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Abstract

We have used Sutter's (1987) spatiotemporal m-sequence method to map the receptive fields of neurons in the
visual system of the cat. The stimulus consisted of a grid of 16 X 16 square regions, each of which was modulated
in time by a pseudorandom binary signal, known as an m-sequence. Several strategies for displaying the
m-sequence stimulus are presented. The results of the method are illustrated with two examples. For both geniculate
neurons and cortical simple cells, the measurement of first-order response properties with the m-sequence method
provided a detailed characterization of classical receptive-field structures. First, we measured a spatiotemporal map
of both the center and surround of a Y-cell in the lateral geniculate nucleus (LGN). The time courses of the center
responses was biphasic: OFF at short latencies, ON at longer latencies. The surround was also biphasic—ON then
OFF—but somewhat slower. Second, we mapped the response properties of an area 17 directional simple cell. The
response dynamics of the ON and OFF subregions varied considerably; the time to peak ranged over more than a
factor of two. This spatiotemporal inseparability is related to the cell's directional selectivity (Reid et al., 1987,
1991; McLean & Palmer, 1989; McLean et al., 1994). The detail with which the time course of response can be
measured at many different positions is one of the strengths of the m-sequence method.

Keywords: White noise, Reverse correlation, Cat, Lateral geniculate nucleus (LGN), Visual cortex, Simple cell

Introduction

A visual receptive field can be defined as the functional transfor-
mation from a visual stimulus, that varies in both space and time,
to a time-varying neuronal output. All receptive-field studies are
attempts to characterize this transformation between stimulus (S)
and response (/?):

S(x,y,t)-> R(t). (1)

Any characterization of this transformation is potentially limited
by the complexity and variety of the stimuli used to measure it. In
this paper, we report on the use of a powerful technique for study-
ing neural transformations using a rich spatiotemporal signal de-
rived from an m-sequence, or maximal length shift-register sequence
(Sutter, 1987).

A number of different methods have been used to study recep-
tive fields with random or pseudorandom noise stimuli. These
methods can be divided into two broad categories, which we will
call sparse-noise or dense-noise methods according to the tempo-
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ral signal used at each position. Sparse-noise stimuli are those
which are zero most of the time, such as the random pulse se-
quence used by Jones and Palmer (1987). Stimuli consisting of
single temporal sine waves may be considered as sparse stimuli in
this context, because their Fourier transforms are zero except at a
single frequency. Sparse stimuli, either in the time or the frequency
domain, are most useful for characterizing quasilinear systems.
Although they can be used to detect nonlinearities (Enroth-Cugell
& Robson, 1966), they cannot probe the details of nonlinear in-
teractions between stimulus components at two or more times or
positions.

Dense-noise stimuli are those which are nonzero most of the
time, and typically vary in a "complex" fashion. All of the dense-
noise methods can therefore be used to characterize nonlinearities
in receptive-field structure, since they probe the system with rich
patterns of temporal (or spatiotemporal) inputs. Some dense-noise
methods [e.g. the original white noise method of Wiener (1958)]
are based on signals that are intended as laboratory approximations
to a random process. Other dense-noise methods are based on
particular sequences that, although they may resemble random
processes, have a deterministic temporal structure which confers
substantial practical advantages. These include time-domain meth-
ods, such as the Sutter's m-sequence approach (1987), and the
frequency-domain methods, such as the sum-of-sinusoids method
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(Victor & Knight, 1979). This nonrandom category also includes
the "sparse" m-sequence variant (Sutter, \992b) and a recent hy-
brid method (Benardete & Victor, 1994). Dense-noise methods can
be further classified on the basis of their power spectrum (white,
that is, equal power at all frequencies vs. non-white) and on the
basis of the probability distribution of the stimulus values (Gauss-
ian vs. non-Gaussian). M-sequences are nearly white but they are
binary (they take on only two different values), which is distinctly
not Gaussian; sum-of-sinusoids are non-white but nearly Gaussian.

Dense- and sparse-noise stimuli have been used in other stud-
ies to measure the functional transformations in visual neurons.
Gaussian-noise signals (or approximations to Gaussian noise) have
been used to modulate the contrast of a single spatial stimulus,
such as a spot or a sine-wave grating. In these studies (e.g.
Victor et al., 1977; Shapley & Victor, 1981; Victor, 1987; Naka
et al., 1985), the detailed temporal dynamics of single receptive-
field structures, such as the center mechanism in a center/
surround retinal ganglion cell, have been characterized precisely.
In other studies, dense-noise stimuli have been used to map the
spatial structure of receptive fields both in one dimension (Em-
erson et al., 1987) and in two dimensions (Citron et al., 1981;
Jacobson et al., 1993). Sparse-noise stimuli have also been used
to analyze receptive fields in two dimensions, but with these
stimuli only one or two regions are modulated at any point in
time (Jones & Palmer, 1987; DeAngelis et al., \993a,b, 1995;
McLean et al., 1994) so that nonlinear interactions could not be
measured (but see Szulborski & Palmer, 1990; Ohzawa et al.,
1990).

Linear analysis: Equivalence of sparse- and
dense-noise methods

A linear receptive field is one that obeys the principle of super-
position: the response to the sum of two stimuli is equal to the sum
of the responses to the two stimuli in isolation. For neurons that
sum their inputs in a roughly linear manner, the responses to dense-
and to sparse-noise stimuli can therefore be analyzed and inter-
preted in a similar way. The receptive field is characterized as the
stimulus that, on the average, tended to precede each action po-
tential; it is the stimulus that tended to make the neuron fire. The
most intuitive way of presenting this calculation is in the reverse
correlation method of Jones and Palmer (1987; cf. Bussgang, 1952;
Nuttal, 1957; Weiss, 1966; De Boer & Kuyper, 1968).

The reverse correlation algorithm works as follows. For each
action potential, the spatial configurations of the preceding stimuli
are added into separate running sums for each delay between stim-
ulus and response. After a sufficient number of action potentials,
these sums converge to spatial characterizations of the receptive
field, parametric in time. This method thereby creates a standard
receptive-field map for each delay. In an ON region, the average
stimulus that preceded each action potential will have been lighter
than the mean. In an OFF region, the average stimulus will have
been darker. Since linear analysis cannot distinguish between ex-
citation by one phase of a binary stimulus (again, one that takes on
only two different values) from inhibition by the opposite phase,
we will use the term ON to denote either ON-excitation or OFF-
inhibition and OFF to denote OFF-excitation or ON-inhibition (see
Emerson et al., 1987, for a discussion of the separate responses to
the light and dark phases of a ternary stimulus).

