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Abstract
Several recent studies have shown that the ON and OFF channels of the visual system are not simple
mirror images of each other, that their response characteristics are asymmetric (Chichilnisky and
Kalmar, 2002; Sagdullaev and McCall, 2005). How the asymmetries bear on visual processing is not
well understood. Here we show that ON and OFF ganglion cells show a strong asymmetry in their
temporal adaptation to photopic (day) and scotopic (night) conditions and that the asymmetry confers
a functional advantage. Under photopic conditions, the ON and OFF ganglion cells show similar
temporal characteristics. Under scotopic conditions, the two cell classes diverge – ON cells shift their
tuning to low temporal frequencies, while OFF cells continue to respond to high. This difference in
processing corresponds to an asymmetry in the natural world, one produced by the Poisson nature
of photon capture and persists over a broad range of light levels. This work characterizes a previously
unknown divergence in the ON and OFF pathways and its utility to visual processing. Furthermore,
the results have implications for downstream circuitry and thus offer new constraints for models of
downstream processing, since ganglion cells serve as building blocks for circuits in higher brain
areas. For example, if simple cells in visual cortex rely on complementary interactions between the
two pathways, such as push-pull interactions (Alonso et al., 2001; Hirsch, 2003), their receptive fields
may be radically different under scotopic conditions, when the ON and OFF pathways are out of
sync.
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Introduction
The ON and OFF pathways are among the most well-known examples of parallel processing
in the visual system (Wassle, 2004). The division into these streams begins in the retina at the
very first synapse – bipolar cells contain either sign-inverting or sign-conserving glutamate
receptors, which determine whether they depolarize or hyperpolarize to light. The depolarizing
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and hyperpolarizing bipolar cells constitute two general classes of cells, termed ON and OFF
bipolar cells. The ON and OFF bipolar cells send their axon terminals to separate sublaminae
in the inner-plexiform layer, where they synapse with ganglion cell dendrites and shape
ganglion cell responses. Thus, the split into cells that respond to ON and OFF signals in the
retina is carried forth from the first synapse to the ganglion cell output.

Initially, the working hypothesis was that this ON and OFF output was essentially “equal and
opposite,” that is, the ON and OFF cells were thought to respond to the same features of the
visual scene, just with opposite polarity. Evidence has begun to accumulate, though, that this
description is too simple, that ON and OFF cells carry at least partially different information.
Specifically, at the level of the retinal circuitry, studies have shown that the two pathways
receive distinct inhibitory input (Pang et al., 2003; Zaghloul et al., 2003; Murphy and Rieke,
2006; Eggers et al., 2007; Molnar and Werblin, 2007). Further, at the level of retinal output,
ON and OFF cells of the same class have been shown to have 10-20% differences in receptive
field size and kinetics (Chichilnisky and Kalmar, 2002, but cf. Benardete and Kaplan, 1999,
with respect to the kinetics), and additional differences in the degree of nonlinearity
(Sagdullaev and McCall, 2005). The significance of these differences for visual processing is
not well-understood. While a proposal has been made for the functional role of the difference
in receptive field size (a spatial aspect) (Balasubramanian and Sterling, 2009), the roles of the
differences in dynamics have yet to be determined.

Here we show that ON and OFF cells show a substantial difference in their temporal adaptation
to day and night, and, further, that this difference has a functional advantage. We characterized
the temporal responses of mouse ON and OFF ganglion cells using gratings and white-noise
stimuli under photopic and scotopic conditions. Our results show that under photopic
conditions, the pathways are, in fact, largely symmetric: their responses differ in sign, but their
temporal characteristics are similar. Under scotopic conditions, though, the pathways diverge
– the tuning of the ON cells shifts to low temporal frequencies, whereas the tuning of the OFF
cells remains high. Using a model for signal detection, we then address the issue at the
functional level, showing how this difference corresponds to a natural asymmetry in the visual
world.

These results show a new divergence in the ON and OFF pathways and its potential value for
processing visual information. The results also have implications for downstream circuitry,
specifically, for receptive field models that depend on ON and OFF interactions.

Materials & Methods
Experiments

Recording—Ganglion cell spike trains were recorded from the central retina of C57BL/6J
mice using a multi-electrode array, as described previously (Nirenberg et al., 2001; Sinclair et
al., 2004; Dedek et al., 2008). Spikes were sorted into units (cells) using a Plexon Instruments
Multichannel Neuronal Acquisition Processor (Dallas, TX). Five retinas were used in these
studies. Retina pieces used for the recordings were approximately 1.5 to 2 mm across.

