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retinal image under normal viewing conditions is not static, we 
designed the approach so that it could resolve interactions across 
both space and time.

Our analysis revealed two distinct neural subpopulations within 
V2. Each had responses that differed qualitatively from those in V1, 
but in a complementary manner. These complementary differences 
encompassed temporal properties, spatial properties, and prominence 
of nonlinearity. In broad terms, one subpopulation in V2 mainly 
integrates orientation signals over space and time, while the other 
subpopulation calculates a derivative, also both in space and time. 
Integration allows the subpopulation to respond to regions of uniform 
orientation; differentiation allows the other subpopulation to respond 
to boundaries, i.e. changes over space or time. Finally, we discuss to 
what extent simple feedforward combinations of the signals available 
in the V1 output can account for the observed V2 responses.

MATERIALS AND METHODS
PHYSIOLOGICAL PREPARATION
Standard acute preparation techniques were used for electrophysi-
ological recordings from single units in the primary visual cortex 
(V1) and secondary visual cortex (V2) of the primate (cynomolgus 
monkeys, Macaca fascicularis). All procedures were in accordance 
with institutional and National Institutes of Health guidelines for 
the care and experimental use of animals and under an approved 
protocol from the Weill Cornell Medical College Institutional 
Animal Care and Use Committee.

INTRODUCTION
A fundamental step in analyzing visual scenes is to fi nd object bound-
aries. In natural images, some boundaries are defi ned by luminance 
differences; others are defi ned by texture differences. Most neurons 
in primary visual cortex (V1) are well-driven by luminance bounda-
ries at the appropriate orientation (Hubel and Wiesel, 1959, 1968). 
Boundaries defi ned by differences in texture, however, are more effec-
tive stimuli for neurons in the secondary visual cortex (V2) (von der 
Heydt et al., 1984, 2000; von der Heydt and Peterhans, 1989; Grosof 
et al., 1993; Leventhal et al., 1998; Marcar et al., 2000; Marcus and Van 
Essen, 2002; Song and Baker, 2007). Since the larger receptive fi elds 
of V2 are produced by combining the output of V1 neurons (Foster 
et al., 1985; Levitt et al., 1994; Smith et al., 2007), the extraction of 
texture boundaries by V2 receptive fi elds must involve computations 
on its V1 inputs across space. These computations must accomplish 
a specifi c goal – extraction of texture boundaries – while preserv-
ing the luminance-boundary information already extracted by V1. 
Thus, the extraction of boundaries from the retinal image serves as 
an excellent model to reveal how cortical areas interact to carry out 
sensory processing.

To analyze these computations, we developed a technique that 
focuses on the dynamics and nonlinearities underlying the extrac-
tion of texture boundaries. In particular, we measured the responses 
to individual grating patches (preference for one orientation vs. 
the other) along with their pairwise interactions (preference for 
orientation continuity vs. discontinuity). Importantly, because the 
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Experiments were performed on seven adult animals,  weighing 
2.5–10 kg. The preparation was similar to what was previously 
described (Mechler et al., 2002; Victor et al., 2006), and is sum-
marized here. After an overnight fast, animals were premedicated 
with atropine (0.05 mg/kg, i.m.; Henry Schein, Melville, NY) and 
then anesthetized with ketamine (10 mg/kg, i.m.; Ketaset, Fort 
Dodge, IA) or Telazol (4 mg/kg, i.m.; Fort Dodge, IA) and xylazine 
(0.5 mg/kg, i.m.; Rompun, Bayer, Shawnee Mission, KS). Under 
anesthesia with isofl urane (1–2%; Hospira, Lake Forest, IL) during 
the surgery, an endotracheal tube was placed and catheters put in 
both femoral veins, one femoral artery, and the urethra. During 
recording, anesthesia was maintained with propofol (2–10 mg/kg h, 
i.v.; PropoFlo, Abbott, IL, USA) and sufentanil (1–5 µg/kg/h, i.v.; 
Sufenta, Janssen, Titusville, NJ), and neuromuscular blockade was 
induced (after all surgical procedures) and maintained with vecuro-
nium bromide (0.25 mg/kg intravenous, i.v. bolus, 0.25 mg/kg/h, 
i.v.; Bedford Laboratories, Ohio). Heart rate and rhythm, arterial 
blood pressure, body temperature, end-expiratory pCO

2
, urine 

output, and EEG were monitored during the course of the experi-
ment. Animal maintenance included intravenous fl uids (lactated 
Ringer solution with 5% glucose, 2–4 cm3/kg/h), administration 
of supplemental O

2
 every 6 h, antibiotics (procaine penicillin G 

75,000 U/kg i.m. prophylactically; King Pharmaceuticals, Bristol, 
TN, gentamicin 5 mg/kg i.m. daily if evidence of infection; Abbott, 
Illinois, USA), dexamethasone (1 mg/kg i.m. daily; AmTech, Teva 
Animal Health, Saint Joseph, MO), application of 0.5% bupivicaine 
(Marcaine; Hospira, Lake Forest, IL) to wounds, and ocular instilla-
tion of atropine (1%; Baush & Lomb, Tampa, FL) and fl urbiprofen 
(0.03%, Ocufen, Alergan, Irvine, CA), and periodic cleaning of 
the contact lenses. With these measures, the preparation remained 
physiologically stable for 4–5 days.

RECORDING
After a craniotomy near P10, L15, the lunate sulcus was located 
and a small durotomy performed either over V1, or V2, or both. 
Extracellular recordings were made with three tetrodes (quartz-coated 
platinum–tungsten fi bers; Thomas Recording, Giessen, Germany). 
The analog signal from each tetrode channel was amplifi ed, fi ltered 
(0.3–6 kHz), and digitized (25 kHz). Once spiking activity from one 
or more units was encountered, the region of the receptive fi eld(s) 
was hand-mapped and then centered on the display of a ViewSonic 
G225f 21-inch monitor (displaying a 1280 × 1024 raster at 100 Hz, 
mean luminance 47 cd/m2), at a distance of 114 cm. Control signals 
for the CRT display were provided by a PC-hosted system optimized 
for OpenGL (NVidia GeForce3 chipset) programmed in Delphi. 
Multiple single units were isolated by cluster analysis of spike wave-
forms initially performed on-line (Autocut, DataWave Technologies) 
then off-line (custom software). Isolation criteria included stability 
of principal components of spike waveforms and a 1.2-ms minimum 
interspike interval consistent with a physiologic refractory period. 
Spike times were identifi ed to 0.1-ms precision.

HISTOLOGY
After the completion of the recording, the tetrodes were moved 
back towards the cortical surface and at three locations bracketing 
the recording sites lesions were made by current passage (typi-
cally 12 µA × 6 s, electrode negative). After a waiting period of 1 h, 

the animal was deeply anesthetized with propofol (5–10 ml) and 
 perfused (4% paraformaldehyde; EMS, Hatfi eld, PA) in phosphate-
buffered saline. A block of brain tissue containing the tetrode tracks 
was then removed and allowed to sink in 10%, 20%, and 30% 
sucrose solution in 4% paraformaldehyde. Frozen sections were 
then cut parallel to the tetrode tracks, mounted and stained for 
Nissl in thionin staining solution (1%, Sigma-Aldrich, St. Louis, 
MO). The border between V1 and V2 was identifi ed: the border is 
readily visible because of the distinct appearance of layer 4 in V1, 
which disappears in V2.

VISUAL STIMULATION
The pupils were covered with gas-permeable contact lenses (Metro 
Optics, Houston, TX). Artifi cial pupils (2 mm) and corrective lenses 
were used to focus the stimulus on the retina. Foveae and the recep-
tive fi elds of multineuron activity were mapped on a tangent board 
for each tetrode. Optical correction was established initially by use 
of an opthalmoscope and adjusted to maximize the responses of 
isolated single units to high spatial frequency visual stimuli.