For linear systems, the analysis of response properties with
dense-noise stimuli is formally equivalent to the reverse correla-
tion procedure for sparse-noise stimuli. For such systems, the re-

sponse properties are completely described by the first-order Wiener
kernel, K\ (x, v, /), which is proportional to the cross-correlation of
the visual stimulus and the neuronal response:

R(t,)S(x,y,t, - t) (2)

Informally, this cross-correlation can be considered an "optimal
stimulus" of the same sort obtained with the reverse correlation
procedure (Jones & Palmer, 1987). It is the average spatial stim-
ulus preceding an action potential, as a function of delay, /. This
cross-correlation is called the first-order kernel because it has an
additional interpretation that extends its applicability. For nonlin-
ear systems, it is the best-fitting linear approximation to the trans-
formation from stimulus to response. Although this is often referred
to as "the linear response," it must be emphasized that for nonlin-
ear systems, this linear approximation may depend strongly on the
stimulus set. Finally, it can also be seen as the spatiotemporal
weighting function of the neuron's response to visual stimuli; it
gives the strength of response to a stimulus presented at position
(x, y) following a delay, /.

Nonlinear analysis of the responses to highly
structured dense-noise stimuli

Nonlinear analysis based on dense-noise stimuli allows the study
of more complex spatiotemporal interactions in the receptive field.
It is important again to emphasize that for nonlinear systems, the
sparse-noise and the dense-noise methods of analysis differ even
when just the results of first-order reverse-correlation analysis are
compared. Sparse-noise methods do not probe spatiotemporal in-
teractions adequately, and thus the results of these interactions are
intermixed with the quasilinear responses. Dense-noise methods
are, within certain theoretical limitations (Victor 1992), effective
probes of these interactions. They separate linear and nonlinear
components of the response in a rigorously defined (but stimulus
dependent) manner. For grossly nonlinear systems, such as those
found in extrastriate cortex, it is unlikely that either dense or sparse
noise inputs would give interpretable results, although modifica-
tions have been used with some success (Britten, 1995).

The detailed formalism of Wiener kernel analysis has been re-
viewed in a number of places (Marmarelis & Marmarelis, 1978;
Sakai et al., 1990; Victor, 1992). Of the various temporal signals that
have been used in linear and nonlinear analysis of the visual sys-
tem, two are distinctly nonrandom: sum-of-sinusoids (Victor et al.,
1977) and maximal length shift-register sequences or m-sequences
(Sutter 1987). Kernels measured with these highly structured stim-
uli are good approximations to Wiener kernels measured with Gauss-
ian white noise (Victor & Knight, 1979; Sutter, 1987; Victor, 1991)
and are therefore useful for comparisons with kernels of model sys-
tems. The sum-of-sinusoids method has been used extensively in the
visual system and results have been reviewed before (Victor, 1992).
Here we describe the use of the m-sequences in the study of single
visual neurons.

Maximal length shift-register sequences (m-sequences) are sig-
nals that are particularly suited to the study of multi-input systems
for both practical and theoretical reasons. Practically, a two-
dimensional m-sequence stimulus is easy to generate quickly on a
computer. Just as importantly, analytical techniques developed by
Sutter (1992a) allow for very fast calculation of first- and higher
order kernels. Sutter and coworkers have used the m-sequence
method to great advantage in the study of temporal and topo-
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graphic relations in the VEP (Baseler et al., 1994) and electroret-
inogram in humans (Sutter & Vaegan, 1990; Sutter & Tran, 1992),
and of cortical field potentials in the cat (Kitano et al., 1994). Our
present study reports on the use of Sutter's method in the analysis
of single neurons in the mammalian visual system.

Methods

Physiological preparation

The details of our physiological experiments have been described
previously (Hochstein & Shapley, 1976; Reid et al., 1991). Adult
male cats ranging in weight from 2.2 to 3 kg were initially anes-
thetized with an injection of ketamine (10 mg/kg, i.m.). Penicillin
(500,000 units, i.m.) and dexamethasone (6 mg, i.v.) were given at
the start of the experiment. During surgery, sodium thiamylal (Suri-
tal) was given i.v. as needed. Pupils were dilated with topical
application of 1% atropine sulfate and the nictitating membranes
were retracted with 10% phenylephrine. The eyes were protected
with contact lenses with a 3-mm-diameter artificial pupil. Eye
movements were minimized by attaching the eyes with cyanoac-
rylate glue to small metal posts connected to the stereotaxic frame.

Urethane (200-300 mg/kg, i.v., supplemented every 12 h) was
delivered over the course of several hours as the maintenance
anesthetic. The EKG was measured and, along with the blood
pressure, was used to monitor the level of anesthesia. The animal
was paralyzed with gallamine triethiodide (Flaxedil, 20-40 mg/h,
i.v.) and artificially ventilated. Ventilation was adjusted so that
end-expiratory CO2 was near 3.5%. Core body temperature was
monitored and body temperature maintained at 38° C. Recordings
were made with plastic coated tungsten microelectrodes (Hubel,
1957).

Visual stimulation

The electronic visual stimulator employed in these experiments
was designed in The Rockefeller University Laboratory of Bio-
physics (Milkman et al., 1980). The instrument produces a raster
display of 256 picture elements (pixels) per line, 256 lines per
frame, and 270 frames/s on a Tektronix 608 cathode ray tube
monitor. For the Y-cell, the display was run at two frames per
m-sequence step, for the simple cell, four frames per step. A look-up
table within the display unit allowed us to modulate the contrast
linearly. The 10 X 10 cm display was viewed, via a mirror, at a
distance of 36 cm, resulting in stimulus subtending 16 deg X
16 deg of visual angle. The mean luminance was 100 cd/m2.

