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Hubel and Wiesel first defined simple and complex cells of the pri-
mary visual cortex according to whether their receptive fields could
be subdivided into separate ON and OFF subregions1,2. This classifi-
cation scheme is still widely used and correlates well with a cell’s lam-
inar position and synaptic connectivity3–5. A more quantitative
method of distinguishing the two cell classes relies on responses to
drifting gratings6. The firing rates of simple cells are strongly modu-
lated at the grating temporal frequency and therefore have a large
fundamental Fourier component (R1) relative to the mean elevation
in firing (R0); conversely, complex cells respond with an elevation in
firing rate that is only weakly modulated, so they have a small R1 rel-
ative to R0. The modulation ratio R1/R0, in a large population of cor-
tical cells, forms a clearly bimodal distribution, the two groups
corresponding well with Hubel and Wiesel’s definition of simple and
complex6. The ratio is therefore widely used to distinguish simple
and complex cells, and its bimodal distribution provides strong evi-
dence that the two classes are fundamentally distinct and receive dis-
tinct patterns of synaptic inputs7.

The rationale for using the R1/R0 measure to identify simple and
complex cells is intimately related to Hubel and Wiesel’s hierarchical
model of processing in visual cortex. In the model, simple cells
receive input from ON- and OFF-center geniculate relay cells with
nonoverlapping receptive field centers1,2,8. The synaptic input from
these relay cells is synchronously modulated as the alternating light
and dark bars of a drifting grating enter and leave the distinct ON
and OFF subregions of each relay cell’s receptive field. This modula-
tion in excitatory synaptic input gives rise to a large modulation in
the membrane potential (V1) relative to the increase in the mean
potential (V0). The resulting high value of the membrane potential

modulation index, V1/V0, leads to a strongly modulated firing rate
(high R1/R0). Complex cells, in turn, are thought to receive input
from many simple cells with overlapping, but slightly offset, recep-
tive fields9–12. Because a drifting grating encounters the subregions
of the different component simple cells asynchronously, these inputs
should generate a relatively steady, unmodulated elevation in mem-
brane potential (low V1/V0) and therefore a steady, unmodulated ele-
vation in firing rate (low R1/R0). By this reasoning, the bimodality of
the R1/R0 distribution in the cortical population argues strongly for
the existence of two clearly distinct patterns of synaptic input, and by
extension a fundamental distinction between the synaptic circuitry
of simple and complex cells.

Mechler and Ringach have proposed an alternative to the synaptic
connectivity model of bimodality in the modulation index13. In their
model, the distribution of the modulation ratio of the membrane
potential responses (V1/V0) is unimodal. There are still cells at one
end of the distribution that receive the pure, simple-like connections
described by the hierarchical model, and cells at the other end that
receive pure, complex-like connections. But Mechler and Ringach
propose that there are many cells in the middle of the distribution
that receive a mix of inputs and have intermediate values of V1/V0.
The bimodal distribution in R1/R0 then emerges as a result of the
highly nonlinear relationship between membrane potential and firing
rate that is inherent in the spike threshold. If this model were correct,
it would not be necessary to postulate a fundamental dichotomy
between the circuitry that shapes simple and complex cell responses.
Cortical connections would instead form a continuum.

To determine whether the spike threshold enhances the difference
between simple and complex cells, we have compared R1/R0 and
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The contribution of spike threshold to the dichotomy
of cortical simple and complex cells
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The existence of two classes of cells, simple and complex, discovered by Hubel and Wiesel in 1962, is one of the fundamental
features of cat primary visual cortex. A quantitative measure used to distinguish simple and complex cells is the ratio between
modulated and unmodulated components of spike responses to drifting gratings, an index that forms a bimodal distribution. We
have found that the modulation ratio, when derived from the subthreshold membrane potential instead of from spike rate, is
unimodally distributed, but highly skewed. The distribution of the modulation ratio as derived from spike rate can, in turn, be
predicted quantitatively by the nonlinear properties of spike threshold applied to the skewed distribution of the subthreshold
modulation ratio. Threshold also increases the spatial segregation of ON and OFF regions of the receptive field, a defining
attribute of simple cells. The distinction between simple and complex cells is therefore enhanced by threshold, much like the
selectivity for stimulus features such as orientation and direction. In this case, however, a continuous distribution in the spatial
organization of synaptic inputs is transformed into two distinct classes of cells.
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V1/V0 in intracellular recordings from neurons in the cat primary
visual cortex. We found that the distribution of V1/V0 is indeed uni-
modal, though highly skewed. And as predicted by Mechler and
Ringach, the concurrent bimodal distribution of R1/R0 can be
explained quantitatively by the nonlinear effects of spike threshold. In
addition, we quantified the distinction between simple and complex
cells on the basis of the segregation of the ON and OFF responses
within the receptive field, which we mapped by flashing bright and
dark spots. As for grating responses, cortical cells formed two distinct
populations when subfield segregation was based on spiking
responses, whereas they formed a single, continuous distribution
when segregation was based on membrane potential responses. Thus,
our data suggest that the dichotomy between simple and complex
cells arises from a specific unimodal distribution of synaptic inputs
transformed by the mechanism for spike generation.

