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The demands on a sensory system depend not only on the statistics of its inputs but also on the task. In olfactory navigation, for example,
the task is to find the plume source; allocation of sensory resources may therefore be driven by aspects of the plume that are informative
about source location, rather than concentration per se. Here we explore the implications of this idea for encoding odor concentration. To
formalize the notion that sensory resources are limited, we considered coding strategies that partitioned the odor concentration range
into a set of discriminable intervals. We developed a dynamic programming algorithm that, given the distribution of odor concentrations
at several locations, determines the partitioning that conveys the most information about location. We applied this analysis to planar
laser-induced fluorescence measurements of spatiotemporal odor fields with realistic advection speeds (5-20 cm/s), with or without a
nearby boundary or obstacle. Across all environments, the optimal coding strategy allocated more resources (i.e., more and finer
discriminable intervals) to the upper end of the concentration range than would be expected from histogram equalization, the optimal
strategy if the goal were to reconstruct the plume, rather than to navigate. Finally, we show that ligand binding, as captured by the Hill
equation, transforms odorant concentration into response levels in a way that approximates information maximization for navigation.
This behavior occurs when the Hill dissociation constant is near the mean odor concentration, an adaptive set-point that has been
observed in the olfactory system of flies.
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The first step of olfactory processing is receptor binding, and the resulting relationship between odorant concentration and the
bound receptor fraction is a saturating one. While this Hill nonlinearity can be viewed as a distortion that is imposed by the
biophysics of receptor binding, here we show that it also plays an important information-processing role in olfactory navigation.
Specifically, by combining a novel dynamic-programming algorithm with physical measurements of turbulent plumes, we deter-
mine the optimal strategy for encoding odor concentration when the goal is to determine location. This strategy is distinct from
histogram equalization, the strategy that maximizes information about plume concentration, and is closely approximated by the
Hill nonlinearity when the binding constant is near the ambient mean. j

ignificance Statement

Introduction provided a foundation for understanding their design principles

The notion of “efficient coding,” that sensory systems exploit the ~ at algorithmic and mechanistic levels. While at first glance it

statistical regularities of their natural inputs (Barlow, 1961), has ~ might appear that evolutionary pressure makes efficient coding
unavoidable, two aspects of this principle are decidedly nontriv-

ial: (1) that natural inputs indeed possess substantial statistical
regularity; and (2) that this regularity can be exploited without

Received Sept. 27, 2018; revised Jan. 29, 2019; accepted Feb. 23, 2019, substantially compromising their use for decision or action. This
Author contributions: J.D.V., J.P.C, and K.LN. designed research; J.D.V., S.D.B., E.G.C,, and J.P.C. performed second aspect is often overlooked, as it is implicitly assumed that

research; J.D.V., S.D.B., E.G.C,, and J.P.C. analyzed data; J.D.V. wrote the first draft of the paper; J.D.V., S.D.B., E.G.C., . p . o p Y . .

1P.C, GB.E, and KN, edited the paper. creating an internal representation of the sensory environment is

S.D.B. and J.D.V. were supported by National Science Foundation Grant 10S 1555891. E.G.C. and J.P.C. were an adequate surrogate for their ultimate use. Thus, information-
supported by National Science Foundation Grant PHY 1555862. G.B.E. was supported by National Science Founda- theoretic measures of the ﬁdelity of this representation are taken

tion Grant PHY155591§. K.I.N.wassup;?ortedby National Science Foundatior\‘GrAanltIOS1555933<The5e9ra'ntswere as the starting point for normative theories of sensory processing
all part of a collaborative research project supported by the NSF IdeasLab initiative. We thank Alex Dimitrov and

Ramin Zabih for helpful comments.
The authors declare no competing financial interests. https://doi.org/10.1523/JNEUR0SCI.2512-18.2019
Correspondence should be addressed to Jonathan D. Victor at jdvicto@med.cornell.edu. Copyright © 2019 the authors


mailto:jdvicto@med.cornell.edu

3714 - J. Neurosci., May 8, 2019 - 39(19):3713-3727

Victor et al.  Olfactory Navigation and Receptor Nonlinearity

A kS A A
= » 202 21
A A A A a
=1 |
source
A A A A
concentration (<)
A A A A °0 . N 4 N 1
A A S A /\‘
A A A A !
5cm S ‘
—" 10cm 15cm 20 cm 25cm oy
/ / / / concentration (Q)
: . - - ]
posterior probability

prior probability

odor distribution

p(l)

Cc

Figure 1.

.

p(m)

p(llmy)

p(ljmy)
~

=1
X | —

p(m)

p(ljmy)

An overview of the approach. A, Odor concentration is measured at multiple grid locations (triangles) within a dynamic odor plume. B, Since the odor concentration varies with time,

each location yields a distribution of odor concentrations. Large histogram represents the distribution of odor concentrations across all grid points. The two smaller histograms represent the
distribution of odor concentrations at two example grid points. At the grid point close to the odor source (bottom left histogram), high odor concentrations are more frequent than at a grid point far
from the source (bottom right histogram). , Analysis of alternative schemes for encoding odor concentration. As diagrammed on the left, locations across the grid points are assigned equal a priori
probability. An odor sample is obtained at a randomly chosen grid point, and encoded into a code word that represents a specific bin of odor concentrations (middle). Then, for each code word, the
a posteriori probability of location within the grid is computed via Bayes Theorem (right). The dependence of the a posteriori probability distribution on the code word drives a computation of the
Shannon mutual information between location and code word. We determine the encoding scheme (i.e., the partitioning used for encoding) that maximizes this information, given a fixed number

of code words. Modified with permission from Boie et al. (2018).

and a way to understand the role(s) of neural mechanisms (Bar-
low, 1961; Laughlin, 1981; Srinivasan et al., 1982; Olshausen and
Field, 1996; Karklin and Lewicki, 2009; Tkacik et al., 2010; Her-
mundstad et al., 2014).

Olfactory navigation, however, is a critical and pervasive ani-
mal behavior in which the end-use of sensory information and
the construction of an internal representation may be distinct.
Specifically, an animal attempting to locate the source of an odor
may create a map as an intermediate step (Vergassola et al., 2007;
Gagliardo, 2013; Griitnbaum and Willis, 2015; Jacobs et al., 2015),
but successful navigation can also be based on an entirely local
decision strategy (Pierce-Shimomura et al., 1999; Wen et al,,
2012; Schulze et al., 2015). From a normative viewpoint, a system
whose goal is to construct an internal representation of the olfac-
tory environment should be optimized to transmit information
about odor concentration, but a system whose goal is olfactory
navigation should be optimized to transmit information relevant
to locating the odor source. For example, because odor plumes
are turbulent (Celani et al., 2014; Connor et al., 2018), “hits” of

high concentrations, though rare, may be valuable localizing
cues, so a sensory system optimized for navigation may devote
disproportionate resources to encoding high concentrations.

