional in-
formation carried by ON and OFF RGC populations to the CM
stimuli, we calculated confusion matrices at each level of diffi-
culty. Briefly (for details, see Materials and Methods), confusion
matrices are a tally of the number of times that a stimulus is
confused with another: an entry in row i and column j of the
matrix corresponds to the number of trials in which stimulus i is
presented and stimulus j is decoded from the response. Confu-
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Examples of reconstructed spatiotemporal stimuli from model population responses. Each stimulus contains a set of objects moving toward the viewer and covers a visual angle of

~120 X 120°. Reconstructions were performed with a ganglion cell density matching the mouse retina (~20,000 model cells for a stimulus this size). A, The reconstructions of a stimulus consisting
of moving light objects are largely similar for virtual retinas consisting of both ON and OFF RGCs (second row), only OFF RGCs (third row), and only ON RGCs (bottom row). B, The reconstruction for
a stimulus consisting of moving dark objects is markedly altered when only ON RGCs are present: compared to the reconstruction based on the mixed population (second row) or the OFF RGCs only
(third row), the reconstruction based on a population of only ON RGCs (bottom row) has several spurious objects.

sion matrices were ordered so that visualization of motion infor-
mation was straightforward: left-moving stimuli are indexed in
the first half of each row and each column, and right-moving
stimuli are indexed in the second half. Entries off the diagonal
indicate that one stimulus is confused for another, but if the
correct motion direction can nevertheless be correctly decoded,
this confusion will be confined to the top-left and bottom-right
quadrants. Thus, the confusion matrices serve to quantify task
performance, and also distinguish between performance that is
driven by overall motion information (the quantity under study)
and performance that is driven by the idiosyncratic position of
individual objects in each stimulus (a potential confound): in the
former case, there will be within-class confusion, and tallies will
be spread across the top-left and bottom-right quadrants; in the
latter, tallies will be confined to the main diagonal.

Example confusion matrices for single ON and OFF RGC
populations in virtual experiments (using the same model pa-

rameters as the reconstructions) are shown in Figure 2B. Here,
confusion matrices were computed using spike trains simu-
lated from randomly chosen model populations of 20 ON
RGCs or 20 OFF RGC:s for a library of dark-object CM stimuli
at difficulty level 4. Consistent with our hypothesis, the decod-
ing errors for OFF cells are primarily confined to the top left
and bottom right quadrants, while for ON cells, decoding er-
rors are scattered throughout the matrix, covering all four
quadrants; that is, for OFF cells but not for ON cells, direc-
tional information is preserved. Most correct tallies are not
confined to the main diagonal (the percentage of tallies on the
diagonal ranges from 5 to 25% across the confusion matrices),
indicating that performance is indeed driven by overall mo-
tion direction, not the idiosyncrasies of specific stimulus
examples.

Figure 2C shows the parallel results for recorded populations.
The key features of the confusion matrices for the simulated re-
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Figure 2.  Responses to the CM stimuli reveal differences in the information carried by ON and OFF cells. A, Examples of the CM stimulus for dark objects (top) and light objects (bottom). Each

stimulusis a movie lasting 21 frames (1.45), displaying a grid of 16 objects. A subset of the objects move either left or right; the remaining objects are stationary distractors (highlighted in red, frame
7). Only responses obtained during the final 15 (the final 15 frames) are analyzed, to avoid transients due to stimulus onset and carryover from the previous stimulus (see Materials and Methods).
B, ¢, Confusion matrices built from responses of populations of 20 OFF (left matrix) and ON (right matrix) RGCs to a library of dark-object CM stimuli with four stationary objects. For populations of
model cells (B), OFF cells are able to transmit motion information (most of the tallies in the confusion matrices are confined to two quadrants), whereas ON cells are not (the tallies are scattered
throughout the confusion matrices). The same pattern in seen in the populations of RGCs for which responses were directly recorded (C).

sponses are retained. Specifically, even though decoding the re-
corded OFF cell population responses often misidentifies the
specific stimulus exemplar, directional information is preserved,
as these errors are confined to the top left and bottom right quad-
rants. In contrast, the decoding errors for ON cells are common
in all quadrants, indicating frequent confusion of the stimulus
direction.