RESULTS
The key proposal made by Mechler and Ringach to account for the
observed bimodal distribution of R1/R0 lies in the nonlinear trans-
formation between membrane potential and firing rate13. The
expansive nonlinear relationship between voltage and spiking 
(Fig. 1a) tends to enhance the modulated component of the intracel-
lular response for most cells, as shown in two model neurons in
Figure 1b. Here, we have modeled the membrane response of each
neuron as the sum of a steady elevation (V0) and a sinusoidal modu-
lation (V1); this response is transformed to firing rate by a power law
(Fig. 1a) in which firing rate is proportional to the voltage above rest
raised to the power of 2 (p = 2)14,15.

In the top example of Figure 1b, V1/V0 is at the low value of 0.24.
The squaring operation of the voltage-to-spiking transformation,

however, selectively enhances the modulation; the difference between
the peak and the trough of the response is amplified by the squaring
more than the mean level is amplified, so that R1/R0 = 0.47, which is
about twice the value of V1/V0. The second model neuron in Figure 1b
has a higher voltage modulation ratio, V1/V0 = 1.67. For this cell, the
power law slightly reduces the large difference between peak and
trough (R1/R0 = 1.5) because the large membrane potential modula-
tion carries the membrane potential significantly below rest, whereas
the firing rate has a lower bound of 0. The complete relationship
between V1/V0 and R1/R0 for the power-law nonlinearity with an
exponent p = 2 is shown in Figure 1c (blue curve). In general, the non-
linearity of the relationship amplifies low values (V1/V0 < 1.46) by a
factor of up to 2, whereas it attenuates high values in the saturating
portion of the curve (V1/V0 > 1.46). That is, for the sharply rising por-
tions (V1/V0 < 0.68) of the curve in Figure 1c, the relationship between
R1/R0 and V1/V0 is expansive: a narrow range of V1/V0 is spread out
into a wide range of R1/R0. For the shallow portions of the curve, just
the opposite is true: a wide range of V1/V0 is compressed into a narrow
range of R1/R0. Note that the point at which the relationship between
R1/R0 and V1/V0 changes from an expansive to a compressive nonlin-
earity depends on the exponent, p, which defines the power-law rela-
tionship between voltage and spiking. The higher p is, the lower the
dividing point (Fig. 1c, red and black curves). In addition, the higher p
is, the higher the saturating value of R1/R0.

By itself, the relationship shown in Figure 1c does not transform
an even distribution of V1/V0 (Fig. 1d, green curve) into a bimodal
distribution of R1/R0, but instead gives rise merely to a single
skewed peak (Fig. 1e, green curve). It appears, therefore, that the
V1/V0–to–R1/R0 transformation, even though it can dramatically
transform the V1/V0 distribution, by itself cannot completely
explain the bimodality of R1/R0. A bimodal distribution of R1/R0
can emerge (Fig. 1e, orange curve), however, when there is a highly
skewed distribution of V1/V0 that is appropriately matched in shape
to the nonlinearity in the V1/V0–to–R1/R0 transformation. In the
orange curve of Figure 1d, for example, the long tail in the V1/V0
distribution that roughly matches the saturating regions of the
curves in Figure 1c gets compressed by the nonlinear transforma-
tion into a second peak in the R1/R0 distribution, giving rise to the
bimodal distribution in the orange curve of Fig. 1e. For Mechler and
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Figure 1 The nonlinear transformation from the voltage modulation ratio to
the firing rate modulation ratio. (a) The transformation between voltage and
spiking response for two models: the solid line indicates the transformation
for the power-law model and the dashed line indicates the transformation for
the threshold-linear model (see Methods for details). (b) Transformations of
membrane potential(Vm, traces) to firing rate (FR, filled bars) for two model
voltage modulation ratios. Both panels show the membrane potential to
firing rate transformation assuming the power-law model with an exponent 
p = 2. Top panel, V1/V0 = 0.24 and R1/R0 = 0.47; bottom panel, 
V1/V0 = 1.67 and R1/R0 = 1.5. (c) The nonlinear transformation of the
voltage modulation ratio (abscissa) to the firing rate modulation ratio
(ordinate) for power-law models with a threshold at Vrest and various
exponents, including p = 2 (blue curve), p = 3 (red curve) and p = 5 (black
curve). The curves are derived in the Supplementary Note online, following
Mechler and Ringach13. Connected by the blue curve, each square shows
the mapping of a particular voltage modulation ratio in model neurons that
use the power law with exponent p = 2. Insets indicate the corresponding
transformation of membrane potential (traces) to firing rate (filled bars). 
(d) An even distribution (green trace) and highly skewed distribution (orange
trace) of the voltage modulation ratio. (e) The firing rate modulation
distributions resulting from the even distribution (green trace) and skewed
distribution (orange) found in (d) when transformed by the relationship
dictated by the power law with exponent p = 2 (blue curve in (c)).
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Ringach’s proposal to hold, then, two conditions should be met: (i) a
nonlinear transformation between voltage and spiking and (ii) an
appropriate shape of the V1/V0 distribution.

