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Abstract. Animals use stereo sampling of odor concentration to localize sources and follow odor5
trails. We analyze the dynamics of a bilateral model that depends on the simultaneous comparison6
between odor concentrations detected by left and right sensors. The general model consists of three7
differential equations for the positions in the plane and the heading. When the odor landscape is an8
infinite trail, then we reduce the dynamics to a planar system whose dynamics have just two fixed9
points. Using an integrable approximation (for short sensors) we estimate the basin of attraction. In10
the case of a radially symmetric landscape, we again can reduce the dynamics to a planar system, but11
the behavior is considerably richer with multi-stability, isolas, and limit cycles. As in the linear trail12
case, there is also an underlying integrable system when the sensors are short. In odor landscapes that13
consist of multiple spots and trail segments, we find periodic and chaotic dynamics and characterize14
the behavior on trails with gaps and that turn corners.15
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1. Introduction. Animals use olfactory cues to navigate through their environ-18

ment in order to find food, encounter mates, avoid predators and locate their home.19

This requires an ability to both localize odor sources and follow odor trails. To local-20

ize odor, animals have been observed to use serial sampling (klinotaxis) or bilateral21

sampling (tropotaxis) of the concentration [23]. Serial sampling depends on inter-sniff22

comparisons of odor concentrations between sequential sniffs that are measured at dif-23

ferent locations. Bilateral sampling, on the other hand, depends on comparisons of24

odor concentrations detected by sensors located at two different positions of the body.25

26

The ability to use inter-sensor geometry to localize odors has been observed in27

many animals especially insects. When one of the antennas was removed, walking28

fruit flies (Drosophila melanogaster) [3], flying fruit flies [10], ants (Lasius fuliginosus)29

[12] and honeybees (Apis mellifera) [19] showed a tendency to orient toward the in-30

tact side. Marine animals have also shown dependence on bilateral information of31

the odor concentration to orient. Anosmic Leopard sharks [20], which are nearshore32

species, followed more tortuous paths and ended farther away from the shore, in con-33

trast to control sharks which ended closer to the shore with relatively straight tracks.34

Crustaceans also exhibited a loss of ability to correctly orient in an odor plume and35

efficiently find odor sources when one of their antennules was ablated [1, 8, 11, 17, 24].36

The detriment of loss of bilateral inputs was also shown in mammals. When one of the37

nostrils was partially or completely blocked, rats accuracy in localizing odor dropped38

significantly and their response was biased towards the unblocked side. Their perfor-39

mance in tracking odor trails also declined and was less efficient[14, 23]. Blocking a40

nostril in moles also biased the animal in one direction and increased the latency to41
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find the source[6]. In this study, crossing the nostrils totally disrupted the ability to42

localize sources. Likewise, human subjects’ accuracy almost halved when one nostril43

was taped during a scent tracking task [22].44

45

Due to the behavioral and neural [15, 21, 23] evidence of the importance of bi-46

lateral comparisons in odor localization and tracking, many have modeled animal47

navigation using tropotaxis [5, 4, 13]. A number of studies use Braitenberg vehicles48

equipped with bilateral sensors to detect chemicals in the environment, such as gas49

leaks (reviewed in section 6 of [16]).50

51

In this paper, we present a mathematical analysis of tropotaxis in the presence52

of smooth odor sources and trails. We provide a fairly comprehensive analysis of the53

model dynamics, which in several cases reduces to a planar dynamical system. In the54

first section, we study the dynamics on an infinite trail. We show that there are always55

two stable fixed points and that there is an optimal sensor angle for attraction to the56

trail. We also show that the basin of attraction can be estimated from an associated57

integrable system. We next consider circularly symmetric trails which include a single58

spot as well as circular trails. The dynamics is more complicated there and we explore59

several different regimes including long sensors and sensors that are oriented behind60

the animal. Finally, we consider more complicated odor landscapes such as partial61

trails and multiple odor sources. Here we also study trails with gaps and trails that62

branch and make sharp turns. We conclude with a discussion.63

CL

RC

(X,Y)

V= v(cos   , sin   )

 = (C  - C ) t

Fig. 1. The bilateral model: an animal centered at (X,Y ), heading in the direction, θ. The
sensors are length, l with angle±φ around the axis of the body. Orientation is governed by the
difference in concentrations at the two sensors, CL − CR and speed is constant, v.

2. The Model. The model that we will analyze describes a navigation mecha-64

nism in which the angle of the heading (θ) of the animal depends on the difference65

between the concentration detected by the left and right sensors. (See Fig. 1). The66

(X,Y ) position of the animal is a function of the heading angle and the animal speed67

v, which we will fix to be constant: the animal is always moving. The sensors have68

length l and are separated by an angle φ between them. They are located at the left69

and the right of the animal body at positions (X + l cos(θ + φ), Y + l sin(θ + φ)) and70

(X + l cos(θ − φ), Y + l sin(θ − φ)) and detect odor concentration CL and CR where71

the concentration is generally a smooth gradient in some shape such as a line or a72

point source. The bilateral olfactory navigation model equations are73

Ẋ = v cos θ74

Ẏ = v sin θ75

θ̇ = β
[
CL(X,Y, θ)− CR(X,Y, θ)