Figure 3 extends this analysis to all levels of task difficulty, and
to the CM task for light objects. For each condition, performance
is summarized by the fraction correct, i.e., the fraction of tallies in
the confusion matrix that are located in the correct quadrant.
Figure 3A shows the results for simulated virtual ON and OFF
populations used to design the experiment. Error bars show the
range of values encountered across 20 different simulations, each
drawing 20 ON and OFF model cells with receptive fields placed
in random locations on the stimulus (see Materials and Meth-
ods). For the dark-object stimuli, the model ON cell populations
display a deficit relative to OFF cell populations, while for light-
object stimuli, both ON and OFF populations perform well. This
shows that this asymmetry appears to be robust, and not due to
the idiosyncrasies of a particular spatial arrangement of cells.

The performance of the laboratory-recorded RGC popula-
tions at the motion decoding task is presented in Figure 3C. In
parallel with the results in Figure 3A, the OFF populations out-
perform the ON populations at the dark-object motion decoding
task, but not the light-object decoding task, across many levels of
task difficulty. To establish significance (Fig. 3C, asterisks), p val-
ues were calculated with a one-tailed permutation test (Moore
and McCabe, 2006), where the measured decoding performance
difference was compared to the distribution of differences that
were obtained by randomly assigning cells to either class (ON
or OFF).

To determine whether the modest differences in Figure 3 be-
tween A and C (the convergence of the performance curves in C
for dark objects and the overall more jagged appearance) are
consistent with the effect of sampling populations from a finite
pool of cells, we used a bootstrap technique. Specifically, we re-
peated the virtual experiment, this time drawing from model
neurons in a finite pool, comparable to the size of a recorded data
set. Model parameters used in this virtual experiment were drawn
from the same cell recordings as the data in Figure 3C. The results
of 25 such virtual experiments are shown in Figure 3B: each trace
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corresponds to a simulated experiment in
which 50 model cells of a given class were
randomly chosen, and the decoding anal-
ysis was performed over draws (each with-
out replacement) of 20 cells from this
finite pool. Again it is clear that, on aver-
age (though individual traces vary from
each other), OFF cell populations per-
form better than ON populations at the
dark-object motion task, while both pop-
ulations perform well at the light-object
motion task. Moreover, the behavior in
the original virtual retina analysis (Fig.
3A) was well within the range of the boot-
strapped curves (Fig. 3B).

To ensure that details of the decoding
measurements did not influence the re-
sult, we repeated the calculations in Figure
3C in several other ways, specifically, us-
ing smaller population sizes (Fig. 4A), us-
ing smaller bin sizes (Fig. 4B), and
omitting the on-diagonal elements (Fig.
4QC). In each case, the result remained the
same: OFF populations were significantly
better than ON cells at signaling moving
dark objects, whereas there was no signif-
icant difference between ON and OFF
cells for the light objects. We also per-
formed the decoding under conditions
that do not assume Poisson firing rates,
using a multinomial decoding model,
dividing rates into quartiles, and found
that the results remained the same (OFF
populations outperformed ON popula-
tions for four of five conditions on the
dark-object task; no significant differ-
ence for the light-object task; data not
shown).

To also ensure that speed and contrast
of the stimulus were not critical for the
observed asymmetries, we conducted vir-
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Figure3.  ONRGCpopulations discriminate motion direction poorly for dark objects, while OFF RGC populations perform well for
bothlightand dark objects. Each panel shows the performance (fraction correct) of populations of 20 ON or 20 OFF RGCs in signaling
the direction of coherent motion, across a range of task difficulties (the number of stationary distractors). In 4, the populations are
generated by drawing 20 neurons, without replacement, from an infinite pool of model neurons. Error bars indicate 1 SD, as
estimated from 20 draws for each kind of population (see Results). In B, each curve represents analysis of a single simulated
experiment in which populations were sampled (without replacement) from a finite pool of 50 ON and 50 OFF model RGCs. Error
bars indicate 1SD across the 20 populations in each simulated experiment. This indicates that recordings of 50 ON and 50 OFF cells
should provide an adequate data set to identify a difference in performance in the CM task. € shows the decoding analysis of a
population of electrophysiological recordings of ON and OFF RGCs roughly matching the pool sizes in B, demonstrating an ON cell
deficit in the dark-object (M task and no difference between ON and OFF populations for the light-object CM task. Asterisks indicate
performance differences with p << 0.05 (by a permutation test, see Results). Error bars indicate 1 SD across 20 resamplings of the
populations used for decoding.

tual experiments using faster (140%) and

slower (50%) speeds (but with the same

stimulus duration; Fig. 4E), as well as lower (50%) contrast (Fig.
4F). In each case, the virtual experiments yielded the same asym-
metries as they did for the original stimulus (Fig. 4D).

