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Reich, Daniel S., Ferenc Mechler, and Jonathan D. Victor.Tem-
poral coding of contrast in primary visual cortex: when, what, and
why. J Neurophysiol85: 1039–1050, 2001. How do neurons in the
primary visual cortex (V1) encode the contrast of a visual stimulus? In
this paper, the information that V1 responses convey about the con-
trast of static visual stimuli is explicitly calculated. These responses
often contain several easily distinguished temporal components,
which will be calledlatency, transient, tonic, andoff. Calculating the
information about contrast conveyed in each component and in groups
of components makes it possible to delineate aspects of the temporal
structure that may be relevant for contrast encoding. The results
indicate that as much or more contrast-related information is encoded
into the temporal structure of spike train responses as into the firing
rate and that the temporally coded information is manifested most
strongly in the latency to response onset. Transient, tonic, and off
responses contribute relatively little. The results also reveal that
temporal coding is important for distinguishing subtle contrast differ-
ences, whereas firing rates are useful for gross discrimination. This
suggests that the temporal structure of neurons’ responses may extend
the dynamic range for contrast encoding in the primate visual system.

I N T R O D U C T I O N

Stimulus contrast offers several advantages as a paradigm
for studying the ways in which information is encoded into the
responses of visual neurons. Contrast encoding is highly non-
linear: the firing rate of V1 neurons tends to vary with contrast
in a sigmoidal fashion (Albrecht and Hamilton 1982). As with
retinal ganglion cells (Shapley and Victor 1978) and lateral
geniculate nucleus neurons (Sclar 1987), the responses of V1
neurons exhibit prominent contrast gain control (Bonds 1991;
Ohzawa et al. 1982) that may be modeled as a divisive inhib-
itory process (Heeger 1992). Moreover, in the case of station-
ary stimuli, which serve as useful substrates for the analysis of
temporal coding (Victor and Purpura 1996), variation of stim-
ulus contrast does not necessarily entail variation of spatial
phase, whereas variation of other stimulus parameters, such as
orientation and spatial frequency, does.

In the past, both moving and stationary stimuli have been used
to study contrast encoding. Favorite stimuli have included sinu-
soidal gratings, which may be either drifted uniformly or flashed
briefly for a specified period of time. Typically, responses are
characterized by average measures, such as the mean firing rate
(especially for complex cells) and the fundamental Fourier com-

ponent (especially for simple cells, when the stimulus is periodic)
(Skottun et al. 1991). However, recent studies (Gawne et al. 1996;
Mechler et al. 1998; Victor and Purpura 1996) have indicated that
such measures may ignore an important part of the information
about contrast that is encoded in the temporal structure of neu-
rons’ responses—that is, in the detailed timing of action potentials
relative to the stimulus time course. Suchtemporal codingof
contrast is more prominent in responses that have transient com-
ponents, such as those elicited by drifting edges, than in responses
to narrowband stimuli, such as drifting sinusoidal gratings
(Mechler et al. 1998). Moreover, much of the information about
contrast is encoded into a single response variable—the latency
from stimulus onset to neuronal firing—that can vary indepen-
dently of the overall firing rate as the spatial structure of the
stimulus changes (Gawne et al. 1996).

This paper presents the results of a systematic study of the
responses of V1 neurons to transiently presented sinusoidal
gratings that vary in contrast. The goal is to characterize
aspects of the responses that are relevant for contrast represen-
tation and to determine whether temporal coding plays some
specific, identifiable role. A metric-space approach is used to
estimate information about stimulus contrast (Victor and Pur-
pura 1996). The full response is analyzed, as are its various
temporal components, including the latency, the initial tran-
sient period of high firing rate, and the longer period of tonic
firing that lasts until the stimulus is turned off. The results
indicate that different response components can convey both
independent and redundant information about contrast. The
fraction of information encoded into the temporal structure, as
opposed to the firing rate, can vary from component to com-
ponent within the same response. Taken together, the results
lead to a hypothesis for the role played by the encoding of
information into the temporal structure of neuronal responses—
namely, that temporal coding allows the visual system to distin-
guish among stimuli that evoke similar firing rates.

Portions of this work have appeared in abstract form (Reich
et al. 1998).

M E T H O D S

Stimuli

The data presented here represent the activity of single neurons
with parafoveal receptive fields in the primary visual cortices of
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sufentanil-anesthetized macaque monkeys. Experimental procedures
have been described elsewhere (Reich et al. 2000; Victor and Purpura
1998). Stimuli consist of transiently presented, stationary sinusoidal
gratings that have fixed orientation, spatial frequency, and spatial
phase but that vary in contrast. For each neuron encountered in the
experiments, the orientation and spatial frequency of the drifting
sinusoidal grating that maximizes either the firing rate, for complex
cells, or the response modulation at the driving frequency, for simple
cells, are determined. For groups of neurons containing more than one
well-isolated individual neuron, the orientation and spatial frequency
that are optimal for the best-isolated or most robustly responding
neuron are used; experience and quantitative studies (DeAngelis et al.
1999) suggest that the optimal values of orientation and spatial fre-
quency vary relatively little among nearby neurons.

The third parameter of the stimuli—spatial phase—is more difficult
to choose. Spatial-phase preference can vary dramatically from one
neuron to its neighbor, especially among simple cells (DeAngelis et
al. 1999). Although a spatial-phase tuning experiment, which uses
stationary sinusoidal gratings, is performed for each neuron or group
of neurons encountered and although the spatial phase that evokes the
largest firing rate in one or more neurons is selected, it is impossible
to be sure that the chosen spatial phase is actually “optimal” in any
sense. This is true even for simple cells, which can be exquisitely
sensitive to spatial phase (Movshon et al. 1978; Victor and Purpura
1998): the spatial phase that evokes the largest response may not, for
example, evoke the most reliable responses.

After fixing the orientation, spatial frequency, and spatial phase,
one of two possible sets of stationary-grating stimuli is presented.
The first set consists of a geometric series of six contrasts and the
second set of an arithmetic series of eight contrasts (Fig. 1). For
both sets, gratings replace a uniform field (53 5°) of the same
mean luminance (150 cd/m2) for a period of 237 ms, after which
the uniform field reappears for a minimum of 710 ms. The amount
of time between grating presentations increases as a function of the
contrast of the preceding grating. For example, the amount of time
following the 0.5 contrast presentation is 2.84 s and following the
0.875 contrast presentation, 4.26 s. This strategy is used to ap-
proximate a uniform state of contrast adaptation (Sclar et al. 1989).
The entire series of contrasts is typically presented 100 times. For
each trial, the spikes that occur in the first 350 ms after stimulus
onset are analyzed. Also analyzed are multiple 947-ms periods of
uniform-field stimulation.