]
.7677
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The parameter β is the sensitivity to odor differences. If the concentration is greater78

on the left, the animal turns left and vice versa. To make the model dimensionless,79

we propose a change of variables (X,Y, t) → (σx, σy,
σ

v
t̂) where σ is the spread of80

concentration and v is the velocity. This will change the left sensor position to (x +81

l̂ cos(θ+φ), y+ l̂ sin(θ+φ)), the right sensor position to (x+ l̂ cos(θ−φ), y+ l̂ sin(θ−φ)),82

the sensor length to l̂ =
l

σ
, and the sensitivity to concentration difference to β̂ =

σ

v
β.83

The new model equations are84

ẋ =
∂x

∂t̂
= cos θ(2.1)85

ẏ =
∂y

∂t̂
= sin θ(2.2)86

θ̇ =
∂θ

∂t̂
= β̂

[
CL(x, y)− CR(x, y)

]
(2.3)87

88

These equations together with the initial conditions give us the bilateral model. We89

will use this dimensionless model throughout the paper unless otherwise mentioned90

and we will drop the ˆ for easier notation.91

3. Infinite Line. We will start by analyzing how the model performs when92

the odor is along an infinite line. This corresponds to a straight trail along the93

y−axis. Here, the object is for the animal to capture the trail (i.e., navigate to it)94

and then keep on it. The odor concentration has a Gaussian profile and is equal to95

C(x) = exp(−x2). (This is the simplification of a point source odor profile; one can96

use a more principled model , c.f. [26] Eq. 6, supplement, but the Gaussian has the97

advantage of being smooth at the origin making the analysis possible. Results for98

other odor profiles are qualitatively similar.) Since the concentration is independent99

of y, the equations are reduced to a simple planar ODE:100

ẋ = cos θ101

θ̇ = β
[
CL(x)− CR(x)

]
.102103

The fixed points of the system are at (0,±π
2

). They correspond to acquiring the trail104

and either going up (+π/2) or down (−π/2) the trail. Here, we will limit our domain105

to θ ∈ [0, π], and thus the fixed point is at (0,
π

2
). This fixed point is stable as long as106

φ ∈ (0, π/2), as is the corresponding fixed point at −π/2. The trace and determinant107

of the linearization are respectively:108

Tr = −2βl2 sin(2φ) exp(−(l sinφ)2109

Det = 4βl sin(φ) exp(−(l sinφ)2.110

Since the trace is negative and the determinant is positive for all φ ∈ (0, π/2), the111

fixed point is asymptotically stable. Figure 2A shows a pair of trajectories, one of112

which misses the equilibrium and travels off to the right and another that eventually113

lands on the fixed point suggesting that there is a basin of attraction for the fixed114

point. Fig. 2B shows the basin of attraction for l = 0.2, φ = 1, β = 10, 1 in solid red115

and blue respectively. (These curves are computed by integrating backwards starting116

at x = ±5 and θ close to π/2.) Any initial data contained within the solid curves117

will be attracted to the fixed point (0,+π/2) and any initial data outside this will118
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go off to ±∞. As would be expected, the blue region lies entirely in the red region.119

Intuitively, if the animal is too far away from the source, unless it is nearly aligned120

with the trail, the concentration difference will never get large enough to allow it to121

correct. We can put this intuition on a more rigorous footing by assuming the sensor122

length, l, is small to get (via Taylor’s theorem):123

CL − CR = [4l sinφ] x exp(−x2) sin θ +O(l2)124

so that we obtain an approximate system:125

ẋ = cos θ126

θ̇ = [βl sinφ] x exp(−x2) sin θ.127128

This ODE is integrable, with129

E(x, θ) := −2βl sinφ exp(−x2)− log(| sin θ|) = constant.130

E(x, θ) = 0 corresponds to a pair of trajectories (shown by the dashed lines in figure131

2B) that separate bounded (E < 0) from unbounded (E > 0) trajectories. As can132

be seen in the figure, these curves are reasonable approximations to the full basin of133

attraction (at least for l small).134

A B

Fig. 2. (A) phase plane when trail is an infinite line. One trajectory converges to the stable

fixed point at (0,
π

2
) but another does not. From the vector field, a separatrix can be noticed around

the line, θ = π/2. (B) Basin of attraction of the trail. The dashed lines are the separatrices for the
integrable system that separate the bounded solutions from the unbounded. The solid lines are the
numerically simulated basins. The blue lines represent the basin when β = 1 and the red lines when
β = 10 Here φ = 1, l = 0.2.

3.1. Sensor angles. The sensor angles play an important role in the ability to135

find and follow a trail. Furthermore, they are something that can be under control136

of the animal, whereas sensitivity and sensor length would be difficult to vary. Fig.137

3A shows the basin of attraction for a trail with β = 10, l = 1 as φ is varied from the138

nominal value, φ = 1 to φ = 0.2, 1.5 and φ = 0.57 (the angle at which the trace is139

minimum for l = 1). Consider the upper part of the diagram (the bottom is similar140

under the transformation, x → −x, θ → π − θ). As φ increases toward π/2 (blue141

curve) and x(0) > 0, the animal must be more closely aligned with the trail (θ(0)142

closer to π/2). For x(0) < 0, the initial heading does not matter as long as x(0) is143
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close enough to the trail and in this case, there is a slight advantage to increasing the144

angle. On the other hand, with small φ (black curve), there seems to be no difference145

from φ = 1 for x > 0, but for x < 0 the basin is decreased. While we have not146

measured the precise area of the basin, it would appear that φ = 1 (green) has the147

largest; losing a little for x < 0 but keeping the maximal amount for x > 0. We also148

not that when φ = 0.57 (red), the basin is very close to that of φ = 1.149

The basin is impossible to compute analytically, but a plausible surrogate is the150

divergence of the vector field at the fixed point, (x, θ) = (0, π/2). We thus consider151

the trace of the linearization around the fixed point which was given above. We plot152

this quantity as a function of φ for several different values of l as shown in Fig. 3B.153