The calculations shown in Figure 4 also allow us to assess the
possibility that the similarity between ON and OFF population
performance for the light object condition is due to a saturation
of performance (e.g., due to the differences in Weber contrast).
For all analyses shown in Figure 4 (except for B, top), the perfor-
mance is well below saturation, yet the similarity between the ON
and OFF populations for decoding the light-object stimuli
remains.

Task performance is driven by the population activity of non-
DS cells

Since this motion decoding task has a strong directional component,
itis natural to ask whether DS ganglion cells are playing a significant
role in these results, or alternatively that the directional signal in this
task is carried by the population activity of non-DS responses. We
found that the latter is the case. To make this assessment, we first
identified the cells that displayed direction-selective responses to the

CM stimulus in our populations (DSI > 0.3 with 95% confidence;
see Materials and Methods). Example responses from DS and
non-DS cells are shown in Figure 5A; using this criterion, 28 of 359
ON and OFF cells were identified as directionally selective. (Note
that this does not identify all DS cells, only those whose DS asymme-
try could contribute to the task, because it is manifest at the orienta-
tion of the motion path that occurs in the CM stimulus.)

We next tested whether removal of these cells from the popu-
lations altered our results. As is shown in Figure 5B (confusion
matrices for the same level of task difficulty as in Fig. 2B, C) and
Figure 5C (a summary of performance across all levels of task
difficulty), removal of DS cells had little overall effect and did not
change the population coding asymmetries between ON and OFF
cells. Since there is a subtle difference when DS cells are excluded
(lowering the performance of ON and OFF populations for the
light object stimuli; compare right panels of Figs. 3C, 5C), we
cannot rule out a small contribution of DS activity to the decod-
ing. However, these results show that the primary source of in-
formation for this task is distributed across the population of
non-DS cells, rather than contained in the activity of the small
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Coding asymmetries between ON and OFF populations are robust to details of the stimulus and of the decoding measurements. A—C, Decoding the recorded RGC responses in several

different ways yields the same asymmetries as the main results (compare toFig. 3C). A, Decoding with fewer cells in each population (10 vs the original 20). B, Decoding with finer bins (62.5 and 31.25
ms). €, Decoding while excluding on-diagonal elements from the confusion matrix (to rule out results driven by idiosyncrasies of the stimulus). For A-C, asin Figure 3, asterisks indicate performance
differences with p << 0.05 (by a permutation test; see Results), and error bars indicate 1 SD across 20 resamplings of the populations used for decoding. D-F, Virtual experiments reproduce the same
asymmetries across different stimulus speeds and contrasts. D, Average model population performance for the original (M stimuli (averages taken across the traces in Fig. 3B). E, Average
performance for faster (140%) and slower (50%) speed stimuli. F, Average performance for lower (50%) contrast. For D—F, error bars indicate 15D across 25 simulated experiments.

subset of cells that are directionally selective, and the DS cells do
not contribute to the asymmetry in performance between ON
and OFF populations for the dark-object CM stimuli.

The slight loss of performance when DS cells are removed
again shows that the similar performance of ON and OFF cells for
the light-object CM stimulus is not merely because performance
is at saturation for both cell classes.

Differences in performance between ON and OFF cell
populations are related to an interaction between linear and
nonlinear characteristics

Having ruled out direction selectivity of individual cells as an
explanatory factor, we next focused on which physiological dif-
ferences between ON and OFF RGCs at the population level
could be contributing to the result.

First, we characterized several properties of the cells in our
data set that are known to vary between ON and OFF RGCs.
These include peak firing rate, latency of response, duration of
response, receptive field size, nonlinearity of the response, and
the degree to which responses were biphasic (for how these are

calculated, see Materials and Methods). Figure 6, A and B, shows
how the physiological measures differ between ON and OFF cells
at the level of individual neurons: Figure 6A for the entire popu-
lation, and Figure 6B for the cells from a single cohort of retinas
(in this case, dark-object CM experiments with 2, 6, and 10 sta-
tionary distractors). Figure 6C shows, not surprisingly, that when
populations of 20 cells are randomly drawn from these cohorts,
the mean values of the parameters show the same kinds of asym-
metries as do the individual neurons.