Information estimation

Information theory provides a method of measuring the fidelity
with which responses to similar stimuli form distinct clusters in some
response space. The information-theoretic measures calculated here
are sensitive to both the number of spikes in a response (firing rate)
and the timing of those spikes. The method of estimating information
involves embedding neuronal responses into metric spaces rather than
Euclidean vector spaces, which tend to be sparsely populated (Victor
and Purpura 1996, 1997). Pairwise distances between individual spike
trains are calculated under the spike-time metric (Victor and Purpura
1996), which computes the shortest path by which one spike train can
be converted into another through elementary steps that include add-
ing and deleting spikes as well as shifting spikes in time. The analysis
depends on the value of a parameter, calledq, which represents the
cost per unit time of moving the occurrence time of a spike during the
conversion of one spike train into another. Whenq 5 0 s21, the
distance is the difference in number of spikes between the two trains.
At very large values ofq, the distance approaches the sum of the
number of spikes that do not fall at identical times in the two trains.
At intermediate values ofq, the distance lies between those two
extremes.

The mutual informationH, calculated in bits, is a measure of the
degree to which responses to the same stimulus are more similar to
each other than to other responses. Clustering of responses into
stimulus classes—the prerequisite for the information calculation—is
described in Victor and Purpura (1997). Each response is considered
in turn, and the median distances to the responses in each stimulus
class are calculated. The response under consideration is assigned to
the cluster associated with the shortest median distance. Here the
median distance, rather than the generalized mean distance as in
(Victor and Purpura 1997), is used as the basis for the clustering
because simulations show that the median behaves more robustly for
responses with small numbers of spikes (seeAPPENDIX). When the
number of spikes is large, the details of the clustering matter less.

For N equally probable stimuli, the maximum possible information
is log2 N. As a first step in comparing multiple data sets, information
values are normalized by the appropriate maximum value. Within
each data set, a bias-corrected mutual informationH is calculated as
a function ofq, the cost parameter. From the plots ofH versusq,
several parameters are extracted.H0, the mutual information atq 5 0
s21, represents the amount of information contained in the spike count

FIG. 1. Timeline of contrast experiments.A: geometric series
of contrasts.B: arithmetic series of contrasts. Grating stimuli are
presented for 0.237 s each (pulses) and are then replaced with a
uniform field at the same mean luminance (effectively, contrast
0). The duration of the uniform-field presentation following each
grating presentation increases with contrast, as shown in the
figure, to approximate a uniform state of contrast adaptation. In
the figure, pulse heights are proportional to contrast, and the
contrast value is listed above each pulse.
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or firing rate and is calculated directly. The remaining parameters are
extracted from a fit to the information curve

Hfit~q! 5 kS1 1 Aqa

1 1 BqbD (1)

This function is chosen empirically because it gives good fits not
because its parameters are likely to have any physiological relevance.
Fitting and parameter extraction are done with the interior-reflective
Newton method as implemented by the routine LSQCURVEFIT in
the Optimization Toolbox of Matlab 5.3.1 (The Mathworks, Natick,
MA).

The following parameters are extracted from the fits.Hpeak is the
mutual information at the peak of the curve; if it occurs atqpeak. 0
s21, there is more information in the temporal structure of the re-
sponse than in the spike count alone, and the extra information is
given byHpeak2 H0. The informative temporal precision limit (in ms)
is 2,000/qcut, where qcut is the value at whichHfit(q) 5 Hpeak/2.
Generally,qcut is a more reliable index of temporal precision than
qpeakbecause the information curves often have no sharp peak value;
seeAPPENDIX. In the expression 2,000/qcut, a factor of 1,000 comes
from the conversion of seconds to milliseconds, and a factor of two
from the fact that the spike-time distance has a natural time scale of
2/q, which is the maximum separation of a pair of spikes that are
considered to have similar times (Victor and Purpura 1996). Finally,
an index of temporal codingQ, the percentage of stimulus-related
information that is carried in the temporal structure of the neuron’s
response atqpeak, is given byQ 5 100(Hpeak2 H0)/Hpeak.

Bias in the information calculation

Due to small sample sizes, mutual information is likely to be
overestimated (Miller 1955; Treves and Panzeri 1995). To correct this
bias, a resampling technique is applied to estimate the information that
would be obtained from an equivalently sized set of responses with no
stimulus dependence (Victor and Purpura 1996). The resampling is
implemented by estimating the information in 10 random associations
of responses with stimuli. Simulations (Victor and Purpura 1997)
reveal that this resampling procedure tends to overcorrect the mutual
information estimates, which are therefore likely to be conservative.
The total amount of overcorrection is expected to be small and
independent of the costq (seeAPPENDIX).

In addition to the bias, the information estimates themselves are
random variables and therefore have some uncertainty. This uncer-
tainty is estimated for the data in Figs. 3 and 5 by the bootstrap
method (Efron and Tibshirani 1998). Specifically, for each data set,
100 resamplings are made in which the spike trains are drawn from
the original data set with replacement and separately for each stimulus
condition. The bootstrap estimate of standard error is

SEboot 5 Î 1

B 2 1 O
b51

B

@s~x* b! 2 s~ z !#2 (2)

whereB is the number of resamplings,s(x*b) is thebth resampling,
ands( z ) is the mean of the resamplings orSb51

B S~x* b!/B. Error bars
in Figs. 3 and 5 arebias-corrected root-mean-square errors, obtained
by combining the bias and the bootstrap standard error as follows
(Efron and Tibshirani 1998)

SEbias-corrected5 ÎSEboot
2 1 bias2 (3)

Note that the bootstrap procedure itself can provide an estimate for the
bias (Efron and Tibshirani 1998). The bias correction based on ran-
dom association of stimuli and responses is preferred here because its
properties in the context of metric-space information calculations
have been extensively investigated (Victor and Purpura 1997). For the

data presented here, the two bias estimates are empirically of the same
order of magnitude.

