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Abstract
To understand the functional connectivity of neural networks, it is important to develop simple
and incisive descriptors of multineuronal firing patterns. Analysis at the pairwise level has proven
to be a powerful approach in the retina, but it may not suffice to understand complex cortical
networks. Here we address the problem of describing interactions among triplets of neurons. We
consider two approaches: an information-geometric measure (Amari, 2001), which we call the
“strain,” and the Kullback-Leibler divergence. While both approaches can be used to assess
whether firing patterns differ from those predicted by a pairwise maximum-entropy model, the
strain provides additional information. Specifically, when the observed firing patterns differ from
those predicted by a pairwise model, the strain indicates the nature of this difference – whether
there is an excess or a deficit of synchrony – while the Kullback-Leibler divergence only indicates
the magnitude of the difference. We show that the strain has technical advantages, including ease
of calculation of confidence bounds and bias, and robustness to the kinds of spike-sorting errors
associated with tetrode recordings.

We demonstrate the biological importance of these points via an analysis of multineuronal firing
patterns in primary visual cortex. There is a striking scale-dependent behavior of triplet firing
patterns: deviations from the pairwise model are substantial when the neurons are within 300
microns of each other, and negligible when they are at a distance of > 600 microns. The strain
identifies a consistent pattern to these interactions: when triplet interactions are present, the strain
is nearly always negative, indicating that there is less synchrony than would be expected from the
pairwise interactions alone.

Keywords
Maximum entropy; Pairwise model; Multineuron; Synchrony; Information geometry

Introduction
The organization of neurons into networks and the resultant emergence of functional circuits
is a central theme in neuroscience. To understand this process, it is important to determine
the rules which govern how individual neurons interact with each other to form a network.
Most often, these interactions are studied at the level of correlations between pairs of
neurons (Kohn & Smith, 2005, Meister, Lagnado & Baylor, 1995). Even though this is the
simplest possible interaction, pairwise interactions have been shown to account, nearly
completely, for the patterns of population activity in an important model system, the retina
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(Schneidman, Berry, Segev & Bialek, 2006, Shlens, Field, Gauthier, Grivich, Petrusca, Sher,
Litke & Chichilnisky, 2006). However, this simplification may not suffice in general, and
pairwise couplings – which could simply arise from shared synaptic input – are only the first
step in understanding network interaction rules.

With this in mind, here we focus on an approach to characterize firing patterns among
triplets of neurons. This level of analysis is significant because it points to active processing
by the neural circuitry. For instance, the activity of logic gates (Feinerman, Rotem & Moses,
2008, Vogels & Abbott, 2005), cell assemblies (Pastalkova, Itskov, Amarasingham &
Buzsaki, 2008) and synfire chains(Abeles, 1991), would lead to an excess or shortage of
synchrony, compared to the predictions of purely pairwise interactions.

To determine whether an excess or shortage of synchrony is present in experimental data,
we employ an information-geometric measure (Amari, 2001) to characterize firing patterns
of triplets of neurons, which we call the “strain.” We compare this approach with one based
on the application of a goodness-of-fit measure to pairwise maximum-entropy models
(Schneidman et al., 2006, Shlens et al., 2006, Tang, Jackson, Hobbs, Chen, Smith, Patel,
Prieto, Petrusca, Grivich, Sher, Hottowy, Dabrowski, Litke & Beggs, 2008, Yu, Huang,
Singer & Nikolic, 2008). Both approaches indicate the extent to which triplet firing patterns
cannot be predicted from pairwise statistics. However, for the purpose of characterizing
ensemble behavior, the strain has an important advantage: it is a signed quantity, rather than
a measure of fit. That is, the strain describes how the pairwise model fails (an excess vs. a
shortage of synchrony), not just whether it fails. Additionally, the strain has practical
advantages: as we show, its statistics are simple to calculate, it is asymptotically independent
of bin size, and it is relatively immune to the “lockout” problem that can affect
multineuronal recordings.

To illustrate these points, we use the strain to analyze multineuronal recordings in macaque
visual cortex. We analyze triplet firing patterns among groups of neurons separated by <300,
~600 and >1000 microns in area V1 of the anesthetized macaque. We find that the strain
identifies a consistent kind of departure of cortical firing patterns from the pairwise model,
that this departure is strongly scale-dependent, and that it is correlated with the strength of
pairwise interactions within the cluster.

Methods
Physiological preparation

All procedures were in accordance with the National Institutes of Health guidelines for the
use and care of experimental animals and were approved by the Weill Cornell Medical
College Institutional Animal Care and Use Committee. We recorded from area V1 of 12
anesthetized, paralyzed macaque monkeys (Macaca mulatta) using single tetrodes and a
three-tetrode recording array. The tetrode array had a T-configuration, with the near pair 600
microns apart and the third tetrode at an adjustable position, but no less than 1000 microns
from their midpoint.

Full details of the experimental preparation have been previously provided (Schmid,
Purpura, Ohiorhenuan & Victor, 2009, Victor, Mechler, Repucci, Purpura & Sharpee, 2006).
Recordings of extracellular action potentials were made only during periods when the
animal was held at a constant plane of anesthesia (an intravenous infusion containing 10 mg/
ml of propofol and 0.25 to 0.50 mcg/ml sufentanil, initially delivered at 2 mg/kg/hr propofol
then titrated based on heart rate and blood pressure). EEG was monitored from frontal leads
in 5 animals, and was characterized by mixed delta and theta activity.
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Analysis of multineuronal firing patterns was based on responses to pseudorandom
checkerboards (Reid, Victor & Shapley, 1997) presented at a frame rate of 67.6 or 100 Hz,
for 16 to 32 epochs of approximately 1 min each. Typically, the checkerboard consisted of a
13×13 array of checks, each of which typically subtended 0.25×0.25 degrees. As a check on
stability of overall responsiveness, we verified that firing rate was similar for the first and
second half of the collection period, and that the coefficient of variation in each epoch was
small (Figure S1). Orientation tuning was determined from responses to sinusoidal
luminance gratings of near-optimal spatial and temporal frequency prior to collection of
responses to pseudorandom checkerboards.

Data analysis
Single cell spiking activity was sorted from the raw extracellular recordings using an
algorithm based on principal components (Fee, Mitra & Kleinfeld, 1996). After spike
sorting, spike times were binned into 10 ms or 14.8 ms bins, depending on the frame rate of
the stimulus, yielding ~105 bins for each analysis. In each of our datasets, there were more
than 100 counts of each of the eight possible triplet firing patterns. Similar bin sizes (10–20
ms) have been used to characterize multi-neuron firing patterns in the retina (Schneidman et
al., 2006, Shlens, Field, Gauthier, Greschner, Sher, Litke & Chichilnisky, 2009, Shlens et
al., 2006), ex vivo cortex (Tang et al., 2008) and cat area 17 (Yu et al., 2008).

When multiple units isolated by a tetrode fire nearly simultaneously, their spike waveforms
sum at the recording tetrode, creating, at short timescales, events that cannot be spike-sorted.
This leads to a lockout window of 1.2 ms within which it is difficult to accurately measure
the frequency of near simultaneous activity from multiple neurons. We correct for these
missed simultaneous events by calculating (for an n-spike event) the number of possible
events assuming an independent assortment of spikes into a bin (10 ms or 14.8 ms), bin and
the number of events that can be observed given the constraint that no two neurons fire
simultaneously in a 1.2 ms slot. The ratio between these two numbers is a correction-factor
which conservatively assumes that neurons are no more correlated at timescales of ~1 ms
than they are at 10 ms. Further details on the lockout correction are provided in the
Appendix. Unless otherwise stated, the lockout correction has been applied to all analyses.