The asymmetries mean that while individual ON and OFF
RGCs cover a broad distribution of values, and these distribu-
tions have substantial overlap, many of the differences between
the two populations are significant (for a statistical summary of
the data in Fig. 6A, see Table 1). For several physiological param-
eters (including receptive field size, peak firing rate, and the
degree of nonlinearity), these differences are consistent with pre-
vious reports in a wide range of species (Chichilnisky and Kalmar,
2002; Carcieri et al., 2003; Zaghloul et al., 2003; Balasubramanian
and Sterling, 2009; Molnar et al., 2009). Measurements relating to
temporal kinetics (response latency, response duration, and bi-
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population performance across task difficulties: ON non-DS populations performed poorly in the dark-object CM task, whereas OFF non-DS populations performed well in the light- and dark-object

(M tasks (compare Fig. 3C). Asterisks (significance) and error bars were calculated as in Figure

phasic index) appear to be less consistent across species however:
while the ON pathway was found to have faster responses than
the OFF pathway in primate ganglion cells (Chichilnisky and
Kalmar, 2002), the opposite was reported in salamander bipolar
cells (Burkhardt, 2011), salamander ganglion cells (Burkhardt et
al., 1998; Gollisch and Meister, 2008), and cat LGN cells (Jin et al.,
2011b). We find that OFF RGCs have a shorter response latency
and duration than ON RGCs in our data set, and that OFF cells
have a more biphasic response than ON cells. We also find that
the overall temporal kinetics and latency of RGC responses in our
data set (consistent with previous reports in mouse; Carcieri et
al., 2003) are similar to the latencies also reported in salamander
(e.g., Burkhardt et al., 1998), and are longer than latencies found
in primate (Chichilnisky and Kalmar, 2002) or cat (Kuffler,
1953).

To determine whether our findings could be ascribed to one of
these asymmetries, we repeated the decoding procedure using
only populations of cells from a single cohort for which these
physiological properties are matched. The strategy is illustrated
in Figure 7A. The top row reproduces the distributions of each
index’s population means within the cohort, as shown in Figure
6C, and highlights the area in which the distributions overlap. For
each index, we then chose 20-neuron populations randomly
from this overlapping region, using a rejection sampling algo-
rithm (Press et al., 2007). The bottom two rows of Figure 7A show
the mean index values across ON and OFF populations drawn
using the rejection sampling, confirming that this selection pro-
cedure yielded populations that were well matched, despite the
mismatch in the original data set from which they were drawn.

Figure 7B shows how matching each physiological parameter
affects decoding performance for the dark-object CM task. As can

3C

be seen, matching populations for some properties (e.g., peak
firing rate and nonlinearity index) reduces the decoding perfor-
mance disparity between ON and OFF RGCs somewhat. How-
ever, in all cases, a substantial disparity remained—even when
selecting matched populations required sampling from the ex-
tremes of the distribution. We also considered two other variants
of the nonlinearity index for matching the populations, and these
led to the same conclusion (data not shown): the nonlinearity
index of Chichilnisky and Kalmar (2002), based on fitting expo-
nential rather than spline models to cells, led to the same reduc-
tion in the decoding disparity as the nonlinearity index shown in
Figure 7B, and an index based on the cumulative change in slope
of the spline nonlinearity led to a slightly smaller reduction.

Since the response duration parameter (Fig. 7A, first column)
can be used to subdivide ON cells into sustained and transient
subgroups (Carcieri et al., 2003), we performed an additional
check for this parameter, separately analyzing the ON sustained
(response duration >200 ms) and transient (response duration
<200 ms) subgroups. For both subgroups, the asymmetry in
decoding performance between ON and OFF populations
remained.

Finally, we performed a parallel rejection-sampling analysis
for the light-object CM task (for which there was no difference in
decoding performance of the original ON and OFF cell popula-
tions). Not surprisingly, matching populations for each of the
parameters did not change this finding (data not shown). Thus,
no individual property studied here was responsible for the
disparity in decoding performance between ON and OFF RGC
populations.

Perhaps it is not so surprising that none of these individual
properties account for the disparity, as these are only indirectly
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Figure 6.  Asymmetries in physiological properties between ON and OFF RGCs. A, Distribution of six indices of physiological properties (response duration, response latency, receptive field
diameter, peak firing rate, degree of nonlinearity, and biphasic index; see Materials and Methods for details) across all recorded ON (V = 238) and OFF (N = 140) RGCs. (Figure legend continues.)
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Table 1. Summary of statistics for physiological characteristics shown in Figure 64