Latency

For responses to stationary gratings, theonset latency(Sestokas and
Lehmkuhle 1986) is determined by a method similar to that of
Maunsell and Gibson (1992). This method identifies the earliest time,
for each stimulus, that the visual signal reaches the neuron under
study. Other methods of finding the latency (Bolz et al. 1982; Lennie
1981; Levick 1973) are designed for different purposes, such as
determining the peak of neuronal activation following stimulus onset.
In the present method, the background spike-count distribution is
estimated by dividing the response to the uniform field (0 contrast)
into 1-ms bins and tabulating the observed spike counts in those bins
across multiple repeats of the stimulus. For the response to each
nonzero contrast, the latency is taken to be the first bin in which the
number of spikes is significantly higher, in that bin and the three
subsequent ones, than the background spike count. Significance is
determined in a nonparametric fashion by directly comparing the
observed spike counts to the distribution of background spike counts
and by requiring that the observed spike count be in the top 20% of the
background spike counts in each bin. This gives a significance level of
0.00165 (0.2)4 over four consecutive bins, assuming independence.
In a few cases, robust latency values could not be obtained with this
significance criterion for low-contrast responses, and the cutoffs had
to be relaxed to 30% (P , 0.0081) or 40% (P , 0.0256). In other
cases, a 10% cutoff (P , 0.0001) could be used.

A similar method is adopted to find the boundary between the
transient (phasic) and tonic (sustained) portions of the responses to
stationary gratings (see Fig. 2). In this case, the estimate of baseline
activity is taken to be a section of 100 ms of each response that is
identified by eye to be part of the tonic response. From the beginning
of the identified section, a backward search proceeds, bin by bin, until
four consecutive bins are found in which the spike counts are signif-
icantly greater than the baseline spike counts. The last of these bins
(the 1st one encountered in the backward search) is chosen as the
boundary point. Since off responses are often quite small and difficult
to delineate, they are uniformly considered to begin 237 ms (the
duration of each grating stimulus) after the response onset and to have
the same duration as the transient response. This choice corresponds
to the assumption that the latency to the on (transient) response is
exactly as long as the latency to the off response.

R E S U L T S

Fig. 2A shows the responses of a simple cell in macaque V1
to a series of stationary sinusoidal gratings presented at an
arithmetic series of eight contrasts. The grating stimulus ap-
pears for 237 ms and is then replaced by a uniform field at the
same mean luminance. Responses are presented as poststimu-
lus time histograms (PSTHs), binned at 1-ms resolution.
PSTHs represent the average firing rate at all times after the
onset of the visual stimulus, which occurs attime 0. Stimuli are
each presented 100 times.

Despite the simple appearance-disappearance time course of
the stimulus, the PSTH has a complicated temporal waveform
(Ikeda and Wright 1975; Movshon et al. 1978). At least four
distinct components of the response can be discerned. The
division of the unit-contrast PSTH into these four temporal
components—denotedlatency, transient, tonic, and off—is
shown in Fig. 2B. Boundaries between the components are
chosen as described inMETHODS. Without seeking to determine
the biophysical and physiological mechanisms underlying the
distinctions among response components, or even whether they
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are generated by discrete mechanisms in the first place, the
analysis that follows examines the degree to which each tem-
poral component encodes the contrast of the visual stimulus.

The latency (Maunsell and Gibson 1992) is defined as the
amount of time between stimulus onset and the beginning of
the neural response. In V1 neurons, its duration reflects, at the
very least, the time required for a response to be evoked in the
photoreceptors and for the neural signal generated in the pho-
toreceptors to pass through the various retinal cell layers and
the lateral geniculate nucleus. Latency in V1 neurons decreases
as the contrast of the visual stimulus increases (Gawne et al.
1996; Sestokas and Lehmkuhle 1986), a phenomenon that is
related to the temporal phase advance of responses to drifting
gratings with increasing contrast, in both the retina (Shapley
and Victor 1978) and cortex (Albrecht 1995; Dean and Tol-
hurst 1986). The decrease in latency can be appreciated by
scanning down the column of PSTHs in Fig. 2A and observing
that the onset of the response becomes progressively earlier as
contrast increases.

The transient portion of the response is the relatively brief
period of intense firing that begins when the visual signal first
reaches the neuron. The bulk of the stimulus-related informa-
tion in neuronal responses has already been transmitted by the
end of the transient component (Burac˘as et al. 1998; Heller et
al. 1995; Müller et al. 1999a; Purpura et al. 1993). In the
responses of the neuron presented in Fig. 2, the firing rate

increases quickly after the response onset and remains high for
40–50 ms before declining to a tonic level that is relatively
sustained until after the stimulus has been turned off. The
decline in firing rate has been thought to reflect a process of
short-term adaptation, perhaps involving synaptic depression
(Chance et al. 1998; Mu¨ller et al. 1999b). After the tonic
response ends, at around 277 ms, a brief off response appears.
The off response is much smaller than the transient response,
even though the change in contrast is identical (0 to 1 or vice
versa). In this simple cell, the relative size of the transient and
off responses is largely a function of the spatial phase of the
stimulus (not shown). This neuron’s response is similar to that
of the “nonlinear simple cell” recorded from cat V1 and de-
picted in Fig. 5 of Movshon et al. (1978).

Of the 50 neurons analyzed here, only 20 had distinct
transient and tonic response components that were easily sep-
arable by eye and by the boundary-search method (seeMETH-
ODS). The other neurons had responses that decayed slowly
over time or else remained constant until after the grating was
removed. Thus conclusions about the contrast-encoding prop-
erties of the response latency are based on data from 50
neurons, whereas conclusions about the contrast-encoding
properties of the transient, tonic, and off responses are based on
data from 20 neurons.

Fig. 2, C and D, shows different scalar measures of the
contrast responses, plotted against contrast. In Fig. 2C, the
firing rate is plotted on a logarithmic scale separately for each
temporal response component. The firing rate for the full
response (▫) has a dynamic range of about 40 spikes/s, but
most of that range is evoked by contrasts of 0.5 and lower.
Above this contrast, the firing rate saturates, making it very
difficult to distinguish high-contrast stimuli on the basis of
firing rate alone. This type of saturation is a common feature of
many V1 neurons’ contrast response functions (Ahmed et al.
1997; Albrecht and Hamilton 1982; Maffei and Fiorentini
1973; Tolhurst et al. 1981), and it is prominent in all temporal
components of the response.

Figure 2D shows the dependence on stimulus contrast of
latency (n) and median first postlatency spike time (F). The
latency is a PSTH-based measure of the earliest time that the
response rises above the baseline firing rate. Like the firing
rate, both of these response measures change rapidly at low
contrast and less rapidly at high contrast, though the degree of
saturation is arguably less for latency and first spike time than
for firing rate. The decrease in response latency as a function of
contrast has been proposed to be a primary way in which visual
neurons represent contrast (Bolz et al. 1982; Cleland and
Enroth-Cugell 1970; Gawne et al. 1996; Wiener et al. 1999).