Stimulation—The light source for these experiments was a Sony Multiscan CPD-15SX1
computer monitor. Neutral density filters were used to attenuate the monitor's output to the
desired scotopic and photopic levels. The scotopic intensity was 2.8 × 10−5 μW/cm2; the
photopic was 0.25 μW/cm2. Following (Lyubarsky et al., 2004) and using the spectrum of our
monitor (Bohnsack et al., 1997), these radiometric units can be converted to photoreceptor
equivalent photons/μm2/s: The scotopic intensity converts to 0.3 rod-equivalent-photons/
μm2/s, 0.3 M-cone-equivalent-photons/μm2/s (in mouse, the rod and the M-cone have very
closely matching absorption spectra (Lyubarsky et al., 1999, Nirenberg et al., 2001)), and 0.01
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S-cone-equivalent-photons/μm2/s, the photopic, to 2.7 × 103 rod-equivalent-photons/μm2/s,
2.7 × 103 M-cone-equivalent-photons/μm2/s, and 120 S-cone-equivalent-photons/μm2/s. This
gives a rate of 0.2 R*/rod/s, 0.1 R*/M-cone/s, and 5 × 10−3 R*/S-cone/s for scotopic, and 1.8
× 103 R*/rod/s, 900 R*/M-cone/s, and 40 R*/S-cone/s for photopic, assuming an effective
collecting area (i.e., collecting area/ funneling factor) from (Lyubarsky et al., 1999; Lyubarsky
et al., 2004) of 0.67 μm2 for rods and 0.34 μm2 for cones. Note that recordings were made in
central retina, where most cones co-express both opsins (Applebury et al., 2000; Nikonov et
al., 2006). Thus the numbers 900 R*/cone/s and 40 R*/cone/s constitute the range of
photoisomerizations at the higher light intensity. See also Supplemental Material for
experiments with 2-amino-4-phosphonobutyric acid (APB) that show that responses to the low
light level condition are mediated through the rod bipolar pathway.

Two stimuli were used: drifting sine wave gratings and a binary random checkerboard (white
noise). The sine wave gratings were presented at 9 temporal frequencies, ranging from 0.15 to
6 Hz, all with a spatial frequency of 0.039 cycles/degree. Each temporal frequency was
presented for 2 minutes. The white noise stimulus was a random checkerboard at a contrast of
1, in which the intensity of each square was either white or black, randomly chosen every 0.067
s. The size of the squares was 9 degrees × 9 degrees; this size was chosen to elicit responses
in the low light (scotopic) condition. The white noise stimulus was presented for 10 minutes.
Note that the update rate of the white noise stimulus, 1/0.067=15 Hz, which would be
considered low for some species, is appropriate for the mouse, whose ganglion cells' responses
fall off rapidly above 5 Hz. The frequency range focused on in this paper is 3 Hz to 0.5 Hz (or
lower). With a noise update rate of 15 Hz and a corresponding Nyquist frequency of 7.5 Hz,
this range is well-covered. After both stimuli were presented, the light intensity was increased.
After 20 min of adaptation to the photopic intensity, the stimuli were presented again, as above.
All animals were dark-adapted for 1 hour prior to recording.

Assessing potential rundown due to bleaching—Response rundown can occur due to
bleaching during the photopic condtion. To assess this, we measured the firing rate in the
responses to a periodic flashing stimulus at the beginning and end of the photopic condition.
Firing rates between the beginning and end differed by less than 10% on average, and this was
not significantly different between ON and OFF cells (p > 0.5, Student's t-test comparing the
mean firing rate change of ON cells with that of the OFF cells).

Data Analysis
Designation of ON and OFF cells—Cells were designated as ON or OFF using the spike
triggered average to the checkerboard stimulus (see above). If the sign of the initial deflection
was positive, the cells were designated as ON; if negative, then OFF.

Analysis of responses to drifting gratings—For the drifting sine wave gratings,
temporal tuning curves were created from ganglion cell responses using standard methods
(Enroth-Cugell and Robson, 1966; Purpura et al., 1990; Croner and Kaplan, 1995). Briefly,
for each grating, the first harmonic of the cell's response, R(f), was calculated as follows:

where f is the temporal frequency of the drifting sine wave grating (cycles/s), L is the duration
of the stimulus (s), which was always an integer multiple of 1/f, and tj is the time of the jth
spike of the cell's response to the given grating.
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Analysis of responses to the white noise stimulus—For the white noise stimulus,
spike-triggered averages were computed using reverse correlation (reviewed in Chichilnisky,
2001). When calculating temporal frequency responses, for a given cell, the input stimulus was
the intensity of the checkerboard square that produced the largest response for that cell.
Temporal frequency responses were then taken as the transfer function between that stimulus
and the cell's response, calculated as:

where f is the temporal frequency of interest, WXY is the cross-spectrum between the stimulus
and response, and WXX is the power spectrum of the stimulus. Spectra were estimated using
the multi-taper method (Chronux library for Matlab (Mitra and Bokil, 2007), available at
http://chronux.org), using an effective bandwidth of 0.27 Hz.

