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Supplementary Material 
I. Formal correspondence of alternative models of spike 

threshold 

In modeling the relationship between 1 0V V and 1 0R R , several models of the 

spike-rate generator are possible.  The most general is a 3-parameter model: 
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Eq. S 1. 

Where R is spike rate, V is the membrane potential, p is an exponent and k is a gain 

factor, and Vth is a threshold voltage.  Vth is not the biophysical threshold, but is instead a 

free parameter determined in the fitting procedure.   In the paper, we have assumed that 

Vth is equal to Vrest yielding a 2-parameter model. With p set to 1, the model becomes the 

familiar threshold-linear model of spiking, which was used by Mechler and Ringach in 

their original formulation of the transformation between 1 0R R and 1 0V V .  As we 

showed in the paper for the power-law model, we will demonstrate here that the 

threshold-linear model of spiking predicts a bimodal distribution of 1 0R R from the 

measured distribution of 1 0V V . 

For modeling the transformation, we assume (Figure S1.b) that when the neuron 

is stimulated by a sine grating, the membrane potential, V(t), is sinusoidally modulated in 

time at the grating frequency, f: 
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( ) ( )0 1V V cos 2V t ftπ= +  

Eq. S 2, 

where 0V  is the stimulus-induced mean elevation of the potential above the resting level 

(the nonlinear response component), and 1V  is the amplitude of the stimulus-induced 

sinusoidal modulation of the voltage (the linear component). With these assumptions, the 

threshold model associated with a fixed exponent, p , predicts1 that the 1 0R R  firing rate 

modulation ratio is a nonlinear function, g, of a single variable, χ . 
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Eq. S 3, 

Figure S1.c shows this nonlinear function for two fixed exponents, p=1 and p=2. The 

analytic form of ( )χpg  exists1 for cosine modulation and for all positive real p  

exponents of the threshold nonlinearity. ( )χpg  behaves as a nonlinear ruler. g does not 

depend on the gain parameter, k , because k appears in both the numerator and the 

denominator of the variable, χ . For all choices of the parameter, p, g has a sigmoid 

shape. This sigmoid shape is also preserved when the cosine shape of the modulation 

potential waveform is distorted by noise.   

For depolarizing membrane potential responses ( 0V 0≥ ), nonlinear 

transformation between χ and 1 0R R can be reformulated into the relationship 

between 1 0V V and 1 0R R  as follows: 
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Eq. S 4, 
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where, ( )1 0V V,G p a  is a family of continuous elbow-shaped functions parametric in the 

exponent p and the parameter a = Vth/V1.  ( )0 1 0V V,G p  is the subset of functions that 

are parametric only in the exponent and correspond to 2-parameter power-law models 

considered in the paper (Vth = Vrest = 0). Figure S1.d shows ( )1 0 1 0V V,G  and 

( )2 0 1 0V V,G ; the three examples shown in the main text of the paper were for exponents 

{ }2,3,5p = . The responses defined by Eq. S4 correspond to responses in Eq. S3 with the 

constraint that V0 > 0 (that is, 0 0χ ≤ ). Note also that an entire family of functions, 

Gp,a(V1/V0) with a fixed p but varying in threshold (as quantified by the parameter, a ), 

corresponds to the single sigmoid gp(χ), again subject to the V0 > 0 constraint. 

This change of models from 1 0R R as a function of χ to 1 0R R as a function of 

V1/V0 makes the nonlinear transformation easier to interpret because it recasts the 

problem as a mapping between the two quantities that are directly measured. Because the 

power-law models require that V0 be greater than 0, the maximum amount of spike-rate 

rectification that can occur is half-wave. Therefore, to account for large firing rate 

modulation ratios ( 1 0R R 2≈ ), the power law models require large exponents. Thus, the 

threshold parameter in the threshold-linear model plays a similar role as the exponent in 

the power-law models: higher threshold voltage in the first has the same effect as larger 

exponents in the second. Compare members of the ( )1 1 0V V,G a  function family 

corresponding to parameter { }0,0.2,0.5,1,1.5a = shown in Figure S1.e with members of 

the ( )0 1 0V V,G p  family corresponding to parameter { }0.5,1,2,4,8p = shown in Figure 

S1.f .  Increasing line thickness indicates increasing parameter values in both figures. 
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Supplementary Material 
II. Testing the threshold-linear model 

In the paper, we demonstrated that the power-law model fit the transformation 

between 1 0V V and 1 0R R reasonably well.  We now show that a threshold-linear model 

can also account for most of the variance in the 1 0R R data. As for the power law model, 

we fit the threshold-linear model to the relationship between membrane potential and 

firing rate for each neuron using Vth and k (p=1). Figure S2.a shows the relationship 

between the fitted parameter, Vth, and the measured action potential threshold. Notice that 

the fitted thresholds are systematically smaller than the measured thresholds.  The 

difference in the values arises because voltage noise acts to randomly bring the 

membrane potential to action potential threshold2. In the power-law model, voltage noise 

is accounted for by the exponent, p 3.  