Among the multiple spikes simultaneously recorded by each 
tetrode, one well-isolated spike was selected as the “target” neu-
ron. Beginning with the parameters determined by the qualitative 
characterization, computer-controlled stimulation paradigms were 
used to characterize the target neuron quantitatively with sine grat-
ings. Orientation tuning was determined by the mean response (F

0
) 

and the fundamental modulated response (F
1
) to drifting gratings 

at orientations spaced in steps of 11.25°, presented at a contrast 
c = (L

max
 − L

min
)/(L

max
 + L

min
) of 1.0, with spatial and temporal fre-

quency determined by the initial assessment. Next, spatial frequency 
tuning was determined by responses to drifting gratings at a 16-fold 
range of spatial frequencies at the orientation determined by the 
orientation tuning run, and a temporal frequency determined by 
the auditory assessment. Temporal tuning was then assessed by 
responses to 1-, 2-, 4-, 8-, and 16-Hz drifting gratings at the optimal 
orientation and spatial frequency. Finally, a contrast response func-
tion was determined by responses to drifting gratings at contrasts of 
0, 0.0625, 0.125, 0.25, 0.5, and 1.0, with orientation, spatial frequency, 
and temporal frequency determined by the previous quantitative 
runs. The position of the receptive fi eld (RF) was fi rst determined 
by auditory assessment of spiking activity using a laser pointer on 
the monitor screen displaying concentric rings around the currently 
selected center. After adjusting the center accordingly, the size of 
the classical RF (CRF) was determined from responses to a drifting 
grating (all parameters optimized) presented in discs of increasing 
diameter. Centering the RF was checked by recording the responses 
to a series of annuli that had a fi xed outer radius at the size of the 
CRF and decreasing inner radii. If the responses did not peak for 
the annulus with zero inner radius, the stimuli were re-centered and 
the outer and inner diameter runs repeated until the centering was 
satisfactory. The length and width of the CRF were determined by 
recording responses to the optimal drifting grating presented in a 
rectangular window and varying the length and width.

TUNING PROPERTIES
After the experiment and off-line cluster cutting of the recorded 
spikes, the tuning properties were assessed again, analogous to the 
assessment described above for the on-line clusters. If there were 
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more than one tuning run with close to optimal parameters, we 
chose the one with the largest chi-square deviation from random. 
We chose either the F

0
 or F

1
 response, depending on which com-

ponent had the largest chi-square deviation from random for the 
particular tuning run. The preferred orientation, spatial frequency 
and temporal frequency were defi ned as the parameters that elicited 
the maximal responses.

For measuring surround suppression, we fi t the size tuning 
curves by modeling the excitatory and suppressive sensitivity pro-
fi les as 2-d Gaussians. Thus, for length and width suppression, 
we fi t the responses to a difference of integrals of 1-d Gaussians 
(DeAngelis et al., 1994):
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This can be rewritten using error functions (erf):
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For responses to disks of radius r
0
, we used 2-d Gaussians:

R r R k e dxdy k ec

x y r

s

x y

x y

rc

x y

rs( )
( ) ( )

0 0

4 2 2

2

2 2
0

4 2 2

2

2

= + −
− + − +

+ ≤ +
∫∫

22
0≤

∫∫
r

dxdy

 

(3)

In polar coordinates, integrating over all angles, this corresponds 
to:
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This can be rewritten as;
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We fi t each size tuning curve to a model with suppression 
(k

s
 allowed to vary) and one without (forcing k

s
 = 0). If the model 

with a nonzero suppression provided a better fi t (by visual inspec-
tion, and confi rmed by a lower reduced chi-squared), the receptive 
fi eld size r

RF
 was defi ned as the maximum response of the model 

function and the suppression strength was defi ned as the amount 
of attenuation observed at large sizes r∞ = ∞, as a percentage of the 
peak response amplitude (DeAngelis et al., 1994):

1−
∞

R r

R r

( )
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(6)

If the model without suppression was better, the receptive fi eld size 
was defi ned as the size for which the model response reached 95% of 
the maximum response, and the suppression strength was set to 0.

STIMULATION WITH ORIENTATION-DISCONTINUITY STIMULI
A 4 × 5 or 6 × 6 grid of adjacent rectangular regions was positioned 
to cover the classical and part of the non-classical RF. Each region 
contained sinusoidal gratings at one of two orthogonal  orientations, 
controlled by an m-sequence. The stimulus was positioned and 
sized such that a central subset of regions covered the CRF. For 

a 4 × 5 grid, we targeted the CRF with a 2 × 1 block of regions 
(as Figure 1A) or a 2 × 3 block; for a 6 × 6 grid, we targeted a 2 × 2 
block. The spatial frequency was chosen in the upper portion of the 
passband of the neuron so that each region typically contained one 
to two cycles. The stimulus was shown at contrasts ranging between 
50% and 100%. The orientation in each region was assigned by a 
binary m-sequence of order 12 (length 4095) changing every 20 ms. 
The same m-sequence was used for all regions, but with different 
starting positions (“taps”) for each.

A common problem when measuring fi rst- as well as higher-
order responses using random sequences is that these kernels 
occupy overlapping portions of the reverse correlogram. In order to 
separate fi rst- and second-order responses from each other despite 
this “overlap problem” (Golomb, 1981; Sutter, 1992; Benardete and 
Victor, 1994), we combined three strategies. Firstly, we ran inverse 
sequences (a sequence in which the assignment of the m-sequence 
tokens to grating orientations was inverted); this allows for separa-
tion of odd- from even-order responses. In addition, we computed 
in advance the lags at which the second-order responses would 
occur, and chose the taps so as to separate them as much as possible 
from each other and from fi rst-order responses. Thirdly, we ran the 
m- sequence with two different assignments of taps to the regions. 
This enabled us to separate true higher-order responses from arti-
facts. Because there are no random correlations in m-sequences 
(autocorrelation is essentially a delta function), and because of 
the three before mentioned strategies, the resulting signal to noise 
ratio of the extracted responses was very high (2–20) after run-
ning 32 repeats of the stimulus (8 repeats of two inverted runs 
at two different tap distances). The phases at which the oriented 
sinusoidal gratings were displayed within each region were chosen 
pseudorandomly for each frame. The same phase was used for all 
regions that had the same orientation so that gratings in regions 
of the same orientation were seamlessly aligned (Figure 1A). The 
pseudorandom sequence used for assigning one of four phases 
(0, π/2, π, 3π/4) was a combination of two binary m-sequences of 
order 15 and 16.

First-order responses were computed by reverse correlating 
the spike response with the m-sequence used for assigning the 
orientation, while averaging over all different phases (Figure 1B). 
We implemented this by calculating a single reverse correlation 
between the entire stimulus cycle and the response. The response 
kernel for an individual region was then located within the reverse 
correlation function at a lag corresponding to the tap used for 
that region. The correlation was normalized so that its amplitude 
indicated the contribution of a 10-ms segment of the stimulus to 
the fi ring rate.

To calculate spatial second-order responses, we correlated the 
neural response and the product of the tokens presented in the two 
regions of interest (Figure 1C). Multiplying an m-sequence by 
a shift of itself results in a lagged copy of the same m-sequence 
(Golomb, 1981; Sutter, 1992; Benardete and Victor, 1994). The lag 
corresponding to each combination of two neighboring regions, 
computed in advance, was then used to fi nd the corresponding 
response kernel within the reverse correlation function. The same 
strategy was used to calculate temporal second-order responses, for 
which the lag was determined by multiplication of the m-sequence 
with itself shifted by one frame (Figure 1D).
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STATISTICS
To determine signifi cant responses for each type of response  kernel, 
we proceeded as follows. Because we computed the reverse correlation 
by cross-correlating the stimulus sequence with the spike sequence, a 
random response would yield a kernel of 0. For each timepoint and 
each stimulus region or region combination, we performed a two-
tailed one-sample t-test (α = 0.01). For this test, we used the jackknife 
estimate of the standard deviation across the 32 repeats.