The relative contribution of each temporal response compo-
nent to the encoding of contrast is assessed by comparing the
information conveyed by subset spike trains that consist only
of spikes within a particular response component with average
latency information either left intact or removed. In the fol-
lowing sections,full responserefers to spikes that occur be-
tween the onset latency and a cutoff time 237 ms later. For
responses that include a clear transient component (20 of 50
neurons), the full response is extended by the duration of the
transient so as to include the off response regardless of its
actual size or duration. Latency is determined independently
for each contrast but assumes a fixed value for all spike trains
recorded at that contrast since it is a measure derived from the

FIG. 2. Response of a simple cell to stationary sinusoidal gratings.A:
poststimulus time histograms (1-ms bins) of the response of a V1 simple cell
(35/1 s) to sinusoidal gratings presented 100 times at 8 contrasts. The stimuli
appear attime 0and are turned off at 237 ms. Response onset is abrupt, with
a latency that decreases as a function of contrast.B: typical responses can be
divided into 4 components: the onset latency, the transient period of high firing
rate, the elevated tonic firing that follows the transient and persists until the
stimulus is turned off, and the off response itself. The procedure for assigning
boundaries between response components is described inMETHODS. C: firing
rate vs. contrast for each response component: full response (▫), transient (E),
tonic (‚), and off (ƒ). D: onset latency (n) and median first postlatency spike
time (●) as a function of contrast.
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average response at each contrast. Only contrasts that evoke a
clear response onset are considered, so that the full set of
contrasts is not necessarily analyzed for each neuron. For each
neuron, approximately 100 responses are recorded at each
contrast.

Latency

Latency and firing rate, a priori, are independent response
measures. As shown in Fig. 2, both measures covary with
contrast. Across all 50 neurons in the sample, stimulus contrast
is correlated with both firing rate (median Pearson’sR 5 0.94)
and latency (R 5 20.78), and, consequently, the correlation
between firing rate and latency is high (R 5 20.86). The
degree of correlation is nearly twice as high as what is found
in cat retinal ganglion cells for stimuli that vary in spatial
position within the receptive field (Levick 1973).

To evaluate the separate contributions of firing rate and
response latency to the coding of contrast information in V1, it
is useful to compare the information transmitted by the full
response with the information transmitted by two derived re-
sponses. The two derived responses are complementary: one
contains only the latency information and the other removes
latency information entirely. This means that if the sum of the
contrast-related information in the derived responses exceeds
the contrast-related information in the full response, the two
derived responses can be said to convey redundant informa-
tion. Alternatively, if the derived responses convey indepen-
dent information, their information curves are expected to sum
to the information curve of the full response. If one of the
derived responses conveys more information than the full
response, then the additional features in the full response can
be said to provide confusing information about contrast (al-
though in that case they may provide information about other
stimulus features, such as spatial phase).

The first derived response is obtained by subtracting the
contrast-specific (but not trial-specific) latency from all spike
times recorded at each contrast. This preserves the relative
spike times within and across trials at a single contrast but
removes the overall latency shift across contrasts. The resulting
derived response, which contains the same number of spikes as
the original response, as well as the same interspike intervals,
is used to evaluate the amount of contrast-related information
contained in aspects of the response other than latency. This
information could be carried by spike counts and by aspects of
temporal pattern other than the time of the first spike (for
example, the time of the second spike or the occurrence of
“bursts”). The second derived response is obtained by selecting
only the first postlatency spike in each trial of the full response.
Trials in which no spikes are fired are ignored so that each trial
in the derived response has exactly one spike. This removes the
confounding effect of differences in spike count since spike-
free trials are more likely to occur at lower contrasts. The result
is a derived response that is used to evaluate the amount of
contrast-related information encoded specifically into the re-
sponse latency.

Figure 3 shows the results of applying the spike metric
method to the full and derived responses for two separate
neurons. For each costq, information is expressed as a per-
centage of the maximum information that would have been
obtained from the set of responses if the responses to different

contrasts were perfectly distinguishable. This maximum value,
in bits, is log2 N, whereN is the number of stimulus conditions.
All information estimates (both actual and normalized) are
corrected for the small-sample bias by subtracting the infor-
mation expected from chance clustering. Individual points are
fit to an empirical five-parameter curve as described inMETH-
ODS. The parametersHpeak(peak information, possibly equal to
the spike-count informationH0), Q (temporal coding index),
andqcut (temporal precision limit) are extracted from these fits.
H0 itself is estimated directly.

Figure 3A shows the information curves for the simple cell
of Fig. 2. Essentially all of the information in the full response
(▫) is encoded in the spike count:H0 is 14%6 1.4% (SE of the
mean derived from 100 bootstrap resamplings), whereasHpeak
is 16% (derived from a fit to the information curve; see
METHODS). Although approximatelyQ 5 8.5% of the contrast-
related information is transmitted by a temporal code, this
value is not significantly different from zero. The same is true
in the derived response with latency information removed (E;
Q 5 2.5%, not significantly different from 0). For this derived
response,H0 is by construction equal toH0 of the full response
(up to discrepancies in the estimate of information bias; see
METHODS) since the number of spikes in each trial of the full and
latency-free responses is the same. Remarkably the informa-
tion in the first spike alone (‚) is as high as the information in
the full response (Hpeak 5 15%), which means that the infor-
mation contained in the time of the first spike is redundant with

FIG. 3. Information transmitted in the onset latency. Contrast-related infor-
mation in the full response (▫), in the response with latency removed (E), and
in the 1st spike alone (‚). Transmitted information is evaluated by the spike-
metric method.A: simple cell from Fig. 2 (35/1 s).B: complex cell (38/2 s). —,
empirical fits to the data points (seeMETHODS). Information values are repre-
sented as a percentage of the maximum possible information (log2 N, whereN
is the number of stimuli), after an estimated bias due to limited sample size is
subtracted (seeMETHODS). Error bars represent 1 SE of the mean and are
derived from a bootstrap resampling procedure (seeMETHODS).
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the information contained in the spike count. For the first spike
alone, H0 is 0% by construction: all trials in the derived
response have exactly one spike so that no information at all is
transmitted by the spike count.