Characterization of neuronal firing patterns
We use two methods to characterize neuronal firing patterns, both based on how actual
firing patterns compare to the predictions of pairwise maximum-entropy models. The first
kind of approach – based on the Kullback-Leibler divergence – is identical to the one used
by several recent authors (Schneidman et al., 2006, Shlens et al., 2006, Tang et al., 2008, Yu
et al., 2008); the second, the “strain”, is based on the notions of information geometry
(Amari, 2001).

To describe these approaches and facilitate a comparison of them, we set up a common
notation. Our data consist of a set of observations of a network of M neurons (here, typically
M = 3). Each observation is a state vector, σ ⃗ = (σ1, σ2, …, σM), with the convention that σk =
+1 means that neuron k is firing, and σk = −1 means that it is not. We use N(σ ⃗) to denote the
number of observations in the state σ ⃗, and N to be the total number of observations (i.e., the
total number of analysis bins in the experiment). Thus, p(σ ⃗), the probability that the network
is in the state σ ⃗ is estimated by N(σ ⃗)/N. With this notation, the probability of firing for the jth
neuron, which we will denote p(j), is a sum over all p(σ ⃗) for which σj = 1:

(1)
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and the probability of joint firing for neurons j and k, which we will denote p(j,k), is a sum
over all p(σ ⃗) for which σj =1 and σk =1:

(2)

Kullback-Leibler approach—In the approach based on the Kullback-Leibler divergence,
the initial step is to fit the observations p(σ ⃗) to a pairwise maximum-entropy model:

(3)

where

(4)

The model parameters α ={αj} describe the tendency of each neuron to fire, and the
parameters β ={βjk} describe their pairwise interactions. The parameter values are
determined by the requirement that the firing probabilities pmodel(j) and pairwise firing
probabilities pmodel(j,k) match those observed. The goodness of fit of the model to the
observations is quantified by the Kullback-Leibler divergence,

(5)

The Kullback-Leibler divergence is a non-negative quantity - effectively a squared distance.
Following Shlens et al. (Shlens et al., 2006), we convert the Kullback-Leibler divergence
into a log likelihood ratio (LLR) per minute, according to the formula

(6)

where R is the number of bins (snapshots) per minute. The LLR thus indicates the relative
plausibility of the pairwise maximum-entropy model. Large negative values of the LLR
indicate that it is unlikely that the pairwise model accounts for the data, and hence, indicate
that higher-than-second-order multineuronal structure is present in the firing patterns. We
use base-2 logarithms for LLR values, so, for example, a LLR of -5 means that the
likelihood ratio for the pairwise model is 1/32 = 2−5.

We calculate confidence limits for the LLRs according to the method of Kennel et al.
(Kennel, Shlens, Abarbanel & Chichilnisky, 2005) We use a Markov Chain Monte Carlo
process to sample from the a posteriori distribution under a Dirchlet prior given the
observed joint firing counts. We then recalculate the pairwise maximum-entropy models
from 200 of these resampled datasets, and construct 95% confidence intervals from the
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Kullback-Leibler divergences of those models. We quote values obtained with a Dirichlet β-
parameter of 0; similar results were obtained with Dirichlet parameters of 0.5, 1, and 2. Bias
correction is calculated from the mean of these 200 resampled datasets. For our data, which
were well-sampled (~ 105 bins, >100 counts of each triplet firing pattern), confidence limits
were narrow and bias correction was negligible (see Figure 1). For further discussion on
these issues and alternative approaches in the undersampled regime, which are particularly
relevant for analyses of smaller datasets and larger populations of neurons, see (Kennel et
al., 2005, Martignon, Deco, Laskey, Diamond, Freiwald & Vaadia, 2000, Martignon, Von
Hasseln, Grun, Aertsen & Palm, 1995, Schneidman et al., 2006, Shlens et al., 2006).

The “strain”—The second approach we use to describe multineuronal firing patterns is
based on notions of information geometry (Amari, 2001). It applies most readily to analyses
of joint firing patterns of three neurons. Our datasets consist of recordings of M = 3, 4, and 5
neurons; for recordings of >3 neurons, we apply this analysis to all three-neuron subsets.
(See the Appendix for alternative ways to extend this approach to >3 neurons.)

For three neurons (M = 3), any set of firing patterns can be recast in the form:

(7)

where

(8)

Eq. (7) is identical to that of the pairwise maximum-entropy model (eq. (3)), except for the
addition of a γ-term that parameterizes the interactions of three firing states.

We note that the right-hand-side of eq. (7) is the first three terms of the complete
exponential expansion of the probability distribution p(σ ⃗), written for the special case of M =
3. In the general case of M neurons, the r th term has M!/(M − r)!r! parameters, one for each
way of choosing r of the M neurons. For the case of interest (M = 3), there is only one third-
order term, so we can simply write γ=γ123. Thus, for M = 3, eq. (7) is the full exponential
expansion, and is therefore guaranteed to provide an exact fit for the probability distribution
p(σ ⃗).

The exponential expansion approach has used by many authors in another form: with states
denoted by sk ∈ {0,1} and the r-th order parameters denoted by θ’s with r subscripts (Amari,
2001, Gutig, Aertsen & Rotter, 2003, Martignon et al., 2000, Martignon et al., 1995,
Nakahara & Amari, 2002). We use the {−1,1} designation here because it leads to a simpler
form for many of the equations below, and because it is natural for the Ising formulation
(Schneidman et al., 2006).

For the reader’s convenience, we summarize how these two forms are related. To begin, we
note that an expansion that terminates at order m has, as its exponent, a general polynomial
of order m in the M state variables (sk ∈ {0,1} or σk ∈{−1,1}). Moreover, these polynomials
differ by a simple change of variables: sk = (σk +1)/2. Thus, an expansion that terminates at
order m in one convention is equivalent to an expansion that terminates at the same order m
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in the other. This change of variables indicates the relationship between the θ-parameters
and the parameters of eq. (7). Specifically, a parameter of order r in one expansion is a
linear combination of the corresponding parameter in the other expansion, along with
parameters whose order is > r and ≤ m. As an example with r = 2 and M = 3: θ12= 4β12 −
4γ123 and β12=θ12/4+θ123/8. For the highest-order parameters in the two expansions (i.e., the
parameter of rank r = m), the relationship is particularly simple: the parameters differ only
by a scale factor, for example, γ123=θ123/8. The scale factor, 8, is 2r; the 2 corresponds to the
difference in the numerical values (+1 and −1) used to label the states.

For a complete exponential expansion – that is, when the termination order m equals the
number of neurons, M – the highest-order parameter in eq. (7) can be determined from the
state probabilities p(σ ⃗) in simple closed form. In our case of interest, r = M = M = 3. Here,
the value of this parameter (γ in eq. (7)) is given by

(9)

See for example eq. 124 of (Amari, 2001). Eq. (9) is also derived in the Appendix.

We call the quantity in eq. (9) the “strain.” Since it is logarithmic in the probabilities, it is an
example of a “surprise” (e.g., (Martignon et al., 1995,Palm, 1981,Palm, Aertsen & Gerstein,
1988)). We give it a special designation to emphasize that we are not considering the general
case of a full exponential expansion for M neurons, but focusing specifically on the third-
order term for triplets. We use the term “strain” to emphasize that it quantifies how a
pairwise-only model must be “strained” to accommodate the observed triplet firing patterns
– i.e., how a triangular interaction is not fully described by the pairwise interactions
corresponding to its edges.

For convenience, we rewrite eq. (9) in a notation in which state probabilities are denoted by
ps1s2···sM, where sk = 1 corresponds to σk =1 (firing), and sk = 0 corresponds to σk = −1:

(10)

As indicated above, other than the factor of 1/8, this is identical to the information-
geometric coordinate θ123 of (Amari, 2001).