M-sequences

Theoretical considerations
In this section, we consider a number of important mathemat-

ical properties of m-sequences; in the next section we will define
them and outline how they are generated. A binary m-sequence is
represented in a computer as a series of 0s and Is of length 2" -
1, (bo,b],b2,...b2n-2). When employed as a visual stimulus, it is
best considered as a list of Is and —Is, or positive and negative
contrasts around a mean. As noted below, 0 (binary) maps to 1
(contrast) and 1 (binary) maps to - 1 (contrast). We consider this
sequence to be the initial cycle of an infinitely long periodic stim-
ulus, whose period is 2" —1. The resulting signal, (so,si,S2,--.),
has a number of desirable properties.

Property 1. The first-order statistics of an m-sequence are bal-
anced, i.e. there is an almost equal number of Is and —Is:

2"-2

2 */ = - i -

Property 2. Its second-order statistics are also balanced, i.e. it
is almost completely uncorrelated with itself for all time shifts:

2 *,-*,+; =-1, U*0)
i=0

The usual definition of white noise is that this autocorrelation
function is equal to zero (atj # 0), which is equivalent to its power
spectrum being equal, at all frequencies. The m-sequence is guar-
anteed to be white to within one part in 2" — 1, while a "random"
sequence is typically white to within only one part in V2" — 1. In
a loose sense, therefore, an m-sequence can be considered a max-
imally white binary sequence of length 2" - 1.

Property 3. For time shifts less than n, an m-sequence has
balanced statistics up to order n: every n-tuple of Is and —Is
(except for the string of n Is, which is omitted) is represented
exactly once.

Therefore, at least for short stretches of length n, a finite
m-sequence has the same correlation properties as an infinite ran-
dom stimulus.

Property 4. The product of an m-sequence with a time-shifted
copy of itself yields the same m-sequence with a different delay:

The relation between them's and ks is different for each m-sequence.
It can be seen that Property 2 follows directly from Property 1 and
Property 4. This final property of m-sequences will be useful when
we consider the calculation of higher order kernels.

The nearly ideal second-order statistics (Property 2) of an
m-sequence stimulus make it useful for the study of multi-input
systems, such as a visual receptive field. If a sequence of sufficient
length is used, the same sequence with different delays can be used
to modulate different regions of the stimulus. In the present study,
the stimulus was a 16 X 16 array of pixels, each modulated by the
same m-sequence of order 16 {pixel refers to a uniform region of
the stimulus; machine pixel will be used below to refer to the
smallest point that the device displays). Successive pixels were
presented with relative delays of 256 steps within the m-sequences.
Property 2 guarantees that the stimulus is spatiotemporally white,
rather than just temporally white. That is, for any pair of pixels and
any fixed delay (other than 256 steps), the input signals will be the
same (both light or both dark) as often as they are different (one
light, one dark).

The computation of m-sequences
We have generated m-sequence stimuli by two different meth-

ods. Both methods are based on shift registers: n-bit integers that
are updated by particularly simple rules. Successive steps of a shift
register, /?,, are calculated using two pieces of information, the
order, n, of the m-sequence and the feedback tap, T. The feedback
tap is an n-bit number that generates the specific sequence. Each
value of binary m-sequence (6,) is equal to the lowest order bit of
the associated term in the shift-register sequence (/?,).
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Shift registers employ four bitwise calculations. A bit shift { »
or « ) moves all the bits of a binary number either to the left or
the right, e.g.:

Table 1. Sixteen successive tap configurations for the tap-
register method of m-sequence generation"

0111 » 1 = 0011,

0111 « 1 = 1110.

(3)

(4)

The bitwise exclusive or (A) operation adds each binary digit of two
numbers modulo 2:

0111 A 1110= 1001. (5)

The bitwise and (&&) multiplies each binary digit:

1000 && 1101 = 1000. (6)

Finally, the parity operation [/*(..)] gives the sum of the digits in
the binary number, modulo 2:

P(0111) = 1,

/>(0110) = 0.

(7)

(8)

The more conventional shift-register calculation of an m-sequence
(Golomb, 1982), which Sutter calls the generating register (1987)
method, proceeds as follows:

q P(R, && T), (9)

where q = 2" '. In other words, the register is shifted one bit to
the right and the nth bit is replaced with the parity of the bitwise
and of the tap, T, and the original register, /?,-.

Since the parity operator is unwieldy to implement in most
computer languages, a second method, called the tap register method
by Sutter (1987) is computationally more efficient. In this method,
the register is first shifted to the left. If there was a 1 in the nth
position of the original number, the exclusive or of T and the
shifted register is taken:

if (/?,&&<? * q) (i.e. if bit n - 1 is not set)

then /?,+ , = /?, « 1,

if (/?,&&<7 = = q) (i.e. if bit n - 1 is set)

then Ri+l = (Rj« 1) A T.

For certain feedback taps, T, the sequence of register configura-
tions repeats itself with period 2" - 1 (see Golomb, 1982). Since
there are only 2" — 1 possible nonzero n-bit register configura-
tions, these sequences are maximal in length.

The m-sequence itself can be defined as the binary sequence,
bh derived from the above maximal length sequence by taking the
lowest order bit of each successive n-bit integer:

(10)

In other words, b: = 1 if /?, is odd, b, = 0 if Rj is even. The result
of the tap register calculation is shown in Table 1 for an m-sequence
of order 4 {q = 1000) and a feedback tap T = 3 = 0011.

Ro = 0001
R] = 0010
R2 = 0100
R3 = 1000
ft, = 0011

«5 = 0110
R6 = 1100
R-, = 1011
R% = 0101
R9 = 1010

«io= 0111
Ru = 1 1 1 0
Rn= 1111
/?I3 = 1101
R14 = 1001

= Ro= 0001

6, = 0
b2 = 0

b}= 0

6 4 = 1

bs = 0

b6= 0

6 7 = 1

bs= 1
bg = 0

* i o = 1

bn = 0

612= 1

b,3 = 1

*14 = 1

fcis = 1

aThe order n = 4 and the feedback tap T = 3 = 0011.

It turns out that any binary sequence (bo,bl,b2,.--,b2«-2) con-
structed in this manner obeys a recursion relation bk = bk-1 /„_, +
bk-2tn-2 + ... + bk-nt0, where ta-itn-2 ... /,f0 are the n digits
in the binary representation of T, and = represents addition
modulo 2. This constitutes yet a third way of generating the stim-
ulus from the feedback tap, T, closely related to the first. This
method is used in the third of the four approaches we have used to
generate m-sequences, discussed below.