In addition to showing the amount of contrast-related infor-
mation transmitted by the first spike compared with the full
response, the information curves in Fig. 3A provide insight into
the informative temporal precisionof spikes in the full and
derived responses. As discussed in theAPPENDIX, this is a
measure of the precision with which spike times can be used to
distinguish one stimulus from others, but it is not explicitly
related to the reliability of spike times across trials for partic-
ular stimuli. One measure of the temporal precision limit is
qcut, the value ofq at which the fitted information curveHfit(q)
reachesHpeak/2. For the full response,qcut is 110 s21, giving an
informative temporal precision limit of 2,000/qcut 5 18 ms.
The temporal precision limit of the response with latency
removed is similar (20 ms). These values represent a kind of
average over the entire response. However, when the analysis
is limited to the first spike alone, the temporal precision limit
(assuming there is at least 1 spike in the response) is about
twice as fine (10 ms).

Figure 3B shows the corresponding information curves for a
complex cell. When the latency information is removed from
the response of this neuron, less than half of the contrast-
related information remains:Hpeakof the derived response with
latency removed is only 44% ofHpeak of the full response.
Whereas 62% of the information in the full response is tem-
porally coded, the percentage declines to 15% when the latency
information is removed. In this neuron’s response, the first
spike alone (‚) transmits far more information than the full
response (▫), meaning that later spikes actually impair contrast
discrimination. However, the temporal precision limit of the
first spike (40 ms) is coarser than the temporal precision limit
of the full response (24 ms). Indeed the responses of this
neuron highlight the difficulty of interpreting the temporal
precision limits derived from the information curves: even
though the temporal precision limit is lower for the first spike
than for the full response, the first spike transmits more infor-
mation about contrast than does the full response at any given
temporal precision (q).

The information curves across all 50 neurons are summa-
rized in Fig. 4, which uses box plots to represent the distribu-
tions of each information parameter for the full response and
the two derived responses. As expected (Fig. 4A), more con-
trast-related information is conveyed in the full response (me-
dian Hpeak: 8.6%) than in the response with latency removed
(3.9%,P , 0.001, direct comparison with 1,000 paired boot-
strap resamplings). However, the first spike alone typically
conveys more information than the full response (12%,P ,
0.001). Not surprisingly, then, the sum of the information
conveyed by the two derived responses (right-most distribu-
tion, 16%) is also larger than the information conveyed by the
full response (P , 0.001), indicating that the contrast-related
information in the two derived responses is redundant (Gawne
et al. 1996). There are no significant differences between
simple (n 5 22) and complex (n 5 28) cells in the median
value ofHpeak for either the full response or the two derived
responses (P . 0.05, direct comparison with 1,000 unpaired
bootstrap resamplings).

Figure 4B shows that contrast is encoded in the full response

primarily through a temporal code: the median temporal coding
fraction (Q) is 61%. Most of this is due to latency variations,
and the temporal coding fraction declines to 19% when those
variations are removed (P , 0.001). This confirms that most of
the temporally coded information is in the response latency as
indexed by the time of the first spike. Again there are no
significant differences between simple and complex cells in
terms of the median value ofQ.

Figure 4C depicts the distribution of informative temporal
precision limits (2,000/qcut) across all neurons. The full re-
sponses have a median temporal precision limit of 20 ms,

FIG. 4. Summary of contrast-related information in the response latency.
Distributions are derived from the responses of 50 V1 neurons to stationary
sinusoidal grating stimuli. Information parameters are taken from fits to infor-
mation curves such as the ones shown in Fig. 3. Box plots depict medians (box
centers), interquartile ranges (box boundaries), data within 1.5 interquartile
range of the medians on both sides (whiskers), and 95% confidence intervals
of the medians (notches).1, outliers within the displayed vertical-axis range.
Since none of the information parameters can take on values less than 0 and
since one of them (Q) is bounded above by 100%, boxes and whiskers may
merge at these extreme values.A: peak information values (Hpeak), expressed
as a percent of the maximum possible information.B: estimated percentage of
information that is represented by a temporal code (Q). Because all1st-spike
responses have exactly 1 spike,Q 5 100% by definition.C: informative
temporal precision limit, in ms (2,000/qcut). D: informative temporal precision
limit of 1st spike alone vs. informative temporal precision limit of full response
for each neuron.
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significantly finer than the temporal precision limits of the
responses with latency removed (median: 24 ms,P 5 0.004)
but not significantly different from the temporal precision
limits of the first spikes alone (23 ms,P 5 0.06). Figure 4D
shows that the temporal precision limits for the full response
and the first spike alone are correlated (Spearman’s rank cor-
relation coefficient: 0.51,P 5 0.002, direct comparison with
1,000 paired bootstrap resamplings). There are no significant
differences between simple and complex cells with respect to
qcut.

It is important to reiterate that in the context of the results
described here, the informative temporal precision limit gives
an estimate of the time differences that are relevant for distin-
guishing between different contrasts and not of the reliability
of a particular spike time within a response across repeated
trials (although the two numbers may be correlated). As dis-
cussed in the preceding text, the temporal precision limit
cannot be considered in isolation from the overall information,
which is typically significantly higher for the first spike alone
than for the full response.

Transient, tonic, and off responses

In the responses of 20 of the 50 neurons, transient, tonic, and
off components are clearly delineated. To analyze the contrast-
encoding properties of each temporal component separately,
derived responses are constructed that consist only of spikes
that occur during one of the response components. From each
spike time, the starting time of its associated response compo-
nent is subtracted. For example, the contrast-specific latency is
subtracted from all spike times in the transient response at each
contrast. This subtraction means that the comparison of re-
sponse components is not confounded by differences in the
onset times of those components; without the subtraction,
responses would be extremely easy to distinguish and infor-
mation values would be spuriously high.

Figure 5A shows the information curves for the simple cell
of Figs. 2 and 3A; ▫’s are taken directly from Fig. 3A and
represent the contrast-related information conveyed by the full
response, whereasE’s represent the transient response, which
conveys at most 63% of the peak contrast-related information
in the full response and does so with an informative temporal
precision limit of 10 ms. The‚’s represent the tonic response,
which conveys 71% as much contrast-related information as
the full response with a temporal precision limit of 22 ms.
Within the range of decoding schemes parameterized byq, the
information contents of the full, transient, and tonic response
are most easily evaluated by counting spikes. Finally, theL’s
represent the off response, which is relatively weak in this
neuron at this spatial phase (see Fig. 2A). Not surprisingly,
contrast is least well encoded by the off response.

Figure 5B shows the information curves for a complex-cell
response with very prominent transient and off response com-
ponents and a tonic response close to the background firing
level. For this neuron, the individual response components
encode contrast poorly, whereas the full response encodes, at
its peak, 41% of the available information about contrast. This
information is almost exclusively (Q 5 89%) temporally coded
and is conveyed in the latency rather than in the temporal
structure of the response components (not shown).