With this in mind, we seek to determine the optimal encoding
strategy for a sensory system whose goal is olfactory navigation.
To keep the focus on the strategy, rather than the concrete form
of the code, we use information theory as a framework. We pos-
tulate (Fig. 1) that the entire odor concentration range is encoded
into “code words,” each representing a nonoverlapping interval.
(We use the term “code word” to emphasize that our focus is on
allocation strategy, not the specific form of the code. For con-
creteness, each code word may be thought of as a particular num-
ber of spikes, but this is not a necessity for the analysis.) We then
determine the choice of intervals that maximizes the information
conveyed about source location. This optimal partitioning indi-
cates how coding resources are allocated: greater resources to
odor ranges that are subdivided into more code words.

If the goal were to maximize the information conveyed about
odor concentration, the optimal strategy is histogram equaliza-
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tion (HE) (Laughlin, 1981; Tadmor and Tolhurst, 2000): inter-
vals are chosen so that each code word is used equally often.
Because odor concentration distributions have a strong positive
skew, HE allocates most code words to the low end of the con-
centration range. This corresponds to applying a highly compres-
sive nonlinearity to odor concentration, and then linear encoding
of this nonlinearity’s output.

As we will show, the optimal strategy for transmitting infor-
mation about location is not HE, but rather, one that devotes a
greater number of code words to the high end of the concentra-
tion range. We identify these optimal codes via a novel dynamic
programming algorithm, driven by physical measurements (pla-
nar laser-induced fluorescence) (Connor et al., 2018) of the spa-
tiotemporal concentration distribution in real plumes.

While the optimization algorithm is highly nonbiological, we
show that the efficiency that it achieves is nearly matched by a
biophysical mechanism that is already known to be present (Na-
gel and Wilson, 2011; Gorur-Shandilya et al., 2017). Receptor
binding, the first stage of olfaction, implies a gently saturating
relationship between odorant concentration and the fraction of
bound receptors. With the binding constant set to the ambient
mean (as suggested by studies of adaptation) (Cao et al., 2016;
Gorur-Shandilya et al., 2017), this Hill nonlinearity, followed by
linear encoding of the bound fraction, leads to an allocation of
code words that closely approximates optimal performance.
Thus, receptor binding is not only a necessary step in olfactory
processing, but one whose nonlinear characteristics match the
needs of navigation.

Materials and Methods

This work combines experimental measurements of spatiotemporal
plumes with a novel algorithm for determining optimal coding strategies.

Experimental methods. Spatiotemporal distribution of odorant con-
centrations was determined by planar laser-induced fluorescence at a
frame rate of 15 Hz and a spatial resolution of 0.74 mm in five environ-
ments; these measurements served as the starting point for information-
theoretic calculations. Measurement methods, detailed by Connor et al.
(2018), are identical to those of Boie et al. (2018) and are provided here
for the reader’s convenience.

Plume measurements. Apparatus consisted of a low-speed air wind
tunnel with a test section of cross-section 0.3 X 0.3 m, and 1 m in length,
into which an odor surrogate (acetone) was released. Turbulence is in-
duced in the tunnel by an entrance grid consisting of 6.4-mm-diameter
rods and a 25.5 mm mesh spacing, followed by a 15-cm-long honeycomb
section. Acetone is isokinetically released into flowing air through a 9.5-
mm-diameter tube on the tunnel centerline, whose orifice was 10 cm
downstream of the turbulence grid.

Acetone vapor, used as an odor surrogate, was generated by bubbling
a carrier gas, consisting of air (59% v/v) and helium (41% v/v) through
liquid acetone, to produce neutral buoyancy in the wind tunnel. Wind
tunnel temperature was stabilized at ambient conditions with a water
bath.

Fluorescence was induced with a 1-mm-thick light sheet from a Nd:
YAG 266 nm pulsed laser, which illuminated the odor plume in the test
section and entered the tunnel through longitudinal slits in its sides.
Plume fluorescence, proportional to acetone concentration, was imaged
through a glass window in the tunnel using a high quantum efficiency
sCMOS camera. The camera had a bit depth of 16, and its framerate, 15
Hz, was synchronized to the laser pulses. Raw images were binned to
512 X 512 pixels, corresponding to a spatial resolution of 0.74 mm/pixel.
They were corrected for background and light field inhomogeneities by
the following:

1 I(x,y,t)
a. F(x,y)

c(x,y,t) = (1)
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where c(x, y, t) is the normalized concentration value, I(x, y, f) is the raw
pixel value with background subtracted, F(x, y) is the flatfield image also
with background subtracted, and a, is a scaling coefficient that sets ¢ = 1
to correspond to the concentration of acetone at its entrance into the test
section.

Olfactory environments. Planar laser-induced fluorescence measure-
ments were obtained under five conditions (“olfactory environments”):
the three described by Boie et al. (2018), referred to here as 5 cm/s
unbounded, 10 cm/s unbounded, and 10 cm/s bounded, and two addi-
tional ones, referred to here as 20 cm/s unbounded and 20 cm/s obstacle
(Fig. 2). In all datasets, acetone was released at the plume centerline. For
the “unbounded” datasets, the full cross-section of the wind tunnel was
used. For the “bounded” dataset, a false floor was placed immediately
below the release point, and extended the length and width of the test
section. For the “obstacle” dataset, an obstacle was positioned as shown
in Figure 2 bottom row (and there was no false floor). In the 5 cm/s and
10 cm/s environments, 36—40 min of data (32,400-36,000 frames at 15
Hz) were obtained; in the 20 cm/s environments, 20 min of data (18,000
frames at 15 Hz) were obtained. In all environments, the field of view of
the camera was 30 cm in the direction of flow and 16 cm wide, and data
collection was subdivided into runs of 4 min (3600 frames) each.

Sampling grids. In each environment, we computed mutual informa-
tion between the odorant distribution and location for several grids that
sampled the full spatiotemporal distributions obtained above. We focus
on three two-dimensional grids: two of these (“wide” and “narrow”) had
4 X 4 sample points, identical to those used in Boie et al. (2018); the third
(“full”) covered the regions of both of these grids and had 7 X 7 sample
points. We also analyzed six one-dimensional grids: three grids that were
orthogonal to the bulk flow direction and three that were parallel to the
bulk flow direction. These spanned the region covered by the “full” two-
dimensional grid, and each had 16 sample locations. For the 20 cm/s
obstacle environment, grid points that were within the obstacle or in the
region of the plume that could not be imaged because of the obstacle were
excluded from the analysis.