The quantity γ quantifies the extent of departure of the observed probabilities from the
predictions of the pairwise model, but it does so in a manner that differs in several ways
from the Kullback-Leibler divergence. The most important difference is that it is a
coordinate, not a distance – so it can be positive, negative, or zero. When it is zero, the exact
parameterization (eq. (7)) reduces to the pairwise maximum-entropy model (eq. (3)), but
when it is nonzero, its sign describes how the observed probabilities depart from the
pairwise model. For instance, γ > 0 means that there are more simultaneous-firing events
than expected from the pairwise firing probabilities, while γ< 0 means that there are fewer.
Other differences between γ and the Kullback-Leibler divergence are discussed below.

Since γ is readily related to the estimated probabilities of each kind of event (via eq. (9)),
there are simple asymptotic forms for its bias and variance (see Appendix). The bias of the
naïve (plug-in) estimate is
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(11)

and its variance is

(12)

where (as above) N is the total number of observations. We debias estimates of γ by
subtracting the quantity in eq. (11), and use  for 95% confidence limits on values.
As shown in the Appendix and Figure A1, these asymptotic estimates are highly accurate
provided that there are at least 10 counts of each firing pattern.

Quantification of orientation tuning
Orientation tuning of individual neurons was determined from their responses to drifting
sine gratings of near-optimal spatial and temporal frequency, presented at each of 16
directions, φk = 2πk/16, k = 0, ···, 15 in pseudorandom order. (Schmid et al., 2009, Victor et
al., 2006). To quantify the orientation bandwidth of a neuron, we used the circular variance
of the firing rate rk obtained at the direction φk (Ringach, Shapley & Hawken, 2002):

(13)

The extreme values correspond to a neuron that responds to only one orientation (CV = 0),
and to a neuron that responds equally well to all orientations (CV=1). A typical oriented V1
neuron whose orientation tuning is a von Mises distribution with orientation bandwidth
(half-width at half-height) of π/8 (22.5 deg) has CV = 0.25.

To compare the orientation tuning of n neurons in a cluster, we calculated the orientation
bandwidth of each neuron (CV(j), j =1, … M), and compared this with the orientation
bandwidth of an “average” neuron, CVavg, whose response to each direction at each
direction is the average of the responses of the n neurons. This yielded an “orientation
tuning difference index” (ODI):

(14)

The extreme values of the ODI correspond to a cluster of neurons that have identical
orientation tuning (ODI = 0), and to a cluster of neurons each of which are narrowly tuned
but together cover all orientations ODI=1). For a triplet of neurons whose orientation tuning
half-width is π/8 (22.5 deg) and whose preferred orientations differ in steps of π/10 (18 deg),
ODI = 0.1; this corresponds approximately to the upper limit of our observed values (Figure
3).
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Results
To analyze multineuronal firing patterns and determine how they depend on distance, we
made recordings with a T-shaped array of three tetrodes (near pair 600 microns apart, third
tetrode >1000 microns from their midpoint) in primary visual cortex of the macaque. In
total, 102 neurons were recorded. Groups of simultaneously-recorded neurons were used to
form three categories of datasets: three or more neurons recorded at a single tetrode (27
datasets), at two nearby tetrodes (56 datasets) or three separate tetrodes (24 datasets). We
designate these categories according to the range of distances between the recorded neurons:
“<300 microns” refers to clusters of three neurons recorded at the same tetrode; “600
microns” refers to recordings of two neurons at one tetrode and a third neuron at a second
tetrode 600 microns away; “>1000 microns” refers to clusters in which each neuron was at a
separate tetrode. Each neuron was typically included in datasets belonging to two or more of
these distance categories. The single-tetrode data included four datasets in which four
neurons were simultaneously recorded, and three datasets in which five neurons were
simultaneously recorded.

Our specific focus is on how firing patterns depend on distance, and this means that we need
to compare recordings of neurons at multiple tetrodes with recordings obtained at a single
tetrode. As described in Methods, simultaneous recordings at one tetrode are potentially
confounded by a “lockout” – that when two neurons fire nearly simultaneously, spike-
sorting algorithms fail to identify them because the waveforms superimpose. (We note that
recently-developed spike-sorting algorithms may be able to resolve these overlaps (Franke,
Natora, Boucsein, Munk & Obermayer, 2009); nevertheless, it is desirable to have analytic
approaches that are insensitive to these errors.) We therefore begin with an analysis of how
the lockout impacts measures of multineuronal firing patterns.

Figure 1 illustrates the impact of the lockout correction on the LLR (Figure 1A) and the
strain (Figure 1B). For each measure, we compare the value obtained from the raw count
probabilities (abscissa), with the value obtained after lockout correction (ordinate). For the
log likelihood ratio, there is substantial scatter; for the strain, all points cluster very tightly
on the diagonal. That is, the strain is relatively unaffected by alteration in firing patterns due
to the lockout. There is an intuitive reason for this based on the nature of lockouts and the
formula for the strain, eq. (10). Typical lockouts cause two-neuron events to be
misinterpreted as a zero-neuron event, or a three-neuron event to be misinterpreted as a one-
neuron event. This is because in a lockout event, the waveforms of two spikes superimpose,
and thus prevent either one from being recognized. In eq. (10), these occlusions will shift
probabilities within the numerator, or within the denominator, but will not move a count
from the numerator to the denominator. Thus, miscounts due to occlusion of a pair have a
smaller effect on the strain than generic miscounts, because the strain recognizes
relationships between the 8 possible firing patterns. In contrast, the LLR, which is based on
the Kullback-Leibler divergence, does not recognize any relationship between the firing
patterns, and therefore cannot selectively discount the effects of pair occlusions.

Although the purpose of Figure 1 was to examine the impact of the lockout, it has another
obvious feature: the confidence limits for the LLR are proportionally much smaller than for
the strain. The larger confidence limits for the strain are a consequence of how these two
measures depend on the observed firing pattern probabilities. For the strain, all 8
probabilities p(σ ⃗) are weighted equally. Since counting statistics govern the uncertainty of
the estimates of p(σ ⃗), the uncertainty of the strain will be dominated by the uncertainty of the
most infrequent configuration, typically p111. In contrast, in the calculation of the Kullback-
Leibler divergence (eq. (5)), the discrepancies between observed probabilities p(σ ⃗) and the
model probabilities pmodel(σ ⃗) are weighted by the observed probabilities themselves.
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Consequently, the values that are most uncertain (i.e., the probabilities of the rarest events)
contribute the least to the LLR. However, even though the confidence limits for the strain
are substantially larger than for the LLR, the conclusions one can draw from the strain are
sharper, as we will see below. Finally, we note that for both measures, the bias is negligible
– because our data are well-sampled (~ 105 bins, >100 counts of each triplet firing pattern).

To determine how firing patterns depend on the distance between the recorded neurons, we
apply these measures to the three groups of datasets (<300 microns, 600 microns, >1000
microns). Figure 2 shows the results of the analysis, and reveals a striking dependence on
scale. In the <300 micron group (red symbols), the LLR per minute is often quite negative; it
is the only group for which values <−5 are found (Ohiorhenuan & Victor, 2007). This
means that the pairwise maximum-entropy model is a poor fit for many of the datasets, so
we anticipate that the strain will be significantly different from zero. This is in fact what is
found: for 55 of the 66 triplets in the <300 micron group, 95% confidence limits for the
strain excluded zero. Conversely, a nonzero value of the strain was found in only 6/56
recordings in the 600-micron group (blue symbols), and 4/24 recordings in the >1000-
micron group (black symbols).

The <300 micron datasets include several clusters of M ≥ 4 neurons. For these datasets, the
LLR calculation reflects the fit to all 2M firing patterns, while the strain is calculated
separately for each 3-neuron subset. As shown in Figure 2, the strains for these datasets are
generally similar to those for the M = 3 datasets, while the LLR’s are much more negative.
This allows for two inferences. First, our finding that the strain values are similar for the M
≥ 4 - and the M = 3- datasets is further empirical evidence for the robustness of the strain in
the face of spike-sorting artifacts, which are more severe when more neurons are recorded
on the same tetrode. Second, the finding that the LLR is generally more negative for the M ≥
4 -datasets indicates that the failure of the pairwise model is not simply an artifact of
examining only three neurons.

