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Detection of motion is a crucial component of visual processing. To probe the computations underlying motion perception,
we created a new class of non-Fourier motion stimuli, characterized by their third- and fourth-order spatiotemporal
correlations. As with other non-Fourier stimuli, they lack second-order correlations, and therefore their motion cannot be
detected by standard Fourier mechanisms. Additionally, these stimuli lack pairwise spatiotemporal correlation of edges or
flickerVand thus, also cannot be detected by extraction of one of these features, followed by standard motion analysis.
Nevertheless, many of these stimuli produced apparent motion in human observers. The pattern of responsesVi.e., which
specific spatiotemporal correlations led to a percept of motionVwas highly consistent across subjects. For many of these
stimuli, inverting the overall contrast of the stimulus reversed the direction of apparent motion. This “reverse-phi”
phenomenon challenges existing models, including models that correlate low-level features and gradient models. Our
findings indicate that current knowledge of the computations underlying motion processing is as yet incomplete, and that
understanding how high-order spatiotemporal correlations lead to motion percepts will illuminate the computations
underlying early motion processing.
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Introduction

Detection of movement is one of the most fundamental
and important tasks performed by our visual system. In
our everyday life, whenever we are moving, we need to
keep track of our surroundings to coordinate ourselves
with the environment. To predator and prey alike, motion
detection is key to survival.
Motion analysis is generally considered to consist of

two stages: an early stage in which local motion is
extracted and a later stage at which local motion signals
are combined into object motion or flows. Early motion
processing is generally considered to be carried out by
first-order (Fourier) and second-order (non-Fourier) mech-
anisms (Lu & Sperling, 2001; Reichardt, 1961). The
former extracts motion when the spatiotemporal correla-
tion of luminance signal is present. The latter extracts
motion under other circumstances and is often modeled as
local nonlinear preprocessing, such as flicker detection or
extraction of unsigned contrast, followed by a spatiotem-
poral correlation of the resulting signals.

In parallel with the categorization of early motion
processing mechanisms, motion stimuli are also catego-
rized into first- and second-order. First-order (Fourier)
stimuli are those that can be detected by first-order motion
processing mechanism. Such motion stimuli must have
pairwise spatiotemporal correlation of luminance. For
example, drifting sinusoidal gratings are first-order motion
stimuli. Motion stimuli that can be detected by second-
order mechanisms but not first-order mechanisms are
called second-order (non-Fourier) motion stimuli. A
typical example of a non-Fourier motion stimulus is a
static high spatial frequency random checkerboard whose
contrast is modulated by a drifting low spatial frequency
sinusoid. This stimulus has pairwise spatiotemporal
correlation of contrast but not luminance. Thus it is
readily detected by second-order mechanisms but cannot
be detected by first-order mechanisms. Motion stimuli can
also contain spatiotemporal correlations of a more com-
plex derived signal, such as texture (Lu & Sperling, 2001).
The possibility remains that yet other types of stimuli can
elicit motion percepts. Here we describe such stimuli and
the percepts they produce.
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To create these stimuli, we use a “spatiotemporal
glider” containing three or more voxels in an arbitrary
spatiotemporal configuration. Within each glider, we use a
parity rule to generate correlation. Special gliders produce
well-known examples of first-order and second-order
stimuli (as shown in the Methods section)Vbut generic
gliders result in stimuli that have novel characteristics.
While many stimuli generated by the spatiotemporal

glider method elicit a motion percept, most motion
processing models fail to generate a correct motion signal,
if they generate a motion signal at all. Moreover, even the
models that do predict a motion signal fail to account for
the perceived direction of motion, or for the instances in
which an overall inversion of contrast results in a change
in the apparent motion direction. Our findings thus
indicate that current knowledge of the computations
underlying motion processing is incomplete, and that an
understanding of how the spatiotemporal correlations in
these stimuli lead to motion percepts will provide a more
complete understanding of the computations underlying
early motion processing.

Methods

Stimulus construction

To create spatiotemporal movie stimuli with specific
high-order spatiotemporal correlations, we generalize the
“isodipole texture” method for creation of spatial stimuli
with high-order correlations (Julesz, Gilbert, & Victor,
1978). The general isodipole texture algorithm (Victor &
Conte, 1991) is as follows: a “glider”, consisting of
several nearby checks, is chosen. Then, the texture is
colored black and white, such that within any glider, the
total number of black checks has a particular parity (even
or odd).
For example, to construct the “even texture” described

in Victor and Conte (1991), we use a 2 � 2 square as the
glider. Assume the texture is an N � N array of checks at
coordinates (x, y). In Step 1, checks in the first row (the
checks (x, 1)) and the first column (the checks (1, y)) of
the texture are randomly assigned to black or white. In
Step 2, the glider is placed on the corner of the texture so
that it covers 4 checks: (1, 1), (1, 2), (2, 1), and (2, 2).
Since (1, 1), (1, 2), and (2, 1) are already colored in Step
1, the fourth check (2, 2) can be determined by counting
the total number of black checks among the 3 known
checks. If the number is even, the check (2, 2) is colored
white; if the number is odd, it is colored black. This way,
the total number of black checks within the glider is
even. In Step 3, the glider is moved by one unit along the
x-direction, and the method in Step 2 is used to determine
the color of check (3, 2). The glider is now moved in
successive one-check steps, until all checks (x, 2) are now

colored. At this point, the glider is moved to the first
column of the next row, and the process is repeated. The
whole texture is made using this recursive method after
initialization, and therefore we can be sure that within any
glider, the total number of black checks is even. Note that
the above construction can be carried out for gliders of
other shapes, not just a 2 � 2 square.
To extend this idea to spatiotemporal stimuli, we

generalize the construction from a two-dimensional spatial
array of checks (x, y) to a three-dimensional spatiotem-
poral array of voxels (x, y, t). Correspondingly, the
defining glider is a set of three or four nearby spatiotem-
poral voxels. The movie (see Supplementary data) is then
colored with black and white voxels, with the requirement
that within any glider, the total number of black voxels
must have a particular parity (even or odd). Checks that
cannot be determined by the glider rule, such as the initial
frame’s checks or the boundary checks, are randomly
assigned black or white. This process is presented in
Figure 1, and formally described in Appendix A. Note that
in Figure 1 (and later figures), the voxels of the glider are
shown by coloring several corners of a wireframe cube.
That is, the wireframe cube represents a 2 � 2 � 2 region,
and each of its colored corners represents a voxel in the
glider. The three colored corners are three voxels that
form the glider, with different colors indicating differences
in time.