We controlled for multiple comparisons (the above t-tests were 
carried out at each time point and each stimulus region or combination 
of regions) using the Benjamini–Hochberg method, which controls the 
false discovery rate when test statistics are independent or have positive 
correlations (Benjamini and Hochberg, 1995, 2001). Consider testing 
the m hypotheses H

1
, H

2,
…, H

m
 based on the corresponding p-values 

P
1
, P

2
,…, P

m
. The critical probability is α. Let P

(1)
 ≤ P

(2)
 ≤ … ≤ P

(m)
 

be the ordered p-values, and denote by H
(i) 

the corresponding null 
hypothesis corresponding to P

(i)
. The testing procedure is: let k be the 

largest i for which P
(i)

 ≤ i/m* α, then reject all H
(i)

 for i = 1,2,…,k.

We used the data of all neurons recorded that showed at least 
one positive signifi cant fi rst-order kernel for further analysis. We 
usually recorded from several putative neurons on each tetrode 
and the stimulus was optimized for one particular “target” neuron 
as described in the Section “Visual Stimulation”. In most cases, the 
stimulus confi gured for the target neuron elicited signifi cant fi rst-
order kernels in all neurons on that tetrode.

To test if the distribution of PC1 scores was unimodal, we used 
the Hartigan dip test (Hartigan and Hartigan, 1985). The signifi -
cance was tested by boot-strapping the data 500 times.

RESULTS
We recorded from single neurons in V1 and V2 of anesthetized 
monkeys (V1: 3 animals, V2: 2 animals; V1 and V2: 2 animals). 
The stimulus was a 4 × 5 grid (for 1 animal in V1, 2 animals in 
V2 and 1 animal in both V1 and V2) or 6 × 6 grid (for 2 ani-
mals in V1 and 1 animal in V1 and V2) of adjacent rectangular 
regions, covering both the classical and non-classical receptive 

FIGURE 1 | Orientation-discontinuity stimulus and kernel computation. 

(A) Stimulus setup. A 4 × 5 grid of rectangular regions covered the classical (red 
ellipse) and non-classical receptive fi eld. The stimulus was aligned with the 
preferred orientation of the receptive fi eld. Each region contained a static 
sinusoidal grating with either the preferred or the orthogonal, non-preferred 
orientation. The orientation in each region changed every 20 ms. Magenta and 
cyan lines show the region boundaries parallel (magenta) and orthogonal (cyan) 
to the receptive fi eld; these lines were not part of the stimulus. (B) Computation 
of a fi rst-order kernel. For each region in the stimulus, the neuron’s spike 

response was cross-correlated with the stimulus sequence, coded as +1 for the 
preferred orientation and −1 for the orthogonal orientation. Note that spatial 
phase is randomized. (C) Computation of a spatial second-order kernel. The 
response was correlated with the product of the values of the stimulus in the 
two neighboring regions: 1 if the grating orientation in the two regions was 
equal and −1 if they were different. (D) Computation of a temporal second-order 
kernel. The response was correlated with the product of the values of the 
stimulus in the same region on two sequential frames: 1 if the grating 
orientation was constant and −1 if it changed.
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fi eld (Figure 1A), positioned and sized so that a central subset of 
regions covered the classical receptive fi eld (see “Stimulation with 
Orientation-Discontinuity Stimuli” for details). In each 20-ms 
stimulus frame, each region contained a sinusoidal grating with 
one of two orientations – the preferred and the non-preferred 
(orthogonal) orientation of the particular neuron. The orientation 
in each region on each frame was assigned by a pseudorandom 
procedure. The spatial phase was assigned using a different pseu-
dorandom sequence for each orientation so that regions of like 
orientations were always aligned but regions of unlike orienta-
tions had randomized phase relationships (see “Stimulation with 
Orientation-Discontinuity Stimuli” for details).

FIRST-ORDER RESPONSES TO PATCHES OF ORIENTED GRATINGS: TWO 
KINDS OF RESPONSES IN V2
The fi rst-order response kernel (see Materials and Methods) is a 
spatiotemporal map of the local orientation preference. More spe-
cifi cally, it is the time course of the difference between the response 
to the preferred and the non-preferred orientation, within each 
patch. As detailed here, we found a consistent difference between 
the dynamics of orientation preference in V1 and V2, and within 
V2 we found two kinds of responses.

Typical fi rst-order responses in V1 were, as expected, positive 
in the central regions, indicating the cell’s preference for one ori-
entation over the other (Figures 2A,B). There were no signifi cant 
responses in the surrounding regions (two-tailed t-test, α = 0.01, 
corrected for multiple comparisons, see “Stimulation with 
Orientation-Discontinuity Stimuli” for details). The monophasic 
time course of the kernel means that at all time-lags, the neuron 
responded better to the preferred orientation than to the non-
preferred one. The fi rst-order response kernel of one V2 neuron is 
shown in Figure 2C. In contrast to what we found in V1, response 
kernels in two of the regions were biphasic: fi rst positive, then 
negative. This means that the neuron has dynamic orientation 
tuning: there were some time lags for which its response to the 
“non- preferred” orientation was larger than its response to the 
preferred orientation. These responses predict that the optimal 
stimulus within a patch was the non-preferred orientation fol-
lowed by the preferred orientation. Another V2 neuron’s response 
is shown in Figure 2D. This neuron’s response looks similar to the 
examples from V1, in that the time course of all the kernels were 
monophasic but, as we will see below, broadened and delayed.

The response timecourses in V1 and V2 showed three dis-
tinct patterns (Figures 3A,B). Each trace was derived from one 
neuron – it is the normalized fi rst-order kernel in the stimulus 
region that produced the largest RMS (root-mean-squared) 
response within the fi rst 200 ms. As is shown, timing was very 
consistent across the population of 32 V1 neurons (Figure 3A). 
In contrast, in the population of 28 V2 neurons (Figure 3B), 
two distinct patterns of responses were seen: some were biphasic 
(colored in red), with an initial peak width narrower than the V1 
responses; others were monophasic (colored in blue), with a peak 
width wider than the V1 responses. To support the observation 
that waveforms fell into three patterns, we performed a principal 
component analysis of the normalized kernels from both V1 
and V2 (Figure 3C). The insets labeled “PC 1” and “PC 2” show 
the fi rst two principal components; the main fi gure shows the 

fi rst and second component scores (the contributions of each 
of these components to the observed waveforms). Notably, PC 
1 was biphasic and PC 2 was monophasic.

The V1 population formed a single cluster, with large contribu-
tions of the second (monophasic) principal component and small 
contributions of the fi rst (biphasic) principal component. The 
V2 population though, fell into two distinct clusters. One cluster 
had positive fi rst scores (red markers); while the second cluster 
had negative fi rst scores (blue markers). The difference between 
the two subpopulations in V2 was signifi cant for the fi rst score 
(Kolmogorov–Smirnov, p < 0.01). Because of the relative timing 
of the fi rst and second components, the combination of a posi-
tive fi rst score (biphasic, fi rst positive then negative) and positive 
second score (monophasic positive), results in a transient biphasic 
response. Adding a negative fi rst score (biphasic, fi rst negative then 
positive) to a positive second score results in a sustained monopha-
sic response. Therefore, we will call these clusters the “transient” 
and “sustained” V2 neurons, respectively. Out of 28 V2 neurons, 
10 fell into the transient cluster and 18 into the sustained cluster. 
The bimodality of the fi rst score for V2 was statistically signifi cant 
(p < 0.01, Hartigan’s dip test, (Hartigan and Hartigan, 1985). The 
distribution of fi rst scores for V1 neurons on the other hand was 
unimodal (Hartigan’s dip test, p > 0.5). The above pattern of clus-
tering was robust: it was also seen when we considered all signifi -
cant responses (and not just the largest one from all regions in the 
stimulus, as in Figure 3), and also, when the analysis was performed 
without normalization for response size.