Although an m-sequence is generated in a computer by means
of binary arithmetic, in much what follows it will be useful to
make the substitution of +1 for 0 and — 1 for 1:

(11)

Multiplication on the set { + 1,-1} is identical to addition modulo
2 on the set {0,1}, so this substitution is a natural one.

Image generation
While each step of the m-sequence is rapidly calculated, most

computer driven visual display devices allow only a limited num-
ber of values to be updated each frame. Even updating a relatively
modest 1 6 X 1 6 array of pixels can be quite difficult when these
pixels must be modulated independently at a high rate. The sim-
plicity of the m-sequence stimulus makes it easier to display, how-
ever, than would be a general two-dimensional random stimulus.
The m-sequence stimulus, as used by Sutter (1987), employs a
single m-sequence to modulate a large number of different pixels
in a two-dimensional grid. The simplest case is for a rectangular
array of pixels with r rows and c columns, where both values are
powers of two. The m-sequence of order n is then evenly sampled
in this two-dimensional array at intervals of p steps, where

p = Tire. (12)

In this case, the spatiotemporal stimulus, S(x,y,tj), can be ex-
pressed in terms of the single-parameter m-sequence, s,:

S(x,y,ti)= (13)
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where the spatial offset term, D{x,y), is given by

D(x,y) = px + pcy. (14)

By far the simplest method to achieve this would be to have the
number of pixels, re, no larger than the size of the look-up table
that translates the index of a point in the display (0 to 255 for an
8-bit display) into luminance. In this case, the look-up table could
be changed each frame according to the successive values in the
m-sequence. Since many display devices do not allow the entire
lookup table to be modified each frame, this simplest strategy is
not always possible. Because visual display devices have a variety
of different structures, three more strategies will be presented.

A second strategy allows a virtually limitless number of pixels
to be modulated simultaneously. It exploits the fact that many
visual display devices (such as the a Number Nine board for the
PC, Number Nine Computer Corporation, Cambridge, MA) have a
large amount of video memory, of which a small portion is dis-
played each frame. The spatial origin can be freely chosen and
each memory pixel can often be "zoomed" into many display
pixels. The strategy requires that the m-sequence of order n must
be evenly sampled in a two-dimensional array (r X c) at intervals
of p steps, as above.

The first frame of the stimulus is stored at the origin of the
image memory in the first r rows and c columns (see Table 2).
These re pixels contain the positions [0,p,2p,...,(rc— \)p] in the
m-sequence. If one continues in this manner, the first element of
row r + 1 has position 1 in the m-sequence, since the total length
is 2" - 1, not 2" = rep. Since p is relatively prime to 2" - 1 (it

Table 2. Strategy for presenting an m-sequence stimulus on a
display device with a two-dimensional memory"

0
16
32
48
1
17
33
49
2
18
34
50
3
19
35
51
4
20
36

4
20
36
52
T5
21
37
[53
6
22
38
54
7
23
39
55
8
24
40

8
24
40
56
9
25
41
57
10
26
42
58
11
27

T4 3
59
12
[28
44

12
28
44
60
13
29
45
61
14
30
46
62
15
31
47
0
16
32
48

16
32
48
1
17
33
49
2
18
34
50
3
19
35
51
4
20
36
52

c -

—i
i
1
11
1I
J

1 =

20
36
52
5
21
37
53
6
22
38
54
7
23
39
55
8
24
40
56

3

•I
•1
iI
j

24
40
56
9
25
41
57
10
26
42
58
11
27
43
59
12 J
28 1
44
60

K . A

r-4J

pr= 16

>r-l=3

"In the terminology of the text: the order of the m-sequence is n = 6, four
rows and four columns are displayed at any one time (r = c = 4), and the
spacing between successive pixels is four steps (p = 4). The array shows
the positions in the m-sequence (0 -62 , which correspond to bo-b62) as they
are stored in a 19 X 7 block of memory. A different 4 X 4 region of the
memory is displayed every frame. The dotted lines show the m-sequence
positions displayed in the 5th and 43rd frames.

is a power of 2), the entire m-sequence will be sampled by con-
tinuing in this manner. Finally, if copies of the m-sequence are
made c — 1 columns to the right of the original and r — 1 rows
below, each frame of the entire stimulus ensemble is displayed
simply by moving the origin of the display window relative to the
bitmap origin (see Table 2). This method allows the entire stimulus
ensemble to be stored in

( 2 c - \ ) [ p r + (r- (15)

memory locations as opposed to the (re)(2" - 1) required by
storing each frame independently (again, the zooming operation
allows a single memory location to be shown on a larger screen
location, for instance 16X16 machine pixels). More importantly,
each frame is updated with one simple operation, the shift of
origin, which is independent of the number of pixels. Rather than
sending the luminance of each pixel to the display device every
frame, only two numbers suffice, the x and y values of the origin.
This strategy allows the display of up to 128 X 128 pixels every
frame with a Number 9 board in a PC. This can be achieved by
having a very long m-sequence (say 219 — 1, which still only
requires on the order of 1 Mbyte of memory), which need not be
run completely to record useful data. This is far more pixels than
one needs to study a single receptive field but could be quite useful
to study many receptive fields simultaneously.

A slight modification of this method is to keep the video dis-
play memory static, but to change the look-up table every frame,
as in the first method. The entire m-sequence can be precomputed
and stored in a single linear array of length 2" + re, which can be
filled in the manner illustrated in Table 2. A different portion of this
array is copied directly into the look-up table each frame. This
change of origin for the look-up table is exactly analogous to the
change of origin for the spatial stimulus described in the preceding
paragraphs.

A third m o r e specia l ized m e t h o d w a s used to c rea te the 1 6 X 1 6

stimuli used in the present study. We used the Milkman visual
stimulator described previously (Milkman et al., 1980) which, while
quite versatile, does not allow stimuli to be moved freely in two
dimensions. Instead, it has 16 one-dimensional spatial luminance
profiles each of which is displayed through a separate window on
the display screen. In a single profile, it was possible to display
eight different square regions each frame. We used the 16 profiles
and the windowing capability of the stimulator in the following
way to create a 16 X 16 m-sequence display.