Across all neurons, the transient and tonic responses and

especially the off response encode substantially less contrast-
related information than the latency or overall spike count, at
least for the set of contrasts used here. The median peak
information (Hpeak) is significantly lower for each response
component than for the full response or the first spike alone
(P , 0.001; distributions not shown). A more appropriate
comparison, though, is the one shown in Fig. 6A, where the
information-parameter distributions for the full response with
latency removed are presented in the first column. This is
because the responses derived from the three response compo-
nents also do not preserve latency variation, as discussed in the
preceding text.Hpeak for each of the three components is
significantly lower thanHpeakfor the full response with latency
removed (P , 0.004). However, when the values ofHpeakare
summed across the three response components separately for
each neuron, the result is significantly greater thanHpeakof the
response with latency removed (medians: 11 vs. 7.1%, respec-
tively, P , 0.001). This means that the information about
contrast conveyed by the three response components is sub-
stantially redundant.

To the extent that the different response components do
encode contrast, the transient is significantly more effective
(higher Hpeak) than either the tonic or off component (P ,
0.004). The timing of spikes within the transient and tonic
components is not likely to play a primary role in the encoding
of contrast (Fig. 6B), although the time at which the transient
component begins—equivalent to the latency—is clearly im-
portant. Figure 6C shows that spikes are significantly more
precise in the transient than in the tonic (P 5 0.02). The fine
informative temporal precision estimate for the off responses is
most likely an artifact of poor fits to the information estimates,
as in Fig. 5A. Finally, among the neurons with responses that

FIG. 5. Information curves for full response and response components. Full
response (▫), transient (E), tonic (‚), and off (L). Details are as in Fig. 3.A:
simple cell (35/1 s), same as Figs. 2 and 3A. B: complex cell (43/11 s).
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could be clearly divided into transient, tonic, and off compo-
nents, there were no reliable differences between simple (n 5
7) and complex cells (n 5 13) in any of the information
measures.

Information estimates depend strongly on the sampling
range and density of stimulus contrast

For each neuron tested, the stimulus set consisted of station-
ary sinusoidal gratings at either an arithmetic series of eight
contrasts or a geometric series of six contrasts. The results
presented in Figs. 3–6 are derived from responses to contrasts
that evoked a robust change in each neuron’s firing rate in
which response-component boundaries could be estimated.
Thus the number of contrasts and the particular contrast values
analyzed differ from neuron to neuron. To make across-neuron
comparisons, information values are normalized by the maxi-
mum information available in the stimulus set (i.e., log2 of the
number of stimulus categories).

However, the calculated information values depend strongly
on the particular contrasts that are analyzed and not just on the
number of contrasts. Intuitively, this makes good sense: the
greater the difference in contrast between two stimuli, the
easier to distinguish them and, by extension, to distinguish a
neuron’s responses to them. Thus the information transmitted
about a pair of stimuli at contrasts 0.125 and 0.25 is expected
to be lower than the information transmitted about a pair of
stimuli at contrasts 0.125 and 1. As more contrasts are added to
the stimulus set, two things happen. First, the maximum infor-
mation that can be transmitted in response to the entire set
increases because the number of stimuli is larger. Second, there
is a greater potential for confusing the various contrasts both
because there are more of them and because the particular

contrasts may evoke similar responses. The balance of these
effects determines whether the transmitted information is
larger or smaller when responses to more contrasts are in-
cluded. Also of interest is whether changing the stimulus set
determines the aspects of the responses that are most informa-
tive in discriminating among contrasts—in particular, whether
the information is primarily encoded in the spike count or spike
times and with what precision.

Figure 7A shows the dependence of spike count on contrast
for a V1 simple cell stimulated with stationary sinusoidal
gratings. The response increases over the entire range of con-
trasts but shows signs of saturating at the highest contrasts. The
information curves derived from this neuron’s responses to all

FIG. 6. Summary of contrast-related information in the temporal response
components. Distributions are derived from the responses of 20 V1 neurons to
stationary sinusoidal gratings. These responses all have distinguishable tem-
poral components (transient, tonic, off). Box-plot details as in Fig. 4.

FIG. 7. Information about contrast depends on the set of stimuli. Responses
of a V1 simple cell (43/10 s) to stationary gratings of 4 contrasts (0.125, 0.25,
0.5, and 1).A: firing rate as a function of contrast. Error bars represent 2
standard errors of the mean.B: information curves (bits) and empirical fits for
all pairwise combinations of contrasts. Symbols and line type indicate the
contrast offset in the pair. Solid lines and open squares: factor of 2. Dashed
lines and open circles: factor of 4. Dotted lines and open triangles: factor of 8.
Thickness indicates the lower contrast in each pair; thin: 0.125; medium: 0.25;
thick: 0.5.Inset: mean value ofHpeakfor fixed values of the ratio of higher to
lower contrast.C: fits from B, each normalized to its own maximum. In this
representation, the information atq 5 0 s21 is the fraction of the total
information that is contained in the spike count or firing rate (i.e., 12 Q/100).
This plot reveals that spike count plays a relatively more important role when
the contrasts are sparsely sampled (contrast ratio 8); conversely, temporal
coding is more important when the contrasts are densely sampled (contrast
ratio 2). Inset: mean value of the temporal coding fractionQ for fixed values
of the contrast ratio.
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six pairwise combinations of the four contrasts (0.125, 0.25,
0.5, and 1) are shown in Fig. 7B. Here information is given in
bits rather than percentages, and the maximum possible trans-
mitted information is 1 bit. Line thickness indicates the lowest
contrast in the pair—thin for 0.125, medium for 0.25, and thick
for 0.5. Solid lines and squares represent pairs in which the two
contrasts differ by a factor of two, dashed lines and circles by
a factor of four, and the dotted line and triangle by a factor of
eight.

Intuitively, one expects that closely spaced contrasts are
difficult to distinguish and that information estimates calcu-
lated from neuronal responses to pairs of closely spaced con-
trasts should consequently be low. This intuition accounts for
the clustering of information curves by line type (solid, dashed,
or dotted), corresponding to different contrast ratios of the
stimuli, along the vertical axis in Fig. 7B. The mean value of
Hpeak increases with thecontrast ratio(ratio of the higher to
lower contrast; Fig. 7B, inset). Unexpectedly the fraction of
temporally encoded information (Q/100) decreases with the
contrast ratio. This can be seen in Fig. 7C, which plots the fits
from Fig. 7B, each normalized to its own maximum. The
fraction of information that is encoded in the firing rate (12
Q/100) is given by the value of each curve atq 5 0 s21; this
fraction is greatest when the contrasts of the two stimuli are
0.125 and 1 and least when the contrasts are 0.125 and 0.25.
The mean values ofQ are plotted as a function of the contrast
ratio in Fig. 7C, inset.