Distinguishing simple and complex cells with gratings
To test these two predictions, we recorded intracellularly from 102
neurons in area 17 of the cat and compared the modulation ratios
derived from spike rate and membrane potential. Sample membrane
potential traces recorded in response to drifting gratings at the pre-
ferred orientation and spatial frequency are shown for four cells in
Figure 2a, along with trial-by-trial and cycle-by-cycle averages of the
membrane potential and firing rate (Fig. 2b,c). The illustrated cells
span the range of observed R1/R0 ratios: the top cell lies in the simple
cell range, with large modulations of membrane potential and firing
rate, whereas the bottom cell shows the very weakly modulated

responses typical of complex cells. Figure 2d contains a scatter plot of
the relationship between mean membrane potential and mean firing
rate for each 30-ms epoch of the grating responses (gray points). The
blue open symbols show mean and standard deviation of the firing
rate for each 1-mV bin in the graph. The gray points are fit to a power
law (red curves, see Methods), the exponent of which is shown in the
upper left of each graph.

Histograms of R1/R0 and V1/V0 are shown in Figure 3a and b for
the population of 102 cortical neurons stimulated with gratings of the
preferred orientation and spatial frequency. As shown previously, the
R1/R0 distribution was strongly bimodal6. In contrast, the V1/V0 dis-
tribution was not at all bimodal, although it was heavily skewed
toward values less than 1. While the mean V1/V0 was very different for
simple and complex cells (as defined from R1/R0), there was consider-
able overlap in the distributions, such that simple and complex cells

a b c d

Figure 2  Intracellular responses to drifting gratings in four example neurons. Gratings had optimal orientation, spatial frequency and direction. 
(a) Responses of four neurons to a grating moving at 2 Hz and 64% contrast. The traces include 4 s of stimulation after 0.25 s of blank stimulus (0.1 s
shown). The dashed line indicates each neuron’s resting membrane potential (Vrest). (b) Trial-averaged firing rate histograms (upper panel) and voltage
traces. (c) Cycle-averaged firing rate histograms and voltage traces. Spikes were removed from voltage traces prior to averaging by using a 4-ms median
filter39. The spike responses of these cells (from top to bottom, in spikes/s) were as follows: R0: 11.17, 21.00, 24.17, 13.06; R1: 19.82, 24.51, 21.54,
3.68; the intracellular responses were (in mV) V0: 5.49, 9.73, 13.77, 6.31; V1: 8.25, 4.40, 4.69, 1.05. (d) Transformation between average voltage and
firing rate. The blue symbols indicate the average firing rate when membrane potential is binned in 1-mV steps (error bars are s.e.m.). The red curve
indicates the power-law function that best fit the data (see Methods).
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could not be identified from their V1/V0 values alone. Neither were
the individual components, V1 and V0, bimodally distributed 
(Fig. 3c,d). In addition, the V1 and V0 components were poorly corre-
lated with one another both in the entire sample (r = 0.33) and within
the subsets of each cell type, as defined by the R1/R0 histogram 
(r = 0.52 in simple cells; r = 0.38 in complex cells).

Next, we examined the spike thresholds of the two populations,
with the thought that a dichotomy in threshold between simple and
complex cells might account for the bimodal distribution of R1/R0.

Cells with higher thresholds, for example, will have higher effective
values of the power-law exponent p (see below), which would in turn
alter the amplification or attenuation of R1/R0 at different values of
V1/V0. The overall distribution of spike threshold was unimodal
(Hartigan’s dip test16, P = 0.6), however, and distribution of thresh-
olds for simple cells overlapped almost completely with that of com-
plex cells (Fig. 3e). The 3.5-mV difference between mean thresholds
for simple and complex cells was small compared to the 39-mV range
of values (mean simple threshold = 19.8 ± 1.32 mV; mean complex
threshold = 16.3 ± 1.1 mV). Therefore, none of the intracellular prop-
erties of the cells examined here—spike threshold, V0 or V1 taken
individually, the V1/V0 ratio or the correlation between V0 and V1—
showed a strong bimodality by which simple and complex cells could
be unequivocally defined.

The relationship between V1/V0 and R1/R0 for the sample popula-
tion is shown in Figure 4a, together with the histograms of each of
the two variables (Fig. 4b and c). The relationship is reminiscent of
the theoretical relationships shown in Figure 1c (smooth curves in
Fig. 4a): as V1/V0 increases, R1/R0 tends to saturate. There is consid-
erable scatter in the relationship. This scatter is not unexpected given
that different neurons have different values of p in the power-law
relationship between membrane potential and spike rate, and p in
turn affects the exact relationship between V1/V0 and R1/R0, as
reflected in the theoretical curves. If variation in p is responsible for
the scatter in Figure 4a, then the points representing cells with simi-
lar values of p should cluster close to the curve of the corresponding
p value. To facilitate a qualitative evaluation, we color-coded the
symbol for each cell according to the exponent of its input-output
curve; cells with p near 2 were colored black, cells with p near 3 were
colored red, and cells with p near 5 were colored blue. We observed a
clear tendency for the individual points to cluster near the corre-
sponding theoretical curve.