Clearly as l increases the minimum shifts toward lower values of φ. With a little bit154

of calculus and algebra, we find that155

cosφmin =

√
l2 +
√
l4 + 1− 1

2l2
.156

The right hand side ranges between 1/
√

2 and 1 as l ranges between 0 and ∞. This157

suggests that the sensors should have an angle between them that is between 0 and158

π/2. The distance between the sensors is 2l sinφ, yielding the optimal distance to be:159

dopt(l) =

√
2 l2 − 2

√
l4 + 1 + 2160

dopt saturates near l = 2 at
√

2, which suggests that the optimal sensor distance for161

staying on a trail whose characteristic width is σ will be
√

2σ.162

A

l=0.5

l=1

l=2

B

=1.5

=1

=0.57

=0.2

Fig. 3. (A) Basin of attraction for the stable fixed point (0, π/2) for trail following as a function
of initial orientation and x−position for 4 different sensor angles, φ. Remaining parameters are
l = 1, β = 10. (B) Trace of the linearization about the stable fixed point as the angle between the
sensors varies.

In sum, a single infinite odor trail greatly simplifies the dynamics to lie on the163

plane. There are only two fixed points, both always stable corresponding to moving164

up or down the trail. There is an optimal angle for the sensors that maximizes the165

stability and which decreases with the sensor length. The basin of attraction is well-166

approximated by a simple analytic formula for an associated integrable system.167

4. Radially Symmetric Landscapes. We now turn our attention to odor land-168

scapes that are radially symmetric, which include point sources and circular trails.169
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This symmetry allows us to again reduce the three-dimensional dynamical system to170

a planar system. We introduce polar coordinates, r, ψ (x = r cosψ, y = r sinψ) and171

the relative coordinate, ξ = θ − ψ. Note that ξ = 0 (respectively ξ = π) corresponds172

to heading away from (resp. toward) the source along a radial line. With these173

coordinates, we again obtain a planar system:174

ṙ = cos ξ(4.1)175

ξ̇ = β
[
CL(r, ξ)− CR(r, ξ)

]
− 1

r
sin ξ := G(r, ξ)(4.2)176

177

With a radially symmetric concentration, C(r), the left and right concentrations are178

CL(r, ξ) = C
(√

r2 + l2 + 2lr cos(ξ + φ)
)

179

CR(r, ξ) = C
(√

r2 + l2 + 2lr cos(ξ − φ)
)
.180181

Any equilibria will have ξ = ±π/2 and r = r̄ chosen to solve G(r̄,±π/2) = 0.182

These fixed points correspond to the agent moving counter clockwise (resp. clockwise)183

around the source at a constant velocity. Whether such fixed points exist and whether184

they are stable is the subject of the rest of this section.185

Henceforth, we will assume the concentration has the form: C(r) = exp(−(r −186

r0)2) where r0 is the radius of a circular trail. Note that r0 = 0 is a point source.187

As noted above, there are two different values of ξ corresponding to equilibria; since188

they just represent the animal going clockwise or counter-clockwise, we will focus on189

the latter, ξ̄ = π/2.190

Remark 4.1. We have chosen a simplistic model for the circular trail, C(r, r0) =191

exp(−(r − r0)2) which is not a physical possibility. Rather, the correct form is to192

convolve the Gaussian with a Dirac distribution on a circle. The result of this is:193

Creal(r, r0) = N(r0)I0(2r0r) exp(−2r0r) exp(−(r − r0)2)194

where I0 is the modified Bessel function of the first kind and N(r0) is chosen so that195

Creal(r, r0) has a maximum value of 1. One problem is the computation of N(r0)196

since there is no simple analytical expression for the value of r maximizing Creal. For197

r0 close to zero, the two forms are indistinguishable and for r0 > 2, they are also quite198

close. Thus it is only for values of r0 around 1 that there are differences. (Recall, that199

we have scaled the width of the Gaussian to be 1.) We have reproduced all the phase-200

portraits except those in Fig. 5 using the physically correct concentration. However,201

we also note that we have only approximated N(r0) as no analytic expression exists202

and the behavior in figure 5 occurs for a very limited range of r0.203

Fig. 4A shows the behavior of the model when r0 = 0, a point source. The top204

shows the phase-plane for (4.1). There are two fixed points, the one closest to r = 0 is205

an unstable source and the larger one is a saddle point. The stable (cyan) and unstable206

(orange) manifolds are drawn. While there are no attractors in this case, the stable207

manifolds still play an important role in the dynamics. If the initial data lies above208

them, then solutions in the (x, y, θ) system will pass through the odor spot as seen209

in the (x, y)−projection in the bottom of the panel. Initial data below the manifolds210

will veer off without getting closer to the spot. While there are no attractors (there211

is no “trail” to follow), from a practical point of view, any initial condition above212

the stable manifolds will “find” the spot. Fig. 4D shows behavior of the small r213

fixed point as r0 increases. At r0 ≈ 0.5, the unstable source becomes a stable sink214
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via a Hopf bifurcation. A branch of unstable periodic orbits (blue curves) emerges215

and terminates at an orbit homoclinic with the saddle point (not shown). We remark216

that for large r0, the stable equilibrium is r ≈ r0, so the animal is centered on the217

trail just as in the line trail. Fig. 4B top (bottom) panel shows the (rξ)−phaseplane218

((x, y) projection) for r0 = 4. In this case, the stable manifolds form the basin of219

attraction for the circular trail. Any initial condition starting within the basin will220

find and follow the trail (blue trajectories) while outside the basin will not follow it221