Importantly, the strain allows us to go beyond saying that the pairwise model fails: it tells us
how it fails. Specifically, in 52 of 55 triplets in the <300 micron group for which the strain is
nonzero, it is negative. That is, in the overwhelming majority of recordings of local clusters,
the number of triplet firing events is less than anticipated from the number of pairwise
firings. In the 600-micron group, all 6 of the significantly nonzero values of strain were
negative too (Figure 2C). In the >1000 micron group, there was no evident bias: 3/20 values
of the strain were significantly negative, and 1/20 was significantly positive. In sum, we find
a highly consistent pattern in local clusters – fewer multineuronal firing events than
expected from the pairwise statistics – and that this pattern falls off rapidly with distance.
This behavior is summarized by the boxplots of Figure 2D.

We considered two kinds of origins for these triplet interactions: common stimulus driving,
and intrinsic network interactions. Common stimulus driving could occur if the neurons
have similar receptive fields, and are therefore simultaneously driven by the same subset of
stimuli. Since all neurons’ receptive fields had approximately the same location, we indexed
the similarity of their receptive fields by comparing their orientation tuning (eq. (14)). As
shown in Figure 3, strain values are uncorrelated with the similarity in orientation tuning,
thus suggesting that common stimulus driving is not responsible for our observations.

If, on the other hand, the strain reflects intrinsic network interactions, we would expect that
the strain is correlated with the extent of pairwise coupling between the neurons. To test this
idea, we used a measure for pairwise interaction strength based on the firing patterns of pairs

of neurons, . As Figure 4 shows, the strain is most negative when the pairwise
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interaction strengths are large (Figure 4A, C). Strain is not correlated with overall firing rate
(Figure 4B, D), so the correlation between strain and pairwise interactions is not merely a
matter of having enough spikes to make the measurement, or overall levels of excitation.
Note also that the few recordings in the 600 micron group with significantly negative values
of the strain are the recordings for which the pairwise interaction strengths are largest, and in
the range of the <300 micron group.

As has been noted (Nakahara & Amari, 2002), the information-geometric coordinates of
different orders are not independent. That is, when the third-order interaction terms are not
zero, the partitioning of firing statistics into second- and third-order interactions is somewhat
arbitrary. However, this lack of independence cannot account for our results: no matter how
we quantify the second-order interactions, the maximum-entropy prediction is that the third-
order interactions are zero, which is not what we find. Moreover, if the third-order
interactions were simply a result of common driving of many cells, we would expect that the
strain would be larger when pairwise joint firings are more frequent, and this is the opposite
of what we find.

Discussion
The general problem: describing population firing patterns

A central goal of systems neuroscience is to understand the function of populations of
neurons. To achieve this goal, it is crucial to have descriptions of multineuronal firing
patterns that highlight their important qualitative features. Achieving such descriptions is a
challenge, because of the obvious dimensional explosion: for M neurons, there are 2M

possible firing patterns. Thus, it is noteworthy that in several neural systems (Schneidman et
al., 2006, Shlens et al., 2006, Tang et al., 2008, Yu et al., 2008), the probabilities of these 2M

firing patterns can be accounted for on the basis of far fewer parameters – the M(M+1)/2
pairwise firing probabilities. This dimensional reduction is achieved via maximum-entropy
modeling: to a very good approximation, the multineuronal firing patterns are the most
random possible set of firing patterns that are consistent with the observed pairwise
correlations.

Here, we take the next step, focusing on triplet correlations. We quantify these correlations
with the “strain”, an algebraic combination of the probabilities of the eight firing patterns
that can be manifest by a three-neuron group. There are two reasons to focus on this level:
one that is data-driven, and one that is theoretically motivated. The data-driven reason is that
in our recordings (macaque visual cortex), pairwise interactions do not account for
multineuronal firing patterns. Thus, even for a phenomenological fit to the data, triplet firing
patterns must be taken into account. The second reason is more general: triplet firing
patterns provide insight into network behavior and represent constraints that mechanistic
models must satisfy. For example, if all three-neuron subsets have a positive strain,
synchrony across the entire population is facilitated, while if all three-neuron subsets have a
negative strain (as we observe here), global synchrony is suppressed. Positive and negative
strain, if specific to particular subsets of neurons within the network, can be interpreted as
logic operations (Feinerman et al., 2008, Vogels & Abbott, 2005): a positive strain among
three neurons corresponds to an AND gate, while a negative strain corresponds to an XOR
gate.

Note that even if a pairwise maximum-entropy model for the entire population is exact,
nonzero values of the strain may be encountered in three-neuron subsets. At a formal level,
this is because for M>3, marginalization of the pairwise maximum-entropy distribution (eq.
(3)) over one or more neurons does not yield a pairwise maximum-entropy distribution over
the remaining neurons. The intuition behind this is that the firing patterns manifest by a
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subset of neurons can be primarily a result of pairwise interactions with the other
(unobserved) neurons within the network. This observation is a general one, not restricted to
the strain, or to the size of the observed subset (Roudi, Tyrcha & Hertz, 2009b): even at the
pairwise level, the observed coupling coefficients that account for firing patterns in a set of
recorded neurons may differ from the couplings that would be identified, were it possible to
sample the entire network. An analogous consideration applies across time as well: although
the present study and most others focus on snapshots of responses (for an exception, see
(Marre, El Boustani, Fregnac & Destexhe, 2009)), the underlying biophysical processes that
shape the observed firing patterns necessarily involve interactions not only with un-recorded
neurons, but also across time (Rulkov & Bazhenov, 2008,Vogels & Abbott, 2005).

Characterizing triplet interactions via the strain and the Kullback-Leibler divergence
At the level of three-neuron firing patterns, there are two natural measures of the departure
from a pairwise model: the Kullback-Leibler divergence, and the strain. There is an obvious
conceptual difference: the Kullback-Leibler divergence is unsigned, so it can only indicate
the magnitude of deviation from the pairwise model. In contrast, (as emphasized above), the
strain is a signed quantity, so it indicates the direction of this deviation. But there are other
differences as well, because the Kullback-Leibler divergence and the strain measure the
departure from a pairwise model in different ways.

The basic difference is that the Kullback-Leibler divergence compares the observed data
with the specific pairwise model that matches the observed pairwise correlations, while the
strain compares the observed firing probabilities with any pairwise model. As a
consequence, the Kullback-Leibler divergence compares probabilities in an additive fashion,
while the strain compares probabilities in a multiplicative fashion. To see this, we note that
for three neurons, equating pairwise probabilities to that of a model – which is the basis of
the Kullback-Leibler measure – implies that the model probabilities pmodel(σ ⃗) and the
observed probabilities p(σ ⃗) are related by

(15)

for some value of the free parameter k. (This is because after the pairwise marginals have
been specified, all that remains is one degree of freedom. See, for example, Appendix 1 of
(Martignon et al., 2000)). The Kullback-Leibler divergence is a differentiable non-negative
function of the parameter k. It is zero only for k = 0, and thus for small k, it is proportional to
k2. Thus, the Kullback-Leibler divergence determines the quantity that must be added or
subtracted to observed probabilities, in order to obtain a pairwise maximum-entropy model
that accounts for the observed pairwise correlations. In contrast, the strain determines the
multiplicative or divisive factor that needs to be applied to the observed probabilities, so that
they match a pairwise model. This can be seen directly from eqs. (7) and (8): the strain, γ, is
the quantity for which the probabilities p(σ ⃗)exp(−γσ1σ2σ3), followed by renormalization,
satisfy a pairwise maximum-entropy model.