To quantify how well the model can predict R1/R0, we plotted the
measured R1/R0 against the R1/R0 that was predicted from V1/V0 and
the fitted p (Fig. 4d). The predicted values were highly correlated
with the measured values (R2 = 0.72). The slope of the correlation
(0.96) was not significantly different from 1 (P > 0.6); the y-intercept
(0.18) was significantly different from 0 (P < 0.03). In addition, the
distribution of R1/R0 predicted from the measured values of V1/V0
and p was significantly bimodal (Hartigan’s dip test, P < 0.05; not
shown). Analysis of the data using Mechler and Ringach’s original
model in which threshold was the free parameter, rather than the
power-law exponent p, is shown in Supplementary Note online, and
yields analogous results.

The V1/V0–to–R1/R0 transformation in single cells
Our analysis thus far rests on the shape of the relationship between
V1/V0 and R1/R0 in a population of neurons when each cell is stimu-
lated by its preferred orientation and spatial frequency. The power of
the model in predicting the observed V1/V0 is suggestive, but it does
not eliminate the possibility that yet a third parameter, which covaries
with V1/V0 and p from cell to cell, could be a hidden source of varia-
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Figure 3  The distribution of responses to drifting gratings across our
sample population. Dark bars indicate neurons classified as complex 
(R1/R0 < 1) and open bars indicate neurons classified as simple 
(R1/R0 > 1). (a) The distribution of R1/R0 was significantly bimodal
(Hartigan’s dip test, P < 0.02). Firing rate modulation values greater than
2.2 were included in the highest bin. (b–e) The distributions of V1/V0 (b),V1
(c), V0 (d) or spike threshold (measured relative to the resting potential; e)
were not bimodal (Hartigan’s dip test, P > 0.5).
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tion in R1/R0. To test for this possibility, we stimulated each of a subset
of cells with gratings of different spatial frequencies, which elicit
responses of differing V1/V0 and R1/R0 values17–22. In complex cells,
for example, low spatial frequency gratings often evoked responses
that were modulated18. Although these responses were weaker than
the responses evoked by the optimal spatial frequency, they were sim-
ple-like in that they were strongly modulated. The modulation occurs
because the bars of the grating are comparable in width to the recep-
tive field itself. Conversely, Figure 5a–c shows an example of a simple
cell in which the spike modulation ratio decreases to complex-like
levels at spatial frequencies much higher than the optimal. The cycle-
averaged responses of spike rate and membrane potential are shown
for this cell at seven different spatial frequencies in Figure 5a; spatial
frequency tuning curves for V1 and V0 (membrane potential) and for
R1 and R0 (spike rate) are shown in Figure 5b and c.

When R1/R0 for the cell in Figure 5a–c is plotted against V1/V0 for
each spatial frequency (Fig. 5d), the data points cluster near the theo-
retical curve associated with the cells’ measured power-law exponent
p (3.1). Note that this theoretical curve is not a fit to the points in the
graph, but is derived completely independently: the curve is based on
the power-law fit to the measured relationship between membrane
potential and firing rate, similar to those shown in Figure 2d. And yet,
the theoretical curve conforms reasonably well to the observed rela-
tionship between V1/V0 and R1/R0.

Similar results are shown in Figure 5e–l for eight other cells in
which V1/V0 varied with spatial frequency. For each cell, the preferred
spatial frequency, and therefore the frequency at which the cell was
classified as simple or complex, is shown by the open symbol. Over
the nine illustrated cells, the values of R1/R0 predicted from V1/V0 and
p (smooth curve) were closely correlated with measured R1/R0. Linear
regression analysis of predicted versus measured values found 
R2 = 0.71, slope = 0.91 (not significantly different from 1, P > 0.5) and
y-intercept = 0.13 (significantly different from 0, P < 0.05). In several
cells (Fig. 5d, f, g and l), V1/V0 varied over a wide enough range to
exhibit both the expansive and compressive portions of the relation-
ship between V1/V0 and R1/R0. In the remaining cells, the changes
only covered the expansive or compressive regions of the theoretical
curve. In almost all cases, the changes in R1/R0 were large enough to
carry the responses across the dividing line between simple-like and
complex-like behavior (horizontal dotted line). That the model can

account for such a wide range of values of R1/R0 in single cells sup-
ports the proposal that threshold alone gives rise to the transforma-
tion between V1/V0 and R1/R0.