Stimulus properties

We now describe the correlation structure of the
spacetime stimuli that result from these constructions.
We are interested in correlations of orders 2, 3, and 4.
Second-order spatiotemporal correlations are important
because they could support Fourier motion; we will see that
they are absent. Fourth-order correlations are important
because some of them can support standard non-Fourier
motion; we will see that these particular correlations are also
absent for most of the stimuli constructed by this method.
Finally, third-order correlations are present in many of the
stimuli, and (see the Discussion section) these provide the
simplest means to extract a motion percept.
As mentioned above, our stimuli generalize the “isodi-

pole texture” construction, by replacing two-dimensional
spatial gliders with three-dimensional spatiotemporal
ones. Second-order correlations are absent from isodipole
textures (Julesz et al., 1978; Victor & Conte, 1991), and
consequently, second-order spatiotemporal correlations
are absent from our stimuli as well. (This can be seen,
for example, from the work of Gilbert, 1980, whose proofs
of the correlation properties of glider-based textures do
not depend on dimension.)
Higher order correlations are present, however. These

are determined by the shape of the glider. In particular, the
parity rule itself is a statement about correlations among
the voxels that form the glider.
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Figure 2 shows how for some gliders, these fourth-order
correlations are related to non-Fourier motion. In Figure 2A,
we apply the even-parity rule to a four-element glider.
This glider can be thought of as consisting of two pairs of
voxels, each pair parallel to the x-axis, with a spacetime
displacement between the pairs (grouped in Figure 2A by
dashed lines). Since the parity rule requires that an even
number of these voxels are black, the only possibilities are
that both pairs contain one black voxel and one white
voxel, or that all of the voxels match within each pair (one
black pair and one white pair, or all voxels black, or all
voxels white). In the first case, there is an edge orthogonal
to the x-axis between each pair of voxels; in the second
case, there is no edge at either pair of voxels. That is, an
edge in one location and time requires a similarly oriented
edge in another location and time. The result is an edge
that propagates along a spacetime diagonal. In sum, a
specific fourth-order correlation (defined by the glider)
corresponds to propagation of an edge along a spacetime
diagonal. This propagation of a feature yields standard
non-Fourier motion. Note that had we used the odd-parity
rule, the same pattern of correlations would be present,
but some would be negative.
Analogously, a four-element glider that consists of two

pairs of voxels arranged as in Figure 2B leads to a
different kind of fourth-order correlation. Here, the voxels
are arranged in two pairs, with each pair corresponding to
voxels in the same location on adjacent frames. Therefore,
the even-parity rule means that flicker in one location (a
mismatch in one pair) implies flicker in the other location,
at a later time (a mismatch in the other pair). So this
fourth-order correlation corresponds to propagation of
flicker along a spacetime diagonal, i.e., another example
of standard non-Fourier motion.

Figures 2C and 2D show x–t slices of the movies
corresponding to the gliders in Figures 2A and 2B, and
demonstrate that these fourth-order correlations induce a
visually obvious diagonal structure in spacetime.
Figure 2E analyzes a subset of the correlations induced

by these gliders and shows how this diagonal structure
arises. As the above analysis indicates, the glider of
Figure 2A leads to a spacetime diagonal of correlated
edges orthogonal to the x-axis, and the glider of Figure 2B
leads to a spacetime diagonal of correlated flicker. In sum,
we have seen that if a glider consists of two parallel pairs
of adjacent checks, it will generate a standard non-Fourier
stimulus.
Next we consider what happens if we use gliders that do

not consist of two parallel pairs of adjacent checksVthe
gliders that generate the stimuli we study here. One way
to do this is to use a glider with four elements, but to
choose the elements so that they do not form two
parallel pairs (Figure 3A). Another way to do this is to use
a glider with only three elements (Figure 3B). Figures 3C
and 3D show the x–t slices of the corresponding movies.
Figure 3C has no evident visual structure. Figure 3D has a
visually obvious diagonal structure, but this does not arise
from pairwise correlations. This is illustrated by the
absence of correlations in Figure 3E and proved in
Appendix A.
While the examples in Figures 3C and 3D give a

glimpse of the stimulus properties, they do not capture the
entire picture, because they are necessarily limited to
single-layer slices parallel to one coordinate plane. The
reader is encouraged to view the Supplementary data and
examine Appendix A to gain a more complete picture of
their appearance and properties. For example, Figure 3C
shows no structure at all. This is because the x–t plane

Figure 1. Construction of a three-element spatiotemporal glider stimulus. The three-element glider (left) is represented by a wireframe
cube with three of its corners colored. The wireframe cube represents a 2 � 2 � 2 region in spacetime, and the three colored corners are
the three voxels that form the glider. The coloring indicates the time steps occupied by each voxel: two voxels (green) are at time t, and
one (blue) is at time t + 1. The stimulus is constructed by applying an odd parity constraint (for black checks) to the colorings within all
occurrences of the glider. That is, every placement of the glider contains an odd number (one or three) of black checks. The checks
outlined in color in frame t and t + 1 on the right illustrate this parity constraint for three placements of the glider. The red arrows show,
within a glider, how the color of a check in frame t + 1 is determined by the color of other checks in frame t. An example of the resulting
movie is provided in the Supplementary data.
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cannot contain all voxels of the four-element glider shown
in Figure 3A, and therefore none of the checks in the x–t
slice are correlated, at any order. For this stimulus,
statistical structure is only present when double-layer
slices at specific orientations are considered. Visual
inspection of Figure 3D can also be misleading. For this
and other three-element gliders, a visually evident
diagonal structure is present in the appropriate spacetime
plane. However, this structure is not based on pairwise
correlations and thus is not available to Fourier mecha-
nisms. Moreover, the kinds of spatiotemporal correlations
that are present do not correspond to “flicker motion” or
“edge motion” and, thus, would not be available to

standard non-Fourier mechanisms either. This is shown
in Appendix A.
The psychophysical experiments focus on gliders like

those of Figure 3, which do not consist of pairs of parallel
voxels, but we use the gliders like those of Figure 2 for
comparison.