(red trajectories). Fig. 4C shows the (r, ξ)−phaseplane for r0 = 1. In this case, the222

basin is the unstable periodic orbit that is the α-limit set of one of the branches of223

the stable manifold.224

A B C

D

Fig. 4. A. (top) Phaseplane for equation (4.1) for r0 = 0, a spot source showing an unstable
spiral (near r = 0.4) and a saddle (near r = 2.5) along with its stable (orange) and unstable(cyan)
manifolds and two trajectories. (bottom) Projection of the solutions in the (x, y)−plane. (B) Phase-
plane for r0 = 1. The unstable manifold forms an unstable limit cycle as shown in the bifurcation
diagram, D. The fixed point inside is stable. C. (top) Phaseplane for r0 = 4 with the same conven-
tions as in panel A. Note the unstable spiral has become an attractor. (bottom) Projection in the
(x, y)−plane. (D) Bifurcation diagram as a function of the trail radius, r0; stable (unstable) fixed
points are red (black) and unstable limit cycles are blue. Black dots correspond to r0 = 0, 1, 4 and
the phaseplanes in A,B,C. Parameters are β = 10, φ = 1, l = 1.

4.1. Dependence on the model parameters. The stabilization of the fixed225

point as r0 increases occurs via a Hopf bifurcation. In the next sections, we explore226

this dependence in detail.227

4.1.1. Sensor angle. The sensor angle, φ provides an interesting picture. We228

first note that if we let φ̂ = π − φ and ξ̂ = ξ + π then equation (4.1) becomes:229

dr

dt
= − cos ξ̂230

dξ̂

dt
= −

(
β(CL(r, ξ̂)− CR(r, ξ̂))− sin ξ̂/r

)
231
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with φ̂ replacing φ. Angles φ ∈ (π/2, π) correspond to the animal having its sensors232

behind it. This calculation shows that the vector field for φ ∈ (π/2, π) is the same as233

that for φ ∈ (0, π/2) in reverse time. Thus, for example, unstable periodic orbits for234

φ ∈ (0, π/2) become stable periodic orbits for φ ∈ (π/2, π). Additionally, note that235

when φ = π/2, then Eq. (4.1) is a reversible system, since ξ → ξ + π takes t → −t.236

Thus, for fixed r0 and increasing φ from 0, there will be three Hopf bifurcations; the237

middle one is degenerate and is at φ = π/2, the reversible system. To get more insight238

into the full dynamics, we look at the (φ, r0) parameter plane in more detail. Fig. 5239

shows bifurcation diagrams as φ varies for several different values of r0. There are240

several notable features. The central diagram shows the curves of Hopf bifurcations241

(blue) in addition to curves of saddle-nodes of limit cycles (SNLCs,black). The latter242

curve is non-monotonic, so that there is a region (below the red dashed curve), where243

there can be two SNLCs. The lower right diagram shows that these delineate an isola244

(isolated branch) of periodic orbits. As r0 increases, this isola merges with the branch245

of unstable periodic orbits (lower left diagram). Between r0 = 0.55 and r0 = 0.51, the246

stable and unstable branches collide with the saddle at a saddle-homoclinic bifurcation247

(shown as H in the upper right diagram). Finally, the SNLC merges with the Hopf248

bifurcation curves (shown by the asterisk in the central figure) leaving an unstable249

periodic orbit (upper left diagram; the other unstable periodic orbit is not shown).250

The apparent existence of stable periodic orbits for small radii trails and small sensor251

angles implies that there is a stable torus in the full (x, y, θ) system.252

4.1.2. Sensor length. Surprisingly, we have found multistability on circular253

trails of radius, r0, for sensors that have the same approximate length l ≈ r0 and254

small attraction, β. Figure 6 shows some examples of the dynamics. Here, we choose255

r0 = 4 and l between 4 and 6, while letting β range between 0.5 and 3.5. The dynamics256

is organized around the two parameter curves of various bifurcations (not all of them257

are shown, either for clarity or for inability to follow them). In the figure, curves258

of saddle-node bifurcations of equilibria (SNE) are shown in red, Hopf bifurcations259

in blue, and a homoclinic bifurcation in olive. Phaseplanes in some of the regions260

are shown. We emphasize once again, that stable fixed points (limit cycles) in this261

reduced system correspond to stable periodic orbits (tori) in the full three-dimensional262

model. (see Fig. 7.) Starting in region (a), there is a single attracting fixed point263

whose basin is delineated by the stable manifolds of the outer saddle. (As we will264

eventually encounter another saddle point, the outer one will be the one that is at265

roughly r = 9. It persists throughout the figure.) Two bifurcations occur as we move266

from a to b. First, there is a homoclinic bifurcation at the outer saddle leading to an267

unstable periodic orbit (UP) that plays the role of the basin for the fixed point. (This268

is not shown as a separate phaseplane since the attractor structure is still the same.)269

As we cross the red curve into region b, two new fixed points arise: a stable node and270

a saddle. The UP continues to provide the basin, but the stable manifolds of the inner271

saddle (near r = 2) split this basin between the two stable fixed points. Recalling that272

r0 = 4, we see the outer fixed point shows the animal following the trail while with273

the inner stable fixed point the animal makes smaller circles within the trail. In the274

transition from b to c, the inner fixed point undergoes a Hopf bifurcation and spawns275

a stable periodic orbit (SP). Thus, in the (x, y, θ) model there is bistability between276

the animal tracking the trail and a quasiperiodic trajectory that lies near the center277

of the trail. Fig. 7 shows the dynamics in the (x, y)-plane. The transition from c to d278

occurs through a homoclinic bifurcation (olive curve) where the SP disappears. The279

result is just a single attractor. In d to g, this attractor is lost via a SNE and there280
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0