Distinguishing simple and complex cells from spatial maps
The data presented thus far indicate that responses to drifting grat-
ings, when measured intracellularly, do not form a bimodal distribu-
tion. Hubel and Wiesel, however, originally defined simple and
complex neurons not by using drifting grating, but by using flashing
dark and bright bars. Their primary criteria for identifying a simple
cell were (i) that ON and OFF responses were segregated into separate
subfields and (ii) that bright and dark stimuli antagonized one
another1,2. In complex cells, ON and OFF responses overlapped.
Although the modulation ratio in response to drifting gratings is
thought to correspond closely to the degree of spatial segregation and
antagonism of ON and OFF subfields, this correspondence has only
been measured for the spike output6,19,21–23; it has not been assessed
from the pattern of synaptic inputs.

We have therefore examined the membrane potential responses of
287 neurons to bright and dark spots flashed within the receptive
field24–28. In 92 of these neurons, we also mapped the receptive fields
from spiking responses. Receptive field maps are shown for four neu-
rons in Figure 6. For each cell, four maps are shown, one each from
membrane potential responses (with spikes removed) to bright and

V1/V0

Number of cells (n = 102)

N
um

be
r 

of
 c

el
ls

 (
n 

=
 1

02
)

0 5 10 15 20

0.0 0.4 0.8 1.2 1.6 2.0
0

5

10

15

20

25

30

35

40

Complex

Simple

0.0 0.4 0.8 1.2 1.6 2.0

0.0

0.4

0.8

1.2

1.6

2.0

0.0

0.4

0.8

1.2

1.6

2.0

Predicted R1/R0

O
bs

er
ve

d 
R

1/R
0

R
1/R

0

a c

b

d

Figure 4  The nonlinear transformation from the voltage modulation ratio to
the firing rate modulation ratio in primary visual cortex. (a) The voltage
modulation ratio (abscissa) and firing rate modulation ratio (ordinate) are
plotted for each cell in our sample population. Neurons were grouped by
the exponent p that best fit the potential-to-firing rate relationship: 
p < 2.75 (blue symbols), p > 3.5 (black symbols) and p intermediate
between these values (red symbols). The separation values were chosen to
assure the same number of cells was found in each group. Blue, red and
black lines indicate the predicted relationship between the potential
modulation ratio and the rate modulation ratio for exponent values of 2, 3
and 5. Rate and potential modulation ratios greater than 2.2 are marked as
2.2. A single neuron had a negative voltage modulation ratio (due to a
hyperpolarizing V0 response to the optimal grating). The example neurons
from Figure 2 are marked with open symbols. The distribution of the 
(b) voltage modulation ratio and (c) firing rate modulation ratio. Open and
filled parts of bars indicate subsets of cells classified by the spike rate
modulation as simple and complex cells. (d) Predicted and actual firing
rate modulation ratios. The predicted firing rate modulation ratio is derived
from the voltage modulation ratio and the exponent value. The solid line
indicates a perfect relationship (identity) between the predicted and actual
firing rate modulation ratios. The dashed line shows the linear regression
between the predicted and actual firing rate modulation ratios.
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from potential and spike rate. The cell in
Figure 6c is a classical simple cell with com-
pletely nonoverlapping ON and OFF sub-
fields, again as defined both from potential
and spike rate. The cell in Figure 6b is a com-
plex cell as defined from its completely over-
lapping spiking ON and OFF responses, but
the ON and OFF membrane potential
responses are only partially overlapping.
Finally, the cell in Figure 6d is a simple cell as
defined by the nonoverlapping spiking ON
and OFF responses, but has almost com-
pletely overlapping ON and OFF membrane
potential responses. As shown previously29,
the receptive fields derived from membrane
potential responses were commonly larger
than those derived from spike responses.

To quantify the overlap between ON and
OFF regions, we first identified those spatial
locations in which either a bright or dark
stimulus elicited a significant membrane
depolarization (outlined regions in the
maps of Fig. 6; see Methods). We then plot-
ted the amplitude of the ON response
against the amplitude of the OFF response
at each of these locations, both for mem-
brane potential and for spike rate. The cor-
relation coefficients derived from each

scatter plot are a strong indication of subregion overlap between
ON and OFF response. For classical complex cells, ON responses are
highly correlated with OFF responses, which results in a high corre-
lation coefficient (between 0 and 1). The cell in Figure 6a, for exam-
ple, has correlation coefficients much greater than zero for both
membrane potential and spike rate. For classical simple cells, ON

Figure 5  The transformation between voltage
modulation ratio and the firing rate modulation
ratio in single cells. (a) Cycle averages of the
firing rate response (top panels) and the
membrane potential response to gratings of
fixed (optimal) orientation, 2 Hz temporal
modulation and different spatial frequencies
(SF) for a single cell. (b) The V1 and V0 values
shown as a function of the spatial frequency of
the stimulus. (c) The corresponding R1 and R0
for the same cell. (d) For each spatial frequency
that produced a measurable spike response, the
voltage modulation ratio is plotted against the
firing rate modulation ratio for the same cell
shown in (a–c) . The solid line indicates the
model prediction given the exponent p that was
estimated from the cell’s input-output function
(not shown). The open symbol indicates the
modulation ratios for the spatial frequency that
elicited the largest R0. (e–l) Same as shown in d
for eight other neurons. The relationship
between predicted and actual firing rate
modulation ratios for the group of cells was high
(R2 = 0.71, slope = 0.91, not significantly
different from 1 (P > 0.5), y-intercept = 0.13,
significantly different from 0 (P < 0.05)). The
cells included both simple and complex cells as
defined by R1/R0 measured with the grating of
optimal spatial frequency.