First, the screen was split in half vertically and each half di-
vided into 16 horizontal strips, one for each spatial profile. For
each frame of the stimulus, only half of the screen was displayed
and the other half was dark. Thus 128 square pixels were visible at
a time, 8 (horizontally) from each of the 16 profiles (stacked
vertically). Since the frame rate of the display was quite high,
270 Hz, the alternation between 8 X 1 6 arrays was not perceptible;
the array appeared to have 16 X 16 pixels. In the kernel calcula-
tions, this 4-ms time-shift was taken into account by interpolating
between successive frames for pixels in the lagged half of the
screen.

Finally, a fourth method for efficient generation of m-sequence
displays, which has been used by Victor et al. (1994), exploits the
fact that the binary sequence of values at each stimulus region
satisfies the same recursion relationship as the m-sequence defi-
nition: bk = fcjt-if,,-! + bk-2tn-2 + ... + bk-nt0 (again, = is
interpreted as addition modulo 2). Because the identical relation-
ship is obeyed by the values displayed at each region, this can be
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viewed as a recursion relationship for the display as a whole: Xk =
Xt_| tn-1 + Xk-2tn-2 + ... + Xk-nt0, where Xk denotes the array
of machine pixel values (0s or Is) in the entire display at time step
k. This relationship, which relates the state of the display at time k
to its state at the preceding n times, can be iterated k — n + 1 times
to provide a relationship between the display at time k and the
display at the first n times: Xk — Xn-\uk n_i + Xn-2Uk,n-2 + ... +
•Xo"/c,o> where the coefficients ukm depend in a complex but fixed
manner on the tap set T.

To make use of this relationship, the display states at the first n
times, X0,X\,...,Xn — 1, are stored in n bitplanes of the display,
and the coefficients uk,m are precomputed from T. Then, to produce
the display at time k, the bitplanes m for which uk?m = 1 are
exclusively-or'd together. This can be done by loading the look-up
table to implement the exclusive-or of these bitplanes, or, by start-
ing with a look-up table which implements the exclusive-or of all
bitplanes, and inactivating the bitplanes for which ukim = 0. In
contrast to the previous methods, this method does not require that
the regions be regularly spaced or that they sample the m-sequence
at equal intervals, but does require that the display hardware can be
configured as n bitplanes (where n is the order of the m-sequence).
The number of bits of memory required is equal to the order of the
m-sequence times the number of machine pixels required to re-
solve the shapes of the stimulus regions, independent of the num-
ber of stimulus regions to be displayed.

Choice of tap registers

For any given order, n, a large number of different n-bit feedback
taps, T, generate m-sequences (Golomb, 1982). These are best
found by brute force: by determining the length of the sequence
that any given tap generates. By definition, if a sequence has
length 2" — 1, it is an m-sequence.

Because of Property 4, however, taps must be chosen wisely.
The potential problems arise because the product of the m-sequence
stimulus at two nearby points at nearby times is equal to the
m-sequence at another point with a different delay. That is, if one
chooses any spatial offsets, Sx and 8y and a temporal offset, 5,, then
there is another set of offsets—ex, ey, and e,—such that

S(x,y,t)S(x + 8X% y + 8V, t + 8,) = S(x + ex, y + ey, t + e,).

(16)

This relations follows directly from Property 4 and eqn. (13). Thus,
if there were a nonlinear interaction between the response at a
point, {x,y) and a nearby point, (x + 8X, y + 5V), with a relative
delay of 8,, then the portion of the second-order kernel due to this
interaction will be found within the first-order kernel at point (x +
ex,y + ey) with a relative delay of e,. Thus, if e, were small, then
the first-order kernel measured at the point (x + ex, y + ey) would
be contaminated by that portion of the second-order kernel.

Because the m-sequence is sampled at regular intervals on a
two-dimensional grid, ev, ev, and e, are independent of the point of
origin (x,y), and are functions only of the particular m-sequence,
the three variables that determine the spacing of the m-sequence
display—r, c, and p—and of the three offsets: 8X, 8y, and 8,. The
portion of the second-order kernel due to interactions between
points with an offset of 8X, 8y, and 5, is "aliased" to an offset in the
first-order kernel: ev, ey, and e,. For each triplet of relative inter-
action distances, 5V) 8y, and 8, the second-order kernel with respect
to positions (x,y) is aliased to a different triplet of offsets: ex, ey,
and e,.

Therefore, an "interaction radius" can be chosen—say 8X and
8y ^ 4 and 5, £ 5—and then a number of different m-sequences
can be tested in order to find one for which most ex, ey, and e, are
acceptably large for each of the values of 5̂ ., 5,,, and 8, within the
interaction radius. Confusion between first- and second-order ker-
nels can occur if ex and ey are small, but only if e, is small as well.
Therefore, it is most important that all values of e, are significantly
longer than the memory of the system. In the current study, the
order of the m-sequence was 16, the display was 16X 16 (r = c =
16), and successive pixels were 256 steps apart in the m-sequence
(p = 256). For these values and for the interaction radius given
above, the first three possible taps—T = 45, T = 57, and T =
63—were found to have few potential overlap of first- and second-
order kernels. For order 15 m-sequences with a shorter relative
delay between pixels (p = 128), overlap is more likely to be a
problem. Of the first eight possible taps, the fifth (T = 53) was
found to minimize potential overlaps.

Data analysis

The goal of the data analysis is to calculate the first-order kernel as
a function of time and spatial position. At first glance this might
appear to be computationally quite demanding. The output, r,,
must be correlated separately with the m-sequences from each of
the pixels. If there are 256 pixels, 256 separate cross-correlations
must be calculated. Since, however, each pixel of the display is
modulated by the same signal with a variable delay [eqn. (13)], the
correlation of the two-dimensional input with the output, rh can be
calculated by means of a cross-correlation with this single input
function, £,:

2"-2

kT = 1/(2" - 1 ) 2 J , _ T / V , (17)

The most natural units for both kT and r, are spikes/s, or instan-
taneous rate. If there are n, spikes in bin i, then r, = njd, where
d is the duration of each stimulus frame.