The neuron of Fig. 7 is typical of the population. This is
summarized in Fig. 8, which shows the distributions of the
three key response statistics as a function of the contrast ratio.
Figure 8A shows that the peak contrast-related information

Hpeak increases with contrast ratio (P , 0.0001, Kruskal-
Wallis nonparametric ANOVA). On the other hand (Fig. 8B),
the relative amount of temporal coding in the response is
largest when the contrasts are closely spaced (low contrast
ratio) and smallest when the contrasts are far apart (P 5 0.03).
The informative temporal precision limits of the spikes that
contribute to distinguishing contrasts does not change signifi-
cantly with contrast ratio (Fig. 8C; P 5 0.15). On the basis of
these results, it is proposed that a major role of temporal coding
is to enable the visual system to distinguish among stimuli even
when there is little change in firing rate. Ultimately, of course,
as the difference between the two contrasts is decreased, even
the temporally coded information must fall to zero, and the
precision of coding is then undefined.

D I S C U S S I O N

The results in this paper address two important issues re-
garding contrast encoding by V1 neurons. First, they provide
insight into the detailed temporal structure of responses to
stationary sinusoidal gratings and the degree to which infor-
mation about contrast is encoded in each distinct temporal
component. Second, they suggest a hypothesis for the role
played by temporal coding in contrast discrimination.

Role of different response components

The temporal structure of the spike-train response of a visual
neuron can be shaped by a number of factors. Most impor-
tantly, perhaps, the temporal structure of the response can
directly reflect temporal changes in the stimulus. However,
information about static features of the stimulus (for the stimuli
considered here, contrast, spatial frequency, and orientation)
can be multiplexed into the temporal structure of the response
(McClurkin et al. 1991; Victor and Purpura 1996). For stimuli
that vary rapidly in time, these two sources of temporal mod-
ulation in the response are likely to be confounded. The tem-
poral modulation in the stationary stimuli—here, sinusoidal
gratings that, after an abrupt onset, are present for 237 ms and
then replaced by a uniform field at the same mean lumi-
nance—is relatively simple. This makes it possible to study the
ways in which stimulus contrast, per se, affects the responses
of V1 neurons. Consistent with previous reports, the results
indicate that contrast is encoded in both the firing rate and
temporal structure of stationary-grating responses.

The summary distributions plotted in Figs. 4 and 6 show
that, for these stimuli, nearly all the available information
about contrast is contained in some combination of firing rate
and latency and that at least some portion of that information
is encoded redundantly into both aspects of the response. That
neurons encode contrast-related information into these two
response parameters has been known for some time (Hartline
1938). The present results show that latency, the variation of
which can depend precisely on contrast, conveys significantly
more contrast-related information than does firing rate in the
responses of monkey V1 neurons. In this context, it is impor-
tant to point out that although the method provides an estimate
of the informative temporal precision limits in these responses,
it does not prove that such temporal precision is actually used
by the brain. To examine this issue directly, experiments would
need to be performed in which the perceptual or behavioral

FIG. 8. Summary of information parameters for responses to pairs of con-
trasts. Parameters derived from fits to the information curves. Distributions
across 50 neurons. Box plots as in Fig. 4.n 5 29 for contrast ratio 8,n 5 63
for contrast ratio 4, andn 5 111 for contrast ratio 2.A: peak information
(Hpeak), expressed in bits, greatest for widely separated contrasts (contrast ratio
8). B: temporal coding fraction (Q), greatest for closely separated contrasts
(contrast ratio 2).C: temporal precision limit (2,000/qcut), generally (but not
significantly) finest for closely separated contrasts (contrast ratio 2).
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consequences of manipulating the fine temporal precision of
V1 neurons’ responses are examined.

From a clinical point of view, the results may be relevant for
understanding aspects of visual loss in multiple-sclerosis pa-
tients, who tend to have defects in contrast sensitivity that are
out of proportion to their loss of visual acuity (Regan et al.
1977). The major pathophysiological effect of chronic demy-
elination—the primary lesion in multiple sclerosis—is slowing
of conduction, which could easily disrupt the finely tuned
variations in response latency that are so informative about the
contrast of visual stimuli. Thus it is reasonable to speculate that
disturbances of the temporal structure of responses may play a
critical role in the visual defects seen in demyelinating dis-
eases.

It is not immediately clear that cortical neurons can
actually obtain an accurate measure of latency, which is a
necessary prerequisite for decoding the contrast-related in-
formation encoded therein. Determination of latency re-
quires a comparison of response onset to stimulus onset, but
the response onset itself is actually the neuronal represen-
tation of stimulus onset. A number of solutions to this
problem can be proposed. One possibility is that there is an
overall population activation in V1 that occurs regardless of
the particular visual stimulus. Latency information could
then be extracted through a comparison of the response
times of particular neurons to the time of this general
activation. In all likelihood, the characteristics of the gen-
eral activation change with stimulus contrast, just as they do
for individual neurons. In this case, latency information
could potentially be extracted by downstream neurons that
measure the distribution (in particular, the variance) of the
onset times of responses in an ensemble of nearby neurons.
Additionally, if latency is correlated with the degree of
synchrony across multiple neurons, postsynaptic “coinci-
dence detectors” would be able to extract the information
contained in the latency (Singer 1999). Finally, neurons
might be able to measure response latency through a com-
parison of response onset to the time of occurrence of a
preceding saccade, which could be taken as a sign that a new
stimulus is present. Each of these solutions can in principle
be tested explicitly, although to do so would be a challenge
to current experimental techniques.

Beyond firing rate and latency, V1 neurons transmit very
little information about the contrast of transiently presented
visual stimuli. This is consistent with the results of other
investigations (Gawne et al. 1996; Wiener et al. 1999) and
raises the question of why the responses to stationary gratings
contain such prominent temporal variation, reflected in the
transient, tonic, and off response components. The present
results, together with earlier work, suggest that these response
components may primarily transmit information about other
stimulus parameters such as orientation, spatial frequency, and
spatial phase (Victor and Purpura 1996). For simple cells, in
particular, the timing and magnitude of the transient, tonic, and
off response components strongly depend on spatial phase
(Movshon et al. 1978) and therefore convey a great deal of
information about that stimulus attribute (Victor and Purpura
1998). This would follow naturally if different response com-
ponents reflect the contributions of distinct receptive-field sub-
units, as has been suggested (Movshon et al. 1978).