A consequence of this difference is that the Kullback-Leibler divergence necessarily
approaches 0 as bin size decreases, while the strain can have a meaningful nonzero value in
this limit. To see this, we consider the limit of infinitesimally small bins, i.e., bins whose
width δt is finer than the firing precision of any neuron, and in which each neuron’s firing is
infrequent. (This is the asymptotic limit of Roudi et al. (Roudi, Nirenberg & Latham,
2009a), and corresponds to small values of their quantity ῡδt, the mean firing rate per
neuron per bin.) In this limit, the probabilities of the three states in which one neuron fires
(p100, p010, and p001) are proportional to δt; the probabilities of the three states in which two
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neurons fire (p011, p101, and p110) are proportional to (δt)2, and the probability of the triplet
firing state p111 is proportional to (δt)3. Consequently, the Kullback-Leibler divergence for
the pairwise model is proportional to (δt)3 -- since the divergence for the best-fitting
pairwise model can be no worse than the divergence for a pairwise model that fits the singlet
and doublet events exactly (see (Roudi et al., 2009a) for further details). As Roudi et al.
(Roudi et al., 2009a) showed, this obligate approach to 0 when ῡδt is small affects not only
the Kullback-Leibler divergence, but also, measures based on the Kullback-Leibler
divergence when normalized by the connected information (Schneidman et al., 2006). On
the other hand, the strain tends to a stable value as bin size decreases, since the δt-terms
counterbalance. This can be seen from eq. (10): the numerator has three factors of δt from
the singlet probabilities and one factor of (δt)3 from the triplet term, resulting in (δt)6; the
denominator has three factors of (δt)2 from each of the doublet terms, also resulting in (δt)6.
Thus, the strain is anticipated to be independent of δt in the asymptotic regime of (Roudi et
al., 2009a). Figure 4C, D shows that meaningful values of the strain can be measured in this
asymptotic regime: significantly negative values of the strain were obtained in datasets for
which firing rates were as small as 25 spikes per second across all 3 neurons, which
corresponds to firing rates per neuron per bin (ῡδt) less than 0.1.

The above advantages of the strain are balanced by two tradeoffs. First, extension of the
strain to > 3 neurons is likely to be impractical (see Appendix). Second, even for 3 neurons,
the strain is more difficult to estimate than the Kullback-Leibler divergence (Figure 1). The
reason is related to the fact that the strain retains a nonzero value in the limit of small bins: it
is based on a ratio of probabilities, including the probability of triplet firing events. As bin
size decreases, the number of such events will become progressively smaller, so the strain
will become progressively more difficult to estimate. The uncertainty in estimation is readily
quantified (see eq. (12)), and is dominated by Poisson counting statistics for the rarest state.

The strain identifies a distinctive feature of local cortical networks
The experimental component of this paper consists of an analysis of three-neuron cortical
firing patterns, obtained from tetrode recordings in V1 of the macaque monkey. During
visual stimulation with pseudorandom checkerboards, we found a scale-dependence to
triplet firing patterns: nearby neurons (<300 microns) displayed fewer triplet events than
predicted from their pairwise interactions, while more distant neurons (600 and >1000
microns) displayed firing patterns consistent with the expectation from pairwise statistics
(Figure 2). The difference between the number of triplet events and the expectation based on
pairwise statistics is strongly correlated with the strength of pairwise interactions in the
network (Figure 4A and 4B), but not firing rate (Figure 4C and 4D). Since our findings of a
negative strain are specific to local clusters, it is unlikely that they are the result of global
state changes, such as fluctuations between “up-states” and “down-states”, which typically
extend over at least several millimeters (Li, Poo & Dan, 2009).

Our finding that networks of nearby neurons display a negative, and often large, strain
suggests a network-level mechanism that reduces synchrony. This is behavior has evident
functional utility, as it would act to prevent runaway synchrony in strongly coupled
recurrent networks. We speculate that this behavior is mediated by small inhibitory GABA-
ergic neurons (Bonifazi, Goldin, Picardo, Jorquera, Cattani, Bianconi, Represa, Ben-Ari &
Cossart, 2009). Since cortical extracellular recordings generally record the activity of large,
excitatory pyramidal cells (Buzsaki, 2004), the activity of these inhibitory neurons would be
largely hidden, so only their indirect effects would be seen in typical extracellular recordings
such as we report here.
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Other strategies for examining multineuronal firing patterns
We have chosen to focus on the strain because it allows for an examination of multineuronal
firing patterns beyond the pairwise level, while remaining in a regime in which large
numbers of counts of the relevant events can be accumulated.

Other studies have taken a different approach to the problem of going beyond the pairwise
level, developing methods for analyzing all orders of interaction in the simultaneous activity
of four or more neurons (Gutig et al., 2003, Martignon et al., 2000, Martignon et al., 1995,
Nakahara & Amari, 2002). Two of these studies have included an application to
experimental data (Martignon et al., 2000, Martignon et al., 1995). As in the present study,
evidence of high-order interactions was found, as manifest by nonzero coefficients of terms
in the exponential probability expansion. However, it is difficult to make a more detailed
comparison with our data, because of numerous experimental differences. First, our main
finding – a negative strain – was only present among neurons recorded within 300 microns
of each other at a single tetrode; the above studies relied on multi-electrode arrays (500 to
1000 microns: (Prut, Vaadia, Bergman, Haalman, Slovin & Abeles, 1998); 400 to 600
microns: (Vaadia, Bergman & Abeles, 1989)), and were unlikely to contain three or more
neurons within 300 microns. Second, our studies were carried out under anesthesia; the latter
studies were carried out in awake animals, during various phases of a behavioral task.
Finally, our conclusions are based on several dozen datasets each of which typically
contained >1000 sec of data; the above studies only considered a handful of datasets (one
dataset of 6 neurons in frontal cortex (Martignon et al., 1995); “several” datasets in frontal
cortex and two in visual cortex (Martignon et al., 2000)) and each contained <200 sec of
data. Thus, while the above studies illustrated how the approach could be applied to small
datasets, they stopped short of determining what is typical of local networks.

Another related approach is that of (Montani, Ince, Senatore, Arabzadeh, Diamond &
Panzeri, 2009), who also examined interactions of all orders, in recordings (Arabzadeh,
Petersen & Diamond, 2003) made with an electrode array (400 micron spacing) in mouse
somatosensory cortex. To reduce the number of parameters in the exponential expansion of
the probability distribution, they assumed that all neurons are equivalent. Given this
assumption of homogeneity, interactions of each order are summarized by a single number,
providing a very strong dimensional reduction: only M parameters are needed to
characterize all possible 2M firing patterns. This study found evidence of triplet interactions,
and also showed that these interactions contributed to coding. However, the analysis was
based on entropy differences, so it is unclear whether their findings correspond to a positive
vs. a negative strain, and the conclusions hinged on the assumption of homogeneity across
neurons.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
This work was supported by NIH F31-EY019454 and NIH GM7739 (IEO), and NIH R01-EY9314 (JDV). The
portion of this work related to the Kullback-Leibler divergence has been presented at the 2007 meetings of CoSyNe
and the Society for Neuroscience.

References
Abeles, M. Corticonics: neural circuits of the cerebral cortex. Cambridge: Cambridge U P; 1991.
Amari SI. Information geometry on hierarchy of probability distributions. IEEE Transactions on

Information Theory 2001;47:1701–1711.