The centroid direction

Even though many gliders, such as those of Figure 3, do
not support edge motion or flicker motion, they do have a

Figure 2. For some gliders, standard second-order motion can emerge from spatiotemporal correlations of features. (A) A four-element
glider that induces second-order spatiotemporal correlation of edges orthogonal to the x-axis. (B) A four-element glider that induces
second-order spatiotemporal correlation of flicker. (C) An x–t slice of the stimulus generated using the glider of (A). (D) An x–t slice of the
stimulus generated using the glider of (B). (E) Spatiotemporal correlation of luminance, edges orthogonal to the x-axis, edges orthogonal
to the y-axis, and flicker, from sample stimuli constructed by glider A (lower left 4 panels) and glider B (upper right 4 panels), both with
even-parity rule. Black lines across the center of each panel separate leftward and rightward correlations.
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spacetime “slant”. This slant can be defined by the
trajectory of the centroid of the voxels in each time frame
of the glider. We call this slant the “centroid direction”
and use it as the reference direction in the psychophysical
experiments.
Figure 4 illustrates how to find the centroid direction of

a glider. We separate a glider into the voxels in the plane
at time t (filled green circles), and the voxels in the plane
at time t + 1 (filled blue circles). The centroid direction is
the vector from the centroid of the voxels at time t (open
green circle), to the centroid of the voxels at time t + 1
(open blue circle). Note that for many gliders, the centroid
motion direction may be oblique (Figures 4B–4D). The
strategy of finding the centroid direction can be extended

to gliders that span multiple time slices, by choosing the
direction to be the vector that is the best fit to the centroids
in each time slice in the least-squares sense.
The glider shown in Figure 4E has a centroid direction

parallel to the time axis (i.e., there is no spacetime slant).
We use this glider as a negative control, since its
symmetry properties eliminate the possibility of a net
motion direction.

Procedure

A Matlab (version 2008a) routine was used to generate
and display the above stimuli and record subjects’

Figure 3. For other gliders, spatiotemporal correlations do not arise by pairwise correlation of features. (A) A four-element glider that does
not consist of two parallel pairs of voxels. (B) A three-element glider. (C) An x–t slice of the stimulus generated using the glider of (A). (D) An
x–t slice of the stimulus generated using the glider of (B). (E) Spatiotemporal correlation of luminance, edges orthogonal to the x-axis,
edges orthogonal to the y-axis, and flicker, from sample stimuli constructed by glider A (lower left 4 panels) and glider B (upper right
4 panels), both with even-parity rule. Black lines across the center of each panel separate leftward and rightward correlations.
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responses. (The Matlab source code for stimulus gener-
ation is provided in the Supplementary data.)
Stimuli consisted of 20 images, each presented for

100 ms (6 hardware frames on a 60-Hz monitor). Each
image was a 64 � 64 black-and-white checkerboard,
occupying a 25- � 25- region in the subject’s visual field.
Ten different three-element gliders and 14 different four-
element gliders (including the negative control and the
glider that generates standard second-order motion) were
used. Each glider was tested with 100 examples of each
parity (even and odd), except for the “negative control”
(Figure 4E), which was tested with even parity only. For
each kind of glider, a random half of the epochs were
presented with its direction of motion to the left; in the
other half, the glider was flipped in space so that its
centroid direction of motion was to the right.
Stimuli were displayed on a 17W, 60-Hz LCD monitor

(Dell 1704FPTt) and synchronized to the monitor’s
refresh. We also tested two subjects on a 60-Hz CRT
(Dell M991) monitor and found no significant difference
compared to the results obtained using the LCD monitor.
That eliminated the possibility that our findings resulted

from artifacts specific to LCD monitors, such as the
motion blur effect (Har-Noy & Nguyen, 2008).
Five normal subjects participated in the experiment

(1 male, 4 females). Visual acuities were normal or
corrected to at least 20/30. Subjects free-viewed the
stimuli binocularly at 50 cm in a darkened room and
were asked to identify the horizontal direction of motion
and ignore any vertical component (2-alternative forced
choice, left or right), and to register their response by
pressing left- or right-arrow key on a regular computer
keyboard. Tests were self-paced and no feedback was
given. Each subject was studied in eight 1-h sessions, each
of which started with a short practice to familiarize the
subject with the test. Within each session, approximately
600 trials were presented.

Data analysis

Data analysis was performed in Matlab (version 2008a).
Binomial confidence intervals were used to determine
significance of apparent motion responses (i.e., whether

Figure 4. Centroid directions for (A, B) 2 three-element gliders and (C, D, E) 3 four-element gliders. Within each glider, filled green circles
represent voxels at time t and filled blue circles represent voxels at time t + 1. The centroid direction is, as indicated by the red arrow, the
vector pointing from the centroid of voxels at time t (open green circle) to the centroid of voxels at time t + 1 (open blue circle). Note that
when there is only one voxel at a time, the centroid is the voxel itself (as in (A)–(C)).

Journal of Vision (2010) 10(3):9, 1–16 Hu & Victor 6

http://journalofvision.org/10/3/9/supplement/supplement.html


the fraction of trials with perceived motion in the centroid
direction is significantly different from 0.5). To detect
performance significantly above or below chance, we used
two-tailed statistics.
As described in the Results section, in many cases, the

apparent motion of a stimulus was in the centroid
direction for one parity, and opposite to it for the other
parity. That is, for one parity (e.g., even), the perceived
motion was systematically biased toward the centroid
direction (fraction value Feven 9 0.5), while for the other
parity (e.g., odd), percepts were systematically biased
opposite to the centroid direction (Fodd G 0.5). To ask
whether the in-centroid direction percept was stronger
than the opposite-direction percept, we proceeded as
follows.
In the above example, if the in-centroid percept

generated by the even parity was stronger than the
opposite-direction percept, we would have (Feven j 0.5) 9
(0.5 j Fodd). Similarly, if the odd-parity stimulus elicited
motion in the centroid direction, and this was stronger
than the percept of motion in the opposite direction
elicited by the even stimuli, we would have (Fodd j 0.5) 9
(0.5 j Feven). Both of these are equivalent to Feven +
Fodd j 1 9 0. So, the index of whether centroid-direction
perceived motion for one parity was stronger than the
opposite-direction percept for the other parity is, whether
Feven + Fodd j 1 is greater than 0.
To analyze the statistical significance of this phenom-

enon, we proceeded as follows. First, we only considered
responses to gliders for which the apparent direction of
motion depended on parity. For these gliders, we
combined the responses to form an index S, based on
Feven + Fodd j 1:

S ¼

X
gliders

X
subjects

Feven þ Foddj1

Ngliders I Nsubjects

: ð1Þ

A positive index means that the parity that produced
apparent motion in the centroid direction led to a stronger
percept (as measured by the positive deviation of fraction
value F from 0.5) than the parity that produced the
opposite motion (as measured by the negative deviation of
F from 0.5). An index of 0 means that the percepts were
equally strong, and a negative index means that the
percept of centroid motion was weaker.
To determine whether this index deviated significantly

from 0, we used a surrogate data method. Ten thousand
surrogate data sets were built from each subject’s
responses. In surrogate sets, data pairs (Feven and Fodd for
one glider) were inverted with respect to chance perfor-
mance (0.5). That is, the change was made as follows:
Fsurrogate-even = 1 j Fodd, Fsurrogate-odd = 1 j Feven.
To create each surrogate data set, this change was

applied to a random selection of gliders. We then
calculated 10,000 surrogate index values (Ssurrogate) from

these data sets, via Equation 1. The fraction of surrogate
index values Ssurrogate higher than the index constructed
from the original data was used to estimate the probability
that the observed value of the index S could be due to
chance.

Results

Most of the 24 three- and four-element glider stimuli
elicited consistent percepts of apparent motion in all five
subjects. Results for stimuli generated with three-element
gliders and four-element gliders are shown in Figures 5
and 6, respectively.
Results are represented by the fraction in the centroid

direction, which is calculated as the fraction of trials that
the movement direction judged by subjects agree with
centroid direction of that stimulus. Each column shows
the result as 5 pairs of points, one pair for each subject.
The left point corresponds to the even parity and the right
point corresponds to the odd parity, produced by the glider
underneath the column.
The results are highly consistent across all subjects.

Most stimuli (at least 16/23) were perceived as having a
definite direction of apparent motion, where significance
is defined as a binomial confidence interval that does not
include the level of random performance (0.4–0.6,
corresponding to p G 0.05, two-tailed). Of the 10 three-
element gliders, 9 produced a consistent apparent motion
percept. Of the 13 four-element gliders (excluding the
negative control), 7 showed consistent apparent motion.
Note that we are using the direction of centroid motion
simply as a reference, and thus, these counts include all of
the stimuli that elicited motion in the centroid direction or
opposite to it, as long as it was consistent.
Four-element gliders can be subdivided according to

whether they have three elements at one time and one at
an adjacent time (Figure 6A), or two elements at one time,
two at an adjacent time (Figure 6B). Of the gliders in
Figure 6A, 5 out of 8 showed consistent apparent motion.
The gliders containing two elements at one time and

two elements at an adjacent time (Figure 6B) include two
special gliders: the “negative control” (the last column of
Figure 6B) and a glider that generates a standard second-
order motion stimulus, consisting of steadily moving
edges that changes their contrast polarity randomly
(column 5 of Figure 6B).
We call the glider in the last column of Figure 6B the

“negative control” because its centroid direction has no
spatial component. That is, the fourth-order statistics have
no directionality, so the direction of apparent motion
should be perceived as ambiguous. Only the even parity
condition was used. Results show that it did not produce a
significant motion precept: as expected, performance was
at chance level.
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The glider in column 5 of Figure 6B generates standard
second-order motion, because every edge in one position
at time t is followed by an edge in the adjacent position at
time t + 1. This stimulus generated the strongest motion
percept among all four-element gliders with two ele-
ments at each time, although some of the stimuli with
three elements at one time and one element at another
time (Figure 6A) and many of the three-element gliders
(Figure 5) generated motion percepts that were similar in
strength.

Reverse phi

As mentioned above, we considered a stimulus to elicit
apparent motion if the percepts were consistent across
subjects, whether or not it was in the centroid direction.
Interestingly, although the centroid direction, by defini-
tion, did not depend on the parity of the glider (even or
odd), the perceived motion direction often did. This
occurred for most (14/16) of the stimuli that had a motion
percept. Only one stimulus (column 1 of Figure 5) elicited
motion in the same direction for both parities.
This phenomenon can be considered a kind of “reverse-

phi” illusion because, like standard reverse phi, the reversal
of the apparent direction of motion is induced by inversion
of contrast of a portion of the stimulus (Anstis, 1970; Anstis
& Mather, 1985; Anstis & Rogers, 1975).
The observation that parity reversal led to a reversal in

motion direction is particularly interesting for the three-
element glider stimuli. For these stimuli, reversal of parity

is equivalent to inversion of contrast polarity of the entire
movie. The reason for this is simple: the parity of the rule
indicates whether the number of black voxels in a glider is
even or odd. For three-element gliders, an even number of
black voxels implies an odd number of white voxels,
while an odd number of black voxels implies an even
number of white voxels. So if one inverts contrast (i.e.,
changes all voxels from black to white), one changes an
even-parity rule into an odd-parity rule. That is, contrast
inversion is equivalent to changing parity. So our finding
(for three-element gliders) that the judgment of apparent
motion direction depends on parity means that the judg-
ment of apparent motion inverts with contrast. This, in
turn, implies a fundamental asymmetry in how motion
mechanisms treat light and dark.
For four-element gliders, changing parity is not equiv-

alent to inverting contrast. For 6/7 of these stimuli, even
parity generally led to a centroid motion percept, while
odd parity generally led to a reverse-phi percept (i.e., a
fraction correct that was significantly lower than 0.5).

Unequal strength of percepts in and opposite
to the centroid direction

While we use the “direction of centroid motion”
primarily as a reference, there is some evidence that it is
related to the underlying motion computations. Specifi-
cally, for stimuli that elicit a motion percept in the
centroid direction at one parity and opposite to it for the
other parity, the strength of the percept in the centroid

Figure 5. Results for 10 three-element glider stimuli, tested on 5 subjects. Within the results shown over one glider, responses for the
even-parity rule are on the left; responses for the odd-parity rule are on the right. Fraction in centroid direction 90.6 or G0.4 is
significant (p G 0.05, two-tailed). The gliders are ordered in time-reversal pairs. That is, the glider in column 2 is the time reversal of the
glider in column 1 (and vice versa), the glider in column 4 is the time reversal of the glider in column 3, and so on.
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Figure 6. Results for 14 four-element gliders. (A) Gliders with 3 elements at one time, 1 at the adjacent time. (B) Gliders with 2 elements at
one time, 2 at the adjacent time. Within the results for one glider, responses for the even-parity rule are on the left; responses for the odd-
parity rule are on the right, except for the last glider of (B), where only the even parity was tested. Fraction in centroid direction 90.6 or
G0.4 is significant (p G 0.05, two-tailed). As in Figure 5, the gliders are ordered in time-reversal pairs, except for the last two gliders of (B).
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direction was generally stronger. That is, the amount of
that fraction that was above 0.5 (in the centroid direction)
was larger than the amount that was below 0.5 (opposite
to the centroid direction). This difference was statistically
significant for three-element gliders (p G 0.001) and four-
element gliders (p G 0.01), via the surrogate data method
described in the Methods section.