These grids do not imply an assumption about the navigation strategy;
they are merely ways of quantifying the extent to which odor distribu-
tions at different locations can be distinguished. The analysis does not
depend on the order in which the points are sampled or their coordinates
(or whether the coordinates are expressed in a Cartesian or polar system),
and does not imply that the navigator uses a one-dimensional or a two-
dimensional map. We merely use a variety of grids to ensure that our
conclusions are robust. The optimization algorithm itself is independent
of the geometry of the grid, and also makes no assumption about the
sequence in which the points are sampled.

Computational methods. Our computational task is to determine how
to encode the range of odor concentrations into a set of code words, so
that these code words maximize the mutual information between a single
odor sample and the location within a plume at which the sample is
obtained. This problem, a combinatorial optimization, has an efficient
solution described below. The reason that this efficiency is possible is that
the optimization can be cast into a form in which the optimal encoding of
the entire odor range can be built up from optimal encodings of smaller
ranges. This recasting is a consequence of the “chain rule for entropy”
(Cover and Thomas, 1991). As we show, recasting the problem enables a
dynamic programming algorithm, very much along the lines of the clas-
sic “segmented least-squares” algorithm for finding the best piecewise
linear approximation to a function (Kleinberg and Tardos, 2006). We
first detail the construction of the algorithm, and then its application to
plume measurements. All computations were performed in MATLAB
(The MathWorks).

The algorithm. To begin, we specify (as in Boie et al., 2018) that the
range of odor concentrations is to be encoded into a set of code words
M = {1, ..., M}, where each code word m corresponds to an interval of
odor concentrations (i.e., a “bin”). We may assume that odor concentra-
tion is represented by a standardized variable X whose range is 0 to 1. A
set of code words corresponds to a partitioning of this [0, 1]
range according to a set of bin boundaries B = {b,, . .., by}, where
by, = 0,b,, = b,,+,, and by, = 1. That is, the mth code word corre-
sponds to an odor concentration from b,,_, to b,,,.
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The five olfactory environments. Heatmaps represent average odor concentration (first column), and snapshots of odor concentration on the first and last frames of data collection (last

two columns). The color scale is logarithmic and covers a concentration ranging from 1 (equal to the inlet concentration) down to 0.003. For the 20 cm/s obstacle dataset: Gray square in the plume
centerline represents the obstacle. Hatched parallelogram below the centerline represents the region of the plume that could not be imaged.

As is standard, the mutual information between the code words

M ={1,..., M}andasetofsamplelocations L = {1, ..., L} is given by
the following:
I(L, M) = H(L) = 2, p(m) H(L|{m}) )
meM

Here, H(L) is the entropy of the a priori distribution of locations:

H(L) = — Xp(l)log, p(l) (3)

IeL

where p(I) is the a priori probability that the navigator is at a location
I € L. As in Boie et al. (2018), we assume that each of these locations is
equally likely a priori, so p(I) = 1/L. H(L|{m}) is the entropy of the a
posteriori distribution of locations, given observation of the code word m:

H(L{{m}) = — Xp(I| m)log, p(1| m) (4)

IEL

where p(Ilm) is the conditional probability that the navigator is at a
location [ given an observation of an odor sample corresponding to the



Victor et al. @ Olfactory Navigation and Receptor Nonlinearity

code word m (i.e., in the range b,,_, to b,,,). This conditional probability
can be obtained from the measured odor distribution at each location,
p(m|l), by Bayes’ rule.

Our task is to find the set of boundaries B that maximizes Equation 2,
given a specific number M of code words. First, since mutual information
is symmetric in its arguments, Equation 2 can also be written as follows:

S HM | {1}) (5)

IEL

I(M, L) = HM) —

where H(M) is the entropy of the code word distribution across all loca-
tions, and H(M]|{1}) is the entropy of the code word distribution at the
single location I € L.

To maximize Equation 5, we consider a somewhat more general quan-
tity, the entropy of a subset of code words M’ C M observed ata subset of
locations L' C L. This is defined by the following:

I p(mlL") — p(m|L")
H(M |L ) - = E p(Ml Lr) OgZP(Mr|Lr) (6)

As Equation 6 indicates, if the subset M” does not include all of M, then
samples that are not encoded into one of the code words of M’ are
ignored. While we will make use of Equation 6 for many choices of
M', we only need it for two choices of L": when L’ is just one location
(L' = {I}), and when it is the complete set of locations L, in which case
H(M'|L) = H(M'). Thus, the quantity to be optimized, Equation 5, is a
sum of terms, each of which is in the form of Equation 6.

The chain rule for entropy (Cover and Thomas, 1991) provides a way
to compute H(M'|L') from a decomposition of M into subsets. It states
that the entropy of distribution can be computed in two stages: first, by
decomposing it into two components and computing the entropy of that
decomposition, and then adding the entropies of the components. Ap-
plied to Equation 6, this yields the following:

H(M,UM,]L") = —(p,logp, + p,logp,)
+p HM,L') + p HM,L") (7)

where M,, and M, are disjoint subsets, and p,, and p, are the conditional
probabilities that a code word will be in M,, or M,, given that it is in their
union:

p(M,IL")
p(MJL') + p(M,|L")

p(M,IL")
p(M,JL') + p(M,|L")

pu= and b=

Since Equation 7 applies to components that sum up to the quantity
that we optimize (Eq. 5), it implies that any optimal allocation of code
words is built out of smaller optimal solutions. More precisely, if a set of
code words M" encodes a range of odor concentration values in a way that
maximizes the mutual information about location (among all segmen-
tations into M’ code words), and if M’ = M,, U M, is a partition of M’
into disjoint subsets, then both M,, and M, encode their ranges in a way
that maximizes the mutual information about location (among all seg-
mentations into M,, and M, code words, respectively). This is exactly the
decomposition that enables the “segmented least-squares” algorithm: the
best piecewise approximation to a function over a large range is always
composed of piecewise approximations that are optimal over smaller
ranges (Kleinberg and Tardos, 2006).

We exploit this decomposition as follows. The optimal encoding for
the entire range [0, 1] into M code words can be broken down into an
optimal encoding of the range [0, b,,_,] into M—1 code words, along
with the identification of the cutpoint b,, ,, and the assignment of the
Mth code word to the range [b,,_,, 1]. Similarly, the optimal encoding of
the range [0, b,,_,] into M—1 code words can be broken down into an
encoding of the range [0, by, ,] into M—2 code words, along with the
identification of the cutpoint b,,_,, and the assignment of the (M—1)th
code word to the range [by,_5, by, ].