Generation of confusion matrices—Confusion matrices were used to quantify and
visualize the extent to which different stimuli could be distinguished based on the ganglion
cell responses. The vertical axis of a confusion matrix gives the presented stimulus (i), while
the horizontal axis gives the decoded stimulus (j). Each element (i,j) of the confusion matrix
indicates the probability that when stimulus i is presented, it will be decoded as stimulus j. The
matrices were constructed using the responses to the drifting sine wave grating stimuli at the
7 highest temporal frequencies, ranging from 0.45 to 6 Hz (the extreme low frequency gratings
did not provide a sufficient number of repeats for estimating probability distributions, and thus
were not included in the construction of the matrices).

On each trial of the task, a stimulus, s, was presented (a grating of a particular temporal
frequency), and a response, r, was recorded. The response was then decoded by choosing the
stimulus most likely to have produced it. The probability that a recorded response r is produced
by the stimulus sj, namely, p(sj|r), can be calculated by Bayes rule:

Thus, to decode a response r, we need to find the stimulus sj for which p(r|sj) is maximal. (This
is because all stimuli were equally likely, i.e., all p(sj) are identical).

To calculate the response distribution for each stimulus, p(r|sj), we proceeded as follows. First,
the 34 trials at each frequency were split into interleaved sets: one set to build the response
distributions (the training set), and the other set to be decoded (the test set). For each stimulus,
the response distribution was assumed to be an inhomogenous Poisson process spanning 1.2
sec, and constant in 133-ms bins. The firing rate in each bin was estimated by binning each
spike train at this resolution, and averaging over all training trials of a given stimulus. To
calculate p(r|sj) for a response in the test set, we binned responses in the same manner. Since
we assumed that the conditional response distribution is an inhomogeneous Poisson process,
the probability p(r|sj) was the product of the Poisson probabilities for each bin. This process
was repeated for each response in the test set, and results were tallied into the confusion matrix.
Results similar to those shown in Figs. 5 and 6 were obtained with a range of bin sizes (75 to
170 ms) and random assignments to training and test sets.
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Animals
Animals were from a C57BL/6J background. All experiments were conducted in accordance
with the institutional guidelines for animal welfare. Mice were dark-adapted for one hour prior
to the start of an experiment.

Results
To assess differences in the temporal response properties of ON and OFF ganglion cells, we
recorded the cells' spiking activity in response to drifting sine wave gratings of different
temporal frequencies and a white noise stimulus. Measurements were carried out under both
photopic and scotopic conditions.

Fig. 1 shows the results for the grating stimulus under the photopic conditions. The left panel
shows the responses of several individual ON cells (top) and OFF cells (bottom), and the right
panel shows the average temporal frequency tuning curves for the ON and OFF populations
(n=20 ON cells, n=31 OFF cells). Consistent with previous studies (Kremers et al.,
1993;Benardete and Kaplan, 1999;Keat et al., 2001;Zaghloul et al., 2003), both cell classes
responded similarly, that is, they both responded to a broad range of temporal frequencies (0.15
to 6 Hz) (p>0.05, Student's t-test comparing the mean center of mass of the ON cell tuning
curves with those of the OFF cells).

The results for the same cells under scotopic conditions are shown in Fig. 2. As in Fig. 1, the
left panel shows responses for several individual ON and OFF cells, and the right panel shows
the average tuning curves. In contrast to the photopic condition, there was a clear difference
in tuning: ON cells showed tuning to low temporal frequencies, peaking near 0.5 Hz, while
OFF cells continued to respond to high temporal frequencies. The difference in tuning between
the ON and OFF populations was highly significant (p<10−3, Student's t-test comparing the
mean center of mass of the tuning curves of the two populations).

Similar results occurred for the white noise stimulus (Figs. 3 and 4). Fig. 3 shows the responses
from the two cell classes under photopic conditions. The left panel shows the time course of
the spike triggered average (STA) for several ON cells and OFF cells, and the right panel shows
the average temporal frequency responses for both cell classes (n=20 ON cells, 31 OFF cells).
As with the grating stimulus, both cell types responded similarly over a broad range of temporal
frequencies (p>0.05, Student's t-test comparing the mean center of mass of the ON cell temporal
frequency responses with those of the OFF cells). Fig. 4 shows the responses to the same
stimulus under scotopic conditions. Again, the left panel shows STA time courses for individual
ON and OFF cells, and the right panel shows the average temporal frequency responses across
all cells for the two populations. The same divergence in tuning observed with the grating
stimulus – that ON cells were tuned to low frequencies, while OFF cells continued to respond
to high frequencies – was also seen with the white noise stimulus (p<10−3, Student's t-test
comparing the mean center of mass of the temporal frequency responses of the two
populations).