Response Peak RF
duration response  diameter Peakfiring  Nonlinearity Biphasic
(ms) latency (ms) (wm)  rate (spikes/s) index index
ON (V= 238)
Mean 256 208 148 36 45 0.61
Median 231 206 14 28 26 0.54
D 126 34 4 27 56 0.41
Range 90-505 148-291  100-229 3-89 —0.2-15.5 0.32-0.91
OFF (V= 121)
Mean 210 190 137 39 59 0.76
Median 185 157 134 35 45 0.73
D 120 35 27 22 6.6 0.32
Range 85-472 143-235  101-196 11-84 —0.7-18.6 0.40-1.10
*KX¥ *X¥ *% * *XK

For each parameter, the table contains the mean, median, SD, and 90th percentile range (5 to 95%) for ON (top) and
OFF (middle) cells. For most parameters, there is extensive overlap in the distribution of values among individual ON
and OFF cells, but the population mean values differ significantly for all parameters except peak firing rate (bottom).

*p < 0.05; **p < 0.01; ***p < 0.001 (unpaired ¢ test, two tailed).

related to information transmission. The ability of a neuron to
transmit information in a given context depends, fundamentally,
on the range of firing rates that it can produce and how reliably
they can be distinguished. This in turn depends on how the spa-
tial properties, temporal properties, and nonlinear behavior of a
neuron interact. Since the rejection sampling approach did not
allow us to examine the interaction of parameters (because it
would require selecting populations that were matched for two or
more parameters simultaneously, and there was often very little
overlap, as can be seen in Fig. 6D), we used a more integrated
approach instead.

The approach we took was to use the LN model as a conve-
nient way to dissect factors related to stimulus encoding and trace
their interactions. We first examined how these interactions de-
termine the range of firing rates produced by a cell, and next took
into account how reliably the firing rates can be distinguished.

The factors contributing to the range of firing rates are shown
for several example neurons in Figure 8. The linear filters for two
ON cells (left) and two OFF cells (right) are shown in Figure 84,
and the combined effect of these filters and the ensuing static
nonlinearity on signaling are shown in B. In each case, the first
column shows the distribution of the signal output of the model
linear filter for two stimuli (the light and dark CM stimuli). The
second column shows the shape of the model spline nonlinearity.
The abscissa corresponds to inputs to the nonlinearity (which is
the signal that is the ouptut of the linear filter). The entire axis
covers the range of filtered signal values under NS conditions,
since of the four stimuli used in this study (NS, WN, dark-object
CM, and light-object CM), the range produced by NS stimuli was
the greatest. The narrower range sampled by the CM stimuli is
shown by the thickness of the line in the middle column: the
thicker portion of the operating curve corresponds to the 5th to
95th percentile range of CM stimuli, and the thinner portion
corresponds to the same percentile range for the NS stimulus.

Critically, the range of firing rates in response to a stimulus

<«

(Figure legend continued.) B, Distribution of these indices for the cohort of cells tested with
the dark-object CM stimuli at difficulties 2, 6, and 10; the ON and OFF RGCs display the same
asymmetries as the entire population. ¢, Distribution of the mean values of the indices from
populations of 20 cells drawn randomly from the cohort in B; as expected, the distributions
show the same kinds of asymmetries asin A and B, but are more nearly Gaussian. D, Covariation
of the indices for individual cells (top right) and for the means across random 20-cell popula-
tions (bottom left).
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depends on how much of the operating curve of the nonlinearity
is occupied by the linear filter signals, and where this range lies in
relation to the shape of its operating curve. In some cases (the
dark CM stimulus for Neuron 1 and both stimuli CM stimuli for
Neuron 2), a substantial portion of the range sampled by the
linear filter signals occupies a section of the operating curve that
is flat. In other cases (both CM stimuli for Neurons 3 and 4), this
range mostly occupies the rising portion of the operating curve.
When a portion of the linear filter signal occupies a flat section of
the operating curve, many input values are mapped to a single
output value, and the range of output firing rates is reduced. In
contrast, no such reduction occurs when the linear signal values
are confined to the rising portion of the operating curve. In this
way, the range of firing rates produced by a cell reflects an inter-
action between the linear filter and the shape and position of the
nonlinearity’s operating curve. The third column of the examples
in Figure 8B shows the result of this interaction: the distribution
of firing rates that emerge from the nonlinearity.

Because our focus is on differences in signaling motion for the
light CM and dark CM conditions, the key point is whether these
ranges differ for the two CM stimuli. Note that such a difference
can only arise as a result of a nonlinearity: if the operating curve
were a straight line, then light and dark CM stimuli would pro-
duce output ranges that have the same breadth (since the linear
signal distributions shown in the first column are always mirror
images of each other for the two stimuli of opposite contrast).
However, the linear filter’s characteristics are nevertheless crucial
for determining the nature of this difference, because the linear
filter determines the portion of the operating curve (e.g., flat
portion vs rising portion) that is relevant for each stimulus type.