As is typical for dynamic programming algorithms, and in close anal-
ogy with the “segmented least-squares” algorithm, this recursion is con-
veniently implemented in a forward fashion, shown in Figure 3. The
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initial step (Fig. 3, left) is to create a library of segmentations of the
concentration range into two code words, and to compute the amount of
mutual information for each. The library of segments covers not only the
complete [0, 1] range, but also the subranges [0, x], where x samples the
range with resolution 1/N. (Here, we use N = 256, and take the values x
to cover equal quantiles; Fig. 3 diagrams the analysis for N = 8.) The
library contains N(N — 1)/2 elements: one for each way of choosing the
endpoint x and a cutpoint x’ in [0, x]. As this library is exhaustive, it is
guaranteed to contain the optimal encoding of each subrange [0, x] into
two code words.

Each subsequent step takes a library that is guaranteed to contain the
optimal encoding of each [0, x] interval into R code words, and creates a
library that is guaranteed to contain the optimal encoding of this interval
into R + 1 code words. This is done by subdividing each [0, x] into [0, x']
and [x', x], computing mutual information via Equation 7, and identi-
fying the cutpoint x’ that produces the maximum value. In applying
Equation 7, M,, is the set of R code words assigned to the interval [0, x'],
and M, is a set containing just one code word, for [x, x], so that the final
term of Equation 7 is 0. After M—2 of these iterative steps, the library
contains the optimal encoding scheme for all intervals [0, x] and M code
words and, therefore, the optimal encoding scheme for the entire interval
[0, 1]. At the iterative step of the algorithm, the procedure of inserting an
additional cutpoint is performed not only for the entire odor range [0, 1],
but also for all subranges [0, x]. This is what enables a globally optimal
solution to be obtained at the final step via a “look-back,” as diagrammed
in Figure 3 (black arrows).

The algorithm is highly efficient compared with a brute-force ap-
proach. The number of computations scales with N2M, since there are
M—2 iterations, and the library has approximately N*/2 elements. This
compares very favorably with a brute-force search of all possible encod-
ings, which would require on the order of M~ computations.

Finally, we mention some points concerning generality of the ap-
proach. First, the algorithm applies not only to maximizing the mutual
information (Egs. 2 or 5), but also to a quantity (to be used below) that
includes a penalty for codes that are complex, as follows:

I(L, M) = (1 = w)I,(L, M) — wH(M) (8)

Forw =0, I,, = I; for w > 0, the entropy of the code word distribution
H(M) acts as a penalty. The algorithm holds for Equation 8 since this
quantity is also a linear combination of expressions in the form of Equa-
tion 6, and therefore also satisfies the chain rule.

We also note that the chain rule can be applied more generally, by
partitioning the number of code words M into any two subsets of sizes M,,
and M,, for which M,, + M,, = M. This leads to a variant of the algorithm
that require fewer iterative steps (approximately log, M rather than
M—2) (for further analyses of this issue, see Osorio-Hernandez et al.,
2009; Clift, 2011). However, this benefit is outweighed by larger library
size required (on the order of N rather than N?). We mention this
variant architecture since it provides a starting point for further general-
izations of the algorithm, but in the present context, it is less efficient and
yields precisely the same results. Specifically, in our implementation and
hardware (Intel i7 8-core processor), this variant was 20—100 times
slower than the original.

Finite sample size effects and statistics. As is well known, empirical
estimates of entropy and information are subject to bias due to finite
sample size size (Miller, 1955; Carlton, 1969; Treves and Panzeri, 1995;
Strong et al., 1998). For the “plug-in” estimators used here, this bias,
asymptotically in the number of samples, depends only on the number of
samples, the number of input classes (here, L), and the number of en-
coded code words (here, M) (Miller, 1955; Carlton, 1969; Treves and
Panzeri, 1995). Thus, in the asymptotic range, an optimization based on
the “plug-in” estimator is equivalent to an optimization that takes bias
correction into account.

The asymptotic range applies when the total number of observations is
large compared with the product of the number of locations L and the
number of encoded code words M. In the worst-case scenario here, L =
49 and M = 64, so LM = 3136. The number of observations (T = 18,000
to T'= 36,000 time points at L locations) is 882,000 to 1,764,000. Thus,
this ratio is 281 for the shorter datasets and 562 for the longer ones.
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Figure 3.

Dynamic programming strategy for determining the partition of a range [0, 1] into code words that maximizes transmitted information, here illustrated for a resolution of N = 8 and

partitions into M = 4 segments. The initial step (left column) creates a library of all intervals [0, ], and all cutpoints x” within those intervals. For each interval [0, x], the algorithm determines the
value of x" that maximizes mutual information (green brackets and arrows). This yields a library (second column) containing the optimal partition of each subinterval [0, x] into 2 code words. Black
represents the portion of the interval being analyzed. Red represents partitions that have been determined to be optimal. The first iterative step (columns labeled R = 2) creates a library containing
the optimal partitions of all intervals [0, x] into M = 3 code words. It does this by subdividing each interval [0, x] into [0, x'] and [x", x], and using the previous library for the partitions of the [0, x']
interval into 2 code words (red). The partition with the value of x” that maximizes information is then chosen for the new library (green brackets and arrows). Similarly, the next iterative step
(columnslabeled R = 3) creates a library containing optimal partitions of all intervals [0, x] into M = 4 code words, by subdividing each interval [0, x] into [0, x"1and [x’, x] using the previous library
for the [0, x"] interval. At the final stage, the optimal partition of the full interval [0, 1] (circled) can be traced back to optimal partitions determined at prior stages (large black arrows).

We empirically verified that the asymptotic range applied by analyzing
full datasets, and also analyzing subsets of size T/2 and T/4 for the
2-dimensional grids, and we extrapolated values of  or I, to infinite data
by the method of Strong et al. (1998). These values, which are presented
here, were only minimally different from the raw values determined with
the full dataset, as would be expected from the large excess of data sam-
ples over the number of code words.

All calculations were performed in parallel at five sets of sample points:
one set of points centered at the grid location, and four sets of sample
points jittered diagonally by *3 pixels (2.2 mm) along each axis. Figure 4
shows results from the central point only; subsequent figures show an
average of the results at the five jittered positions.

Results

When an animal attempts to navigate toward the source of an
odor plume, it makes navigation decisions based in part on sam-
pling odor concentration. However, as with any sensory system,
the resources available for signaling odor concentration are lim-
ited. Here, we focus on how the odor concentration in a single

plume sample can be encoded to maximize the amount of infor-
mation transmitted about location relative to the source of the
plume.