= 0.5
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r
0

= 0.51

s

h

r
0

= 0.55

h

s

H
H

r
0

= 0.9

h

H

Fig. 5. Behavior as r0, φ vary. Center figure shows the two-parameter (r0, φ) plane. Blue line
denotes the curve of Hopf bifurcations. Above this curve there is a stable fixed point. Black lines are
the curve of saddle-node bifurcations of periodic orbits. Below the red dashed line there are 2 saddle-
node of limit cycles (isola). One-parameter bifurcation diagrams are shown for different values of
r0 as φ varies. Black (Red):unstable (Stable) fixed points; Blue (Green): unstable (stable) periodic
orbits. (h), Hopf bifurcations; (s), saddle-node of limit cycles; (H), saddle-homoclinic orbits.

remain no attractors. The path from c to e occurs via a SNE leaving just a SP whose281

basin is determined by the UP. The transition from e to g occurs when the SP and the282

UP (SNP) merge and disappear. The transition from e to f occurs when limit cycle283

disappears through a reverse Hopf bifurcation stabilizing the fixed point shown by284

the hollow square. Region f has only one attractor, this stabilized fixed point is near285

r = 1 and is not shown. We were unable to compute the curve of SNPs delineating286

the transition from e to g.287

4.1.3. Basins of attraction. Given a circular trail sufficiently large that there288

is a stable fixed point, we first examine the dependence of the basin on the radius and289

the turning sensitivity, β in Fig. 8. In 8A, r0 = 1 and β = 1, 10 while in panel B,290

r0 = 4. For smaller radii, higher sensitivity does not necessarily mean that the basin291

will be bigger. Indeed, there are initial conditions that lie in the basin of attraction292

for β = 1 (red) , but not when β = 10 (blue). On the other hand for large radii (panel293

B), the basin for β = 10 contains that for β = 1.294

Since there are no stable fixed points for spot location, we can consider the ability295

of an animal to orient toward a spot given that it is frozen (v = 0) at a distance, r,296
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Fig. 6. Dynamics on circular trail (here r0 = 4, φ = 1) when l is large and β is small. The
dynamics is organized by the saddle-nodes or folds of equilibria (red), the Hopf bifurcation (blue),
and a homoclinic bifurcation (olive). Phaseplanes in the representative regions are depicted. Stable
(cyan) and unstable (orange) manifolds of the saddles (filled black squares) are shown along with
some representative trajectories (black). Stable fixed points are red circles, saddles are black squares,
unstable nodes are hollow squares. UP:unstable periodic orbit; SP:stable periodic orbit. Region f is
like region e, but the stable periodic orbit is replaced by a stable fixed point. In region g, there are no
attractors. Panel e shows a stable isolated limit cycle in green. More details in the text. Parameters
(l, β): (a) (4.5,0.5), (b) (4.5,2), (c) (4.85,1.25), (d) (4.93,1.25), (e) (4.72,3)

from the spot. In this case, we have a simple one-dimensional system:297

ξ̇ = β
[
CL(r, ξ)− CR(r, ξ)

]
298

with a stable fixed point at ξ = π. The eigenvalue around this fixed point is:299

λ(r, l, φ) = −β4lr sin(φ) exp(−r2 − l2 + 2lr cos(φ))300
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x

y

Fig. 7. Projection of the trajectory of the agent in the (x, y, θ) model in region c of Fig. 6.
Outer orange circle is a stable path of the animal, grayscale shows trail concentration. Stable torus
solution shown in cyan. Magenta spot is the agent with the sensors drawn to scale in blue and the
magenta arrow shows the general direction. Animation can be found at

A B

Fig. 8. (A) Basin of attraction when trail is circular with radius r0 = 1. (B) Basin of attraction
when trail is circular with radius r0 = 4. For both figures, blue and red lines correspond to the basin
when β = 10 and β = 1 respectively.

and, as with the trail, this has a minimum at a particular value of φ:301

cosφ =
−1 +

√
16(rl)2 + 1

4rl
:= M.302

As rl → 0, M → 0 and as rl → ∞, M → 1. In particular, this suggests close to the303

spot, (rl small) the animal should keep its sensors near ±π/2 while far from the trail304

keep them close to 0.305

This manuscript is for review purposes only.



12 NR,JDV,SB,BE

4.1.4. Integrability. As in the case of an infinite line, system (4.1) can be306

approximated by an integrable system for small l:307

ṙ = cos ξ(4.3)308

ξ̇ = [4lβ sin(φ)e−(r−r0)
2

(r − r0)− 1/r] sin ξ309

with310

E := log(| sin ξ|) + 2lβ sinφe−(r−r0)
2

+ log(r) = constant.311

For K := βl sin(φ) large enough, the integrable system has a saddle and a nonlinear312

center; the stable manifolds of the saddle form a good approximation for the basin313

of attraction for (4.1), even for l = 1, over a wide range of the other parameters.314

This calculation does not say anything about the stability of the fixed point; rather,315

it gives some insight into the regions of attraction. Figure 9 shows that the even for316

l = 1, the basins of the full equation (4.1) and the integrable system (4.4) are close.317

318

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6
r

ξ

Fig. 9. Comparison of the basin of attraction for the full model (4.1) (red) with that of the
integrable approximation (4.4) (blue) for l = 1, β = 4, r0 = 2, φ = 1. Saddle points are shown in
their respective colors. The stable fixed point and nonlinear center are nearly coincident and shown
in purple.