The distribution of the intracellular ratio, χ = (Vth – V0)/V1, is unimodal in our 

population of V1 neurons (Figure S2.b), as would be expected from the observation that 

V1, V0 and Vth are unimodally distributed. For reference, the bimodal distribution of 

1 0R R is re-plotted in Figure S2.c. The transformation of χ  into 1 0R R is nonlinear 

(Figure S2.d; one data point for each neuron). Consistent with the assumption of the 

threshold-linear model, the 95% confidence interval of the fit exponent overlapped 1 for 

the population of V1 neurons (p = 0.78+/- 0.39). The threshold-linear model accounted 

for 78% of the variance in the relationship between χ and 1 0R R . The prediction of 

spike modulation ratio by the threshold-linear model is therefore only slightly weaker 

(Figure S2.e) than the prediction by the power-law model (Figure 3D, main text). 
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The scatter about the optimal sigmoid can be explained by a combination of 

neuronal noise, error from the choice of model or nonsinusoidal shape of the voltage 

response. Some of the systematic deviations from the threshold-linear model could be 

accommodated by a diversity of exponents. Systematic distortions to the cosine shape, 

such as broadened or narrowed peaks and troughs, are often observed in intracellular 

recordings of V1 neurons’ responses to sine gratings. The model can accommodate such 

distortions by using a class of functions other than the cosine (e.g., von Mieses functions) 

with appropriately redefined amplitude and mean1. 
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Supplementary Figure Legends 

Figure S1.  

Comparison of alternative threshold models.  (a) The static nonlinearity of 

threshold is modeled by a power function that converts the supra-threshold potential input 

into firing rate output. The two examples shown are the threshold-linear model 

( 1p = ,Vrest < Vth), indicated by the continuous curve, and the power-law model 

( 2=p ,Vth = Vrest), indicated by dashed curve.  (b) The synaptic response to a drifting 

grating is modeled by a sinusoidal modulation of the membrane potential. For definition 

of quantities, see text of Supplementary Material I.  (c) ( )χpg , the sigmoid mapping of 

the intracellular ratio, χ , into 1 0R R , the spiking modulation ratio. The two examples 

shown correspond to exponents 1p =  (continuous curve) and 2=p  (dashed curve).  Vth  

is a free parameter in both.  (d) ( )0 1 0V V,G p , the elbow shaped mapping of 1 0V V , the 

intracellular modulation ratio into 1 0R R . The two examples shown correspond to 

exponents 1p =  (continuous curve) and 2=p  (dashed curve).  Vth = Vrest in both.  (e) 

( )1 1 0V V,G a , shown for { }0 0 2 0 5 1 1 5=a , . , . , , .  by curves of increasing thickness.   (f) 

( )0 1 0V V,G p , shown for { }0 5 1 2 4 8=p . , , , ,  by curves of increasing thickness. 
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Figure S2.  

Evaluation of the threshold-linear model. The gain and threshold parameters were 

optimized for each V1 neuron as in the main text of the paper. Cell types are indicated by 

color; simple cells by red, complex cells by black.  (a)  Scatter plot of the fit parameter 

Vth and the measured action potential threshold.  (b)  Unimodal distribution of the 

intracellular ratio χ = (Vth – V0)/V1.  (c)  Bimodal distribution of 1 0R R , the spiking 

modulation ratio.  (d)  Transformation of χ  to 1 0R R .  The thin black indicate ( )χpg , 

that correspond (from bottom up) to exponents { }0 5 1 2=p . , , . The thick blue curve 

indicates the sigmoid ( )χpg  that optimally accounts for the data. The optimal exponent, 

p=0.78, is not significantly different from 1.  (e) Using the threshold-linear model the 

correlation between predicted and measured 1 0R R is slightly weaker (R2 = 0.56) than 

when the power-law model was used (Fig 3D, main paper). The linear regression (blue 

dashed line) is significantly different from identity (black solid line) (slope = 0.62; 

p<0.01;  y-intercept = 0.27, p<0.01). 
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