Ohiorhenuan and Victor Page 13

J Comput Neurosci. Author manuscript; available in PMC 2011 February 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Arabzadeh E, Petersen RS, Diamond ME. Encoding of whisker vibration by rat barrel cortex neurons:
implications for texture discrimination. J Neurosci 2003;23(27):9146–9154. [PubMed: 14534248]

Bonifazi P, Goldin M, Picardo MA, Jorquera I, Cattani A, Bianconi G, Represa A, Ben-Ari Y, Cossart
R. GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science
2009;326(5958):1419–1424. [PubMed: 19965761]

Buzsaki G. Large-scale recording of neuronal ensembles. Nat Neurosci 2004;7(5):446–451. [PubMed:
15114356]

Fee MS, Mitra PP, Kleinfeld D. Automatic sorting of multiple unit neuronal signals in the presence of
anisotropic and non-Gaussian variability. J Neurosci Methods 1996;69(2):175–188. [PubMed:
8946321]

Feinerman O, Rotem A, Moses E. Reliable neuronal logic devices from patterned hippocampal
cultures. Nat Phys 2008;4(12):967–973.

Franke F, Natora M, Boucsein C, Munk MH, Obermayer K. An online spike detection and spike
classification algorithm capable of instantaneous resolution of overlapping spikes. J Comput
Neurosci. 2009

Gutig R, Aertsen A, Rotter S. Analysis of higher-order neuronal interactions based on conditional
inference. Biol Cybern 2003;88(5):352–359. [PubMed: 12750897]

Kennel MB, Shlens J, Abarbanel HD, Chichilnisky EJ. Estimating entropy rates with Bayesian
confidence intervals. Neural Comput 2005;17(7):1531–1576. [PubMed: 15901407]

Kohn A, Smith MA. Stimulus dependence of neuronal correlation in primary visual cortex of the
macaque. J Neurosci 2005;25(14):3661–3673. [PubMed: 15814797]

Li CY, Poo MM, Dan Y. Burst spiking of a single cortical neuron modifies global brain state. Science
2009;324(5927):643–646. [PubMed: 19407203]

Marre O, El Boustani S, Fregnac Y, Destexhe A. Prediction of spatiotemporal patterns of neural
activity from pairwise correlations. Phys Rev Lett 2009;102(13):138101. [PubMed: 19392405]

Martignon L, Deco G, Laskey K, Diamond M, Freiwald W, Vaadia E. Neural coding: higher-order
temporal patterns in the neurostatistics of cell assemblies. Neural Comput 2000;12(11):2621–
2653. [PubMed: 11110130]

Martignon L, Von Hasseln H, Grun S, Aertsen A, Palm G. Detecting higher-order interactions among
the spiking events in a group of neurons. Biol Cybern 1995;73(1):69–81. [PubMed: 7654851]

Meister M, Lagnado L, Baylor DA. Concerted signaling by retinal ganglion cells. Science
1995;270(5239):1207–1210. [PubMed: 7502047]

Montani F, Ince RA, Senatore R, Arabzadeh E, Diamond ME, Panzeri S. The impact of high-order
interactions on the rate of synchronous discharge and information transmission in somatosensory
cortex. Philos Transact A Math Phys Eng Sci 2009;367(1901):3297–3310. [PubMed: 19620125]

Nakahara H, Amari S. Information-geometric measure for neural spikes. Neural Comput 2002;14(10):
2269–2316. [PubMed: 12396564]

Ohiorhenuan, IE.; Victor, JD. Computational and Systems Neuroscience. Salt Lake City, Utah: 2007.
Maximum entropy modeling of multi-neuron firing patterns in V1.

Palm G. Evidence, information, and surprise. Biol Cybern 1981;42(1):57–68. [PubMed: 7326283]
Palm G, Aertsen AM, Gerstein GL. On the significance of correlations among neuronal spike trains.

Biol Cybern 1988;59(1):1–11. [PubMed: 3401513]
Pastalkova E, Itskov V, Amarasingham A, Buzsaki G. Internally generated cell assembly sequences in

the rat hippocampus. Science 2008;321(5894):1322–1327. [PubMed: 18772431]
Prut Y, Vaadia E, Bergman H, Haalman I, Slovin H, Abeles M. Spatiotemporal structure of cortical

activity: properties and behavioral relevance. J Neurophysiol 1998;79(6):2857–2874. [PubMed:
9636092]

Reid RC, Victor JD, Shapley RM. The use of m-sequences in the analysis of visual neurons: linear
receptive field properties. Vis Neurosci 1997;14(6):1015–1027. [PubMed: 9447685]

Ringach DL, Shapley RM, Hawken MJ. Orientation selectivity in macaque V1: diversity and laminar
dependence. J Neurosci 2002;22(13):5639–5651. [PubMed: 12097515]

Ohiorhenuan and Victor Page 14

J Comput Neurosci. Author manuscript; available in PMC 2011 February 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Roudi Y, Nirenberg S, Latham PE. Pairwise maximum entropy models for studying large biological
systems: when they can work and when they can’t. PLoS Comput Biol 2009a;5(5):e1000380.
[PubMed: 19424487]

Roudi Y, Tyrcha J, Hertz J. Ising model for neural data: model quality and approximate methods for
extracting functional connectivity. Phys Rev E Stat Nonlin Soft Matter Phys 2009b;79(5 Pt 1):
051915. [PubMed: 19518488]

Rulkov NF, Bazhenov M. Oscillations and Synchrony in Large-scale Cortical Network Models. J Biol
Phys 2008;34(3–4):279–299. [PubMed: 19669478]

Schmid A, Purpura K, Ohiorhenuan IE, Victor JD. Subpopulations of neurons in visual area V2
perform differentiation and integration operations in space and time. Frontiers in Systems
Neuroscience 2009;3:15.10.3389/neuro.3306.3015.2009 [PubMed: 19915726]

Schneidman E, Berry MJ 2nd, Segev R, Bialek W. Weak pairwise correlations imply strongly
correlated network states in a neural population. Nature 2006;440(7087):1007–1012. [PubMed:
16625187]

Shlens J, Field GD, Gauthier JL, Greschner M, Sher A, Litke AM, Chichilnisky EJ. The structure of
large-scale synchronized firing in primate retina. J Neurosci 2009;29(15):5022–5031. [PubMed:
19369571]

Shlens J, Field GD, Gauthier JL, Grivich MI, Petrusca D, Sher A, Litke AM, Chichilnisky EJ. The
structure of multi-neuron firing patterns in primate retina. J Neurosci 2006;26(32):8254–8266.
[PubMed: 16899720]

Tang A, Jackson D, Hobbs J, Chen W, Smith JL, Patel H, Prieto A, Petrusca D, Grivich MI, Sher A,
Hottowy P, Dabrowski W, Litke AM, Beggs JM. A maximum entropy model applied to spatial
and temporal correlations from cortical networks in vitro. J Neurosci 2008;28(2):505–518.
[PubMed: 18184793]

Vaadia E, Bergman H, Abeles M. Neuronal activities related to higher brain functions--theoretical and
experimental implications. IEEE Trans Biomed Eng 1989;36(1):25–35. [PubMed: 2646210]

Victor JD, Mechler F, Repucci MA, Purpura KP, Sharpee T. Responses of V1 neurons to two-
dimensional Hermite functions. J Neurophysiol 2006;95(1):379–400. [PubMed: 16148274]

Vogels TP, Abbott LF. Signal propagation and logic gating in networks of integrate-and-fire neurons. J
Neurosci 2005;25(46):10786–10795. [PubMed: 16291952]

Yu S, Huang D, Singer W, Nikolic D. A small world of neuronal synchrony. Cereb Cortex
2008;18(12):2891–2901. [PubMed: 18400792]

Appendix
This Appendix expands on a number of technical points mentioned in the main text. First,
we demonstrate the basic formula for the strain, eq. (9); this is well-known ((Amari, 2001)
(Nakahara & Amari, 2002)) and we demonstrate it here for the reader’s convenience and to
illustrate the notation used in the remainder of the Appendix. We then develop asymptotic
expressions for the bias and variance of the “plugin” estimator for the strain (eqs. (11) and
(12) of the main text), and for the effect of a lockout correction. Finally, we comment on
ways that the strain can be applied to recordings from more than three neurons.