Discussion

In summary, many stimuli constructed by parity rules
on spatiotemporal gliders lead to a percept of motion. Like
previous non-Fourier stimuli, there are no spatiotemporal
luminance correlations. However, in addition, there are no
pairwise spatiotemporal correlations of low-level features,
i.e., flicker or edges. Nevertheless, many of these stimuli
produce consistent apparent motion. Moreover, for many
of these stimuli, inverting the overall contrast of the
stimulus reverses the direction of apparent motion.
We now consider the implications of these observations

for computational models of motion.

Reichardt model and motion energy model

We begin with the standard (or Reichardt) model
(Reichardt, 1961), in which motion is extracted from
spatiotemporal correlations of luminance. The stimuli
used in our experiment, however, have no pairwise
spatiotemporal correlations at all (see Methods section).
So for the standard model, there will be no motion signal
at all. The motion energy model is mathematically
equivalent to the Reichardt model (Adelson & Bergen,
1985). Therefore, it cannot detect any motion signal as
well.

Standard non-Fourier model

The standard non-Fourier motion detection model
consists of a preprocessing stage in which a feature such
as spatial contrast (an edge) or temporal contrast (flicker)
is extracted, followed by standard motion analysis (Lu &
Sperling, 2001). None of the stimuli presented here have
second-order correlations in the spatiotemporal locations
of flicker or iso-oriented edges. Thus, standard motion
analysis of these features cannot account for a directional
motion signal. This is illustrated by example in Figure 3
and shown in general in Appendix A.
Note that this resultVthe absence of a motion signal in

correlations of single pairs of checks, edges, or flickerV
generalizes to any mechanism that calculates a quadratic
(purely multiplicative) correlation between sums of checks,

sums of edge tokens, or sums of flicker tokens. This is
because in the pairwise product, the contribution of each
pair of checks simply addVand each pairs contribution is
zero.
However, interactions of edges with flicker could

produce a motion signal that accounts, partially, for what
we observe. There are several variations on this idea. We
describe these variantsVwhich are presented as “exis-
tence proofs” of mechanisms that can generate motion
signals from these stimuliVand then mention why these
mechanisms can provide only a partial account of our
findings.
In the gliders of Figure 6A, three elements occur at one

time and one at an adjacent time. Most of these four-
element gliders that have two spatially adjacent voxels
(their border can form an edge) and the other two voxels
are at another single location but adjacent time frames
(which can produce flicker). As shown in Figure 7A, the
parity of the number of black checks within the glider
determines whether the presence of an edge at one pair of
voxels implies the presence (or absence) of flicker at the
other pair. For example, assume that the stimulus is
generated using an “even” parity. That is, the total number
of black checks at the glider locations is always an even
number: 0, 2, or 4. This in turn means that either there is
an edge at one check pair and a flicker at the other
(1 black check each), or, no edge and no flicker (0 or 2 black
checks each). The result is that an edge in one location is
correlated with flicker in another location. Therefore, the
motion signal can be extracted by correlating edges with
flicker (Figure 7B).
This basic idea could also account for motion for some

of the gliders in Figure 6B, in which two glider elements
are adjacent in one time frame, and the other two glider
elements are adjacent in the next time frame. Both pairs
can form an edge, but the edges are orthogonal. If a
motion mechanism can correlate the presence of orthog-
onal edges across time, a motion signal could be
extracted. However, this kind of mechanism cannot
account for a directional motion signal for the three-
element gliders of Figure 5 or the four-element gliders of
Figure 6A that contain three voxels in one frame, and one
in the next.
For the three-element gliders, an interaction of an edge

in one location with the luminance in another location and
a separate time could lead to a motion signal. This is
because the parity rule means that knowing whether two
adjacent checks form an edge determines the luminance
polarity of the third check (Figure 7C). Thus, a multi-
plicative interaction between an edge detector at one
location and a luminance-sensitive element at a second
location can identify the presence of a third-order
spatiotemporal glider (Figure 7D).
We can recast the above examples in a way that

suggests other kinds of computations that can extract a
motion signal via a simple nonlinearity. The key ingre-
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dients in this construction are (1) summing luminances
within the glider, (2) applying a nonlinearity f that is not
merely quadratic, and (3) combining opponent mecha-
nisms. As an example, we start with the same three-
element glider in Figure 7C, and consider the nonlinearity
f(z) = z3. We denote the luminances of the three checks by
c1, c2, and c3, where black is represented by +1 and white
by j1. Note that f(z) = (c1 + c2 + c3)

3 contains a term
c1c2c3. This term effectively calculates the parity in the
glider, since it is negative if there is an even number of
black checks, and positive if there is an odd number. So,
when the glider is placed on an even stimulus, this term is
always negative. Note that this only happens because the
three checks are constrained by the glider; if z summed
any other set of three checks, the term can be either
positive or negative with equal probability. (Since there
are no pairwise correlations, the other terms in the

expansion of z3 do not contribute to its average over the
stimulus.) Thus, we can construct an opponent mechanism
by comparing the average value of nonlinearity z3 when
applied to triplets of checks within the glider, to its
average value when applied to triplets of checks within
another configurationVi.e., the glider facing the opposite
direction. For further details on this calculation, see
Appendix B.
Table 1 generalizes this calculation to several non-

linearities. As can be seen, a cubic nonlinearity and half-
squaring yield a motion signal for the three-element
gliders. A fourth-order nonlinearity and full- or half-wave
rectification yield a motion signal for the four-element
gliders. The final example in the table, a nonlinearity with
a more complex form, yields a motion signal for both
three- and four-element gliders. (The example in the table
is the front-end nonlinearity inferred by Taub, Victor, &