The average V1 response was positive and became signifi cant 
at a latency of 54 ± 11 ms (mean ± standard deviation). It had a 
positive peak at 70 ± 7 ms. The sustained V2 neurons had a slower 
and more sustained response; the latency of the fi rst signifi cant 
response was at 68 ± 9 ms and the peak was at 83 ± 6 ms. The tran-
sient V2 neurons started responding at 48 ± 15 ms, had a positive 
peak at 65 ± 5 ms and a negative peak at 95 ± 5 ms latency. The 
latencies of the fi rst signifi cant responses as well as the peak laten-
cies were signifi cantly later for the sustained V2 neurons than both 
V1 and V2 transient neurons (Kruskal–Wallis non- parametric 
ANOVA, p < 0.01).

To further delineate the difference between the three groups 
of neurons, we calculated their positive power (RMS of posi-
tive parts of the response kernel), and, similarly, their negative 
power. The positive power can be viewed as an overall measure 
of the expected preference for the preferred orientation over the 
orthogonal orientation; the negative power quantifi es any “para-
doxical” preference for the orthogonal orientation. We found that 
the positive power was not signifi cantly different for the three 
groups, but the negative power was signifi cantly larger for V2 
transient responses (transient V2 neurons: median 0.078, lower 
quartile (l.q.) 0.017, upper quartile (u.q.) 0.39 spikes/s; sustained 
V2 neurons: median 0.014, l.q. 0.0004, u.q. 0.045 spikes/s; V1 neu-
rons: median 0.007, l.q. 0.001, u.q. 0.077 spikes/s; Kruskal–Wallis 
nonparametric ANOVA, p < 0.01).

The overall responsiveness, measured as the mean fi ring rate in 
response to the stimulus, was not signifi cantly different for the three 
groups (transient V2 neurons: median response of 5.6, l.q. 1.2, u.q. 
21.3 spikes/s; sustained V2 neurons: median 3.4, l.q. 0.14, u.q. 15.2 
spikes/s; V1 neurons: median 2.10, l.q. 0.08, u.q. 18.2 spikes/s).
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RESPONSE CHARACTERISTICS WERE CONSISTENT ACROSS ANIMALS, 
AND NOT DUE TO STIMULUS PARAMETERS
The different types of V2 responses were consistent across animals, 
but also had a tendency to cluster anatomically. In particular, the 
10 transient neurons were found in 2 animals and 3 different 
recording sites, and the 18 sustained neurons were found in 3 
animals and 7 different recording sites; the animal in common 
had both types of responses, but at different recording sites. In 
general, at each recording site we found one or the other of the 
two subpopulations of neurons, suggesting that neurons of each 
type seem to cluster together anatomically.

Since the stimuli were designed to fi t the receptive fi eld size, 
 differences in the choice of stimulus parameters might contribute to 
the differences between responses of V2 subpopulations. However, 
there was no signifi cant difference between the spatial parameters 
of the stimuli used for transient versus sustained V2 neurons, in 
terms of patch height and width (scaled to the receptive fi eld) and 
spatial frequency (matched to the neuron’s tuning).

Because the receptive fi eld sizes in V2 were larger than in V1, 
there was a signifi cant difference between the stimuli used in V1 ver-
sus V2 (Kolmogorov–Smirnov, p < 0.05) for all three spatial param-
eters. But this was also not the source of the difference in response 

FIGURE 2 | First-order response kernels. (A) First-order response kernels of a 
neuron in V1 measured using the 4 × 5 layout. The check size of the stimulus 
was 0.4 × 0.75 degrees of visual angle. The response kernel is plotted for each 
rectangular region in the stimulus; magenta and cyan lines correspond to 
subdivisions of the stimulus (compare Figure 1A). The mean response kernel (of 
32 repetitions) is plotted in black and the jackknife estimate of the standard 
deviation in gray. Asterisks mark timepoints at which the response was 

signifi cantly different from zero (two-tailed t-test, α = 0.01, corrected for multiple 
comparisons). Dashed vertical lines show the timepoints 0, 100 and 200 ms. 
(B) First-order response kernels of another V1 neuron measured using the 6 × 6 
layout. The check size of the stimulus was 0.4 × 0.4 degrees of visual angle. 
(C) First-order response kernels of a V2 neuron. The check size of the stimulus 
was 0.6 × 0.75 degrees of visual angle. (D) First-order response kernels of a V2 
neuron. The check size of the stimulus was 0.4 × 0.2 degrees of visual angle.
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 dynamics. To determine this, we analyzed the responses of 7 V1 
neurons that responded to a stimulus designed for a simultaneously-
recorded V2 neuron. We did not record from those 7 neurons with 
stimuli specifi cally designed for them, so we could not compare the 
responses of the same neurons to both types of stimuli. Instead we 
compared the normalized responses of these 7 V1 neurons to stimuli 
optimized for a V2 neuron with the normalized responses of all 
32 V1 neurons recorded with their V1-optimized stimuli (Figure 3A). 
The dynamics of the fi rst-order kernels of these 7 V1 neurons in 
response to V2-optimized stimuli were the same as the responses of 
the 32 V1 neurons in response to V1-optimized stimuli. Specifi cally, 
the responses were positive monophasic, had a fi rst signifi cant 
 positive response at 61 ± 7 ms, and a peak latency of 74 ± 5 ms. 
These were not signifi cantly different than the V1 responses to V1-
optimized stimuli (Kolmogorov–Smirnov, p > 0.3).

SPATIAL INTERACTIONS
To determine whether the above differences in response dynam-
ics simply refl ected an overall difference in response dynamics, 
or rather, was part of a more pervasive difference in the com-
putations carried out by the neurons, we examined interactions 
within the receptive fi eld – that is, how the response to a pair of 

regions (separated in space or time) differed from the sum of the 
responses to the two regions presented independently. To capture 
these interactions, we calculated second-order kernels. The second-
order kernels compare the average response when the orientation 
in the two regions matched (either both preferred or both orthogo-
nal), to the average response when the orientations differed (one 
preferred, one orthogonal). Because each side of the comparison 
contains the same contributions from preferred and orthogonal 
orientations considered independently, the second-order kernel 
isolates their interaction.

We consider spatial interactions in this subsection, and 
temporal interactions in the section “Spatial Interactions”. As 
diagrammed in Figure 1C, each spatial second-order kernel 
compared the response to two neighboring regions fi lled with 
gratings of the same orientation versus the two regions fi lled with 
different orientations.

Spatial interactions in V1 and V2 differed in a manner that par-
allels what we found in the fi rst-order kernels. Figure 4A shows 
all nearest-neighbor second-order kernels for a neuron in V1. 
The peak of the response kernel for the interaction between two 
center regions was positive in sign (asterisks above the response 
kernel). This positivity means that there was a larger response 
when patches in the two halves of the receptive fi eld had the 
same orientation, than when they differed. That is, this cell pre-
ferred continuous orientations over discontinuous ones, and this 
preference was more than the result of adding local orientation 
signals. Other second-order kernels were zero, indicating that 
other local orientation signals simply added up, without inter-
acting. The same holds for the responses of another V1 neuron 
(Figure 4B). In this case, we used the 6 × 6 setup so that a 2 × 2 
grid was within the receptive fi eld, and focus on the second-order 
kernels within a 4 × 4 subregion centered on the receptive fi eld. 
There were signifi cant interactions across two pairs of pixels. 
Both interactions had positive peaks, and both occurred across 
boundaries orthogonal to the receptive fi eld (plotted on top of 
cyan lines). Thus, they too augmented the response to continu-
ous orientations.

In contrast, a typical transient V2 neuron (Figure 4C) showed 
different preferences: while it had positive-going second-order 
responses indicating a preference for continuous orientations 
between some regions, it also had a kernel with a peak in the 
negative direction (asterisks below the response kernel). This was 
across a boundary parallel to the neuron’s preferred orientation 
(plotted on top of a magenta line), and indicates a preference for 
an orientation-discontinuity. This interaction occurred between 
two regions which both elicited a fi rst-order response (Figure 2C 
shows the fi rst-order responses of the same neuron). The second-
order responses of a sustained V2 neuron (Figure 4D, plotted for 
a 4 × 4 subregion containing the receptive fi eld) looked similar to 
the V1 neurons in that they were positive, and only occurred across 
boundaries orthogonal to the receptive fi eld.