Our notational setup is the same as in the main text: we consider a network of M neurons
and population state vectors σ ⃗ = (σ1,σ2,…,σM), with the convention that σk =+1 means that
neuron k is firing, and σk=−1 means that it is not. We also use s(σ ⃗) to represent the parity of
σ ⃗,

(A1)

s(σ ⃗) is +1 if all neurons fire, or if an even number of neurons do not fire, and −1 otherwise.
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For a three-neuron network (M = 3), the firing probabilities can always be expressed in the
form

(A2)

where

(A3)

and

(A4)

See, for example, (Amari, 2001, Nakahara & Amari, 2002). For notational simplicity, we
focus on the three-neuron case, but the derivations immediately extend to M > 3 neurons, as
we indicate.

Calculating the strain from the firing probabilities
Our first objective is to derive eq. (9) of the main text. With the above notation, it can be
written

(A5)

To demonstrate eq. (A5), we proceed as follows. First, we note that exactly half of the σ ⃗’s

have even parities (s(σ ⃗) =+1), and half have odd parities (s(σ ⃗) = −1). Thus, , and
therefore (using eq. (A2))

(A6)

We now use eq. (A3) for Z(σ ⃗):

(A7)
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Expanding the right-hand-side leads to a simplification, because σk=±1, and therefore σk
2=1:

(A8)

In calculating the sum over all 2M network states σ ⃗, the α-terms vanish because each of the
alternatives σjσk =±1 occurs half of time, and the β-terms vanish because each of the
alternatives σk =±1 occur half the time. Thus,

(A9)

which is equivalent to eq. (A5) and eq. (9) of the main text.

Note that the above derivation immediately generalizes to the highest coefficient of a
complete exponential expansion, e.g., the coefficient of σ1σ2σ3σ4 for M = 4, etc.

Asymptotic estimates of bias and variance
In this section, we determine the asymptotic bias and variance of estimates of γ, based on the
“plug-in” estimator corresponding to eq. (A5).

To formalize the problem, we assume that our data consist of N observations (“bins”), each
of which are independent, and (as in the main text) that the number of observations that are
in the state σ ⃗ is N(σ ⃗), so N =ΣN(σ ⃗). Our estimate of p(σ ⃗) is the naïve one, namely

(A10)

With this estimate for p(σ ⃗), the “plug-in” estimator corresponding to eq. (A5) is

(A11)

The bias of the estimator γest is, by definition, the expected departure of the estimator from
its true value γ:

(A12)

where 〈 〉 denotes an average over all experiments with N observations, and true state
probabilities p(σ ⃗). Its variance is, by definition,

(A13)

Ohiorhenuan and Victor Page 17

J Comput Neurosci. Author manuscript; available in PMC 2011 February 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Thus, our goal is to determine the mean and variance of γest, as defined by eq. (A11).

We begin by noting that eq. (A11) simplifies, because half of the σ ⃗’s have even parities, and
half have odd parities. Thus,

(A14)

The right-hand-side of eq. (A14) is a linear combination of logarithms of values drawn from
a multinomial process of 2M symbols (the states σ ⃗), each with probability p(σ ⃗). Therefore, to
determine the mean and variance of γest, we determine the mean and variance of the
logarithms of values drawn from a multinomial distribution.

We determine these quantities from the well-known expressions for the mean, variance, and
covariance of a multinomial process. In N observations, the expected number of times that a
symbol with probability p(σ ⃗) is encountered is

(A15)

With δ(σ ⃗) = N(σ ⃗)− 〈N(σ ⃗)〉, the variance of each count is given by

(A16)

and the covariances are given by

(A17)

We now calculate the corresponding statistics of the logarithms asymptotically:

Expanding the logarithm via a Taylor series yields

(A18)

or
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(A19)

where we have used 〈δ(σ ⃗)〉 = 0, eq. (A15), and eq. (A16).

So the bias in the logarithm of the counts of the state σ ⃗ is

(A20)

The bias estimate (text eq. (11)) now follows from the definition (A12) by combining eq.
(A20) with eq. (A14):

(A21)

with a simplification resulting from the fact that the parities sum to zero (Σs(σ ⃗)= 0).

Similar algebra provides asymptotic expressions for the variances of the logarithms of the
counts,

(A22)

and their covariances,

(A23)

The variance estimate (text eq. (12)) follows from the definition (A13) by combining eqs.
(A22) and (A23) with eq. (A14):

(A24)
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In practice, γest is approximately Gaussian-distributed, and the above asymptotic expressions
for bias (eq. (A21)) and variance (eq. (A24)) are accurate provided that the minimum
number of counts, N minσ ⃗p(σ ⃗), is at least ~10. Simulations that support this approximation
are shown in Figure A1.

The effect of the lockout correction
As mentioned in the main text, spike-sorting introduces a potential confound into the
analysis of multineuronal data. The source of the problem is that when two spikes overlap in
time, their waveforms sum, and neither can be reliably identified. When this happens, a bin
that actually contains two firing events will be registered as containing none; this is known
as a “lockout.” (We note that recently, spike-sorting algorithms that may be able to resolve
these overlaps have been developed (Franke et al., 2009); the applicability of such methods
is likely to depend on the details of the recording situation, such as firing rates and noise.
Thus, even with the availability of advanced spike-sorting algorithms, it is desirable to have
analytic approaches that are insensitive to spike-sorting errors.)

As described in Methods, an approximate correction for lockout can be constructed, by
making use of the fact that in a typical recording, the analysis bin (the interval of time used
for tallying spiking states) is many times larger than the spike width. Figure 1 shows that the
strain is nearly independent of the lockout correction, indicating that it is relatively
insensitive to the effects of the lockout. Our goal here is to show why this is the case.

We do this by first describing the lockout correction strategy in detail, and then deriving a
formula that relates the lockout-corrected value of the strain to the observed probability of
each spiking state.

The lockout correction is based on an estimate of how many events are miscounted due to
overlapping spikes. To obtain this estimate, we assume that firing rates are constant for the
duration of the analysis bin, that spikes occur in a Poisson fashion, and that no bin contains
more than one spike from each neuron. We then partition each analysis bin into W sub-
intervals, where each sub-interval corresponds to the spike width. (In the data presented
here, W = 8 for the datasets analyzed with 10 ms bins and W=12 for the datasets analyzed
with 14.8-ms bins.) We estimate the miscounts by relating the total frequency of
multineuronal events to the observed frequency of the multineuronal events. In order for a
multineuronal event to be observed, each sub-interval can contain no more than one spike.

Consider, for example, an event in which neurons 1 and 2 fire. The spikes from neurons 1
and 2 can fall into the W sub-intervals in W2 equally-likely ways, since each of the W sub-
intervals is equally likely to contain either spike. Usually, the spikes from the two neurons
fall into different sub-intervals, so both are registered; these events properly contribute to the
estimate of p110. This happens in W(W−1) of the W2 possible configurations in which the
spikes can fall into sub-intervals. But in the remaining W configurations, both spikes fall
into the same subinterval, so neither spike is registered, and the event is an erroneous
contribution to p000. As a result of these overlap events, p110 is under-estimated by a factor

of ; the resulting undercounts contribute to p000. (Here, we write p110 as
the probability of a state in which σ1= +1, σ2 = +1, and σ3 = −1, etc.).

Similarly, triplet firing events can populate the W sub-intervals in W3 ways, but only W(W
−1)(W−2) of these are observed configurations, in which no sub-interval has 2 or more

spikes. Thus, p111 is undercounted by a factor of . Most of the
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undercounts occur when two spikes occur in one sub-interval, and a third occurs in another
subinterval. The two spikes that occur in the same sub-interval occlude each other. The third
spike, which occurs in its own sub-interval, is correctly detected. Thus, the three-spike event
appears to contain only one spike, and contributes to one of the singleton event probabilities
p100, p010, and p001. A small number of undercounts are events in which all three spikes
occur within the same sub-interval. The three spikes occlude each other and thus the event
contributes to p000. We neglect these events, since their proportion is O(W−2).