These differences in temporal frequency characteristics show that there is an ON cell/OFF cell
asymmetry with respect to encoding stimuli at low light levels. To assess the effects of this on
decoding stimuli, we used an ideal observer approach (Barlow, 1978; Geisler, 1989).
Specifically, we measured the extent to which different stimuli can be distinguished given
responses from each cell class.

The decoding results were then quantified and visualized via confusion matrices (Figs. 5 and
6) (Hand, 1981). A confusion matrix indicates the probability that the neural response to a
presentation of a stimulus will be decoded as that stimulus, or whether it will be confused with
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another stimulus. Specifically, the element in position (i,i) of the matrix indicates the
probability that stimulus i is decoded correctly, and the element in position (i,j) indicates the
probability that stimulus i is decoded incorrectly as stimulus j.

Fig. 5 shows the confusion matrices generated from responses taken under photopic condtions.
The stimuli were drifting gratings of different temporal frequencies. As shown in the figure,
both ON and OFF cells decoded the gratings correctly over the range of frequencies; this is
indicated by the prominent diagonal line in each confusion matrix. As in the previous figures,
results for individual ON and OFF cells are shown on the left, and the average for the population
is shown on the right. The results are summarized in panel B, which shows the average of the
diagonals of the matrices for each population, i.e., the average probability that stimuli will be
correctly decoded. Under photopic conditions, no statistically significant difference between
the classes was observed (p>0.1 for all frequencies, Student's t-test, adjusted for multiple
comparisons).

Fig. 6 shows the same analysis for these cells under scotopic conditions. Here, there is a clear
difference in the decoding: the ON cells showed accurate decoding at low frequencies and poor
decoding at high frequencies; this is indicated by the bright squares along the diagonal line at
the low frequencies that dissolve as high frequencies are approached. In contrast, the OFF cells
showed accurate decoding at high frequencies; here, the bright squares are shifted toward the
midde and high frequencies of the matrices. As summarized in panel B, which shows the
average of the diagonals of the matrices for each population, the ON cells were more accurate
at low frequencies, while the OFF cells were more accurate at high frequencies (p<0.01,
Student's t-test, adjusted for multiple comparisons, n=20 ON cells, n=31 OFF cells). (All
individual grating responses, tuning curves, and confusion matrices for both light conditions
are provided in Supplemental Material for the interested reader (Fig. S1 for ON cells and Fig.
S2 for OFF cells).)

The above finding – that ON cells but not OFF cells shift to low temporal frequencies in the
dark – indicates that, as light level decreases, the retina processes increments and decrements
differently. Interestingly, this difference in processing corresponds to an asymmetry in the
physical world, one produced by the Poisson nature of photon capture. In a Poisson process,
the variance is proportional to the mean. This means that there is more dispersion in the
distribution of counts when the event rate increases (i.e., when light increments occur) than
when the event rate decreases (when light decrements occur). Due to this asymmetry, more
time is needed to detect increments than decrements.

The effect of this asymmetry is shown in Fig. 7A. We consider the discrimination of positive
and negative fluctuations around a background luminance. As mentioned above, Poisson
statistics dictate that increments are associated with broader count distributions, and
decrements with narrower ones. Consequently, there is more overlap among the increments,
making them harder to distinguish. As shown in panel B, an ideal observer in a discrimination
task, who chooses stimuli based on the maximum a posteriori probability over the set of stimuli,
will be less accurate in discriminating between increments than between decrements. Changing
the event count (either by changing the integration time or the photon rate) changes
performance for both increments and decrements, but the difference between decrements and
increments persists – for at least three orders of magnitude, as shown in the figure. (The
Appendix provides an information-theoretic analysis of this asymmetry.)

Discussion
It is well known that the signals in the first stages of visual processing segregate into ON and
OFF channels. The working hypothesis for many years was that these channels are symmetric,
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but recent observations suggest that this notion needs modification, that the two pathways show
differences (DeVries and Baylor, 1997; Demb et al., 2001; Chichilnisky and Kalmar, 2002;
Pang et al., 2003; Zaghloul et al., 2003; Sagdullaev and McCall, 2005; Murphy and Rieke,
2006; Eggers et al., 2007; Molnar and Werblin, 2007). The significance of the differences in
conveying visual information has been unclear.