To address this question, we use the strategy shown in Figure
1. We begin with physical measurements of odor concentrations
at a grid of points within a dynamic plume (Fig. 1A). Because the
plume is dynamic, each point within the grid yields a probability
distribution of measurements (Fig. 1B). Because these distribu-
tions vary across sampling points, a single sample provides a
probabilistic cue to location. The amount of information about
location is limited by the overlap of these distributions, and also
by the resolution of the odor measurement.

To formalize the effects of limited resolution, we partition the
range of odor concentration into a set of intervals, assuming that
each interval is signaled by distinguishable neural “code words,”
while two concentrations within a single interval cannot be re-
solved (Fig. 1C, left panels). For each such partitioning, we com-
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segments corresponding to the code words.

pute the information transmitted about location, making
optimal (Bayesian) use of the differences in the distributions of
odor concentrations at each location (Fig. 1C, right panels). To
remain agnostic about how this information is used, we quantify
transmitted information by the Shannon mutual information
measure (Shannon, 1948; Cover and Thomas, 1991).

The critical aspect of the analysis is to determine, for a fixed
number of code words, how to segment the odor concentration
range so that mutual information is maximized. That is, given a
limit on the resources available for coding (the number of code
words), how should these resources be deployed? To determine
this optimal segmentation, we use a novel algorithm described in
Materials and Methods, which solves this combinatorial optimi-
zation exactly. This analysis is then applied to physical measure-
ments of odor concentrations in five olfactory environments, and
nine grids of sample locations. Each sampling grid is merely a
specific way to compare the distribution of odor concentrations
across space; it does not imply a navigation strategy. As men-
tioned in Materials and Methods, our analysis considers each
odor sample independently, and neglects correlations across time
or space.

Example dataset and sampling grid

We first present the analysis in detail for one environment and
grid (10 cm/s unbounded, “full” grid) and then summarize the
results across the environments and sampling grids.

Figure 4 shows the optimal segmentations of the odor concen-
tration range as the number of available code words, M, increases
from 2 (top of figure) to 32 (bottom of figure). The abscissa
represents odor concentration as quantiles, so that the length of
an interval (i.e., the distance between adjacent cutpoints) is pro-
portional to the probability that the odor concentration is within
that interval; and hence, the probability that the corresponding
code word is used. In the simplest case (M = 2), the cutpoint
between the code words is approximately at the 85th percentile of
odor concentration. That is, if only two alternatives (one bit) are
available to signal odor concentration (either “low” or “high”),
the optimal solution is to use the “high” code word only rarely,
reserving it to the infrequent instances in which odor concentra-
tion is very high. This is in contrast to a coding strategy that

0.75

Optimal segmentations for the 10 cm/s unbounded environment, full (7 X 7) grid. The positions of the cutpoints are
shown for the number of code words (M) ranging from 2 to 32, with a subset of values for M (colored points) highlighted at various
levels on the ordinate. For each value of M, there are M—1 cutpoints, which separate the full range of concentration into the

L would be most effective in conveying in-
formation about odor concentration per
se. For that purpose, the HE strategy is
optimal (Laughlin, 1981): the cutpoint
would be set at the median (i.e., the 50th
percentile), so that the two code words
“low” and “high” would be used equally
often. This finding corroborates the result
of Boie et al. (2018, their Fig. 4), in which
the optimal binarizing cutpoint for con-
veying location information was deter-
mined by exhaustive search.

As the resources available to transmit
odor concentration information increase,
the range of odor concentration is subdi-
vided into more and more code words,
allowing for increasing resolution of odor
concentration, but this increased resolu-
tion remains disproportionately focused
on the high end of the concentration range.
When three code words are available
(M = 3), the two cutpoints are positioned at
approximately the 80th percentile and the
95th percentile. Consequently, the “medium” and “high” words,
in aggregate, are only used ~20% of the time, further contrasting
with the HE strategy in which the cutpoints would be at the 33rd
and 66th percentile. This exclusive emphasis on high concentra-
tions persists until M = 6. At this point, cutpoints begin to appear
at the low end of the concentration range as well, although the
distribution of cutpoints remains heavily biased toward the high
end of the range. In contrast, the HE strategy would cover the
percentile range with intervals of equal size.

Next, we determine how effective these codes are in transmit-
ting information about location (i.e., the mutual information
between location and code word; Eq. 2). This is shown by Figure
5A (solid symbols), as a function of the number of bits in the
code, log, M. As anticipated from the findings of Boie et al.
(2018), the amount of information transmitted saturates rapidly
as a function of the number of code words available. Specifically,
for M = 8 (three bits), ~90% of the maximum has been reached.
An HE code eventually achieves the same level but requires a
greater number of code words to do so (Fig. 5A, hexagrams).

The functional distinction between the optimal coding
scheme and the HE scheme has another aspect, in addition to the
gap between the optimal and HE information values shown in
Figure 5A. This aspect is manifest when we consider how the code
words themselves might be transmitted. As implied by the ab-
scissa, it is always possible to specify one of M code words with
log, M bits, so log, M is an upper bound on the number of bits
needed to transmit a single code word. In the HE code, all code
words are equally likely, so this bound cannot be improved on.
However, in the optimal codes, some code words are much more
common than others, which is a form of partial redundancy. As a
consequence, typical sequences of code words can be reformatted
(e.g., by downstream neural processing) so that fewer than log, M
bits per code word, on average, are required for transmission. If
we neglect any temporal correlations in the sequence of code
words, the limit of compression is given by the entropy of the
code word distribution (Cover and Thomas, 1991). For the HE
code, the entropy of the code word distribution is log, M because
each code word is equally likely; for the optimal codes, because
the frequencies of the code words are typically unequal, it is
lower.

1
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Figure5. A, Information transmitted about location by codes that are optimized for this purpose (filled and open round symbols), and HE (hexagrams), for the 10 cm/s unbounded environment
and the full grid (as in Fig. 4). For filled symbols and hexagrams, the abscissa represents log, M, where M is the number of code words. For open symbols, the abscissa represents the entropy of the
code word distribution. (For the HE code, entropy is equal to log, M; for optimal codes, itis smaller.) Solid lines connect points with the same number of code words. B, For each number of code words,
the locus of codes that optimize a tradeoff between information about location and compressibility. Each trajectory corresponds to a single value of M, following the color code of A. The left end of
each trajectory corresponds to a maximally positive weighting for compressibility. Circle represents a weighting of 0 (matching the open symbols in 4), and the right end of each trajectory
corresponds to a large negative weighting for compressibility. €, Same asin 4, but also including the performance of codes in which the Hill nonlinearity (Eq. 10) is followed by uniform segmentation
of the [0, 1] range of bound fractions into M code words (open squares). For each value of M, the positions of the two squares along the abscissa indicate log, M and the entropy of the code word
distribution. Here and in subsequent figures, calculations are performed at the center of each grid point, and also four sets of sample points jittered diagonally by pixels (2.2 mm) along each axis.
Mean values are shown in all panels. B, Error bars indicate 1 SD about the mean.