Figure 7. Spatiotemporal correlations can arise from interactions of different kinds of features. (A) A four-element glider that shows
interaction of an edge in one location and flicker in another location at a separate time. (B) A stimulus generated by the glider in (A) and
the even-parity rule showing spatiotemporal correlation of edge and flicker. Half-integer values of the coordinates arise in (B) because we
assign a flicker’s time to the time halfway between the frames. (C) A three-element glider showing interaction of an edge in one location
and the luminance in another location at a separate time. (D) A stimulus generated by the glider in (C) and the even-parity rule showing
spatiotemporal correlation of edge and luminance. Half-integer values arise in (D) because we assign an edge’s location to the position
halfway between the corresponding voxels. Note that in (B) and (D), the correlation peak is offset from the origin in both space and time.
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Conte, 1997 that accounts for motion sensitivity for
certain kinds of standard non-Fourier gratings.)
However, all of the above possibilities are at most a

partial explanation for our findings. These mechanisms
will always yield motion whose direction has a fixed
relationship to the centroid motion of each glider.
However, this is not the case for the perceived motion:
for some gliders it is in the centroid direction, and for
some it is not. This cannot be a matter of the sign
convention (e.g., black = +1, white = j1), since if the sign
convention is wrong, the model should predict the
opposite of the perceived motion for all gliders, and not
just for some. Secondly, this kind of computation predicts
that reversing the parity of the glider rule always reverses
the sign of the correlation (no matter what is chosen for
the sign convention). Thus, these models cannot account
for why some gliders did not result in reverse phi. Finally,
all of these models only generate a strong motion signal
when the summing area has the same spatiotemporal
shape of the glider, which is not very physiologic.

Gradient model

Finally, we consider models with a very different
computational structureVthe spatiotemporal gradient
model (Johnston, McOwan, & Benton, 1999; Johnston,
McOwan, & Buxton, 1992). It is based on the assumption

that the luminance of image points is conserved during
motion. This leads to the following constraint equation:

dI

dt
¼ ¯I

¯x
uþ ¯I

¯y
vþ ¯I

¯t
¼ 0; ð2Þ

where u = dx/dt and v = dy/dt.
As Johnston et al. (1992) and Johnston et al. (1999)

have shown, the local velocity vector (u, v) thus can be
calculated from the gradients ¯I/¯x, ¯I/¯y, and ¯I/¯t in
several ways, for example,

u ¼ ¯I=¯t
¯I=¯x

� �
s; v ¼ ¯I=¯t

¯I=¯y

� �
1jsð Þ ;

s ¼ 1

1þ ¯I=¯yð Þ= ¯I=¯xð Þ½ �2 :
ð3Þ

Because of the divisive interaction in this model, it is
sensitive not only to first- and second-order correlations,
but to higher order ones as well. Therefore (depending on
the details of the gradient calculation), it could detect the
high-order spatiotemporal correlations in our stimuli, and
thus generate a motion signal. However, like the elabo-
rations on the Reichardt detector, this can only be a partial
accountVbecause a polarity change does not influence the
gradient. Thus, although a gradient model may extract a
motion signal from the stimuli used here, it cannot
account for the reverse phi that is often seen when
luminance polarity is reversed.

Conclusion

To probe the underlying computations of early motion
processing, we created a set of stimuli that only contain
spatiotemporal correlations of order 3 or more. In
psychophysical experiments, most of these stimuli gen-
erated consistent motion percepts. In addition, for many of
the stimuli that were perceived as motion, the direction of
motion can change by changing the parity rule of the
gliders that generate the stimuli, without changing the
spatiotemporal configuration of the glider themselves.
Moreover, for a subset of the stimuli (three-element glider
stimuli), this means that the perceived motion direction
can be reversed by reversing the contrast polarity.
Although these stimuli are not likely to occur in nature,

our motion-detecting mechanisms, which presumably are
shaped by the characteristics of natural motion, never-
theless detect their spatiotemporal correlations. Simple
augmentations of currently proposed models can account
for some aspects of the percepts, but not for othersVthus
suggesting that a full account of motion percepts driven

Nonlinearities

Three-element
gliders

Four-element
gliders

Even Odd Even Odd

x 0 0 0 0
x2 0 0 0 0
x3 j0.44 0.44 0 0
x4 0 0 0.26 j0.26
ªxª 0 0 j0.25 0.25

jxj; xQ0
0; xG0

�
0 0 j0.18 0.18

x2; xQ0
0; xG0

�
j0.23 0.23 0 0

jxj0:72; xQ0
j0:08jxj0:72; xG0

�
0.11 j0.11 j0.21 0.21

Table 1. Motion signals generated by opponent mechanisms
based on summation followed by a nonlinearity. Note: Entries
indicate the normalized size of the motion signal generated by a
mechanism that sums luminance within the glider, applies the
indicated nonlinearity, and compares the resulting signal to a
glider facing in the opposite direction. Positive values mean that
the net average signal is in the centroid direction, negative values
means that it is opposite to the centroid direction. Zero means that
no motion signal is generated.
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by high-order spatiotemporal correlations will lead to a
more complete understanding of the computations under-
lying early motion processing.

Appendix A

In this appendix, we prove some facts about the stimuli
constructed from spatiotemporal gliders. Our main result
is that, given certain technical conditions on the glider
(that its generating function is a prime polynomial; see
definitions below), there are no spatiotemporal correla-
tions between pairs of horizontal luminance edges,
between pairs of vertical luminance edges, or between
pairs of temporal edges (flicker).
To obtain these results, we use two ingredients. The first

ingredient is the work of Gilbert (1980), who studied
properties of binary images in the planeVessentially, the
2-D analog of the movies considered here. We utilize
specific results he obtained in 2-D that generalize
immediately to 3-D, and we also use his general approach,
namely, generating functions. Generating functions
replace gliders by polynomials and allow us to recast
questions about superpositions of gliders into algebraic
ones. The second ingredient we use is an important
algebraic property of polynomials, namely, that they form
a “unique factorization domain” (Lang, 1993, Chap. II.5).
This will allow us to reduce questions about quadruplets
of voxels to questions about pairs.