Here we showed a case where the symmetry breakdown between the ON and OFF channels is
very apparent, and functional significance can be attributed. By day, that is, under photopic
conditions, the temporal tuning of ON and OFF ganglion cells in the mouse retina is very
similar, but, at night it diverges: ON cells shift to low temporal frequencies, that is, they increase
their gain at low temporal frequencies and reduce it at high. Fig. 2 and 4 show the changes in
gain, and Fig. 6 shows an example of the functional consequences: the changes in gain
correspond to changes in signal-to-noise ratio, which directly affect performance on a temporal
frequency discrimination task. Fig 7 then shows that this result is predicted by an asymmetry
in the physical world, specifically, the asymmetric detection of light increments and decrements
due to the Poisson nature of photon capture.

This breakdown of symmetry between the two pathways in the dark is unlikely to be specific
to the mammalian visual system. Armstrong-Gold & Rieke (2003) recorded from ON and OFF
bipolar cells under scotopic conditions in the tiger salamander retina and noted that OFF bipolar
cells responded to higher frequency stimuli than ON bipolar cells. While the salamander
appears to have significant differences in the circuitry that mediates rod-driven signals (Yang
and Wu, 1997), their findings suggest that the asymmetries in the ON and OFF pathways at
low light levels generalizes to non-mammals as well.

Functional implications of the differences in visual processing
The results in this paper represent an example of a neural system evolving to match a
fundamental property of the natural world – the intrinsic asymmetry in the detection of light
increments and decrements that arises from the Poisson nature of photon capture. That there
is an asymmetry has been previously noted (Cohn, 1974; Thibos et al., 1979; Hornstein et al.,
1999), but the studies considered only the implications for photoreceptor responses, and only
in the regime of low photon counts (<10 per discrimination window). Here we show that the
retina exploits this asymmetry after photoreceptor signals are partitioned into ON and OFF
channels. Moreover, we demonstrate that this asymmetry is relevant to much higher photon
counts, up to thousands of photons per window in our discrimination task (see Fig. 7B).

Two factors make the asymmetry relevant to high counts. First, the asymmetry is greater for
large deviations from the mean than for small ones. For example, in Fig. 7A, the signals near
threshold (the distributions of counts closest to the mean) only show a slight difference between
increment and decrement distributions, and thus would be nearly equally challenging to
discriminate. In contrast, for supra-threshold signals (deviations further from the mean), the
increment distributions become broader (less discriminable), while the decrement distributions
become narrower (more discriminable). (Formally, the intrinsic difference in discriminability
of increments and decrements depends in an accelerating fashion on distance from the mean
– detailed in the Appendix.) Second, the effects of the asymmetry are compounded when one
considers not just the detection of a single increment or decrement, but instead the
discrimination of multiple increments or decrements around a mean photon count. This latter
task is much more closely related to the task the animal's visual system is performing – that is,
cells in the retina do not simply signal the presence of an increment or decrement, but their
response increases with larger magnitude increments or decrements, and therefore the cells
must be able to discriminate multiple levels. Because these levels overlap with one another
(more so for increments than decrements, as shown in Fig. 7A), the task becomes harder as
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multiple contrasts are considered, which makes the asymmetry relevant to higher photon
counts.

The results of the simple discrimination task, presented in Fig. 7B suggest that ON cells would
need to observe more photons, by approximately a factor of 3, in order to match the performance
of OFF cells (shown by the separation between the grey and black curves). (This is similar to
the factor of 2.5 found in the Appendix using a formal information theoretic analysis.) This
factor of 3 approximates the shift of the tuning curves along the frequency axis seen in the
observed data in Figs. 2 and 4. Note, though, that the discriminability of increments and
decrements will not always differ by this ratio. This is because Poisson fluctuations in photon
count are not the only source of noise. As the signals travel through multiple levels of processing
other noise sources are added. To the extent that these noise sources corrupt increments and
decrements equally, they will dilute the intrinsic difference in detectability.

An additional point worth mentioning is that the impact of the increment/decrement asymmetry
on signaling by ON and OFF ganglion cells depends on the presence of a nonlinearity,
specifically, the well-known rectification in the output of ganglion cells in many species,
including mouse. If, for example, ON cells and OFF cells were not rectified, they could each
signal both increments and decrements. In this scenario, the increment/decrement asymmetry
would not have a differential effect on the two classes.