This calculation is accelerated by means of the fast m-transform
(Sutter, 1992a), which computes the correlation between any
function and an m-sequence. Given this correlation between the
m-sequence and the response, kT, the first-order kernel K\(x,y,t)
[see eqn. (2)] can be looked up in a simple fashion:

] (x,y,tj) = kr where r = i — D(x,y), (18)

where D(x,y) is given by eqn. (14) and /,• = id. If the relative delay
between pixels is long compared to the memory of the system (in
the present study it was 256 steps/135 Hz = 1.9 s for the Y-cell,
and 256 steps/67.5 Hz = 3.8 s for the simple cell), there will be
no contamination between these pieces of the first-order kernel for
different locations.

It is simplest to have the first bin of the neuronal output, r0, be
the firing rate during the first stimulus frame. Since there can be a
response during this first frame, between time 0 and d, it is pos-
sible for the first bin of the response kernel, kg, to be nonzero. This
convention may therefore lead to the impression that latency of the
responses is zero. It is nevertheless the simplest convention to
choose, since it corresponds exactly to the reverse-correlation al-
gorithm (Jones & Palmer, 1987): Ki(x,y,tj) is proportional to the
average stimulus configuration at the time /,• = id before each
action potential.
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The second-order kernel, K2{x\,y\,t\,x2,y2,t2), is proportional
to the average value of the product of the stimulus at two positions,
(x\,yx) and (x2,y2), and at two delays, /j and t2. This average
product of two stimuli represents the lowest order approximation
of the system's deviation from linearity. It is similar in principle to
the quadratic term in the polynomial expansion of a function of a
single variable. Second-order responses are formally calculated as
the correlation of the response, r,, with the product of the stimulus,
Sj, at two delays, Tt and T2,

fcT,.T2= 1 / ( 2 " - (19)

Here, the use of two subscripts indicates that kTl,T2 refers to a
second-order kernel. Again, T, and T2 are chosen so that kTltT2

represents the second-order response due to any pair of pixels with
any two delays.

*T,.T2 = K2(xuyutux2,y2,t2). (20)

Property 4 gives us the relation Sj-TlSj-T2 = $,-_,., for some T3. T3

is a function of the particular m-sequence and of the variables T]
and T2. Therefore, each value for the second-order kernel [eqn.
(19)] can be found within the first-order kernel [eqn. (17)]:

k = k (21)

The second-order kernel, which would otherwise require an ex-
tremely lengthy calculation, is therefore calculated via the same
fast m-transform that generated the first-order kernel (Sutter, 1987).

An additional strategy to minimize the contamination of first-
order responses by second-order responses (see Choice of tap reg-
isters, above) is Sutter's "inverse repeat" method (1987, \997b),
which was not used in this study. If exactly the same m-sequence
is used twice, but with opposite polarity (+1 for —1 and vice-
versa), then all odd-order components of the first-order kernels
will be the same, as calculated by eqn. (17), but the even-order will
have the opposite sign. This is because, for an inverted m-sequence,
the sign is inverted in Property 4 and therefore in eqn. (21). There-
fore, contamination by second-order responses in particular will
cancel out if the two first-order kernels are averaged.

Results

We will show detailed results from two cells in the cat visual
system—a Y-cell in the lateral geniculate nucleus and an area 17
simple cell—picked in order to illustrate certain principles in the
analysis of first-order response properties. These cells are fairly
typical examples of both of their classes; we have studied many of
each type as part of several different studies (Alonso & Reid, 1994;
Reid & Alonso, 1995). The responses of both cells are dominated
by the first-order kernels, which will be discussed in this paper.
Although the cells both exhibited some significant nonlinearities,
particularly truncation at zero spikes per second, second-order ker-
nels will not be considered here.

Fig. 1 shows the "receptive field" of an OFF-center, ON-
surround Y-cell (defined by its failure of the null test; Enroth-
Cugell & Robson, 1966; Hochstein & Shapley, 1976) recorded in
the lateral geniculate nucleus. More specifically, it represents first-
order kernel, Kx(x,y,t), forr = 30 ms. The light blue region, in the
center, corresponds to the area where the neuron was excited by the

dark phase of the stimulus or, equivalently, inhibited by the bright
phase. The brighter the blue, the more strongly the neuron was
excited by this dark phase. The diffuse dark red region, in the
surround, corresponds to an area where it was weakly excited by
the light phase of the stimulus (or inhibited by dark). Black cor-
responds to areas where the neuron was unaffected by visual stim-
uli. These data can be interpreted in several different ways. Most
simply, Fig. 1 represents the average spatial configuration of the
visual stimulus 30 ms before each action potential. In the center,
the stimulus tended to be dark, in the surround, light. Conversely,
each time one of the pixels in the center region was dark, the
neuron was more likely (than average) to fire during the bin that
began 30 ms later.

Clearly, the m-sequence method produces a useful picture of
what would classically be called the receptive field (Fig. 1), and
has the added benefit of producing different pictures for various
delays between stimulus and response. Fig. 2 shows such receptive-
field plots for the same Y-cell at 16 delays ranging from —7.4 to
104 ms in increments of 7.4 ms, the frame rate of the stimulus. The
first frame, for negative times, is included to show the level of
noise in the baseline. The values in this frame should be zero, since
the firing of the neuron is uncorrelated with the input before it is
presented. In the second frame, which corresponds to the response
during the stimulus, a hint of an OFF response is visible. Dark
stimuli in the receptive-field center produce a slight increase in the
firing rate with a latency of less than 7.4 ms. The center response
peaks at 22 ms, at which point the surround also becomes evident.
The center responses then declines until changing sign at 37 ms.
Such a biphasic response is not surprising for a "phasic" neuron,
one that responds only briefly to a constant stimulus. The bandpass
dynamics of a Y-cell center have been well described (Shapley &
Victor, 1978), but they result in a seemingly paradoxical feature of
the receptive field that should be emphasized: the light phase of the
stimulus is strictly excitatory to the receptive-field center for de-
lays longer than 39 ms. The surround shows the same biphasic
response, but the zero crossing is later: around 52 ms.