As with the linear trail, radially symmetric odor gradients have can also be re-319

duced to planar dynamical systems. Nevertheless, they produce complex behavior320

including multi-stability and different types of stable and unstable limit cycles. Cir-321

cular trails with a large enough radius lead to a stable movement clock-wise or counter-322

clockwise around the trail when the sensore are short. Such trajectories are seen in323

so-called ant-mills (where large populations of ants move in a circular trail until they324

die of exhaustion)[25]. Because the animal has a constant speed, it is not possible for325

the point source to be an attractor. However, the model does take the animal toward326

the source (depending on its initial distance and heading), so, in a real situation where327

the source is some reward the animal would stop moving when it reached the source.328

5. Multiple sources. When an animal is searching for food, there can be mul-329

tiple sources that affect the concentration detected and could be used to localize an330

odor source. We next study how the bilateral model behaves in the presence of two331

odor sources. With more than one source, the radial symmetry is broken and we332

cannot exploit the reduction in dimension used above. Thus, we will use the (x, y, θ)333
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system and the concentration detected will be the sum of the Gaussian concentration334

of the spots.335

d = 1.23

d = 1.5

A

sym

anti

B C

Fig. 10. Two different types of trajectories for concentrations with two odor sources located on
the x-axis a distance d apart, centered at x = 0. (A) Projection into the (x, y) plane; (B) Projection
in the (x, θ) plane; (C) Bifurcation diagram for the two different cases in (a,b) as d varies. Other
parameters are β = 20, l = 0.5, φ = 1.

Without loss of generality, we place the two point sources at a distance d from each336

other on the x-axis and analyze the dynamics of Eq. (2.1) The odor concentration at337

the first spot is C1(x, y) = A1 exp(−((x+d/2)2 +y2), at the second spot is C2(x, y) =338

A2 exp(−(x−d/2)2+y2) where A1 and A2 are positive, possibly different, amplitudes.339

Thus, the concentration detected at the sensors is340

CL(x, y) = C1(xL, yL) + C2(xL, yL)341

CR(x, y) = C1(xR, yR) + C2(xR, yR)342343

xL,R, yL,R are as in Fig. 1.344

Recall that in the case of a circular trail, there are stable fixed points in the polar345

form of the equations which correspond to circular periodic orbits in the (x, y, θ)346

system. Since the animal must maintain a constant speed, we cannot expect any347

fixed points in the (x, y, θ) system, so we will look for periodic orbits. We fix β =348

20, l = 0.5, φ = 1 in this section; the default values of β, l produce periodic orbits for349

a range of d, but the behavior is not as rich. In Figure 10A, we show two qualitatively350

different trajectories projected in the (x, y) plane for spots placed a distance d on351

the x-axis. At small values of d the trajectory is symmetric (black curve) and the352

heading, θ oscillates around π/2 (Fig. 10B, black) (topological winding number of 0).353

There is a analogous curve where y(t) < 0 and θ oscillates about 3π/2. For a larger354

value of d, we find an anti-symmetric trajectory (Fig. 10A, red) and in this case,355

θ goes through all values with a net increase of 2π after each cycle (Fig. 10B,red)356

(topological winding number of 1). Fig. 10C shows the one-parameter bifurcation357

diagram as d changes for the symmetric and the anti-symmetric paths. The stability358

of these is lost at branch points marked by the filled blue circles. If we follow the359

symmetric branch point at the high value of d (close to 1.25), then a stable branch of360

asymmetric solutions emerges. This is shown in Fig. 11A as the blue curve. Further361

increases of d along this asymmetric branch leads to a periodic doubling bifurcation362

(shown as the black curve). Further increases lead to presumably chaotic behavior,363

shown in Fig. 11B in a projection along in the (x, y)−plane. To further quantify the364

chaos, we take a Poincare section through x = 1.75 and plot the points (yn, θn) where365

x crosses from right to left. We find (not shown) that these points appear to lie along366

This manuscript is for review purposes only.



14 NR,JDV,SB,BE

C

D

d=1.2452

B

d

A

Fig. 11. Behavior of Eq. (2.1)when there are two Gaussian sources at (x, y) = (±d/2, 0).
(A) As d increases, the symmetric periodic solution (red) loses stability and gives rise to a stable
asymmetric solution (blue). Increasing d leads to a period doubled solution (black) which also loses
stability as d increases. (B) Presumably chaotic behavior for d = 1.2452. (C) Poincare map through
x = 1.75 for the solution in (B). Blue circle is unstable periodic orbit. (D) Same Poincare section
showing the numerical existence of a period three orbit shown by the intersections of the n+3 iterate
with the diagonal. The blue filled circle shows the period one fixed point. (Parameters are as in Fig.
10)

a one-dimensional curve, indicating that the underlying chaos can be understood by a367

one-dimensional map. Fig. 11C shows the map where we plot (yn, yn+1). It appears368

to be a typical cap map. The periodic orbit (blue circle) is unstable as the slope369

through it is less than -1. Panel D shows (yn, yn+3) plotted and a clear period 3370

orbit that is also unstable. Since the underlying dynamics seems to be governed371

by a one-dimensional map, we believe that panel B represents a truly chaotic orbit.372

Additionally, the maximal Liapunov exponent is 0.045, a positive number, yet another373

character of chaos.374

As the previous figures show, if the spots are close to each other there can exist375

solutions where the animal circles both of them. Furthermore, when there is an isolated376

spot, there are no stable bounded solutions as we saw above. However, the presence377

of a distant spot (at least over a small range of distances) can stabilize periodic orbits378

around a spot. Fig. 12A shows two different stable trajectories around a source379

at (−d/2, 0). The red solution is symmetric about the y-axis (d = 2.5) and the380

black solution has lost the symmetry (d = 2.43). This branch of periodic solutions381
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exists for a narrow range of values of d as shown in the bifurcation diagram in Fig.382