dark stimuli (upper right and left maps), and spiking rate responses
to bright and dark stimuli (lower right and left maps). The back-
ground of each trace is color-coded for the amplitude of the
responses. The four cells show the full range of spatial overlap found
in our sample. The cell in Figure 6a is a classical complex cell with
almost completely overlapping ON and OFF subfields as defined both
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responses overlap little with OFF responses, which results in corre-
lation coefficients between –1 and 0. The cell in Figure 6c, for exam-
ple, has correlation coefficients less than zero for both membrane
potential and spike rate.

All four parameters, modulation indices and spatial segregation for
membrane potential and spike rate are compared in Figure 7. A his-
togram of the spatial correlation constructed from spiking responses
is shown in Figure 7a. This distribution is significantly bimodal
(Hartigan’s dip test, P < 0.05), as has been observed in extracellular
recordings from monkey visual cortex2,30. The spatial correlation for
membrane potential (Fig. 7h) was not bimodal (Hartigan’s dip test,
P > 0.2), but instead had a largely flat distribution. The relationship
between the spatial correlation for spike rate and spatial correlation
for membrane potential is shown in Figure 7f. Together, Figure 7a, f
and h show that the transformation between membrane potential and
spike rate enhances the difference between simple and complex cells.
There is a strong correlation between these two measures, but there
are many fewer cells with spike-defined correlations between −0.2
and 0.2 than there are cells with potential-defined correlations in this
range. That is, most cells with intermediate potential-defined correla-
tions (near zero) were either more simple (Fig. 6d) or more complex
(Fig. 6b) in their spiking responses, relative to their membrane poten-
tial responses. For the cell in Figure 6b, for example, the correlation
coefficient for potential is near zero because many of the locations
with ON potential responses showed no potential response to OFF
stimuli. Since many of the ON responses that lack corresponding OFF
responses are subthreshold, however, they disappear in the spike map,
and the ON and OFF spiking responses become more highly corre-
lated. In Figure 6d, potential responses are highly correlated, but the
largest ON and OFF responses are slightly offset spatially. Therefore,
when threshold is applied, ON spike responses are absent from the
right-hand portion of the receptive field, whereas OFF spike
responses are absent from the left-hand portion of the receptive field.
Thus, the cell becomes more simple in its spike responses than it is in
its potential responses.

A comparison of the spatial correlation and the modulation ratio
when both are based on spiking responses is shown in Figure 7c. As
expected, there was a significant correlation between these two
measures (R2 = 0.51). Eighty-eight percent of the cells that were
classified as simple or complex by R1/R0 were classified similarly by
spiking spatial correlation. Thus, the R1/R0 metric for cell classifica-
tion to a large extent reflects the degree of subfield overlap meas-

ured from spikes6,19. The same is not true for membrane potential.
There is a poor correlation (R2 = 0.25) between V1/V0 and spatial
correlation based on membrane potential (Fig. 7g), and neither
measure is bimodal.

Note that our measure of correlation between ON and OFF spike
responses is performed on spatial locations that elicited significant
ON or OFF membrane potential responses (outlines in the maps of
Fig. 6), whether or not significant spiking responses were obtained
from these same locations. We have also used a different method in
which the spatial correlation coefficient for spiking was calculated
from locations in which there were significant spiking responses (of

a

b

c

d

Figure 6  ON and OFF spatial maps for both membrane potential and
spikes. (a) The membrane potential responses of a neuron evoked by bright
(top left panel) or dark stimuli (middle left panel). The traces indicate the
stimulus-averaged membrane potential for a 135-ms duration following the
stimulus onset for each spatial location. The color at each spatial location
indicates the membrane potential in the analysis period, averaged between
50 and 80 ms after the stimulus was flashed. The significance region
(black outline) selected for further analysis consisted of spatial locations in
which either a dark or bright stimulus elicited a significant depolarization
relative to the resting potential of the neuron (t-test, P < 0.05). The bottom
two maps show spiking responses as stimulus-averaged spike rate
histograms. The scattergrams to the right of the maps plot the amplitude of
the ON response against the amplitude of the OFF response for each
location within the significance region. Correlation coefficients for the
scattergrams are shown at the upper right. (b–d) Different example
neurons, same format. In response to moving gratings, the example neurons
in panels a and b had R1/R0 values less than 1 and so were considered
complex, whereas those in c and d had R1/R0 values greater than 1 and
thus considered simple.
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cortex, do behave in a threshold-linear fashion under controlled con-
ditions such as the repeated injection of current pulses31. The large
trial-to-trial variability in the responses of neurons of primary visual
cortex, however, tends to smooth the average relationship between
mean membrane potential and mean firing rate so that it approxi-
mates a power law14,15,32,33. Additional smoothing might originate
from variations in threshold related to dV/dt34,35. Our results are not
dependent on the use of the power law, however. As shown in the
Supplementary Note, a threshold-linear function captures the
V1/V0–to–R1/R0 relationship equally well, and indeed any similar
expansive nonlinearity will likely do so. We attach no theoretical sig-
nificance to the power law, but only use it as a convenient method to
capture the numerical relationship between membrane potential and
spike rate for the purposes of the model.

