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Independent and Redundant
Information in Nearby Cortical

Neurons
Daniel S. Reich,1,2* Ferenc Mechler,2 Jonathan D. Victor2

In the primary visual cortex (V1), nearby neurons are tuned to similar stimulus
features, and, depending on the manner and time scale over which neuronal
signals are analyzed, the resulting redundancy may mitigate deleterious effects
of response variability. We estimated information rates in the short–time scale
responses of clusters of up to six simultaneously recorded nearby neurons in
monkey V1. Responses were almost independent if we kept track of which
neuron fired each spike but were redundant if we summed responses over the
cluster. Redundancy was independent of cluster size. Summing neuronal re-
sponses to reduce variability discards potentially useful information, and the
discarded information increases with cluster size.

How do neurons in the sensory cortex work
together to represent a stimulus? Cortical neu-
rons with similar stimulus selectivities are
found in close proximity to one another (1–3).
This might reflect a mechanism of coping with
large trial-to-trial variability in the responses of
individual neurons: Downstream neurons could
simply sum the activities of many neurons with
similar sensitivities. However, because re-
sponse variability is correlated across neurons
(4, 5), the ability of averaging to increase the
signal to noise ratio is limited (6). Also, the fact
that responses are variable does not imply that
the cortex averages signals from multiple neu-
rons, because averaging would ignore stimulus-
related information encoded into which neuron
fires each spike. Theoretical (7) and experimen-
tal (8, 9) work has shown that neurons tuned to
similar stimuli can convey largely independent
information, especially when their responses
are noisy.

Figure 1 describes two pairs of nearby V1
neurons that illustrate the range of behavior we
encountered (10). The first pair (Fig. 1, A to D)
responded robustly to the stimulus, as shown by
the sharp and reliable firing rate fluctuations
during typical 1-s segments (Fig. 1A). Al-

though the neurons occasionally responded to
similar stimulus features (double-headed ar-
row), their responses were usually distinct (sin-
gle-headed arrow). Overlapping “off ” subre-
gions were evident in snapshots of the spatial
receptive fields (Fig. 1B), obtained by cross-
correlating the stimulus with the spike train
(10). The “on” subregions, however, were on
opposite flanks, indicating that the neurons con-
veyed at least some distinct spatiotemporal in-
formation. The second pair (Fig. 1, E to H)
responded less robustly and more variably, and
the spatial overlap was more complete.

The Pearson correlation coefficient is a
measure of similarity between paired re-
sponses. We distinguished between signal
correlations, which compare bin-by-bin av-
erage spike counts across trials, and noise
correlations, which compare trial-by-trial
deviations from the average response in
each bin (8). The signals were essentially
uncorrelated for the first pair [correlation
coefficient (r) 5 – 0.021] but highly corre-
lated for the second (r 5 0.52). The noise
was uncorrelated for both pairs (r 5
20.039 and 20.015, respectively).

Information rates were substantially higher
for the first pair than for the second (Fig. 1, C
and G) (11). To assess population coding, we
compared two schemes: the summed-population
code, which did not consider which neuron fired
each spike, and the labeled-line code, which did
(12). The summed-population information rate
for the first pair was slightly higher than the
information rate for the first cell alone, but the

labeled-line information rate was 49% higher
than the summed-population information rate.
For the second pair, the difference between the
summed-population and labeled-line informa-
tion rates was only 5.6%. Ignoring which neu-
ron fired each spike blurred distinctions between
the responses of the first pair, resulting in a
reduced multineuronal information rate. For the
second pair, responses were more similar, and
neuronal identity mattered less.

For each pair of neurons and code, we cal-
culated a redundancy index as a normalized
measure for comparing recording sites with
vastly different information rates (13). The re-
dundancy index was 0 when neurons carried
independent information and 1 when the infor-
mation was completely redundant. Figure 1, D
and H, shows that, for both pairs, the redundan-
cy index was higher for the summed-population
code than for the labeled-line code. The differ-
ence was greater for the first pair, in which the
responses were robust and distinct, so that com-
bining spikes from those two neurons blurred
distinctions and emphasized redundancy. The
labeled-line code revealed the underlying inde-
pendence of the responses and yielded a redun-
dancy index of essentially 0. For the second
pair, redundancy indices for both codes were
near 0, meaning that the responses were almost
independent, even for the summed-population
code. This surprised us at first because the neu-
rons responded to similar stimulus elements,
and we gained little information when we paid
attention to which neuron fired each spike.
However, both signal and noise contributed to
information rates, and when signals were small
and correlated, and noise large and uncorrelated,
information in the summed-population code was
nonredundant.

We evaluated signal and noise correla-
tions at a series of bin sizes for all pairs of
neurons in our database (Fig. 2). Correlations
were generally positive, but signal correla-
tions were higher on all time scales. On short
time scales, noise correlations clustered tight-
ly about 0, whereas signal correlations were
more widely distributed with positive median
values ,0.25. On longer time scales, median
correlations reached higher levels for signal
(;0.5) than for noise (;0.25). On long time
scales, our results correspond approximately
to other monkey visual cortex studies that
used different stimuli and analyses (3, 8, 14).