Figure 5A (open symbols) shows the implications of thiscom-  account: for the optimal codes, the number of bits required to
pression for optimal codes. Because the optimal codes can be  transmit each code word is smaller than for HE.
compressed but the HE code cannot, the difference between op- This observation that performance of the “optimal” code was

timal codes and HE increase when compression is taken into  further improved when compression was taken into account mo-
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tivated a broadening of our evaluation of possible coding
schemes to explicitly include the value of compression (Tishby et
al., 1999). To take compression into account, we identified cod-
ing schemes that maximized a function that included a penalty
for the entropy of the code word distribution (Eq. 8). This penalty
could take on a range of weights: for a weight w = 0, the analysis
reduces to that of Figure 5A, in which compressibility was not
taken into account; larger weights place progressively more em-
phasis on compressibility. The dynamic programming method
described in Materials and Methods extends to this scenario as
well, enabling identification of the optimal code for all tradeoffs
between information and compressibility. For further details, see
Materials and Methods, Equation 8, and surrounding text.

Figure 5B shows the results of the analysis. For each number M
of code words, this procedure yields a family of codes that maxi-
mizes the various tradeoffs between information and compress-
ibility. These codes range from highly compressible codes that
provide very little information (w — 1), to codes that provide
maximal information without taking compression into account
at all (w = 0). For values w < 0, the “optimal” codes give com-
pressibility a negative weight, and tend toward HE, the least com-
pressible code. Together, the envelope of these curves represents
the codes that extremize the tradeoffs between information and
compressibility. The codes identified in the original analysis
(open circles) lie on this envelope, indicating that they capture
the tradeoffs between information and compressibility.

Coding based on the Hill nonlinearity

Finally, we consider a coding scheme motivated by a biological
consideration, rather than an information-theoretic one. Be-
cause the information available to the organism is limited by what
is taken in at the periphery (the “Data Processing Theorem”)
(Cover and Thomas, 1991), it is natural to focus on the initial
stage of olfactory transduction, which consists of an odorant li-
gand binding to a receptor (Nagel and Wilson, 2011; Cao et al,,
2016; Gorur-Shandilya et al., 2017). The relationship between the
concentration of the free ligand and fraction of receptors that
have bound a ligand is nonlinear and saturating because the
number of receptors is limited. For simple receptor binding and
dissociation,

X + R 2 RX, 9)

the equilibrium relationship is straightforward to determine. As
is well known, under these circumstances, the bound fraction f cor-
responding to an odorant concentration [X] is given by the Hill
equation with exponent 1 (Keener and Sneyd, 2010):

filx]) = A (10)
cip + [X]

where ¢, ,, the semisaturation constant, is given by ¢,,, = kp/k,
the ratio of the dissociation rate constant (the reverse reaction in
Eq. 9) and binding rate constant (the forward reaction in Eq. 9). As
is also well known, the relationship (Eq. 10) also corresponds to the
classic Michaelis—Menten kinetics (Michaelis et al., 2011) and to the
Naka—Rushton adaptation law (Naka and Rushton, 1966).

We now consider a coding scheme in which, as in olfactory
transduction, the nonlinearity (Eq. 10) is the first step, and its
output is then encoded linearly. We take the semisaturation con-
stant ¢, , equal to the mean odor concentration at the grid points,
as this has been suggested as the target of sensory adaptation
(Nagel et al., 2015; Cao et al., 2016; Gorur-Shandilya et al., 2017).
To represent linear encoding of the results of the transduction
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process, we posit that the bound fraction fis then encoded into M
code words that subdivide the range equally. That is, for M = 2,
values of fbetween 0 and "2 are encoded into one code word,
and values of f between Y2 and 1 are encoded into the other
word. For a general M, values of f from k/M up to (k + 1)/M
are encoded into the kth code word.

Figure 5C shows the performance of this code (square sym-
bols), both without compression taken into account (rightmost
symbol of each color pair) and with compression taken into ac-
count (leftmost symbol of each color pair). Performance is very
similar to that of the optimal code identified from information-
theoretic principles (filled circles represent without compression:
open circles represent with compression).

Like the information-theoretic optimal codes, the code deter-
mined by the Hill nonlinearity allocates a disproportionate frac-
tion of code words to the rare high concentrations, compared
with the HE code. In the Hill code, half of the code words are devoted
to odor concentrations that are above c, , because that is the concen-
tration at which the Hill nonlinearity (Eq. 10) reaches a value of 0.5.
Since we have set ¢, ,, to be equal to the mean concentration-which is
much higher than the median concentration in typical odor
environments-these concentrations, and hence these code words,
occur with probability much less than 0.5. Put another way, al-
though the Hill nonlinearity is a saturating one, setting ¢, ,, at the
mean concentration yields a nonlinearity that saturates much more
gently than the nonlinearity that produces HE.

Summary across datasets and grids

Figure 6 summarizes the above analysis across five odor environ-
ments and three sampling grids, and shows that the above obser-
vations hold across these scenarios. (The scenario detailed above
is in the second row, third column.) In all cases, the Hill nonlin-
earity, with ¢, set equal to the mean odor concentration across
the sampling grid, yields a code that closely approximates the
code that is optimized to transmit information about location. In
most cases, the performance of these codes is substantially better
than HE. The exception is the 10 cm/s bounded environment, in
which all codes perform approximately equally well. These find-
ings also hold for one-dimensional sampling grids, oriented ei-
ther across or along the direction of bulk flow. Figure 7 shows
results from the three example grids in the two environments
with a 10 cm/s flow rate. In the unbounded environment (top
row), there was a substantial advantage for the optimal code over
the HE code for all sampling grids; in the bounded environment,
the advantage was only present for the transverse grid placed
closest to the source. Behavior for the other unbounded environ-
ments (5, 20, and 20 cm/s with an obstacle) was similar to that of
the 10 cm/s environment. In all cases, the Hill-based code closely
approximates optimal behavior.

In both Figures 6 and 7, the advantage of a code optimized for
location is markedly diminished in the 10 cm/s bounded-flow
environment. We speculate that the reason that the HE code is
almost as effective as a code optimized for location is that this
environment is the most diffusive, as the plume is near a bound-
ary. Intuitively, in a diffusive environment, in which concentra-
tions do not fluctuate over time, there is little difference between
a code that is useful for reconstructing the plume (for which HE
is optimized) and a code that is useful for navigating.