Measures of the modulation in the responses to gratings do not
directly test whether classes of primary visual cortex neurons exist
with distinct spatial organization of receptive fields. In Hubel and
Wiesel’s original classification scheme1, simple cells have spatially seg-
regated ON and OFF subregions, while complex cells have overlap-
ping ON and OFF subregions. Extracellular studies designed to
quantify the spatial (or spatiotemporal) overlap of ON and OFF sub-
regions of the receptive field using various stimuli have reported a
bimodal distribution of a corresponding index quantity23,24,30,36 (but
see ref. 37). We have confirmed this finding in our measure of the spa-
tial correlation between ON and OFF spiking responses. As with grat-
ing responses, however, the distinction between simple and complex
cells was restricted to spiking responses; the distribution of the spatial
correlation coefficient computed from membrane potential was not
bimodal. Threshold, once again, seems to enhance the distinction
between these two classes of cells. Although we have a qualitative

Figure 7  A comparison of the various measures
of grating modulation and spatial segregation of
ON and OFF responses. (a) The distribution of
the spatial correlation coefficient from spike rate
responses. Filled bars indicate the neurons for
which both R1/R0 and the spatial correlation
analysis was performed. The distribution is
significantly bimodal (Hartigan’s dip test, 
P < 0.05) (b) The distribution of V1/V0. Filled
bars indicate those neurons for which the spatial
correlation of potential responses was analyzed.
The distribution is not significantly bimodal
(Hartigan’s dip test, P > 0.5). (c) The
relationship between R1/R0 and the spatial
correlation coefficient from spike rate responses
(n = 80). (d) The relationship between R1/R0 and
V1/V0 (n = 157). (e) The distribution of R1/R0.
The distribution is significantly bimodal
(Hartigan’s dip test, P < 0.05). (f) The
relationship between the spatial correlation
coefficients from spike rate and membrane
potential responses (n = 92). Filled gray symbols
and arrows correspond to the example neurons in
Figure 6. (g) The relationship between V1/V0 and
the spatial correlation coefficients from
membrane potential responses (n = 287). 
(h) The distribution of the spatial correlation
coefficients from membrane potential responses.
The distribution is not significantly bimodal
(Hartigan’s dip test, P > 0.2). Filled bars indicate
those neurons for which spatial maps were
obtained from spike responses.

either polarity). A bimodal distribution of spatial correlation based
on spikes was found using either method.

DISCUSSION
Our intracellular recordings indicate that the nonlinearity of the
spike mechanism contributes directly to creating the dichotomy
between simple and complex cells. The clear distinction between
these two classes evident in the bimodal distribution of the spiking
modulation index (R1/R0) does not arise directly from a bimodal dis-
tribution in the membrane potential modulation index (V1/V0). The
bimodality in the spiking responses seems to arise from the nonlinear
relationship between membrane potential and spike rate. This is not
to say that there is no underlying difference in connectivity that gives
rise to stronger or weaker degrees of modulation in the membrane
potential responses; we found that 90% of simple cells (as defined by
their spike output) had V1 components greater than 2 mV, whereas
78% of complex cells had V1 components of less than 2 mV (Fig. 3d).
But both the V1 component by itself and the V1/V0 ratio are uni-
modally distributed and so by themselves give no hint of there being
two fundamentally distinct populations of cortical neurons. The
appearance of bimodality in R1/R0 depends on the match between the
highly skewed distribution of V1/V0 and the nonlinear transforma-
tion by the spike threshold. The threshold nonlinearity is therefore
required to make simple and complex cells into distinct classes, iden-
tifiable from the distribution of a single parameter, R1/R0.

In constructing the theoretical relationship between V1/V0 and
R1/R0, we chose to model the transformation between membrane
potential and spike rate as a power law. We differ in this regard from
Mechler and Ringach, who used the more standard threshold-linear
model of spiking. Most neurons, including neurons of primary visual
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understanding of why this distinction occurs, as described for the
cells in Figure 6b and d, we have yet to develop as detailed a model as
Mechler and Ringach have done for grating responses.