Role of temporal coding in the representation of contrast

Previous work has explicitly evaluated the role of temporal
coding in the representation of stimulus contrast. Victor and
Purpura (1996) find that contrast is encoded with higher tem-
poral precision than other stimulus attributes: between 10 and
30 ms. In a related study, Mechler et al. (1998) confirm that
contrast can be encoded into the temporal structure of spike
train responses but demonstrate that the temporal structure
conveys more information when stimuli have transient com-
ponents than when they do not. Thus temporal coding is
prominent in the responses to drifting edges or square wave
gratings, just as it is when stimuli appear and disappear
abruptly, but less prominent in the responses to drifting sinu-
soidal gratings. This is perhaps surprising given that the re-
sponses to drifting sinusoidal gratings exhibit a prominent
phase advance (Albrecht 1995; Dean 1981), which should be
reflected in the information measurements. That the phase
advance does not give rise to substantial contrast-related infor-
mation suggests that the variability in the response phase when
the stimulus has no transient overwhelms the informative con-
trast-dependent variation.

The present results extend the analysis of contrast represen-
tation by demonstrating (Figs. 7 and 8) that temporal coding
plays a relatively (but not absolutely) more important role as
the contrast ratio decreases. This agrees with findings in the
locust olfactory system in which precise spike times make it
possible for the animal to discriminate among odorant stimuli
that evoke similar firing rates (Stopfer et al. 1997). In V1,
temporal coding can better be used to distinguish contrasts that
differ by a factor of two than by a factor of eight. This is not
to say, of course, that contrasts beyond the saturation point,
which give rise to responses with similar firing rates, can be
distinguished as efficiently as lower contrasts even when spike
timing information is taken into account—in fact, the opposite
is true (Fig. 8). Nonetheless the important implication is that
temporal coding—in particular, variations in response latency—
extends the dynamic range of V1 responses with respect to con-
trast representation beyond what would be available from differ-
ences in firing rate alone.

A P P E N D I X

In this Appendix, simulations are presented to test the suitability of
the metric-space method for calculating information when there are
only one or two spikes per trial. This is akin to the situation, described
in RESULTS, in which derived spike trains that contain only the first
spike in a response are evaluated. More general simulations that test
the metric-space method under a variety of conditions are presented in
Victor and Purpura (1997).

The simulated response sets analyzed in this appendix each consists
of two stimulus conditions. Within each condition, the spike times are
drawn from either one or two Gaussian distributions, one spike per
distribution. The means and SDs of the distributions and the overall
offset of the distribution means between conditions are the parameters
that are varied in the simulations. For each condition, a fixed number
of trials are simulated, each of which contains the same number of
spikes (either 1 or 2). The simulated spike trains are subjected to the
metric-space analysis, and the results are compared with the results of
an analysis in which a simulated response is assigned to the stimulus
category that has the highest likelihood of giving rise to spikes at the
observed times (Cover and Thomas 1991). The latter analysis is
performed on 10,000 simulated spike trains from the same underlying
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distributions—100 times more trials than are available from real data.
In cases when there is only one spike per trial, it is easy to calculate
the information explicitly from the probability distributions; the in-
formation values derived from the likelihood-ratio analysis match the
true information values very well.

Figure A1A shows the effects of varying the cost parameterq and
the number of simulated trials on the estimated information. In this
example, there is only one spike per trial. The separation between
distribution means across conditions is 16 ms, and the distributions
have a standard deviation of 8 ms (so that there is considerable
overlap that can lead to ambiguity in assigning responses to the
appropriate stimuli). Figure A1A, left,shows the bias-corrected infor-
mation values as a function ofq for four different sets of simulated
responses, each of which contains a different number of trials: 16
(open squares), 64 (open circles), 128 (open triangles), and 1,024

(inverted open triangles). The — shows the actual information (0.37
bits) calculated analytically. For low values ofq, the calculated
information is close to the actual information at least when there are
a sufficient number of trials. For higher values ofq, the information
declines to zero, which is expected because spike times measured with
extremely high temporal precision do not provide information about
the stimulus (Victor and Purpura 1997).

Figure A1A, right, shows estimated information plotted against the
number of trials simulated for four different values ofq: 1 (open
squares), 8 (open circles), 64 (open triangles), and 512 (open inverted
triangles) s21. When the number of trials is on the order of 100—the
number of trials at each contrast in the real data described in this
paper—the calculated information approaches the actual information
whenq is sufficiently low. The similarity of the curves for different
values ofq indicates that the accuracy of the bias-correction method
does not depend strongly onq, even though it can do so in principle
(Victor and Purpura 1997).

Figure A1,B–D, shows the results of varying the mean separation
and standard deviation of the Gaussian distributions. Theleft panels
plot Hpeak(the maximum calculated information), and theright panels
plot 2,000/qcut (the measure of informative temporal precision used in
this paper). Both parameters are derived from fits of the information
curves (seeMETHODS). Different symbols correspond to different ratios
of mean separation to standard deviation: 1 (open squares), 4 (open
circles), and 16 (open triangles). For each condition, 100 simulated
spike trains are created. Solid lines in the left panels correspond to
likelihood-ratio information measures. Slanted lines in the right panels
correspond to estimated temporal-precision limits, which are related
to the mean separation between distributions used in the simulations.
They are independent of the standard deviations (horizontal lines)
because the informative temporal precision corresponds to reliable
variations in spike timing across stimulus conditions that can provide
information about the stimulus rather than jitter of particular spike
times across trials within a condition. The estimated temporal preci-
sions for the stimuli used in these simulations are expected to fall at
the intersections of the horizontal and slanted lines.

Figure A1B shows the case of one spike per trial; a subset of these
data is plotted, in more detail, in Fig. A1A. Figure A1C shows the case
of two spikes per trial, where the individual spike-time distributions
within each trial are separated by 32 ms. Figure A1D shows the results
of extracting the first spike from each of the trials in Fig. A1C and
performing the metric-space analysis; this corresponds to extracting
the first postlatency spike at each contrast in real data. The results
indicate that the estimated information values for 100 trials are gen-
erally very close to the expectation, regardless of the mean-separation-
to-standard-deviation ratio, in all three simulations (left). Moreover,
the calculated temporal precision limits fall near the intersections of
the horizontal and slanted lines in theright panels,indicating that the
temporal precision is recovered relatively accurately by the metric-
space method. Together with the results of Victor and Purpura (1997),
the simulations reveal that the metric-space method, as used here, can
accurately estimate information and informative temporal precision
limits from spike data.
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