To summarize the population behavior, we chose the largest 
spatial second-order kernel for each neuron, separately consid-
ering interactions across boundaries orthogonal (Figures 5A–
C) and parallel (Figures 5D–F) to the receptive fi eld. Across 
boundaries orthogonal to the receptive fi eld, the population 
response in V1 had a monophasic positive peak (Figure 5A), 

FIGURE 3 | Population summary of fi rst-order kernels. (A) Normalized 
fi rst-order response kernels of V1 neurons. (B) Normalized fi rst-order 
response kernels of V2 neurons, monophasic responses are colored blue and 
biphasic responses red. (C) First and second scores of PCA decomposition of 
all normalized fi rst-order kernels. The principal components are plotted in 
insets along the corresponding axes. V1 kernels are colored in black; biphasic 
V2 kernels (fi rst score larger than 0) in red; monophasic V2 kernels (fi rst score 
smaller than 0) in blue.
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which means that V1 cells preferred continuous orientations. 
On the other hand, transient V2 neurons showed a biphasic time 
course for their interactions (Figure 5B): a positive peak followed 
by a negative one. Thus, in a patch of two regions separated by 
a boundary orthogonal to the receptive fi eld, the second-order 

responses in those V2 neurons were best driven by an orienta-
tion-discontinuity followed by continuing orientation. Sustained 
V2 neurons had a weak spatial second-order response to this 
stimulus (Figure 5C). The responses of V1 neurons, V2 transient 
and V2 sustained neurons were all signifi cantly different from 

FIGURE 4 | Spatial second-order response kernels. (A) Second-order 
response kernels of a neuron in V1. The check size of the stimulus was 0.4 × 75 
degrees of visual angle. Colored lines depict the boundaries between the 20 
regions, the cyan lines stand for boundaries orthogonal to the receptive fi elds 
preferred orientation and magenta lines for those parallel. The response kernels 
are plotted on the line corresponding to the boundary between the 
corresponding two neighboring regions. The mean response kernel (of 
32 repetitions) is plotted in black and the jackknife estimate of the standard 
deviation in gray. Asterisks mark timepoints at which the response was 
signifi cantly different from zero (two-tailed t-test, α = 0.01, corrected for 
multiple comparisons). Dashed vertical lines show the timepoints 0, 100 and 

200 ms. (B) Second-order response kernels of another neuron in V1. The layout 
was 6 × 6 and the check size of the stimulus 0.4 × 0.4 degrees of visual angle. 
Only kernels for a 4 × 4 subregion centered on the receptive fi eld are shown. (C) 
Second-order response kernels of a ‘transient’ neuron in V2 (same as in 
Figure 2C). (D) Second-order response kernels of a “sustained” neuron in V2. 
The layout was 6 × 6 and the check size of the stimulus 0.4 × 0.2 degrees of 
visual angle. Only kernels for a 4 × 4 subregion centered on the receptive fi eld 
are shown. The large standard deviation, without signifi cant change in the mean 
response, in two of the subpanels in panel (D) stem from fi rst-order responses 
that have been removed by the inverse-repeat method, not random variation 
(see “Stimulation with Orientation-Discontinuity Stimuli”).
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each other (Fisher Linear Discriminant analysis in the 2D space 
of fi rst two principal components, explaining 75% of variance, 
p < 0.05, Bonferroni-corrected).

Not all neurons had measurable second-order spatial interac-
tions across boundaries orthogonal to the receptive fi eld. For V1 
neurons, 14 out of 32 neurons showed a signifi cant response; for 
transient V2 neurons, 5 out of 10; for sustained V2 neurons, only 
3 out of 18. The latency of the peak for all signifi cant responses was 
62 ± 17 ms in V1, 60 ± 0 ms in transient V2 neurons and 83 ± 2 ms 
for sustained V2 neurons.

The character of the spatial second-order responses allows us 
to draw inferences about likely mechanisms. In V1, their charac-
teristics were simple: they were always of positive sign and their 
waveform was similar to that of the fi rst-order response. This 
suggests a simple explanation: they could arise from a threshold 
nonlinearity. Specifi cally, simultaneous presence of the preferred 
orientation in two adjacent regions overcomes the threshold, 
which manifests as a supralinear response. Consistent with this 
mechanism, the peak latency of this second-order response 
(62 ± 17 ms) was similar to the latency for the fi rst-order 
response (70 ± 7 ms).

However, the interaction between subregions within the recep-
tive fi eld appeared only when the subregions were placed across 
boundaries that were orthogonal and not parallel to the recep-
tive fi eld. If the interaction is simply the result of a threshold, 
then it should also occur between two regions that are adjacent 

along a parallel border. As seen in Figure 5D, it did not. This 
observation suggests that the spatial second-order responses seen 
in our V1 experiments might be generated by iso-orientation 
facilitation (Nelson and Frost, 1985; Kapadia et al., 1995, 2000; 
Polat et al., 1998).

For interactions across boundaries parallel to the receptive fi eld, 
there was a marked difference between V1 and transient V2 neurons. 
Most (7/10) transient V2 neurons response kernels had a strong 
negative peak (Figure 5E). This means that transient V2 neurons 
had a nonlinearity sensitive to orientation- discontinuities parallel 
to their receptive fi eld orientation, augmenting their responses 
to discontinuities. All of these interactions were between regions 
that elicited a positive fi rst-order response. In contrast, only 3 
out of 32 V1 neurons had a signifi cant second-order response 
across these boundaries and none of 18 sustained V2 neurons 
did (Figure 5F).

The latency of the negative peak for the transient V2 neurons 
with signifi cant responses was 77 ± 8 ms. This latency was signifi -
cantly later than the positive peak for the fi rst-order response in 
the same neurons, which was 64 ± 5 ms (paired t-test, p < 0.01, 
N = 7, average time difference 13 ± 8 ms). Because of this  temporal 
 separation, it is unlikely that this second-order response was pro-
duced merely by a threshold or saturation nonlinearity.

For regions that were not directly adjacent (e.g. diagonally-related 
regions and next-nearest-neighbor regions), we found no measur-
able interactions in V1 and V2.

FIGURE 5 | Population summary of spatial second-order response 

kernels. Schematics on the left illustrate the computations of spatial second-
order responses across boundaries orthogonal to the receptive fi eld (top, 
cyan lines), and across boundaries parallel to the receptive fi eld (bottom, 
magenta lines). The red ellipse stands for the classical receptive fi eld. 
(A) Normalized second-order response kernels across boundaries orthogonal 

to the receptive fi eld for all V1 neurons (largest response for each neuron). 
(B) Same as (A) for transient V2 neurons. (C) Same as (A) for sustained V2 
neurons. (D) Normalized second-order response kernels across boundaries 
parallel to the receptive fi eld for all V1 neurons (largest response for each 
neuron), (E) Same as (D) for transient V2 neurons. (F) Same as (D) for 
sustained V2 neurons.
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TEMPORAL INTERACTIONS
Next, we consider temporal interactions (Figure 1D). Above 
(Figure 3), we have shown that transient V2 neurons typically had 
biphasic fi rst-order kernels, indicating that they preferred a change 
of orientation to the static presentation of an oriented grating. 
The temporal second-order kernels show that this preference is 
augmented by nonlinear interactions across time, and also dif-
ferentiate the transient and sustained subpopulations.

For a typical V1 neuron, the two central regions elicited a bipha-
sic temporal second-order response, consisting of a positive peak 
followed by a negative one (Figure 6A). This means (see caption of 
Figure 1 for sign convention) that the initial response was enhanced 
if the same orientation was presented (the short-latency positive 
component), but the later portion of the response was enhanced 
when the orientation was changing (the longer-latency negative 
component). A typical V2 neuron only had the negative peak, 

meaning that it preferred changing orientations throughout its 
response time course (Figure 6B). Note that the preferences isolated 
by this kernel go beyond those implied by the fi rst-order kernel: 
these responses represent interactions, and cannot be generated by 
mechanisms that merely sum a changing orientation preference 
over time. This pattern was seen in the 7 of 32 V1 neurons that had 
a signifi cant second-order temporal interaction (Figure 6C).