It is evident from Fig. 2 that the time course of the response of
this Y-cell is different for different regions in the receptive field.
The center is fast and the surround significantly slower. This spa-
tiotemporal inseparability (cf. Dawis et al., 1984 for the X-cell) is
more salient when data are presented in the temporal rather than
the spatial domain. Fig. 3 shows temporal cross sections through
the first-order kernel, or the impulse responses, for the 32 pixels in
Fig. 2 that gave the strongest responses. Each thin line in these
plots represents the influence of one pixel on the firing rate of the
neuron, parametric in time. Following the light phase of the 11
pixels in the center, the neuron was inhibited (negative) for the first
37 ms, followed by an excitatory rebound. The traces in Fig. 3(b)
give the summed impulse responses for the 11 center pixels and
also for all the remaining 245 pixels in the display, which were
used to estimate the total surround response of the neuron. For the
pixels in the surround, the light phase excited this neuron for
52 ms, followed by an inhibitory rebound. The surround clearly
has a longer latency for this neuron. Since the center and surround
are not strictly segregated spatially, the "surround" in Fig. 3(b)
shows an initial weak OFF phase that should properly belong to
the center mechanism.

Similar experiments were performed also to study visual cor-
tical receptive fields. Fig. 4 shows the receptive field for a simple
cell in area 17 at a delay of 44 ms. Four vertically elongated sub-
regions are apparent, two ON (red) and two OFF (blue, the OFF
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Fig. 1. Receptive-field representation (first-order kernels at a fixed time
delay) for an OFF center Y-cell recorded in the LGN. Blue codes for OFF
regions, red for ON. The brighter the blue or red, the stronger the response
(see Fig. 3 for quantitative response values). The delay between stimulus
and the response shown was 30 ms (or four frames at 135 Hz). Data
collected for a complete cycle of two different m-sequences were averaged
together (taps 7" = 45 and 57; 8 min each). In all figures, the receptive
fields are smoothed by 1/2 pixel. The 16 X 16 entire stimulus subtended
16 deg. Scale is in impulses/s (see left).

Fig. 2. Receptive-field movie (spatiotemporal first-order kernel) for the
same Y-cell shown in Fig. 1. Stimulus response delays range from —7.4 to
103 ms (from left to right, top to bottom). Same scale as in Fig. 1 (see
below).
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Fig. 3. (a) Temporal impulse responses for the same Y-cell for the 32 pixels
thai showed the strongest responses. Responses are measured in terms of
the average increase in the firing rate, in impulses/s, following the light
phase of the stimulus, (b) Summed impulse responses for the 11 pixels in
the center and the 245 pixels in the surround.

region at the far left is very weak). Again, the first-order kernel is
plotted so that red indicates ON response, blue OFF. The brighter
(or whiter) the red or blue, the stronger the response. Loosely, this
diagram represents the optimal stimulus that made the neuron fire.
Again, this static response profile does not tell the whole story,
since there is a different spatial receptive field for each delay
between stimulus and response.

The receptive-field "movie" in Fig. 5 illustrates the spatio-
temporal integration of this neuron. The response latency—the
first delay for which there is a faint correlation between stimu-
lus and response—is between 14.8 and 29.6 ms (the 14.8-ms
bin), which is much longer than the 0.0 to 7.4 ms latency for
the Y-cell. The duration of the response, at least 200 ms, is also
significantly longer. Note that the frame duration of the stimulus
is twice that used for the Y-cell: 14.8 versus 1A ms. This simple
cell responded at the faster stimulus rate, but the receptive field—
spread out over twice as many temporal bins—was significantly
noisier.

The simple cell receptive field in Fig. 5 is clearly spatiotem-
porally inseparable: different response regions show different time
courses. The most obvious example of this is the weak subregion
at the far right which appears to have a longer latency than the

other subregions. Again, spatiotemporal inseparability is better ap-
preciated when the data are presented as temporal impulse re-
sponse functions. A plot of the 32 strongest responses from individual
pixels (Fig. 6a) shows the range of dynamics within the receptive
field. Some pixels show fast responses that are clearly biphasic.
Others are slower and nearly monophasic. This is more apparent
when the responses from the pixels are summed separately along
the eight columns that gave the strongest responses. The four larg-
est sums (labeled 1, 3, 5, and 7 in Fig. 6b) show alternate ON and
OFF responses with similar dynamics. The weak OFF region (num-
ber 1, on the far left in Fig. 5) is slightly slower than the others.
More striking are the alternate columns (2, 4, 6, and 8 in Fig. 6c)
that give weaker responses with a range of temporal waveforms,
all of which are slower than those in Fig. 6b.

Fig. 7 shows the spatiotemporal receptive field summed along
the vertical axis, with space along the one axis and time along the
other. Cross sections along the time axis are equal to impulse re-
sponses shown in Fig. 6(b and c). As in the spatial receptive-field
plots, ON responses are in red, OFF in blue. This representation em-
phasizes the clear spatial progression of the receptive field over time:
it is oriented in space-time, a feature that implies a linear contri-
bution to direction selectivity (Adelson & Bergen, 1985; Watson &
Ahumada, 1985; Reid et al., 1987, 1991; McLean & Palmer, 1989;
Albrecht & Geisler, 1991; Jagadeesh et al., 1993; DeAngelis et al.,
\993a,b). As expected, this neuron was directionally selective in the
direction predicted by the first-order kernel (from right to left).

Discussion

We have used the spatiotemporal m-sequence method of Sutter
(1987) to map the first-order receptive fields of a Y-cell and a
directional simple cell in the cat. While the m-sequence method is
only one of several dense-noise stimuli that have been used to
study the spatiotemporal structure of receptive fields (Citron et al.,
1981; Emerson et al., 1987; Jacobson et al., 1993), it is probably
the most efficient in terms of stimulus generation and data analysis.

The m-sequence approach provides a picture of receptive-field
function that appears complete but, in fact, alterations of stimulus
parameters determine which receptive-field structures are accen-
tuated. The main variable is the "grain" with which the receptive
field is probed, both in space and in time. The more pixels that are
used to study a single receptive field and the faster the stimulus is
modulated, the more detail is available in the linear receptive-field
map. The tradeoff is that there is less effective stimulus energy. In
either limit, a very fine or a very fast stimulus appears indistin-
guishable from a uniform gray. Practically, this means that the
linear receptive field measured is lower in amplitude and closer to
the noise.