Finally, the results in this paper have implications for downstream circuitry, since retinal
outputs serve as building blocks for circuits in higher brain areas. For example, some models
of simple cell receptive fields in visual cortex hold that cortical cells are activated in a push-
pull manner, with ON and OFF subregions driven by complementary ON and OFF retinal
ganglion cell input, relayed through the LGN (J. M. Alonso et al., 2001; J. A. Hirsch, 2003).
Our findings predict that if simple cell receptive fields rely on complementarity of ON and
OFF input, their receptive field structure may be radically different at night, when the two
pathways are out of sync; alternatively, assuming this model is correct, these cells may have
some plasticity, e.g. the ability to differentially filter ON and OFF input, which would allow
the cells to preserve their receptive field structure with the shift to scotopic vision.

Relating the differential filtering properties of ON and OFF ganglion cells to retinal circuitry
Our results show, at the level of the ganglion cell output, that ON and OFF pathways have
filtering properties that diverge in the dark. This requires elements in retinal circuitry that act
separately on ON and OFF signals. Under the scotopic conditions used in this paper, signal
transmission to ON and OFF ganglion cells is dominated by the rod bipolar pathway (see Supp.
Material; for review of the pathway, see Bloomfield and Dacheux, 2001, also Volgyi et al.,
2004 and Murphy and Rieke, 2006, 2008). Along this pathway, ON and OFF signals first
diverge at the output from the AII amacrine cell, which connects to ON cone bipolar cells, OFF
cone bipolar cells, and OFF ganglion cells. Here, ON signals are mediated by gap junctions,
while OFF signals (both to the bipolar and ganglion cells) are mediated by chemical synapses
(Kolb and Famiglietti, 1974; Strettoi et al., 1992; Volgyi et al., 2004; Murphy and Rieke,
2008). It has been shown recently that under these conditions, the synaptic input to ON and
OFF ganglion cells is correlated (Murphy and Rieke, 2006, 2008), creating an expectation that
the ON and OFF responses would be similar. However, it has also been shown that the two
ganglion cell types undergo different filtering with respect to their inputs (Murphy and Rieke,
2006, 2008). In ON cells, excitation is followed by delayed inhibition, in a feed-forward
manner, whereas in OFF cells, excitation and inhibition occur simultaneously, but with
opposite polarity; in this case, the cell is driven to fire in a push-pull manner by a combination
of excitation and disinhibition. These different filtering mechanisms are potential mediators
of the differences in the output properties between the two pathways. We emphasize, though,
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that since the ON and OFF pathways have not been completely delineated, it is possible that
there are other processes as well that shape response dynamics.

Interestingly, under photopic conditions, where ON and OFF signals diverge at an earlier point
in the circuitry, i.e., at the level of the photoreceptor output to the bipolar cells, one might
expect greater divergence between ON and OFF ganglion cell responses. This was not the case
for the filtering properties we examined. However, differences between the ON and OFF
pathways under photopic conditions have been reported by others in studies of adaptation,
specifically, contrast adaptation (Chander and Chichilnisky, 2001; Kim and Rieke, 2001; Wark
et al., 2009).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix: Discriminability of increments and decrements in the rate of a
Poisson process: an information-theoretic perspective

Here we analyze the asymmetry in detecting increases and decreases in the rate of a Poisson
process, viewed from an information-theoretic perspective. This asymmetry has previously
been analyzed from the point of view of signal detection theory and asymptotic expressions
for receiver operating curve characteristics (Thibos et al., 1979). The information-theoretic
perspective used here leads to a simple, exact result (eq. (2)) that indicates how much more
quickly an ideal observer can detect a decrement, vs. an increment, in a Poisson process. This
ratio depends in an accelerating fashion on the fractional size of the change (i.e., the contrast),
and, perhaps surprisingly, is independent of the baseline event rate.

To reach our result, we first need a measure of the discriminability of two Poisson processes,
one with rate λP from one with rate λQ. We will then compare the discriminability of a fractional
increase in rate by an amount c (i.e., λP = λQ(1+c)) to the discriminability of a fractional
decrease by the same amount (i.e., λP = λQ(1 − c)).

The first step is to define a natural measure of discriminability per unit time. We do this by
taking the Kullback-Leibler divergence, which is a standard measure of discriminability for
discrete distributions, and extending it to continuous processes. For discrete distributions P
and Q, the Kullback-Leibler divergence is given by

This is a natural measure of discriminability because it has the following interpretation: given
a random draw from the P-distribution, DKL(P∥Q) is the log likelihood ratio that this
observation arises from the P-distribution, vs. that it arises from the Q-distribution (Latham
and Nirenberg, 2005; Cover and Thomas, 2006).