In V2 temporal interactions had different dynamics, and also 
distinguished the two subpopulations. Six of the 10 transient V2 
neurons had a signifi cant response (Figures 6B,D) consisting of a 
negative peak, while only 2 of 18 sustained neurons had a signifi cant 
response (Figure 6E). The responses of V2 transient neurons were 
signifi cantly different from the responses of V2 sustained neurons 
as well as from responses of V1 neurons (Fisher Linear Discriminant 
analysis in the 3D space of fi rst three principal  components 
(explaining 67% of variance), p < 0.05, Bonferroni-corrected). The 

FIGURE 6 | Temporal second-order responses. (A) Temporal second-order 
responses of a V1 neuron. The check size of the stimulus was 0.4 × 0.75 
degrees of visual angle. Each trace shows the interaction of stimulus frames at 
two successive times: the difference between the response when the 
orientation was the same in successive frames, and the response when the 
stimuli change orientation in successive frames. The mean response kernel (of 
32 repetitions) is plotted in black and the jackknife estimate of the standard 

deviation in gray. Asterisks mark timepoints at which the response was 
signifi cantly different from zero (two-tailed t-test, α = 0.01, corrected for multiple 
comparisons). Dashed vertical lines show the timepoints 0, 100 and 200 ms. 
(B) Temporal second-order responses of a V2 neuron. The check size of the 
stimulus was 0.4 × 1.1 degrees per visual angle. (C) Normalized temporal 
second-order response kernels (largest response) for all V1 neurons. (D) Same 
as in (C) for V2 transient neurons. (E) Same as in (C) for V2 sustained neurons.
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shortest in layer 2/3 transient neurons (63 ± 5 ms), followed by 
layer 4 transient neurons (70 ± 0 ms). The next groups were the 
layer 2/3 sustained neurons with (80 ± 0 ms), the layers 5 sus-
tained neurons (83 ± 6 ms), and the layer 4 sustained neurons 
(90 ± 1 ms). The latency of the fi rst signifi cant response was not 
signifi cantly different between layers, but between neuron types: 
transient neurons had an onset time of 46 ± 14 ms, and sustained 
neurons 69 ± 10 ms.

In summary, the different types of V2 neurons did not correlate 
with laminar positions, and both types were present across several 
layers. There was a clear and measurable timing difference between 
the layers in V1 as well as in V2. In V1, the signal was fastest in 
layer 4, as expected, as the LGN input arrives in layer 4 (Lund, 
1988). In V2, the peak of the response was earlier in layer 2/3 than 
in layer 4, but the fi rst signifi cant response was not. This is at least 
partly consistent with anatomical studies that show that V1 input 
to V2 terminates in layers 3 and 4 (Rockland and Pandya, 1979; 
Lund et al., 1981; Weller and Kaas, 1983; Van Essen et al., 1986; 
Rockland and Virga, 1990; Sincich and Horton, 2002).

SIGNAL TRANSFORMATIONS
We now consider what kinds of transformations can produce the 
two kinds of V2 responses from the ones in V1. For the sustained 
V2 neurons, their fi rst-order responses were qualitatively similar 
to those of V1 neurons, only slower. This suggests a simple and 
parsimonious explanation: sustained V2 neurons integrate V1 
responses over space and time. Integration can also account for 
why the  second-order responses for sustained neurons in V2 were 
nearly always insignifi cant – essentially, integration dilutes their 
contribution. To see this, consider fi rst the spatial interactions. 
A specifi c spatial boundary orthogonal to the V2 receptive fi eld 
would only elicit a nonlinear response from the V1 inputs that are 
lined up across this boundary. Since the V2 receptive fi eld is larger 
than the V1 receptive fi eld, only a small portion of the V1 inputs 
would be positioned to contribute to the second-order kernel, 
while all of the V1 inputs could contribute to the fi rst-order kernel. 
Integration of V1 outputs in V2 also accounts for attenuation of 
second-order temporal kernels in V2. The temporal second-order 
kernels of V1 neurons are weak and biphasic; their integration 
over time by a V2 neuron will reduce their impact because positive 
phases from one neuron’s contribution will cancel the negative 
phases of another.

The responses of transient V2 neurons, on the other hand, 
require a different transformation of signals from V1. Qualitatively, 
the fi rst-order responses of a typical transient V2 neuron look like 
the sum of a V1 responses and its derivative. This suggests that the 
V2 responses could be generated by combining an excitatory input 
from V1 with a delayed inhibitory input from the same source. 
As shown in Figure 7B, this simple idea provides an accurate 
account of the fi rst-order responses of V2 neurons, with a 10 ms 
delay and relative weights of the excitatory and inhibitory inputs 
in proportion ∼3:2 (Figure 7A). Note that this is a functional 
account, and not one that implies a particular wiring diagram: we 
do not suggest that only one neuron excites and inhibits or that 
the connections are direct, and we do not know the anatomical 
location of the inhibitory neuron (and therefore diagram it as 
lying in between V1 and V2).

incidence of signifi cant temporal interactions was also greater in 
V2 transient neurons than V2 sustained neurons or V1 neurons 
(contingency table analysis, p < 0.01).

The latency of the positive peak for the 7 V1 neurons was 
79 ± 30 ms, for the transient V2 neurons the positive peak was at 
95 ± 68 ms and the negative peak was at 130 ± 55 ms.

SURROUND SUPPRESSION AND STANDARD TUNING PROPERTIES WERE 
SIMILAR IN THE TWO V2 SUBPOPULATIONS
The fact that transient V2 neurons showed spatial interactions, that 
sustained V2 neurons did not, raises the question whether there 
is a connection with known contextual modulations. Surround 
suppression is of particular interest, because some forms of sur-
round suppression (Allman et al., 1985; Polat, 1999; Fitzpatrick, 
2000; Series et al., 2003; Bair, 2005; Angelucci and Bressloff, 2006) 
are nonlinear phenomena that could contribute to interactions 
between patches of different orientations. However, there was 
no difference in strength of suppression measured with standard 
techniques (see Materials and Methods) between the two differ-
ent neuronal subpopulations (Kolmogorov–Smirnov test, p > 0.5). 
Transient V2 neurons had a median suppression index of 0.0, with 
a lower quartile (l.q.) of 0.0 and an upper quartile (u.q.) of 0.20. 
Sustained V2 neurons had a median of 0.16 (l.q. 0, u.q. 0.50). The 
same holds for measurements of end-stopping and side suppression 
separately. Thus, the different types of response dynamics do not 
appear to be related to any of several previously-described forms 
of surround suppression – the subpopulations were quite similar 
in this regard.

We also did not fi nd any signifi cant differences between the 
subpopulations in V2 for receptive fi eld size, preferred spatial fre-
quency and temporal frequency, direction selectivity, F

1
/F

0
 ratio, 

or orientation tuning width.

LAMINAR LOCATION AND RESPONSE LATENCY
We were able to reconstruct the laminar position for all 32 neurons 
in V1 and 28 neurons in V2. In V1, we found 12 neurons in layer 4, 
9 neurons in layer 2/3 and 6 neurons in layer 6. Five neurons were 
in the vicinity of the boundary between layers 2/3 and 4.

In V1, there was a difference in timing of the response in that 
the neurons in layer 4 have signifi cantly earlier peak latencies than 
neurons in layers 2/3 or 6 (layer 4: 66 ± 5 ms, layer 2/3: 73 ± 7 ms, 
layer 6: 73 ± 5 ms, ANOVA, p < 0.05). Also the latency of the fi rst 
signifi cant positive response (two-tailed t-test, α = 0.01, corrected 
for multiple comparisons) was signifi cantly earlier in layer 4 than in 
layer 6 (layer 4: 45 ± 12 ms, layer 2/3: 53 ± 16 ms, layer 6: 62 ± 4 ms, 
ANOVA, p < 0.05).