Setup: The glider rule and induced
constraints

Spatiotemporal binary movies, formally, are an assign-
ment of a binary value to each voxel, V(J, ), C)Vwhere
J is the x-coordinate of the voxel (as an integer), ) is the
y-coordinate of the voxel, C is its time slice, and V is 0 or
1, according to the luminance. The spatiotemporal movies
we consider here are defined by a “glider rule”: whenever
a set of voxels form a translation of the glider shape, then
the parity of the sum of their contents is constrained to be
a constant b. We choose either b = 0 for the “even” parity
movies, or b = 1 for the “odd” parity movies.
A glider is defined by a set of integer coordinates (Ji, )i,

Ci; i = 1, I, N). Each such triplet designates the position
of one voxel within the glider.
A glider rule is a constraint on the number of black

voxels (V = 1) in a set of voxels that are related by a
glider. That is, a glider rule is formalized by

XN
i¼1

VðJþ Ji;)þ )i; Cþ CiÞ ¼ b: ðA1Þ

The left-hand side counts the number of black checks
within a placement of the glider. This sum is interpreted
mod 2, so that the right-hand side is 0 when an even
number of the terms is 1, and 1 when an odd number of
the terms is 1.
Since the glider rule (Equation A1) applies at every

location (J, ), C), it induces constraints among many sets
of voxels, not just those within the original single glider.
Therefore, to understand the correlation structure of a
spatiotemporal movie, we need to consider the implications
of repeated instances of the glider rule (Equation A1).
Specifically, we determine the effect of applying the
glider rule R times; each application of the glider is done
at a different starting point (JVj, )Vj, CVj), j = 1, I, R. These
iterated applications lead to

XR
j¼1

XN
i¼1

VðJþ Ji þ JVj ;)þ )i þ )V
j ; Cþ Ci þ CVj Þ ¼ Rb;

ðA2Þ

where again this sum is interpreted mod 2. The coor-
dinates of the starting points (JVj, )Vj, CVj) can be positive or
negative. (For R = 1 and a single starting point at (0, 0, 0),
the above equation reduces to Equation A1.)
Equation A2 demonstrates the basic problem we have to

solve. As both sums range over their indices i and j, some
combinations (Ji + JVj, )i + )Vj, Ci + CVj) appear multiple
times. If they occur an even number of times, they
cancelVsince the sum is interpreted mod 2. Thus,
repeated application of a glider at the R locations (JVj,
)Vj, CVj) can result in a relationship (Equation 3) in which
there is cancellation among many of the RN terms in the
summation. This will in turn result in a parity constraint
among far fewer than RN voxels. We need to characterize
these possible cancellations to understand whether
repeated application of the glider rule can ever result in
correlations involving only a small number of voxels.

Generating functions

To determine the effects of multiple applications of the
glider rule, we (following Gilbert, 1980) introduce a
generating-function approach. We define a generating
function for a glider as follows. For a glider G with N
elements occupying the voxels at integer coordinates (Ji,
)i, Ci; i = 1, I, N), its generating function is defined by

Gðx; y; tÞ ¼
XN
i¼1

xJi y)i tCi : ðA3Þ

Generating functions thus establish a correspondence
between sets of voxels and polynomials.
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We can always choose our coordinates so that one voxel
of the glider is at (0, 0, 0). With this convention, a glider
that is a triangle in the (x, t) plane (Figure 4A) has a
generating function Gtriangle = 1 + x + xt. A glider that
forms a pyramid (Figure 4C) has a generating function
Gpyramid = 1 + xy + y + xt. A glider that has two adjacent
voxels at t = 0 along the y-axis that translates along the x-
axis at t = 1 has a generating function Gsnf = 1 + y + xt +
xyt, so-called because it generates a “standard” non-
Fourier movie (column 5 of Figure 6B).
Similarly, if we have a scheme S for repeated

application of the glider rule specified by (JVj, )Vj, CVj),
we can define its generating function by

Sðx; y; tÞ ¼
XR
j¼1

xJ
V
j y)

V
j tC

V
j : ðA4Þ

Since generating functions are polynomials, they can be
multiplied. For example,

GS ¼
XR
j¼1

xJ
V
j y)

V
j tC

V
j

XN
i¼1

xJiy)i tCi ¼
XR
j¼1

XN
i¼1

xJiþJVj y)iþ)V
j tCiþCVj :

ðA5Þ

Note that the combinations that occur in the exponents on
the right side of Equation A5 are exactly the combina-
tions that occur as additive offsets in Equation A2. This
means that the generating function GS corresponds to the
voxels that are constrained by the iterated glider rule
(Equation A2). This is formalized by Gilbert’s Theorem 2:
for configurations T, the total parity of their contents is
constrained by the glider G if and only if the generating-
function relationship

GS ¼ T; ðA6Þ

holds, for some scheme S. Gilbert also showed that if
there is no such constraint, then both parities are equally
likely. He proved these results for 2-dimensional color-
ings, but they generalize immediately to colorings of any
dimension.

The main result

Our goal is to determine conditions on G for which
there are no pairwise spatiotemporal correlations between
pairs of horizontal luminance edges, pairs of vertical
luminance edges, or pairs of temporal edges (flicker).
Other than the labels associated with the coordinates,
these three cases are identicalVso we focus on the case of

edges formed by pairs of adjacent voxels alone the x-axis.
We will show that the crucial condition is that the
generating function of G is prime, in the sense defined
below.
To do this, we consider all “double-domino” config-

urations T. A double-domino configuration is a config-
uration of four voxels, arranged in two parallel pairs of
adjacent voxels. We need to show that the total parity of T
is unconstrained by the glider. This will imply that the
total within one domino of T is independent of the total
parity in the other domino of T. Since the total parity
within one domino indicates the presence of an edge (1) or
the absence of an edge (0), this will show that the
co-occurrences of edges are uncorrelated. As mentioned
above, we assume that the dominos are parallel to the
x-axis.
To determine whether the glider constrains the parity of T,

we position the first domino of T at coordinates (0, 0, 0)
and (1, 0, 0), and the second domino at coordinates (J, ), C)
and (J + 1, ), C). The generating function of this four-voxel
set is