To apply this notion to Poisson processes, we note that for a sequence of independent samples,
log likelihood ratios combine by simple addition. In a Poisson process discretized in small
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intervals of size Δt, each time step is independent. So the discriminability per unit time, which
we denote RKL(P∥Q), is given by the number of time steps (1/Δt) multiplied by the
discriminability within a time step of size Δt. Since this holds for infinitesimal time steps as
well as finite ones, we can write

where PΔt and QΔt indicate the Poisson processes P and Q, discretized in time steps of size
Δt.

We now calculate this single-time-step discriminability, DK(PLΔ∥tQΔt). With time discretized
in steps of size Δt, a Poisson process of rate λ can be approximated as a discrete symbol
sequence: the symbol 0 occurs with probability 1−λΔt and the symbol 1 occurs with probability
λΔt. Thus, in a discretization interval Δt, the discriminability of a Poisson sequence with rate
λP from one with rate λQ is

where p0 = 1−λPΔt, p1 = λPΔt, q0 = 1−λQΔt, q1 = λQΔt. The final term in the above equation
represents the contribution of bins with two or more events; their contribution is negligible as
the step size Δt approaches zero.

With these substitutions, we find

or

Here we have used the approximation log(1+u) = u+O(u2) because we are interested in the
limit of a small discretization interval, Δt.

From this it follows that

(1)

which is the discriminability per unit time of a Poisson process with rate λP from one with rate
λQ.

Finally, we want to compare the discriminability of a decrement by a fractional contrast c from
the background, with the discriminability of an increment by a fractional contrast c from the
same background. We represent the background signal as a Poisson process Q with rate λ, and
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we represent the decrements and increments as Poisson processes Q− and Q+, with rates λ− =
λ(1−c) and λ+ = λ(1+c).

The answer we seek, the ratio of discriminabilities, is . Substituting the above
expressions for λ+ and λ− in eq. (1) yields

(2)

The numerator and denominator of  are proportional to the baseline event rate λ,
so the ratio of discriminabilities is independent of λ. That is, the ratio of discriminabilities
depends only on contrast and the relative photon rates, but not on the absolute photon rate. This
gives the ratio eq. (2) a universal interpretation: it indicates how much more quickly an ideal
observer can reach the same certainty in detecting a decrement of a given contrast, vs. detecting
an increment.

To understand the qualitative behavior of eq. (2), we consider its Taylor expansion. This begins

Thus, the asymmetry between detection of increments and decrements an accelerating function
of the contrast c (see Figure A): it is progressively more prominent in the suprathreshold range.

At the extreme (c = 1), we find , approximately 2.589. That is, abrupt
extinction of a light can be detected about 2.5 times faster than abrupt doubling.
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Fig. A. Decrements can be detected more readily than increments, and the asymmetry is an
accelerating function of contrast
To compare intrinsic discriminability, we use the ratio of Kullback-Leibler distances between
a baseline Poisson process, and one whose rate changes by a factor of (1+c) or (1−c). This ratio
(eq. (2)) has a value of 1 for equal discriminability. Values > 1 indicate that decrements are
more readily discriminated.
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Fig. 1. ON and OFF cells show similar temporal frequency tuning in response to sine wave gratings
under photopic conditions
(A) Representative responses for four ON and four OFF ganglion cells to drifting sine wave
gratings of increasing temporal frequency. Each segment of the traces shows the average firing
rate over one period of the drifting grating for a given frequency. (B) Average tuning curves
(mean +/− SEM) for all ON and OFF cells, normalized to the peak (n=20 ON cells, 31 OFF
cells). Temporal tuning curves were calculated by Fourier analyzing the responses and
extracting the amplitude of the first harmonic response at each frequency. ON and OFF cells
respond to a similar range of temporal frequencies (p>0.05, Student's t-test comparing the mean
center of mass of the ON cell tuning curves with that of the OFF cells).