In the spatial domain, increasing spatial resolution (per unit area) by a
factor N, and shrinking the entire stimulus, will typically decrease signal
size by a factor of N (assuming that the check size was small in comparison
to the receptive-field center or surround—if it is larger than center or
surround, then decreasing the check size might increase signal size). As-
suming that the same m-sequence is used and that the neuron is linear, the
signal-to-noise will also decrease by a factor of N, since the average num-
ber of spikes per bin will be unchanged.

In the temporal domain, in the limit of an interframe interval which is
comparable to the integration time of the neuron, increasing temporal
resolution by a factor N will decrease signal size by a factor of N (per unit
time). Again assuming linearity, signal-to-noise will decrease by a factor of
N3/2. (There is an additional loss of a factor of yfN since the average
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Fig. 4. Receptive-field representation (first-order kernels at a fixed time
delay) for a layer 4 simple cell recorded in area 17. The delay between
stimulus and response was 44 ms (or three frames at 67.5 Hz). Data
collected for a complete cycle of two different m-sequences were averaged
together (taps T = 45 and 57; 16 min each). The 16X16 entire stimulus
subtended 16 deg, but only 12 X 12 pixels are shown. Scale is in impulses/s
(see left).

Fig. 5. Receptive-field movie for the same simple cell shown in Fig. 4.
Stimulus response delays range from — 14.8 to 207 ms (from left to right,
top to bottom). Same scale as in Fig. 4 (see below).
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Fig. 6. (a) Impulse responses for the same simple cell for the 32 pixels that
showed the strongest responses, (b) Summed impulse responses along the
four vertical columns that gave the strongest responses, (c) Summed im-
pulse responses along the interposed four vertical rows that gave somewhat
weaker responses. Numbers refer to the columns, so that the positions can
be determined (see Fig. 7).

number of spikes per bin will decrease by a factor of N.) However, since
the m-sequence loop now runs N times faster, for the same amount of
experiment time a factor of JN will be gained back and the signal-to-noise
will decrease by only a factor of N. All of this analysis assumes, of course,
that the responses are stationary over time.

207
Fig. 7. Spatiotemporal plot of the simple receptive field, summed along the
vertical axis, as in Fig. 6 (b and c). The spatial axis includes data from 12
columns of the stimulus (3/4 the screen), the temporal axis ranges from
— 14.8 to 207 ms. As for the spatial receptive fields, ON regions are shown
in red, OFF in blue. The numbers correspond to the impulse responses
shown in Fig. 6. Scale is five times greater than for Fig. 4 and 5 ( - 7 to 7
impulses/s).

These analyses assume that the higher spatial or temporal resolution is
achieved without changing the number of bins in the m-sequence. How-
ever, one may choose to increase the number of bins in the m-sequence in
proportion to the resolution, in order to maintain the time between the
temporal offsets D(x,y) for each region, and thus maintain the same max-
imum lag time in each region's first-order response. This will change the
minimal experiment duration and the signal-to-noise per m-sequence loop,
but will not change the signal-to-noise per experiment time.

Finally, both the spatial analysis and the temporal analysis refer to es-
timates of single points on kernels. When kernels are used to predict model
responses, they are typically summed. When spatial or temporal resolution
is increased by a factor of N, a synthesis will use A'-fold as many points.
This partially mitigates (by a factor of -fti) the decreases in signal-to-noise
discussed above.

Choosing stimulus parameters always involves a tradeoff. For in-

stance, the Y-cell data shown here were collected at a sufficiently

fast frame rate (135 Hz) that the measured receptive field shows the

detailed difference between the center and surround dynamics. The

spatial scale, however, is such that the fine structure of the center

mechanism (Levick & Thibos, 1980; Vidyasagar & Heide, 1984;

Soodak et al., 1991) is not evident. If the pixels were any smaller,

the weaker surround responses would be brought close to the noise.
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The tradeoffs for more weakly responding cortical cells are always
greater. For the simple cell shown, the spatial and temporal grain
are nearly as coarse as possible: two pixels across each subregion,
presented at 67 Hz. Receptive fields were also mapped at twice this
frame rate, but the weakest subregions were barely distinguishable
from the noise. Second-order responses decline more steeply with
a decrease in stimulus energy, so the choice of parameters is even
more critical if nonlinear interactions are of interest.

Our results on the linear receptive-field properties of the Y and
the simple cell are not novel in themselves. Spatiotemporal insep-
arability of geniculate and cortical cells has been demonstrated in
both the spatial domain (Citron et al., 1981 for retinal X-cells
studied with white noise; McLean & Palmer, 1989 for simple cells
studied with sparse-noise stimuli) and the spatial-frequency do-
main (Dawis et al., 1984, for geniculate X-cells; Movshon et al.,
1978, Reid et al., 1987, 1991 for simple cells). Spatiotemporal
dense-noise stimuli, however, have certain advantages over other
mapping techniques. First, it is important to emphasize that the
first-order response measured with dense-noise stimuli is an ap-
proximation to the first-order Wiener kernel (Marmarelis & Mar-
marelis, 1978; Victor & Knight, 1979). Dense-noise kernels may
therefore be compared with the predicted Wiener kernels for the
sorts of nonlinear networks found in real nervous systems (e.g.
Victor & Shapley, 1979; Shapley & Victor, 1981; Emerson et al.,
1987; Jacobson et al., 1993). The m-sequence method is a very
efficient way of measuring these kernels, in terms of both stimulus
generation and data analysis (Sutter, 1987). By contrast, it is jus-
tifiable to compare "kernels" measured with sparse-noise stimuli
to the responses of theoretical models only when the measured
system is known to be a linear system.

Finally, we have shown that linear analysis of m-sequence data
provides a quantitative measure of classically described structures
in Y-cell and simple-cell receptive fields. In general, detailed maps
are created faster and with lower noise with the m-sequence tech-
nique than with sparse noise (Alonso et al., 1995). For this reason,
the technique has proven useful in studies that rely on the detailed
mapping of individual receptive fields (Reid & Shapley, 1992) or
on the rapid mapping of multiple receptive fields simultaneously
(Alonso & Reid, 1994; Reid & Alonso, 1995).
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