Across the cell populations, we find that this interaction be-
tween linear filter signals and the shape of the nonlinearity ac-
counts for the overall difference in the way that ON and OFF cells
carry information about light and dark CM stimuli (Fig. 8C,D).
The first columns show that the range of the linear filter signals
for light and dark CM stimuli are similar between the two cell
classes. However (middle columns), a difference emerges when
the effects of the nonlinearity are taken into account, because
these ranges occupy different portions of the nonlinear operating
curve. For dark stimuli, OFF cells have a greater firing rate range
than ON cells (Fig. 8C), whereas for light stimuli (Fig. 8D), they
are approximately similar.

This observed difference continues to hold when we take a
noise estimate into account. Noise is given by the square root of
the variance, which, under the Poisson assumption, is propor-
tional to the mean firing rate. Thus, we use the range of firing
rates divided by the square root of the mean firing rate as an
estimate of firing rate signal-to-noise ratio (SNR). When we con-
sider this measure of SNR, we find the same pattern as was seen
for the firing rate range: OFF cells provide more signaling capac-
ity than ON cells for the dark-object CM stimuli (Fig. 8C, last
column; p < 0.001, unpaired ¢ test, two tailed), whereas ON and
OFF cells provide similar signaling capacity for the light-object
CM stimuli (Fig. 8D, last column; p ~ 0.3). This overall pattern
also holds if other percentile ranges are chosen as a measure of
signal range (data not shown).

Finally, to confirm that the asymmetries in performance of
ON and OFF populations are related to this measurement of the
firing rate SNR, we applied the rejection-sampling analysis of
Figure 7 to the SNR measures of Figure 8, C and D. Note that
unlike the intrinsic neural properties included in Figures 6 and 7,
the SNR measures are stimulus-specific and are calculated sepa-
rately for the light- and dark-object CM stimuli. As mentioned
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Differencesin decoding performance between ON and OFF populations for the dark-object CM task persist when populations are equated for individual physiological parameters. 4, The

rejection-sampling procedure for selecting equated populations. For each index, the top row shows the distribution of the population of means of randomly selected 20-cell ON and OFF populations
(asin Fig. 60) in the cohort of cells tested with the dark-object CM stimuli at difficulty levels 2, 6, and 10. Populations that lie in the overlap (black region) are then selected for decoding analysis. The
distributions of mean parameters across random populations selected from this region are shown in the second row (for the matched ON populations) and third row (for the matched OFF
populations). B. Performance of the matched populations of A in the dark-object CM task decoding task. In each case, the ON cell populations continued to display deficits relative to OFF cell
populations, meaning none of these parameters taken individually explain the performance gap. Asterisks (significance) and error bars were calculated as in Figure 3C.

above, unselected ON and OFF cells have a different distribution
for the SNR index when calculated for dark-object CM stimuli
(Fig. 8C). When populations of ON and OFF RGCs are selected
so that they match according to this parameter (Fig. 9A), the
performance difference between them is eliminated (Fig. 9B). For
the light-object CM stimuli, the SNR distributions were similar
for individual ON and OFF cells (Fig. 8D). Correspondingly, the
population distributions overlapped heavily (Fig. 9C), and, as
expected, choosing populations for which these indices were
matched does not change performance (Fig. 9D). These results
confirm that the above SNR measures, which reflect an interac-
tion of linear and nonlinear response components with the stim-
ulus, account for the essential difference between ON and OFF
population that drives the performance asymmetries.

Discussion

Here, using the early visual system as a model of parallel process-
ing, we identified a novel aspect of the role the different cell
classes play in carrying information, and showed that it is ex-
plained by an interaction between the cells’ linear and nonlinear
properties. Previous results have focused on ways that linear
(Sagdullaev and McCall, 2005; Balasubramanian and Sterling,
2009; Pandarinath et al., 2010) and nonlinear (Pitkow and Meis-
ter, 2012) properties in isolation play important roles in coding.
Here we found a surprising asymmetry in population coding—
that OFF cells can transmit motion information about moving
light and dark objects, but that ON cells have a deficit at trans-
mitting information about moving dark objects—and found that
it reflects a difference in how the cells’ linear and nonlinear prop-
erties work together, rather than how either work by themselves.