Pandarinath et al. Page 15

J Neurosci. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2. Frequency tuning of ON and OFF cells diverges under scotopic conditions
(A) Representative responses of four ON and four OFF ganglion cells to drifting sine wave
gratings of increasing temporal frequency. (B) Average tuning curves (mean +/− SEM) for all
ON and OFF cells, normalized to the peak (n=20 ON cells, 31 OFF cells). On average the ON
cells shifted to low frequencies, while the OFF cells continued to respond to high frequencies
(p<10−3, Student's t-test comparing the mean center of mass of the two populations). Note that
under scotopic conditions, both ON and OFF cells fail to respond to the extreme high
frequencies.
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Fig. 3. ON and OFF cells show similar temporal response properties to white noise under photopic
conditions
(A) Representative STA time courses for four ON and four OFF ganglion cells in response to
a white noise (random checkerboard) stimulus. Note that OFF STAs are inverted so that the
similarity of the short peaks is easy to observe. (B) Average temporal frequency responses
(mean +/− SEM) for all ON and OFF cells (n=20 ON cells, n=31 OFF cells), normalized to
the peak. Temporal frequency responses were calculated by Fourier analyzing the STA at the
checkerboard square that produced the largest response for each cell. ON and OFF cells showed
similar temporal response profiles (p>0.05, Student's t-test comparing the mean center of mass
of ON cell temporal frequency responses with that of the OFF cells).
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Fig. 4. The divergence under scotopic conditions was also observed for the white noise stimulus
(A) Representative STA time courses for four ON and four OFF ganglion cells in response to
a white noise (random checkerboard) stimulus. (B) Average temporal frequency responses
(mean +/− SEM), normalized to the peak (n=20 ON cells, n=31 OFF cells). As with the grating
stimulus, the ON cells shifted to low frequencies, while the OFF cells continued to respond to
high frequencies (p<10−3, Student's t-test comparing the mean center of mass the two
populations).
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Fig. 5. Under photopic conditions, it is possible to decode across the entire range of temporal
frequencies using responses of ON or OFF cells
(A) Representative confusion matrices for sixteen ON and sixteen OFF cells calculated using
responses to drifting gratings. The vertical axis gives the presented stimulus (i), and the
horizontal axis gives the decoded stimulus (j). Each element of a confusion matrix plots the
probability of decoding stimulus j when presented with stimulus i (see text). Decoders based
on both ON and OFF responses show little confusion over the range of temporal frequencies,
as indicated by the prominent diagonal lines in the confusion matrices. (B) Average confusion
matrices over all ON and OFF cells (n=20 ON cells, n=31 OFF cells). (C) The average of the
diagonals of the matrices (mean +/− SEM) for all ON (red) and OFF (blue) cells (n=20 ON
cells, n=31 OFF cells). ON and OFF cells perform equally well over the full range of temporal
frequencies (p>0.1 for all frequencies, Student's t-test, adjusted for multiple comparisons).
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Fig. 6. Under scotopic conditions, there is a divergence in performance – ON cells perform better
at low frequencies, while OFF cells perform better at high
(A) Representative confusion matrices calculated using the responses of sixteen ON and sixteen
OFF cells to drifting gratings. ON cells show better performance at low frequencies, as
indicated by the bright squares along the diagonal at low frequencies, which break down at
middle and high frequencies. In contrast, for OFF cells, performance is shifted toward high
frequencies. (B) Average confusion matrices over all ON and OFF cells show the same trend
(n=20 ON cells, n=31 OFF cells). (C) The average of the diagonals of the matrices (mean +/
− SEM) for ON (red) and OFF (blue) populations (n=20 ON cells, n=31 OFF cells). ON cells
perform significantly better at the lowest two frequencies tested (p<0.01), while OFF cells
perform significantly better at the highest frequency (p<0.01, Student's t-test, adjusted for
multiple comparisons).
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Fig. 7. At low light levels, increments become harder to discriminate than decrements of equal
magnitude, due to asymmetries in the Poisson distribution
(A) Distributions of photon counts are shown for increments (grey) and decrements (black) in
steps of 10% contrast around a mean rate (dotted line). For increments, the distributions are
broader and show much greater overlap than for decrements, making increments harder to
detect. (B) Performance for an ideal observer in the discrimination task for increments (grey)
or decrements (black) over a range of mean photon counts. For each mean photon count, stimuli
at steps of ±10% contrast around the mean are simulated (as in A), and the observer chooses
stimuli based on the maximum a posteriori probability over the set of stimuli. Over a broad
range of photon counts, performance is better for decrements than for increments. Arrows
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indicate separation between increment and decrement performance, i.e. the factor by which an
increment detector needs to observe more photons to match the performance of the decrement
detector. The dotted line indicates performance at chance. We note that this aspect of Poisson
processes – that it is more difficult to detect increments than to detect decrements – might seem
counterintuitive, since signal-to-noise ratio (SNR) increases with mean rate increases. But SNR
is not the relevant statistic here. An increase in SNR means that it is easier to detect the same
fractional change around a high mean rate than around a low mean rate. In our case, we are
asking whether, given a constant mean rate (e.g., the rate under night conditions), it is easier
to detect an increment or a decrement. Since the variability of a Poisson process is proportional
to its rate, an increment leads to a more variable signal than a decrement, and, therefore, is
harder to detect. The suggestion in this paper, then, is that ON cells compensate for the higher
variability by integrating their input over a longer period of time, i.e, by shifting toward low
temporal frequencies.
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