Figure 8, which shows the probability distribution of odor
concentrations at a grid of points in the two 10 cm/s domains,
amplifies this idea. In the diffusive environment (B), the distri-
butions at different sample locations have markedly different
modes, so these modes (i.e., the typical concentration at each
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Performance of optimal codes for location in the five environments (rows), sampled at three two-dimensional grids (shown in column headers). Environments are illustrated by the

insets at the left of each row showing heatmaps of average concentration (as in Fig. 2). Plotting conventions as in Figure 5C, which is reproduced here as the rightmost panel of the second row.

point) can be used as a cue to location. In contrast, in the turbu-
lent environment (A), all of the modes are close to 0, so the typical
odor concentration provides very little information. Instead, the
main differences between the probability distributions are due to
the concentrations that occur only rarely. That is, consistent with
our findings above, location is cued primarily by the concentra-
tion values that have low probability.

However, one cannot conclude that the advantages of a code
tuned for navigation are merely a matter of the degree of turbu-

lence; the advantage is smaller in the 20 cm/s environment with
an obstacle (Fig. 6, bottom row) than in the unbounded
environments.

Role of the Hill constant

Figures 6 and 7 show that the Hill nonlinearity, followed by linear
coding, is near-optimal for transmitting information about loca-
tion in a plume, across a range of odor environments. This result
is based on setting the Hill semisaturation constant ¢, ,, equal to
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the mean odor concentration across the sampling grid. Because a
real navigator cannot determine this value (it can only sample
one location at a time), it is natural to ask whether this near-
optimality is sensitive to a precise match of ¢, , to this mean value.

Figure 9 addresses this question for the full two-dimensional
grid in the 10 cm/s unbounded environment. We measured the
performance of codes in which the Hill constant differed from the
mean odor concentration by a factor ranging from 0.125 to 8. In
all cases, a mismatch by a factor of 2 (either half the grid mean or
twice the grid mean) yields performance that is close to that set-
ting ¢, ,, precisely equal to the grid mean. Performance decreases
when the discrepancy is greater, but even when the discrepancy is
afactor of 8, performance is better than that of HE. Similar results
were found for the other environments and grids.

This finding implies a linkage between source concentration,
plume statistics, and receptor sensitivities that yield near-
optimum coding. For the plumes and sampling grids studied, the
grid mean was typically 1%-10% of the source concentration
(minimum: 0.45%; maximum: 21.3%; geometric mean: 2.4%).
Receptor sensitivities vary widely, with typical Hill constants in
the range of 10 ~> to 10 ~° (expressed as a volume dilution) but
also extending lower (Si et al., 2019) Thus, the typical range of

Performance of optimal codes for location in two of the five environments, sampled at three one-dimensional grids (shown in column headers). Plotting conventions asin Figure 5¢, but

receptor sensitivities will allow for near-optimal coding in
plumes whose source concentrations are 10 ' to 10 > or below.
Finally, Figure 9 provides some insight as to the way in which
coding performance changes when c¢,,, departs from the grid
mean. For values that are substantially smaller than the grid
mean, the nonlinearity saturates rapidly, and behavior tends to-
ward that of HE (Fig. 9, yellow points). For values that are sub-
stantially larger than the grid mean (Fig. 9, blue points),
saturation becomes negligible, but only a small fraction of the
code words are used because the bound fraction remains small.
Thus, there is a ceiling to the effective amount of information
carried because the effective number of code words is small.

Discussion

Efficient coding with a goal

Normative theories, approaches that identify the most efficient
set of computations to accomplish a task and then compare these
computations with those that are actually performed, are central
to understanding principles of sensory processing (Barlow, 1961;
Laughlin, 1981; Srinivasan et al., 1982; Olshausen and Field,
1996; Karklin and Lewicki, 2009; Tkacik et al., 2010; Hermund-
stad etal., 2014). A common feature of these theories is a focus on
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Probability distributions of concentration at a grid of points (the wide grid shown at the top of the first column of Fig. 6) for the 10 cm/s unbounded environment (A) and the 10 cm/s

bounded environment (B). Abscissa represents normalized concentration (concentration relative to concentration at the source) on a linear scale. Ordinate is logarithmic and spans a factor of 10,

representing the sensory input, or estimating a simple statistic of
its distribution (Fairhall et al., 2001; Wark et al., 2009; Mlynarski
and Hermundstad, 2018), rather than the needs of a particular
behavior. That is, the measure of efficiency is stimulus-centered:
reconstruction of the input (Laughlin, 1981; Olshausen and
Field, 1996), or discriminating among alternatives (Karklin and
Lewicki, 2009; Hermundstad et al., 2014; Mlynarski and Her-
mundstad, 2018).

Olfactory navigation provides an opportunity to extend the
normative approach to a context in which the driver of the be-
havior (source location) is linked to the sensory input in a com-
plex and stochastic fashion. Creating an internal representation
of the plume, estimating its statistics, or discriminating among
odor concentrations is only helpful to the extent that it reduces
uncertainty about source location.

Recognizing that any sensory system has limited resources for
coding (i.e., a limited range and resolution), we determined how
these resources are best deployed to convey information about

the navigator’s location relative to the source. We found that the
optimal coding strategy differed from one that was optimal for
creating an internal representation, devoting greater resources to
higher odor concentrations. Moreover, a mechanism known to
be present at the first stage of olfactory processing, receptor bind-
ing (Kaissling, 1986; Nagel and Wilson, 2011; Gorur-Shandilya
al., 2017), constitutes a simple nonlinearity that closely approxi-
mates the identified optimal behavior. The key feature that un-
derlies this result is that the Hill nonlinearity compresses the
range of odor concentrations, but does so in a gentle fashion, so
that high concentrations can still be distinguished. Other mono-
tonic functions with similar shapes, including Hill functions with
exponents modestly >1, would likely achieve near-optimal be-
havior as well.