12B. In particular as d decreases, there is a supercritical pitchfork bifurcation that383

leads to the stable asymmetric solution shown in panel A. For d increasing,there is a384

subcritical pitchfork which together with the other pitchfork forms an isolated branch385

of asymmetric solutions.386

A B

Fig. 12. Two distant sources. (A) Stable periodic circling around the source at (−d/2, 0) with
the other source located at (d/2, 0) with d = 2.5 (red) and d = 2.34 (black). (B) Bifurcation of the
isolated periodic orbit as d changes. There are two pitchfork bifurcations whose branches form an
isolated loop. Filled circles correspond to orbits depicted in A. Remaining parameters as in Fig. 10

Another interesting question is how the behavior changes when the concentra-387

tions at the spots are different in magnitude. Fig 13A shows trajectories when the388

amplitudes of the spot are equal and the spots are at a relatively large distance from389

each other (such that there is no periodic orbit encircling them). Depending on the390

initial position, trajectories either pass through both spots, just one of the spots or391

miss them both. In all cases, however, the trajectories diverge. This is also true392

when we increase the amplitude of one of the spots by 5-fold as in Fig 13B. Note that393

the animal spends some time wandering around the spot with higher intensity before394

wandering off. On the other hand, when we bring the spots closer to each other as well395

as increase the amplitude (Fig 13C), the trajectories that go to the spot with larger396

amplitude will oscillate around this spot. Thus, the existence of the weaker spot at a397

distance can stabilize the trajectory around the spot with a higher concentration, just398

as we saw in Fig. 12. The periodic solution shown in Fig. 13C persists for much larger399

values of A2 and will also persist for A2 reduced to 1, where the resulting periodic400

solution is the same as that seen in Fig. 12A (red).401

More complex dynamics can occur with three or more sources, however, in this402

case, there are many different possible configurations thus we will not consider them403

further.404

6. Finite Trails. We have looked at how the bilateral model performs when we405

have infinite line and circular trails. Now we will examine its behavior on a finite406

line segment and a finite line segment with gaps, sharp angles and branches, as these407

cases can be tested in animal behavior experiments.408

If we start close enough to a segment trail, the model will find the trail, follow it409

and then leave it. When β or l is small, trajectories will have damped oscillations that410

decay slower as we decrease β or l (Fig 14). The starting angle affects the trajectory411

orientation; most trajectories continue to the right when θ0 <
π

2
and to the left when412
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A B

C

Fig. 13. Different trajectories when: (A) Both sources have the same amplitude (A1 = A2 = 1)
and are at a distance (d = 10) where the 2 sources are distinguishable. (B) Second source has
significantly larger amplitude (A2 = 5). (C) Second source has significantly larger amplitude and
the sources are closer to each other (d = 5) Other parameters as in Fig. 10.

θ0 >
π

2
. Similarly, if we start around the gap, then we take either the left or right413

branch depending on the starting position and angle. Also, we can find the trail from414

significantly farther distances when we start around the gap which is also the case415

when we start around the beginning or end of the trail. The gap in a line trail that416

has no angles or turns is usually crossed since in the bilateral model once the trail is417

acquired will keep moving straight on the trail. However, if either β or l are small,418

and the oscillations are large near the gap, the model will sometimes lose the trail as419

in Fig 14B.420

A

-6 0 6

-2

0

2

B

Fig. 14. (A) Trajectories on a segment trail. Red line is when β is 5 fold smaller than the blue
line trajectory. (B) Trajectories can either cross gaps or lose the trail depending on β or length of
nares l. Red trajectory is when l = 0.4 and Blue trajectory is when l = 0.1.
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If there is an angle in the trail, then it must be >
π

4
for the model to follow it421

easily. In the top panel of Fig 15A, the angle is slightly >
π

4
, and the model is able to422

correct at the corner in order to follow the trail but as soon as the angle =
π

4
, bottom423

panel of Fig 15A, the model loses the trail.424
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A B

Fig. 15. A. (top) Trail with angle very close but > π
4

. Zoomed on how model is able to correct
and find trail. (bottom) Trail with angle = π

4
. Zoomed on how model can not sense the change in

the angle and loses trail. B. (top) Y trail, the branches are at equal angles from the main trail.
(bottom) Y trail where the branches are at different angle from the main trail. The blue line is a
trajectory starting at the main trail.

If the trail branches out, i.e. is a Y trail, there are different trajectories that425

are observed depending on how the trail branches: the angle and amplitude of the426

branches. When starting on the main trail which has two branches at equal angle and427

amplitude (top panel of Fig 15B), the trajectory will keep straight and not follow any428

of the branches (due to symmetry). If we change the angles of the branches (bottom429

panel of Fig 15B), then starting at the main branch the model will direct towards the430

branch that allows it to make a smaller change in heading angle. However, it might431

favor the other branch if that branch has a higher concentration.432

Trails with gaps and finite trails are similar to the infinite trail over the period433

of time that animal stays on the trail. It is impossible to estimate basins, stability,434

or even bifurcations in this case since there are no attractors. Thus, the analysis is435

somewhat limited. We have included the results on branched and finite trails mainly436

because they provide for the possibility of experimentally testing some of the results.437
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Indeed, some preliminary experiments in the lab of Nathan Urban examine the paths438

of mice that are trained to follow trails when the trails branch and have gaps.439