In V2, 7 transient neurons were found in layer 2/3, and 3 
in layer 4. Nine sustained V2 neurons were found in layer 2/3, 
3 in layer 4, 3 in layer 5 and 3 neurons were in the vicinity of 
the boundary between layers 2/3 and 4. There was no layer spe-
cifi city for the transient versus sustained neurons (contingency 
table analysis, p = 0.34). However, the peak latency was signifi -
cantly different between layers as well as groups (2-way ANOVA, 
p < 0.05). Overall, layer 2/3 showed signifi cantly shorter peak 
latencies than layer 4 and the responses of transient neurons were 
signifi cantly faster than of sustained neurons (Multiple compari-
sons according to Tukey–Kramer, p < 0.05). The peak latency was 
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Given this close fi t, it is logical to ask whether the same 
 transformation can also account for the second-order responses 
in V2. If so, we could account for both the linear and nonlinear com-
ponents of V2 simply by temporal fi ltering of signals arising in V1. 
Conversely, to the extent that this transformation does not account 
for second-order responses, we can infer the properties of new 
nonlinear components generated in the transformation from V1 
to V2. As shown in Figures 7C–E, we fi nd that the transformation 
cannot account for the shape of the spatial second-order responses 
in V2. It fails modestly for the spatial second-order responses across 
boundaries orthogonal to the receptive fi eld (Figure 7C) as well 
as for the temporal second-order responses (Figure 7E) and more 
dramatically for the spatial second-order kernels parallel to the 
receptive fi eld (Figure 7D). The latter failure can be anticipated 
from the qualitative nature of our results: since V1 neurons had 
no second-order interactions parallel to the receptive fi eld, a linear 
transformation can not possibly produce an interaction in V2.

DISCUSSION
SUMMARY OF FINDINGS
Our main result is that V2 neurons can be divided into two sub-
populations (“sustained” and “transient”), based on qualitative 
differences in the dynamics of their responses to small patches 
of gratings. These dynamical differences encompass responses to 
individual grating patches (“fi rst-order”) and spatiotemporal inter-
actions between two grating patches (“second-order”). These differ-
ences combine to allow the two subpopulations of cells to process 

spatial information in complementary fashions, thus enabling V2 
to solve the problem of extracting texture boundaries de novo (the 
subpopulation that performs differentiation), while also preserving 
and even enhancing boundary information extracted in V1 (the 
subpopulation that performs integration).

The dynamics of the fi rst-order responses indicates whether 
a neuron responds better to a grating patch whose orientation 
is constant over time, or whose orientation is changing. While 
all V1 neurons in our sample had temporally monophasic fi rst-
order responses, one subpopulation of V2 neurons (“transient”) 
had biphasic responses – fi rst positive then negative – and the 
second subpopulation (“sustained”) had monophasic responses 
that were broader than the responses of V1 neurons. Thus, while 
V1 neurons and sustained V2 neurons simply responded better 
to their preferred orientation, transient V2 neurons responded 
best to the preferred orientation if it followed the non-preferred 
orientation. In other words, these V2 neurons responded best to 
a “switching on” of the preferred orientation, signaling a change 
in the visual input.

The spatial and temporal second-order response components 
accentuate the different ways in which these different kinds of neu-
rons responded. V1 neurons had monophasic spatial second-order 
responses across boundaries orthogonal and none across bounda-
ries parallel to the preferred orientation of the receptive fi eld. These 
spatial second-order responses signify that the neurons responded 
better if the orientation was unchanging across space than if the 
orientation differed in adjacent patches.

FIGURE 7 | Average responses and V1–V2 transformation. (A) Schematic of 
the conceptual transformation of V1 responses into V2 responses, with 
parameter values as computed by fi tting the fi rst order responses shown in 
panel (B). (B) Average fi rst-order responses for V1 (black) and transient V2 (red). 
The solid green line is the V1 response transformed according to the scheme of 

panel (A). (C) Average second-order responses across boundaries orthogonal to 
the preferred orientation for V1 (black) and transient V2 (red), and the 
transformed V1 signal (green). (D) Same as in (C), but for second-order 
responses across boundaries parallel to the preferred direction. (E) Same as in 
(C), but for temporal second-order responses.
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Transient V2 neurons manifested two kinds of spatial 
 interactions, and both reinforce their preference for orienta-
tion-discontinuities. Like the V1 neurons, they manifested spatial 
interactions across boundaries orthogonal to the receptive fi eld. 
But unlike the V1 neurons, the time course of these responses 
was biphasic.

The second spatial interaction in transient V2 neurons is one 
that was not present in V1 neurons: monophasic, negative interac-
tions across boundaries parallel to the receptive fi eld. These also 
signify a preference for orientation-discontinuities that goes beyond 
merely summing excitatory and inhibitory infl uences. A nonlinear-
ity of this kind, that augments the response to a texture boundary 
parallel to the receptive fi eld, is also a characteristic reported by oth-
ers using different kinds of stimuli (von der Heydt et al., 1984, 2000; 
Peterhans and von der Heydt, 1989; Leventhal et al., 1998; Marcar 
et al., 2000; Song and Baker, 2007). That the latency of the peak 
for this second-order response was signifi cantly later than for the 
fi rst-order response, shows that it cannot be explained by a simple 
threshold or saturation nonlinearity, but probably involves network 
interactions. This type of interaction was observed only between 
regions that elicited positive fi rst-order responses, i.e. within the 
classical receptive fi eld. This is in line with the observation that 
the transient V2 neurons did not show any increased amount of 
surround suppression, a well-known interaction between classi-
cal and non-classical receptive fi eld (Allman et al., 1985; Polat, 
1999; Fitzpatrick, 2000; Series et al., 2003; Bair, 2005; Angelucci 
and Bressloff, 2006).

Temporal second-order responses were biphasic for the V1 
neurons. The positive component dominated, indicating that V1 
neurons combined like-orientation signals supralinearly over time. 
In transient V2 neurons, the negative component dominated, indi-
cating a nonlinearity that reinforces changes in orientation.

In the spatial and temporal domain, sustained V2 neurons mani-
fested only very weak second-order interactions, indicating that 
they integrate signals from the grating patches linearly over time 
as well as over space.

The two subpopulations of neurons in V2 did not differ in their 
general tuning properties. However, there was a signifi cant dif-
ference in response latency between the two groups, with shorter 
latencies in the transient neurons. Anatomical studies show that 
thick stripes in V2 get their main input from layer 4 in V1, whereas 
thin and pale stripes receive input mainly from layer 2/3 in V1 
(for reviews see Livingstone and Hubel, 1988; Sincich and Horton, 
2005). Therefore, we hypothesize that transient neurons are in thick 
stripes and get faster input from layer 4.

COMPARISON WITH OTHER STUDIES; RECEPTIVE FIELD SUBREGIONS 
AND SURROUND SUPPRESSION
Two recent studies (Nishimoto et al., 2006; Anzai et al., 2007) also 
analyzed the computations performed by extrastriate neurons to 
boundary extraction. Both studies identify spatial inhomogenei-
ties of orientation tuning in the receptive fi elds of a fraction of 
striate and extrastriate neurons – in one study via local spectral 
reverse correlation (Nishimoto et al., 2006), and in the other via 
the use of grating patches (Anzai et al., 2007). Because the latter 
used grating patches, they were able to focus on the detailed tuning 
properties of receptive fi eld subregions, and found that about 30% 

of neurons in V2 were tuned to different orientations, commonly 
about 90° apart. Because of stimulus differences, the studies are 
not directly comparable. Nevertheless, one may speculate that the 
transient subpopulation (10/28 V2 neurons) identifi ed here have 
subregions that respond to non-preferred orientations under the 
stimulus conditions of the other studies, because they have evi-
dence of a latent sensitivity to orthogonal orientations when their 
dynamics are probed.