Tðx; y; tÞ ¼ 1þ xþ xJy)tC þ xJþ1y)tC

¼ ð1þ xÞð1þ xJy)tCÞ: ðA7Þ

T thus can be factored into two polynomials. The first
factor, 1 + x, is the generating function for a domino along
the x-axis. The second factor, TV = (1 + xJy)tC), is the
generating function of a 2-voxel configuration that
expresses the relative position of the two dominos of T.
According to Gilbert’s Theorem 2 (see Equation A6),

the total parity of these gliders is constrained only if GS =
T, i.e., only if

GS ¼ ð1þ xÞð1þ xJy)tCÞ; ðA8Þ

for some configuration S.
We next use the fact that the polynomials with integer

coefficients (mod 2) form a unique factorization domain
(Lang, 1993): every polynomial has a unique factorization
into “prime” polynomials. Here, a “prime” is defined in
the usual way: a polynomial that has no factors other than
1 and itself. So for example the polynomial (1 + x) is a prime,
but (1 + x3) is not, since (1 + x3) = (1 j x + x2)(1 + x).
Note that for the gliders used to make the novel stimuli,

the generating polynomials are prime: for example,
Gtriangle = 1 + x + xt and Gpyramid = 1 + xy + y + xt.
However, the generator for standard non-Fourier motion,
Gsnf = 1 + y + xt + xyt = (1 + y) (1 + xt), is not a prime.
This factorization is the algebraic correlate of the fact that
in the standard non-Fourier stimulus, an edgeVrepre-
sented by the term 1 + yVis correlated across space and
time, represented by the term 1 + xt. In other words, if a
glider’s generating function can be factored, then it
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corresponds to a displaced pair of parallel edges. How-
ever, if it is primeVas it is for the stimuli we focus
onVthen it cannot be decomposed into a displaced pair of
edges.
We now make use of the assumption that G is a prime

to show that there is no iterated application of G that can
constrain the four voxels in a double-domino configura-
tion T. Because of the unique factorization property, the
left and right sides of Equation A8 must have the same
prime factors. Since (1 + x) is a prime, it cannot have G as
a factor. Thus, the only way that the left and right sides of
Equation A8 can have the same prime factors is that TV=
(1 + xJy)zC) must be composite and contain G as a factor.
That is, if Equation A8 holds, then so does

GQ ¼ TV; ðA9Þ

for some configuration Q. In sum, we reduced a question
about correlations within the 4-voxel set T, to a question
about correlations within a two-pixel set TV. We now show
that Equation A9 is impossible, and, consequently, that
Equation A8 is impossible tooVthus implying that the
total parity of the voxels of T must be independent.
If Equation A9 holds, then it would imply that the

voxels in the configuration with generating function TV=
(1 + xJy)zC) are correlated. This configuration contains one
voxel at the origin, and one at the location (J, ), C). The
independence of these two voxels follows from Gilbert’s
construction of an “initial set” (Gilbert, 1980, Figure 1), in
which all voxels are independent. Alternatively, one can
see that these two voxels must be independent for specific
gliders such as Gtriangle = 1 + x + xt by observing that any
product GQ must contain at least three distinct terms that
do not cancel: one with the highest exponent of x, one
with the highest exponent of t, and one with the lowest
total exponent.
Note that the above argument generalizes to any four-

voxel configuration T that forms a parallelogramVby

replacing the factor (1 + x) in Equation A8 with a factor
(1 + x!y"z+). Thus, even if local features are defined in
terms of pairwise correlations across non-adjacent voxels
(i.e., by (1 + x!y"z+)), such local features are themselves
pairwise uncorrelated in spacetime.
Finally, we mention that the “initial set” construction of

Gilbert (1980) provides a simple demonstration of another
property of these stimuli: any number of voxels along any
single spacetime ray is uncorrelated.

Appendix B

In this appendix, we show how a motion signal can be
extracted by the opponent mechanism that compares the
average value of nonlinearity applied to the glider, to the
average value of the same nonlinearity applied to the glider
facing the opposite direction.
As an example, we apply the nonlinearity f(z) = z3, to a

stimulus generated by a three-element glider G and the
even-parity rule. We denote the luminances of the three
checks within a glider by c1, c2, and c3, where black is
represented by +1 and white by j1. Therefore, the
coloring of the glider placed at any position and time in
the stimulus can be represented by a triplet (c1, c2, c3).
Since this is an opponent mechanism, and it involves the

average of all placements of the glider, we first need to list
all the possible colorings of the glider G, and of the glider
facing the opposite direction, denoted GV. Since the
stimulus is constructed with glider G and the even-parity
rule, the number of black voxels in the G can only be 0 or
2. So the colorings of G have only 4 possibilities: (+1, +1,
j1), (+1, j1, +1), (j1, +1, +1), and (j1, j1, j1). In
contrast, the coloring of the GVdoes not have such parity
constraint, so the colorings can be (+1, +1, +1), (+1, +1,
j1), (+1, j1, +1), (+1, j1, j1), (j1, +1, +1), (j1, +1,

Glider
Coloring
(c1, c2, c3)

Sum
z = c1 + c2 + c3

Nonlinearity
f(z) = z3 Average

G (+1, +1, j1) 1 1 j6
(+1, j1, +1) 1 1
(j1, +1, +1) 1 1
(j1, j1, j1) j3 j27

GV (+1, +1, +1) 3 27 0

(+1, +1, j1) 1 1
(+1, j1, +1) 1 1
(+1, j1, j1) j1 j1
(j1, +1, +1) 1 1
(j1, +1, j1) j1 j1
(j1, j1, +1) j1 j1
(j1, j1, j1) j3 j27

Table B1. Motion signal extracted by an opponent mechanism that follows a nonlinearity.
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j1), (j1, j1, +1), and (j1, j1, j1), a total of 8
possibilities.
Next, the luminances within each possible coloring of the

glider are summed, and the nonlinearity f applied. Then,
we compare the average of this signal for G and GV. In
each case, the allowed colorings are all equally likely (see
Appendix A and Gilbert, 1980), so they contribute equally
to the average. The process is detailed in Table B1.
The results of the table show that the glider G generates

a signal of j6, and its mirror GVgenerates a signal of 0.
That is, for these particular nonlinearity and stimulus, this
opponent mechanism results in a negative motion signal m
(G) = G j GVof (j6) j 0 = j6.
Note that the above calculation process can be used on

different nonlinearities and stimuli generated with differ-
ent gliders and parity rules.
Because we want to compare the motion signals

generated by different nonlinearities in a manner that
focuses on their shape rather than their absolute ampli-
tude, we normalize the motion signal m(G). That is, we
divide the motion signal m(G) by the root-mean-squared
value that the nonlinearity would produce when placed on
a random binary movie. The results in Table 1 are
generated by this method.
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