7. Discussion. Many animals use comparison between bilateral inputs as the440

fundamental strategy to locate and follow odors. We also suspect that animals that441

employ other strategies still make use of stereo sensing to increase efficiency and ac-442

curacy since the information provided by the two sensors is non-redundant [2, 9]. In443

this paper, we analyzed a simplified dimensionless model that describes the use of444

bilateral information to navigate odor sources. We looked at how the model behaves445

in the presence of one or more odor spot sources, circular and infinite straight trails,446

and trails with gaps and angles. To allow for an easier mathematical analysis of the447

model, some simplifications were applied. Instead of using more realistic odor descrip-448

tion such as turbulent plumes [7], we present concentration as Gaussian distributions.449

We also keep the function that determines the change in the heading angle linear in450

the difference between left and right concentration unlike previous work [4, 5]. In451

these papers, there concentrations are put through a Michaelis-Menten type nonlin-452

earity so that at large concentrations, there is saturation. These nonlinearities will not453

change the qualitative behabior (in fact, on an infinite trail, the fixed points are the454

same), but will alter some of the deatils like the basin of attraction and the degree of455

multistability. Some animals change their velocities while searching for odor sources456

(for example ants [9] and mice [18] decrease their velocity closer to the source), here457

though, we do not take into consideration variable velocity. When these simplifications458

are applied, we are able to examine how the performance changes as we vary different459

parameters. The main parameters we look at in our scaled model are the length l of460

the sensors, the angle φ between the sensors and the sensitivity β to concentration461

change. In the case of the infinite line, as we increase β, both the analytical and462

simulated basin of attraction increase which is expected since the change in heading463

angle becomes more sensitive to the concentration difference. When φ is large (closer464

to π/2 ), we see sinusoidal motion centered at the trail which is consisted with ant465

behavior seen in Draft et al [9]. We also notice that at a fixed sensor length l, there is466

an angle φ that makes the system most stable and have an optimal basin of attraction.467

468

When the odor source is a spot, one of the fixed points of the model is a saddle469

point and the other is unstable (at r close to 0). This suggests that the animal will470

not be able to find spot sources, however, we can see from figures (in xy plane) that471

trajectories pass through the spot. The basin of attraction allows us to find a distance472

around the spot where the model can find the source (and keep at it) if some noise is473

added to the heading angle. Here too we are able to find an optimal φ when we fix l,474

even though our fixed points are not stable, by freezing the animal and studying the475

linearization of the new system when the animal is orienting towards the spot (ξ = π).476

We conclude that the animal will best reach the source if it keeps φ closer to zero when477

it is away from the spot and closer to π/2 when it is near the spot. This contradicts478

the best strategy we found to acquire and stay on an infinite trail where it is better479

to have a smaller φ closer to the trail which shows that animals consider different480

ways to optimize their search depending on the odor distribution. When φ is close to481

π/2 near a spot, an increase in sinusoidal behavior is observed. This might explain482

why some animals exhibit sinusoidal behavior (casting) that increases near the spot483

source. Such behavior was shown in Liu et al [18] where mice trajectories become484

more tortuous closer to the source. When multiple spot odor sources are added, the485

(x, y, θ) system exhibits trajectories that pass through one source or multiple sources,486
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periodic orbits around sources and chaotic behavior.487

488

Because Gaussian circular trails share the radially symmetric property with spots,489

we use the same (r, ξ) system to study how varying l, β and φ affects its stability and490

basin of attraction. The fixed point (circular trail) becomes stable at a small radius491

(r0 ∼ 0.5) and remains stable for all larger radii. As in infinite trails, when we increase492

β on a circular trail with large enough radius, the basin of attraction increases. This493

is not true for smaller radii or when we increase the length of the nares l where an494

optimal length l < r0 gives the largest basin of attraction.495

496

When the odor source is a finite straight trail, we see that small β and l causes497

trajectories to become sinusoidal. Because of the symmetry between the nares, if the498

trajectory is not sinusoidal then the animal will keep on the trail once it finds it even499

if there is a gap. If the trajectory is sinusoidal, then the animal can lose the trail at500

the gap depending on the amplitude of the fluctuations. In Khan et al [14], rats were501

able to cross gaps and re-acquire the trail by increasing the amplitude of their head502

casting (which might suggest that they are using the strategy discussed above to best503

find infinite trails). When the odor is a trail with an angle, the animal turns and keeps504

on the trail if the angle is > π/4 and loses the trail otherwise. If the trail bifurcates505

into two branches, we see that the animal chooses the branch with a smoother turn506

angle. This is seen in rats [14] where they tended to choose the branch that had a507

smaller angle with the main trail (straighter).508

509

One major aspect that we have not explored in this paper is the effects of noise510

on the models. Real odor landscapes are not simple smooth gradients, but, rather,511

temporally complicated and turbulent. There are several ways we could introduce this512

variability into the models. For example, the odor concentration at a point in space513

could be converted to a rate for a Poisson process and the number of hits in some514

window of time could act as the main signal. In other work (submitted), we have used515

this type of model to mimic the behavior of mice looking for spots of odor. Another516

type of stochasticity that could be included is additive noise to the equation for θ.517

That is, in absence of any odor cue, the animal undergoes a correlated random walk.518

Such behavior is commonly seen as a foraging strategy for animals and in the present519

case would have the effect of allowing the animal to correct for starting conditions520

that, in the deterministic case, would lead the animal away from the odor source.521

Whether there is an optimal amount of such ”noise” to maximize the probability of522

success is currently a subject of further research.523
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