Putting the above facts together leads to formulas that relate the raw estimates of the state
probabilities to those that would have been encountered in the absence of a lockout. We add
the undercounts to the triplet firing events

(A25)

and to the doublet firing events

(A26)

The counts that are added to the triplet firing events (eq. (A25)) are removed from the
singlet firing events

(A27)

and the counts that are added to the doublet firing events (eq. (A26)) are removed from the
null events

(A28)

Thus, (as mentioned in the main text), we anticipate that the lockout correction will be
small: it shifts events within the numerator (eqs. (A25) and (A27)) or within the
denominator (eqs. (A26) and (A28)), but not between numerator and denominator.

To formalize this observation, we substitute the above formulae (eqs. (A25) to (A28)) into

(A29)

to obtain (after some algebra)

Ohiorhenuan and Victor Page 21

J Comput Neurosci. Author manuscript; available in PMC 2011 February 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(A30)

Eq. (A30) provides further reasons that the lockout correction is small: γcorrected − γraw is a
sum of three terms, each of which is a difference of probability ratios. These differences are
nonzero only to the extent to which triplet interactions are present. For example, the first
term is nonzero only if the probability of joint firing neuron 2 and 3 depends on whether
neuron 1 fires. Moreover, each of these ratios has a quadratic dependence on the analysis bin
width, and their total contribution is attenuated by the multiplier1/W.

More than 3 neurons
In the final section, we mention ways in which the strain can be extended to analyses of M >
3 neurons. Above we have taken the simple approach of analyzing larger datasets by
considering only three neurons at a time, but other approaches are possible. Perhaps the
most natural alternative is to enlarge the pairwise maximum-entropy model (text eq.(3)) to
include all third-order terms:

(A31)

The resulting model is again maximum-entropy model, but now subject to the constraints of
matching all triplet firing probabilities p(j,k,l) to those observed in the data, as well as
matching the singlet firing probabilities p(j) and the pairwise firing probabilities p(j,k). The
M (M−1)(M−2)/6 third-order parameters γjkl are a comprehensive description of how triplet
firing patterns depart from the predictions of the pairwise model. Note that for M>3, there is
no explicit formula comparable to eq. (9) for calculating the parameters γjkl from the state
probabilities p(σ ⃗); they must be determined via fitting the third-order model.

In order to preserve the feature that γ can be calculated directly from the state probabilities
p(σ ⃗), a different generalization is necessary. This generalization is based on including terms
up to Mth order in a maximum-entropy model. (At this point it is no longer a “model”; it is
guaranteed to fit the set of state probabilities p(σ ⃗) exactly (Amari, 2001)). Once terms of all
orders are included, the highest-order term (i.e., the coefficient of σ1σ2σ3···σM) can be
calculated explicitly, as

(A32)

γ[M] indicates how the network’s firing patterns differ from those that could be predicted
from the interactions up to order M−1. Like γ≡γ[3], its sign indicates whether there is an
excess or a deficit of synchronous events. As is the case for γ, estimation of γ[M] requires
sufficient data so that even the rarest event occurs often enough (e.g., 50 times) for its
probability can be accurately estimated. This is likely to be on the edge of practicality for M
= 4, and impractical for larger M. We do not advocate estimating γ[M] unless all firing
patterns have been observed many times, and thus, do not address the situation in which the
plug-in estimator corresponding to eq. (A32) diverges.
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Figure 1.
Comparison of two indices of firing patterns for triplets of neurons recorded by a single
tetrode. Panel A: LLR per minute for the pairwise model; Panel B: strain. Each quantity is
calculated without (abscissa) and with (ordinate) the lockout correction. The strain is
virtually unaffected by the lockout correction, but has much larger confidence limits. Both
measures reveal significant departures from the predictions of a pairwise model. In Panel A,
the bias correction is shown by the small points (small points are bias-corrected), barely
visible next to the larger symbols; in panel B, the bias correction is negligible (< 3×10−4). In
Panel B, error bars represent 95% confidence limits; in panel A, they are comparable to the
size of the plotted points (±0.05)
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Figure 2.
Triplet firing patterns show a strong dependence on spatial scale. Panels A–C: LLR per
minute for the pairwise model and the strain for clusters recorded within 300 microns (red
filled symbols), at a distance of ~600 microns (blue shaded symbols) and > 1000 microns
(black open symbols). Three magnifications are shown: the dashed box in Panel A is
enlarged to form Panel B, and the dashed box in panel B is enlarged to form Panel C. For the
300-micron clusters but not the others, the LLR and the strain is often large and negative.
Note that the LLR must be negative and hence its sign is uninformative, while a negative
value for the strain indicates that there is a deficit of triplet-firing events, compared to the
expectation of a pairwise model. The four- and five-neuron datasets are indicated by squares
and stars, respectively; for these, LLR values are calculated for all neurons together, and
strain values are calculated separately for each 3-neuron subset. Confidence limits are not
shown; for the LLR, they are approximately ±0.05; for the strain, they are approximately
±0.02 (see Figure 1). Panel D: boxplots of the distribution of strain values.
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Figure 3.
In local clusters of neurons, strain is not correlated with the similarity of their orientation
tuning. The abscissa is the orientation tuning difference index (ODI), eq. (14). Plotting
conventions as in Figure 2.
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Figure 4.
The strain is correlated with pairwise interaction strength (panels A and B) but not with
firing rate (panels C and D). Clusters recorded within 300 microns shown as red filled
symbols, at a distance of ~600 microns as blue shaded symbols, and at > 1000 microns as
black open symbols. Pairwise interaction strength (panels A and B) is quantified by the

average of the quantities  for each neuron in the cluster. Firing rate (panels C and
D) is the total firing rate across the three neurons. In Panels A and C, data from three-neuron
subsets of four- and five-neuron recordings are connected by lines (as in Figure 2); Panels B
and D show the same data with the connecting lines suppressed so that all data points are
visible.
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Figure A1.
The asymptotic distribution of bias and variance estimates of the plug-in estimator for the
strain are highly accurate, provided that there are at least 10 counts of each firing pattern. In
the upper half of the Figure, the asymptotic Gaussian distribution (smooth curve) is
compared to the empirical distribution of the plug-in estimator, eq. (A11). The Gaussian has
a mean given by the asymptotically debiaser (A21) and variance corresponding to the
asymptotic estimate (A24). The histograms show the empirical distribution of the plug-in
estimator (A11) for 1000 simulated experiments. In each set of simulations, spike pattern
counts are distributed in a Poisson fashion according to the probabilities given by eq. (7),
with the parameters for the right-hand-side indicated at the top of each column. From top to
bottom, the number of bins in the experiment increases from 102 to 105; the latter value is
comparable to the number of bins used in the experiments reported here. Note that when the
number of bins is small (upper rows), some of the spike patterns are not encountered, so the
plug-in estimator diverges; these counts are not included in the histograms. The numbers
inset into each plot indicate the expected number of counts of the least likely firing pattern.
Note that when there are at least 10 counts of each firing pattern, the asymptotic Gaussian
provides an excellent approximation to the empirical distribution.
The lower half of the Figure shows the mean (points) and standard deviation (error bars) of
the empirical distribution of the plug-in estimator, as a function of the number of bins in the
simulated experiment. Points are only plotted when all of the 1000 simulated experiments
had at least one count of all patterns. The horizontal line indicates the true value of the
strain. The three smooth curves indicate the asymptotic estimates of the mean and standard
deviation, according to eqs. (A21) and (A24). The two rows show the same data plotted on
different vertical scales, so that the biases can be clearly seen.

Ohiorhenuan and Victor Page 27

J Comput Neurosci. Author manuscript; available in PMC 2011 February 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