To obtain measures of these linear and nonlinear properties
from physiological recordings of individual neurons, we param-
eterized their input—output relationships with an LNP model
that faithfully captures retinal input—output relationships for a
broad range of stimuli (for a general review of LNP models for
retina and other systems, see Simoncelli et al., 2004; Paninski et
al., 2007; Nirenberg and Pandarinath, 2012; Bomash et al., 2013).
These models are phenomenological models, meaning that they
serve to characterize ganglion cell response properties, even
though their computational components do not specifically map
onto physiological mechanisms. We can use them, as we do here,
to understand how the operational characteristics of the circuitry
(spatial and temporal sensitivity, nonlinearity, etc.) shape gan-
glion cells’ specific visual processing properties, even without
complete knowledge of the physiological mechanisms that un-
derlie the operations (e.g., the specific synapses, ion channels,
and wiring between cell types). Here, we showed that this
approach works even when the kind of information that a cell
carries cannot be ascribed to a single component of the phe-
nomenological model, but is a result of how the components
interact.

The role of models in this work

Aside from their essential role in this work (and in many other
studies) of providing a parameterization of cell properties, mod-
els were used for two other crucial aspects of this study. The first
of these is their role in the reconstruction experiments. The re-
constructions were designed to assay the behavior of a retinal
patch representing a significant fraction of the visual field, so that
the number of ON and OFF RGCs required was quite large
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Figure 8. Differences in decoding performance between ON and OFF populations reflect an interaction between linear and nonlinear cell properties. A shows model linear filters
(spatial and temporal components) for two ON cells (left) and two OFF cells (right). B shows how signaling is driven by these filters with the static nonlinearity for the four example
neurons. For each of two ON neurons (left) and two OFF neurons (right), the first column shows the distribution of signals in the output of the linear filter L for the dark-object and
light-object CM stimuli. The middle column shows each cell’s nonlinearity N, with the heavy portion of the curve indicating the 90th percentile range of signals that are the outputs of the
linear stage in the first column. The final column shows the distribution of firing rates, which correspond to the output of the nonlinearity. The firing rate range thus reflects both the shape
of the nonlinearity and the range of filtered signal values that are incident on it from the linear filter. As is typical of the population, the ON cells have a narrower range of firing rates for
the dark-object CM stimulus than for the light-object CM stimulus, while for the OFF cells, ranges are comparable (90th percentile ranges indicated by the dark gray bar). € (dark-object
(M) and D (light-object CM) summarize this analysis across the population. For each kind of stimulus, ON and OFF cells have a similar range of signal values at the output of the linear filter
(first column), but the range of firing rates (middle column) shows an asymmetry: for dark CM stimuli, it is narrower for ON cells than for OFF cells, whereas for light CM stimuli, it is broad
for both. This difference (for dark objects but not for light objects) is maintained when the effects of Poisson-like variability are taken into account by a simple measure of SNR (last
column).
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A, The rejection-sampling procedure selects populations of ON and OFF cells for which the SNR measure on the dark-object CM stimulus is matched. B, Performance of the matched populations of
Ain the dark-object (M task decoding task. Unlike the measures tested in Figure 7, matching for the SNR measure eliminates decoding performance differences between ON and OFF populations.
C, The SNR measure for the light-object CM stimulus exhibited less disparity between ON and OFF populations. D, Performance of the matched populations of Cin the light-object (M task decoding
task were similar to the randomly chosen populations, with no significant difference between ON and OFF cells. Asterisks (significance) and error bars were calculated as in Figure 3C.

(~20,000 in this case). Since this number of cells would be very
difficult to obtain in experiments (and would involve the use of a
large number of animals), we instead used models to simulate
these responses. These reconstructions led us to the hypothesis
that ON cells would display a selective deficit in signaling the
motion of dark objects.

Additionally, models played a crucial role in designing exper-
iments that would allow us to test the primary hypothesis about
ON cells directly with recorded responses. By simulating experi-
ments for different versions of a decoding task, we determined a
design that would capture the phenomena under study (direction
of motion) and that could be implemented using a quantity of
cells, stimuli, and repetitions that is practical for a physiological
experiment. This avoids experimental designs that would likely
fail due to data limitation or lack of sensitivity.

However, we emphasize that although models played a key
role in hypothesis generation and experimental design, the test of
the hypothesis relied on empirical data: decoding the responses of
RGC:s obtained in physiological recordings.