The emergence of the simple/complex distinction from the effects
of threshold is reminiscent of the threshold-based sharpening of
selectivity for orientation, size and direction29,38,39, in essence, an
‘iceberg’ effect (albeit a complicated one) applied to a measure of
spatial linearity. Unlike direction selectivity or orientation selectiv-
ity, however, threshold is creating a qualitative distinction between
two classes of cells, rather than simply transforming one unimodal
distribution into another. Our study is consistent with Hubel and
Wiesel in that when one examines the spiking responses, there are
two distinct classes of neurons, simple and complex, whether
defined from the spatial segregation of ON and OFF responses or
from the modulation of grating responses. Thus, simple and com-
plex cells, at least for specific stimuli, are completely distinct from
the point of view of their downstream target neurons. And yet our
results suggest that these two classes emerge from a continuous dis-
tribution of synaptic inputs. That is, the continuous distribution of
the character of membrane potential responses, as defined either
from grating response or map segregation, reflects a continuum in
the patterns of cortical connectivity, consistent with models of pri-
mary visual cortex built from circuits with variable strength of
phase-insensitive cortical connectivity12,40.

These findings are not inconsistent with the hierarchical organiza-
tion of cortex articulated by Hubel and Wiesel. Indeed, simple cells
distinguished on the basis of spiking response are more likely to be
found in the input layers of the cortex, layer 4 in particular3,4,41. Layer
4, in turn, projects heavily to the supragranular layers9,42, which con-
tain a high proportion of complex cells. Nevertheless, the intracellular
characterization of cortical neurons suggests that the distinction
between the synaptic organization of simple and complex cells is one
of degree rather than kind.

METHODS
Recordings were obtained from area 17 in barbiturate-anesthetized, paralyzed
young adult female cats (between 6 months and 1 year). All methods regarding
the animal preparation received prior approval by Northwestern University’s
Committee on Experimental Animal Research. Details of the preparation may
be found elsewhere43.

Current clamp recordings were made with either sharp electrodes or patch
electrodes in whole-cell configuration using an Axoclamp 2A amplifier (Axon
Instruments). Electrodes were made using a Flaming/Brown micropipette
puller (Sutter Instruments model p87) from borosilicate glass. Patch elec-
trodes (6–13 MΩ) were filled with 130 mM potassium gluconate, 2 mM
MgCl2, 5 mM HEPES, 1.1 mM EGTA, 0.1 mM CaCl2 and 3 mM magnesium
ATP. Sharp electrodes were filled with 2 M potassium acetate.

Experiments were controlled using custom software (LabVIEW, National
Instruments). The LabVIEW program controlled the digitization of the volt-
age and sent instructions to a Macintosh computer controlling the visual stim-
ulus. Stimuli were generated on a Viewsonic video monitor (100 Hz refresh
rate; 20 cd/m2 mean luminance) by the Macintosh computer running the
Psychophysics toolbox libraries for Matlab (Mathworks)44,45.

Using drifting gratings, each neuron’s receptive field was initially charac-
terized by its tuning for location, size, orientation and spatial frequency. The
preferred stimulus was defined as the stimulus condition that evoked the
largest average firing rate. Stimuli (2-s or 4-s presentations of each grating
with 250-ms blanks preceding and following) were interleaved in pseudoran-
dom order. Offline, firing-rate histograms were generated after detecting the
spikes using a thresholded version of the membrane potential. Average poten-
tial responses were computed after spikes were removed from the potential
signals using a 4-ms median filter39. The relationship between membrane and
firing rate was fit using the power function R (Vm) = k[Vm − Vrest]

p
+, where Vm

is the membrane potential, Vrest is the resting membrane potential (taken
from the response to a blank stimulus), k is the gain factor and p is the expo-
nent. The subscript “+” indicates rectification, i.e., that values below zero are
set to zero. Trial averages of the membrane potential and firing rate were
binned into 30-ms epochs before fitting the power function. In 97% of the
neurons in our sample population (99/102), 95% confidence intervals for the
exponent p did not overlap a value of 1.

After determining the spatial extent of the receptive field using gratings, we
measured the receptive fields quantitatively using a sparse noise stimulus. An
area of the screen, usually about 5° × 5°, which covered the receptive field, was
divided into a grid of small squares. The luminance of one pixel at a time was
then set to either twice the background luminance of the screen (ON stimulus)
or 0 luminance (OFF stimulus) for 30–60 ms, with an interstimulus interval of
a single frame refresh. Membrane potential traces and spiking responses were
computed for each spatial location and polarity, by aligning the potential or
spiking responses to the onset of the presentation of the spot and averaging the
response that followed. Maps were derived from the average response to
between 10 and 70 sequences of the sparse noise stimulus. The response
amplitude was computed by averaging the response 50–80 ms after each spot
was presented. Locations that elicited significant responses were identified by
comparing the average response after a spot was presented to the response to a
blank stimulus and testing for significance (t-test, P < 0.05). The spatial corre-
lation coefficient was computed using Pearson’s correlation coefficient46.

Note: Supplementary information is available on the Nature Neuroscience website.
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