Whereas Anzai et al. propose several different possible mecha-
nisms for tuning to combinations of orientations (Anzai et al., 
2007), these mechanisms are all based on the assumption that the 
feedforward input from V1 to V2 is purely excitatory. In contrast, 
the present focus on dynamics suggests a simple, stereotyped trans-
formation of information from V1 to V2. For the sustained V2 
neurons, spatiotemporal integration accounts for all of the main 
features of the response. For the transient V2 neurons, combina-
tion of antagonistic infl uences provides a complete account for 
the linear portion of the response, and a partial account of the 
second-order portion. This spatiotemporal differentiation of V1 
inputs as a building block of the V2 response is a concept that has 
not been proposed prior to this study.

Surround suppression likely contributes to boundary analy-
sis, and is present already in V1 (Allman et al., 1985; Polat, 1999; 
Fitzpatrick, 2000; Series et al., 2003; Bair, 2005; Angelucci and 
Bressloff, 2006). While many of our V1 neurons (70%) mani-
fested surround suppression when probed with full-fi eld gratings 
(median surround suppression 0.23, l.q. 0, u.q. 0.43), it might 
appear surprising that it was not manifest in the responses to the 
orientation-discontinuity stimuli. For example, surround suppres-
sion that is selective for the preferred orientation (DeAngelis et al., 
1994; Cavanaugh et al., 2002) would be expected to cause nega-
tive fi rst-order and/or negative spatial second-order kernels. We 
did not observe such responses with the orientation- discontinuity 
stimuli.

Since we did fi nd surround suppression when studying these 
neurons with standard gratings, the absence of manifestations of 
surround suppression must be due to the characteristics of the 
orientation-discontinuity stimuli, rather than some idiosyncrasy of 
cell selection or physiology. Indeed, the orientation- discontinuity 
stimuli differed from stimuli that elicit surround suppression 
both temporally and spatially. Iso-orientation surround sup-
pression achieves its maximum strength on average within 50 ms 
from stimulus onset (Bair et al., 2003); our frame time was 20 ms. 
In experiments using the present stimuli but with longer frame 
times (40 ms), we found more signifi cant second-order responses 
of negative sign (data not shown), supporting the relevance of 
temporal factors. In addition to the temporal differences, there are 
spatial differences between the orientation-discontinuity stimuli 
and standard gratings. Each patch covers only a fraction of the 
whole surround, and it is possible that surround must be stimulated 
coherently in order to elicit surround suppression.

We did not fi nd V1 neurons that responded to orientation-
 discontinuities with increased fi ring rates, a contextual modulation 
that is most likely generated by either lateral interactions in V1 or 
feedback from V2 to V1 (Lamme, 1995; Zipser et al., 1996). One 
possible reason for this discrepancy is that we used anesthetized 
animals and therefore attentional effects played no role. However, 
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even with controlled attention away from the stimulus (Marcus 
and Van Essen, 2002) as well as with anesthetized animals, this 
contextual effect is observed (Sillito et al., 1995; Schmid, 2008).

That we did not observe increased fi ring rates with orientation-
discontinuities in V1 could be due to the short frame times used 
in this study (20 ms). Response enhancement in V1 neurons has a 
latency of 30–40 ms relative to the onset of the neuronal response 
itself (Lamme, 1995). As with surround suppression, it is possible 
that the short frame-rate is not enough to drive relatively slow 
processes such as lateral interactions. Since these contextual effects 
are directly related to surround suppression (Schmid, 2008), it is 
possible that the short frame times used here is responsible for both 
types of discrepancies with other studies. Feedback from V2 to V1 is 
more rapid (Girard et al., 2001) and should therefore be recruited 
with our stimuli. However, we did not see any contextual effects in 
V1, such as increased fi ring rates for orientation- discontinuities, 
that would be consistent with such rapid feedback from V2 to V1. 
This is in agreement with the observation that deactivation of area 
V2 does not affect response modulations due to texture disconti-
nuities in V1 (Hupe et al., 2001).

TEMPORAL AND SPATIAL CHANGE DETECTION MECHANISM
We suggest that the phenomenological temporal differentiation 
seen in V2 is accomplished in the brain by feedforward excitation 
followed by delayed inhibition. Feedforward excitation followed by 
inhibition from the same source could arise from a microcircuit 
consisting of monosynaptic excitation and disynaptic inhibition, as 
found throughout the brain (Toyama et al., 1974; Frotscher, 1989; 
Kita et al., 2005; Verbny et al., 2006; Silberberg and Markram, 2007). 
Such a microcircuitry has recently been proposed as a mechanism 
for detecting abrupt changes in the sensory world (Bouaouli and 
Deneve, 2009).

Spatial differentiation, however, cannot be explained by such 
a simple transformation, because it is associated with the emer-
gence of (nonlinear) spatial interactions. At a computational level, 
the transformation thus resembles those that have been invoked 
to account for processing of second-order stimuli (Chubb and 
Sperling, 1988; Voorhees and Poggio, 1988; Cavanagh and Mather, 
1989; Graham et al., 1992; Wilson et al., 1992; Wolfson and Landy, 
1995; Baker, 1999; Baker and Mareschal, 2001). The unifying con-
cept of these models is a set of fi lters followed by a nonlinearity 
followed by a second set of fi lters, which basically performs a dif-
ferentiation operation. While all these models are based on psy-
chophysics as well as theoretical considerations, our study is, to our 
knowledge, the fi rst physiological study that directly demonstrates 
this differentiation operation.

While the spatial and temporal change detection can be mod-
eled most easily using only feedforward mechanisms, we do not 
exclude the possibility that feedback from higher cortical areas than 
V2 might also be involved.

METHODOLOGICAL INNOVATION
The main methodological novelty presented in this study is the 
simultaneous evaluation of fi rst-order and second-order responses 
in time and two spatial dimensions – crucial ingredients in building 
a model for the computations performed by V2 neurons. The bar-
rier to doing this is that a large number of parameters need to be 
measured and evaluated with neural data with low signal-to-noise 
ratios; long measurements are required to reduce the noise. Other 
studies have approached this problem (studying complex cells in 
primary visual area V1) by using one-dimensional random bar stim-
uli (Emerson et al., 1987; Touryan et al., 2002; Rust et al., 2005) or 
2D random dot stimuli (Gaska et al., 1994; Livingstone and Conway, 
2003; Sasaki and Ohzawa, 2007). Our approach is different in several 
ways. Firstly, we used m-sequences, which have the advantage that 
unlike with Gaussian white noise stimuli, random correlations are 
not presented. The use of m-sequences, whose autocorrelation is 
very close to a delta function, results in high signal-to-noise ratios 
even with few repetitions and this allow us to measure the fi rst-
order along with several second-order responses simultaneously. 
We deal with the problem of separately measuring all of the relevant 
fi rst- and second-order responses (i.e. the “overlap problem” see 
“Stimulation with Orientation-Discontinuity Stimuli”) by tailoring 
the m-sequence to the specifi c demands of the experiment. Secondly, 
the stimuli are two-dimensional like the random dot stimuli, but the 
individual elements in our stimuli are not dots but patches of ori-
ented gratings. This design allows us to focus on the processing of 
orientation signals in V1 and V2 neurons.

CONCLUSION
Our results identify two subpopulations of orientation-selective neu-
rons in area V2 that process orientation signals in a complementary 
fashion. The sustained V2 neurons integrate orientation signals over 
space and time. Their responses can be understood as integration of 
outputs of V1 receptive fi elds with similar orientation tuning over an 
extended period in time. These neurons would be expected to sig-
nal long luminance boundaries or surfaces of objects with extended 
regions of uniform texture that are constant in time. Responses of 
the transient neurons can be understood as a spatial and temporal 
spatial derivative of the V1 responses in combination with simple 
nonlinearities. These neurons may play a major role in the early visual 
system’s detection of orientation change in time and boundaries 
defi ned by differences in orientation. More broadly, by delineating the 
spatial and temporal interactions between receptive fi eld subregions, 
our fi ndings identify two distinct types of transformations carried 
out between the visual areas V1 and V2, and enable V2 to extract 
texture boundaries (differentiation) while simultaneously building 
on the boundary information extracted in V1 (integration).
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