Information rates and redundancy indices
can be calculated for any cluster size, not just
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pairs, and characterize the whole population.
Figure 3 presents results from clusters of up to
six simultaneously recorded nearby neurons.
Scatter plots of information rates (top row) re-
veal that higher information rates were always
obtained with the labeled-line code than with the
summed-population code. The information rates
for both codes monotonically increased with
cluster size, without saturating, and were strong-
ly correlated at all cluster sizes. Ignoring neuron
identity led to a progressively larger loss of
information with larger clusters. Although clus-
ters with more than six neurons were not con-
sidered here, the trend suggests that the modest
difference observed for pairs becomes much
larger even for small populations.

The labeled-line redundancy indices were
always smaller (bottom row) than were the
summed-population indices, meaning that un-
der this code, nearby neurons were nearly in-
dependent. The redundancy index comparison
highlights the difference between the two

codes. However, even with the summed-popu-
lation code, redundancy indices were substan-
tially smaller than 1, because noise tended to be
independent across neurons (as exemplified by
the second pair in Fig. 1). We found no syner-
gistic coding in the responses to checkerboard
stimuli.

Figure 4A shows the number of distinct
sites at which clusters of each size were
recorded; within each group, all subsets
(pairs, triplets, etc.) were analyzed. Median
information rates for the labeled-line code
approximated those in the separate sum at all
cluster sizes (Fig. 4B). The summed-popula-
tion code transmitted progressively less infor-
mation, which was noticeable even with trip-
lets. The median redundancy was nearly in-
dependent of cluster size for both codes, and
the labeled-line code was significantly less
redundant than the summed-population code
(redundancy index ;0.1 versus ;0.4) (Fig.
4C). Because of the positive redundancy in-

dices (even for the labeled-line code), treating
large clusters of neurons as if they were fully
independent would overstate the amount of
information conveyed.

Because information is logarithmic, and
because the redundancy index was indepen-
dent of cluster size, the difference in the
number of stimuli that could be discriminated
with each code increased exponentially with
cluster size. Our rich dynamic stimulus made
information saturation due to limited stimulus
sets less likely than in previous studies (15),
and we found no evidence of saturation with
up to six neurons.

In the retina, pairs of nearby ganglion cells
convey independent information (9), which
suggests that the retinal code can be understood
by treating each cell as an independent encoder.
This seems advantageous, because ganglion
cells are a wiring bottleneck in the visual sys-
tem. V1 may not be under a similar constraint,
and the near independence of nearby V1 neu-
rons most likely arises from other principles.
Because complex wiring induces considerable
signal mixing, independence in the retina need
not persist in V1.

In V1, nearby neurons share many but not
all response properties (3). Our experiments did
not identify the ways in which particular stim-
ulus attributes are encoded by nearby neurons
but did reveal that, whereas information con-
veyed on time scales ,15 ms is largely inde-
pendent, responses are 30 to 50% correlated on

Fig. 1. Responses of two pairs of neurons in macaque V1. (A and E) Firing-rate histograms (3.7-ms bins)
aligned with raster diagrams depicting spike times fired during 1-s segments of each trial. (B and F)
Contour-map snapshots of each neuron’s receptive field averaged over a selected 14.8-ms time window
(18). Dark regions signify areas in which dark stimuli were excitatory and bright stimuli were inhibitory,
and light regions signify the reverse. Time windows (chosen near the peak response) were as follows: (B)
44 to 59 ms, (F) 74 to 89 ms. Grayscale represents the change from background firing rate: (B) 65
spikes/s, (F) 60.4 spikes/s. (C and G) Information rates for each neuron alone, the separate sum, and each
multineuron code (summed population and labeled line). (D and H) Redundancy indices for summed-
population and labeled-line codes. Vertical axis scales for the firing- and information-rate plots are
fivefold greater for the first pair than for the second pair.

Fig. 2. Distribution of (A) signal and (B) noise
correlations across 274 neuron pairs, paramet-
ric in bin size (ms). Box plots show medians and
quartiles, notches are estimates of uncertainty
in the medians, whiskers delineate 1.5 times
the interquartile range, and 1 signs represent
outliers.
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time scales .60 ms. Whether the short–time
scale information concerns stimulus attributes
(such as spatial phase) for which preferences

are not shared by nearby neurons remains to be
determined.

Our results suggest that keeping track of
which neuron fires each spike preserves a con-
siderable amount of information already present
in the responses. This strategy removes some
redundancy across neurons with similar tuning
properties, and it prevents an even greater infor-
mation loss from summing responses of neurons
with different selectivities. It also requires re-
sources devoted to keeping track of disparate
inputs, a tradeoff that might be costly. Although
our experiments did not address mechanisms of
information decoding in cortical networks, the
existence of a complex dendritic machinery for
processing synaptic inputs (16, 17) suggests that
codes that use information available in the la-
beled-line code are plausible.
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Fig. 3. Information rates (top) and redundancy indices (bottom) for the summed-population
(horizontal axis) and labeled-line (vertical axis) codes for clusters of two to six neurons. Each point
represents a different neuron cluster. Neurons could participate in several clusters of identical and
different sizes, depending on the number of neurons isolated at that site.

Fig. 4. (A) Distribution of the number of unique
sites for clusters of different sizes. (B) Median
information rates versus cluster size for the
summed-population (square) and labeled-line
(circle) codes and for the separate sum (trian-
gle). Medians were first calculated at each re-
cording site, and then grand medians were cal-
culated across recording sites. (C) Median re-
dundancy indices versus cluster size for the
summed-population (square) and labeled-line
(circle) codes. Error bars are 95% confidence
limits on the medians and were derived from
1000 bootstrap resamplings.
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