Implications for psychophysics
Our main finding is that differences in the linear and nonlinear
response components of RGC classes interact to yield asymme-
tries in their ability to carry information efficiently about light
and dark objects. Because differences in the component proper-
ties of ON and OFF cells are common across vertebrates includ-
ing primates, these differences might play a role in the ability of
ON and OFF cells to enable perception of motion and other
stimulus qualities in humans.

A direct psychophysical test of an RGC class’s capabilities is
difficult, as it would require that other cell classes be selectively

inactivated. However, a relevant natural experiment in humans
does exist. A rare mutation in the GRM6 gene selectively inacti-
vates ON bipolar cells. Individuals who carry this mutation lack
the normal ON cell responses but have normal or near-normal
visual acuity and, interestingly, no difference in perceiving light
and dark words flashed under photopic conditions (Dryja et al.,
2005). While perhaps puzzling at first, these results correlate with
our findings here, as we find that OFF RGCs can reliably signal
both light and dark objects thanks to interactions between the
cell’s linear and nonlinear characteristics. It stands to reason that
(despite the overall differences we observe between mouse and
primate in RGC temporal kinetics) a similar phenomenon may
underlie the ability of the retinas of these individuals to signal the
appearance of light and dark stimuli since stimulus appearance,
like stimulus motion, leads to a transient signal that interacts with
the linear and nonlinear characteristics of the cell. Note though,
that our results bear specifically on the normal functioning of the
retina, while the retinas of individuals studied by Dryja et al.
(2005) were perturbed by mutation. Other factors related to this
perturbation (the loss of the ON pathway) may therefore contrib-
ute: for example, the addition of transient ON responses (Rent-
eria et al., 2006), changes in contrast sensitivity (Manookin et al.,
2008), and changes in the baseline firing rate and degree of recti-
fication (Zaghloul et al., 2003; Molnar et al., 2009) in the remain-
ing OFF pathway.

Several psychophysical studies involving subjects with normal
retinas have demonstrated asymmetries in light and dark percep-
tion: decrements are more easily detected than increments (Bo-
wen et al., 1989; Kremers et al., 1993; Buchner and Baumgartner,
2007), and darks are processed more quickly than lights (Kom-
ban et al., 2011). It has been hypothesized that the physiological
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basis of these observations lies in the differences between the
nonlinearities in ON and OFF RGCs: that the more linear re-
sponse of ON cells allows them to signal both increments and
decrements, while the more rectified OFF cell responses only
allow them to signal decrements (Chichilnisky and Kalmar,
2002). Based on these physiological findings, it stands to reason
[as indicated in the study by Chichilnisky and Kalmar (2002)]
that decrements have a perceptual advantage: decrements can be
processed by either pathway, but increments are only processed
by the ON pathway.

Our results indicate that the situation is more complex: a cell’s
nonlinearity cannot be viewed in isolation, as its effect on signal-
ing depends on the range of input values delivered by the preced-
ing processes; that is, the participation of a cell in a task can
depend not only on its nonlinear function, but also on how its
spatiotemporal sensitivity interacts with the characteristics of the
stimulus. In this study, we find the same differences between ON
and OFF RGC nonlinearities that have been reported previously
(Chichilnisky and Kalmar, 2002; Zaghloul et al., 2003, Molnar et
al., 2009), but for the moving object stimuli, the range of signals
incident on them means that increments are processed by both
cell classes, while decrements are processed primarily by one.
Therefore, if the reported psychophysical asymmetries can be
ascribed to whether one or both RGC classes are recruited in
signaling, the perceptual advantage of darks over brights would
reverse for stimuli of the appropriate spatiotemporal character-
istics. Alternatively, if darks continue to have a perceptual advan-
tage across the spatiotemporal gamut, one can infer that
downstream factors (Jin et al., 2008, 2011a,b; Yeh et al., 2009;
Xing et al., 2010) play a dominant role.

Relevance to other sensory systems

Our primary conclusion is that the role of a cell class in popula-
tion coding is determined not by the cells’ individual physiolog-
ical properties, but rather by how their linear and nonlinear
characteristics combine. This finding is likely to extend to other
systems, as the basis of the finding was a simple interaction of the
linear and nonlinear components of a phenomenological model
with wide applicability. Particularly conspicuous candidates
would include other systems where LNP cascade models have
already been employed, such as the early auditory system (Cala-
brese et al., 2011), and systems that are known to have separate
linear and nonlinear components relevant to stimulus encoding,
such as in the electrosensory systems of some fish (Chacron,
2006).
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