Because any single sample of odor concentration provides
only partial information about source location, successful olfac-
tory navigation requires integration of many odor samples, and
possibly cues from other modalities (Murlis et al., 1992; Cardé
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word distribution.

and Willis, 2008; Gaudry et al., 2012; Alvarez-Salvado et al.,
2018). Such strategies may take several forms, ranging from con-
struction of a cognitive map (Vergassola et al., 2007; Gagliardo,
2013; Griinbaum and Willis, 2015; Jacobs et al., 2015) to local
decisions, which may depend on an internal state defined by
recent history (Gaudry et al., 2012; van Breugel and Dickinson,
2014; Schulze et al., 2015; Kromer et al., 2018; Pang et al., 2018).
Because our approach considers only single samples and hence
ignores spatial or temporal correlations in the odor plume, it does
not address ways in which encoding may be further tuned to, or
interact with, an overall search strategy. Nevertheless, we expect
that the findings here are broadly relevant because, in any search
strategy, encoding an odor sample is an unavoidable first step.
This first step consists of representing an odor concentration
by a neural signal. In Boie et al. (2018), we showed that precise
representation of concentration has limited value in determining
location. Beyond 16—32 coding levels (45 bits), additional res-
olution provided minimal additional information, but this
single-sample ceiling could be overcome by devoting the bits to
two samples in space, or multiple samples in time (Boie et al.,
2018, their Fig. 3). That analysis considered the standard HE
strategy, in which each code word is used equally often: a scheme
that is optimal for stimulus reconstruction. Here, we show that
the single-sample ceiling can be reached with only 4—8 coding
levels (2-3 bits), by allocating more code words to the higher
concentrations (Figs. 6, 7), especially in the more turbulent reg-

imens. However, “task-specific” coding does not change the
amount of information about location; rather, it provides the
same information in fewer bits (Boie et al., 2018). The advantage
is that since fewer bits suffice for each sample, the same band-
width can be redeployed to convey information from multiple
samples in space and/or time.

We focused on the nonlinearity associated with transduction
because this places a fundamental limit on the information that is
available to the organism, but clearly, this is only the beginning of
the computations that underlie olfactory navigation. Subsequent
stages of processing add further transformations, and interac-
tions between odorants, for example, divisive normalization at
the convergence of olfactory receptor neurons onto projection
neurons (Olsen et al., 2010). Because this transformation ex-
pands small signals and compresses large signals, the signals sent
on to the brain will differ from a simple Hill transformation, and
will also be modulated by signals from other receptors.

Dynamic adaptation and search

While the Hill nonlinearity (Eq. 10) comes close to an optimally
efficient transformation of odor concentration to coding level,
this behavior requires (Fig. 9) that the semisaturation constant,
12 = kplkg, is close to the “grid mean” (i.e., the mean concen-
tration of a specific odorant across sampling points of a particular
odor environment). This in turn requires that it is set dynami-
cally, rather than fixed by evolution or development. Adaptation
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that sets c;,, to the mean with a slow time constant is well recog-
nized (Nagel et al., 2015; Cao et al., 2016; Gorur-Shandilya et al.,
2017), but there is still the question of how this mean is deter-
mined. Each grid has its own mean concentration; and even with
only one grid, the navigator can only be at one location at any
given time. We speculate that this consideration provides a rela-
tionship between the dynamics of adaptation and the dynamics
of the search strategy. Specifically, we suggest that olfactory nav-
igation can be considered as a sequence of searches at progres-
sively smaller spatial scales, in which the navigator visits a variety
of locations (“grid points”) at one scale and then narrows the
search. If the time spent searching at each scale is comparable to
the time constant for adaptation, an approximate correspon-
dence between ¢, ,, and the grid mean will be achieved. Only an
approximate correspondence is needed for near-optimal behav-
ior, as mismatches between c¢,,, and the grid mean up to a factor
of ~2 have little effect (Fig. 9).

Values of ¢, that are substantially lower than the mean pro-
duce a rapid saturation that is suboptimal for navigation. But at
the same time, this more rapid saturation provides an approxi-
mation to the HE code that is optimal for transmitting informa-
tion about concentration. Thus, dynamic adjustment of ¢, ,, as
well as a diversity of values of ¢, ,, across receptors, could tune the
encoding process to diverse demands.

Other domains

The present analytic approach applies not only to olfactory nav-
igation, but to any domain requiring inference of location from a
scalar variable. Such domains include chemotaxis in its many
forms (e.g., Webre et al., 2003; Larsch et al., 2015; Schulze et al.,
2015; Kromer et al., 2018), as well as navigation driven by tem-
perature (Luo et al., 2010; Klein et al., 2015). As in olfactory
navigation, the first processing stage involves a receptor. How-
ever, whether the nonlinearity of receptor binding plays a simi-
larly important computational role must remain a speculation, as
the benefit of the Hill nonlinearity depends on how the distribu-
tions of the scalar quantity vary across space. The pattern of vari-
ation found in olfactory plumes, where dynamics are dominated
by turbulent fluid flow, may not be shared in scenarios in which
flow is more laminar or diffusion is more prominent. It is also
unclear whether the benefits of the Hill nonlinearity for indepen-
dent receptor-binding sites (Eq. 10) extend to situations in which
receptor binding is phenomenologically cooperative, as in the
case of the TRP receptor (Zheng, 2013).

Related information-theoretic approaches

The present approach bears similarity to the information-
bottleneck (IB) (Tishby et al., 1999) and codebook (Dimitrov et
al., 2003) methods. These are closely related approaches but have
different goals: IB, like the present approach, seeks efficient ways
of encoding a stimulus to convey information about an underly-
ing variable, whereas the codebook method is a neural data anal-
ysis strategy that seeks categories within a stimulus set that best
account for the neural response.

Both approaches differ from the present approach by their
choice of cost function: they add a penalty when the mutual
information between the sensory variable and the code word is
high. Consequently, IB typically identifies encoding schemes that
are nondeterministic. In contrast, here we add no penalty for
reliable encoding. That is, we maximize the information con-
veyed about location, rather than minimize the information
conveyed about concentration. Both approaches examine the
tradeoff between coding fidelity and information transmitted
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about location, albeit in different ways: IB does so explicitly via a
penalty term; the present approach does so implicitly by consid-
ering code word sets of many sizes.

Related to these differences, algorithms to optimize encoding
in the IB sense use simulated annealing, rather than the dynamic
programming algorithm introduced here. If the annealing pro-
cess could be continued down to a temperature of 0, the IB cost
function would coincide with the present one, and the solutions
will coincide. However, this strategy is intractable because of the
explosion of bifurcations that would need to be followed (Dim-
itrov et al., 2003; Mumey and Gedeon, 2003). In contrast, the
present algorithm finds the optimal coding scheme with a com-
putational cost that grows quadratically with the resolution of the
analysis.

In conclusion, we used olfactory navigation to study neural
coding in the service of a biologically important task: identifying
the relative location of the source of an odor plume. Across a
broad range of conditions, we found that the nonlinearity asso-
ciated with receptor binding yields an encoding that is nearly
optimal for this purpose. Thus, receptor binding, along with its
necessary mechanistic role in sensory processing, also plays a
critical information-processing role.
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