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Abstract

Most studies of texture processing are based on textures in which individual pixel statistics are varied and spatial correlations are

absent (‘‘IID textures’’), or textures in which spatial correlation structure is varied and luminance, or first-order, statistics are held

constant. Here we jointly examine simple pixel statistics and fourth-order spatial correlation structure along the continuum of

‘‘even’’ and ‘‘odd’’ isodipole textures of Julesz, Gilbert and Victor [Julesz, B., Gilbert, E.N., & Victor, J.D. (1978). Biological Cyber-

netics, 31(3) 137–140], as well as their interactions. Absolute efficiency to detect either kind of statistical cue is low: approximately

0.05 for luminance statistics, and 0.004 for isodipole statistics. Above threshold, isodipole statistics must change by approximately

four times the amount that pixel statistics must change to generate an equally salient texture. When pixel statistics and isodipole

statistics are simultaneously varied, the two texture cues combine by probability summation and perceptual distances are approx-

imately Euclidean. Superimposed on this picture are subtle foreground/background asymmetries that suggest properties of the visual

mechanisms that are sensitive to these image statistics.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Segregation of an image into regions that represent

distinct objects or surfaces is a fundamental operation

of visual processing. Typical objects and surfaces are

not uniform, but are characterized by distinctive visual

textures (Knill, 1998; Portilla & Simoncelli, 2000). Such

texture differences, in addition to differences in lumi-

nance, are well known to provide strong cues for image
segregation (Beck, Sutter, & Ivry, 1987; Bergen &

Adelson, 1988; Graham, 1989; Gurnsey & Browse,

1989; Julesz, 1981).
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Theories of texture segregation generally have two
components: a stage in which local computations extract

statistical attributes of the image, and a second stage at

which these measurements are used for grouping and/or

segregation (Bergen & Adelson, 1988; Bergen & Landy,

1991; Chubb & Landy, 1991; Graham, 1989; Graham,

Beck, & Sutter, 1992; Grossberg & Mingolla, 1985;

Malik & Perona, 1990; Wilson, 1993).

To understand the first stage of this process, many
investigators have studied segregation and discrimina-

tion of textures that differ in specific kinds of statistical

attributes. The first-order statistics of a texture consists

of its distribution of luminance values, or, equivalently,

a histogram that indicates the fraction of pixels that are

assigned each gray level. For binary textures (such as the

ones considered here) that have only black and white

checks, specifying the first-order statistics is equivalent
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to specifying the mean luminance. The second-order sta-

tistics of a texture consist of the joint distribution of

pairs of luminance values, at each vector displacement.

Textures that have the same first-order statistics but

not second-order statistics are typically discriminable.

However, it is not straightforward to determine whether
the basis for this discrimination is sensitivity to aspects

of spatial structure, versus merely sensitivity to altered

effective contrast. This is because second-order statistics

affect the spatial frequency content of the stimulus. By

virtue of the linear spatial filtering properties of the early

visual system, alterations in spatial frequency content

will be confounded with alterations in effective contrast.

Therefore, to constrain models for texture segrega-
tion, two kinds of stimuli have been particularly useful:

‘‘independent identically distributed’’ (IID) textures,

and ‘‘isodipole’’ texture pairs. In an IID texture, the

luminance in each pixel is chosen independently from

a specified distribution. Textures generated in this fash-

ion have no spatial correlations, and thus allow study of

visual sensitivity to distributions of gray levels (‘‘histo-

gram statistics’’) in the absence of form cues. Discrimi-
nation between IID textures can be accounted for on

the basis of sensitivity to a small number of specific his-

togram statistics (Chubb, Econopouly, & Landy, 1994).

Isodipole texture pairs, conversely, are typically con-

structed from only two luminance values, and have

strong spatial correlations. Two isodipole texture pairs,

by definition, have the same pairwise correlations (‘‘di-

pole statistics’’) at all separations, but have higher-order
correlations that differ. They thus cannot be distin-

guished by linear or quadratic mechanisms, even after

linear filtering, and they also share the same effective

contrast. Here we consider fourth-order correlations,

and use the ‘‘even and odd’’ isodipole textures (Julesz,

Gilbert, & Victor, 1978; Pollack, 1971a, 1971b, 1972,

1973) as exemplars (see Appendix A). Sensitivity of cor-

tical (Purpura, Victor, & Katz, 1994) but not lateral
geniculate neurons (Victor, 1986) to these fourth-order

statistics has been demonstrated experimentally.

Although consideration of IID and isodipole textures

is analytically convenient, few if any natural textures are

defined purely on the basis of local histogram statistics,

and few if any texture boundaries are examples of

changes in higher-order statistics without associated

changes in lower-order statistics. However, there has
been little in the way of systematic study of mixtures

of these statistical cues, and little is known about how

they interact. This paper is intended as an initial explo-

ration of these interactions. To examine the interaction

of isodipole and luminance statistics, we construct a

two-parameter space of binary textures, in which isodi-

pole and luminance statistics can be independently spec-

ified. We consider only binary textures, and use the
‘‘even and odd’’ textures as a starting point. The

strength of the fourth-order correlation is parameterized
by a, where a = 1 denotes the even texture, a = �1 de-

notes the odd texture, and a = 0 denotes a completely

random texture. For all values of a, these textures have

half of their checks black, and half white. We then mod-

ify their histogram statistics (the fraction of checks that

are white) in a manner that preserves the equality of
higher-order statistics. This results in a two-parameter

family of textures T(c,a) (Fig. 1A), in which a first

parameter, c, describes the extent of luminance bias,

and a second parameter, a, describes the strength of

the fourth-order statistics. Textures for which c = 0 are

the original isodipole textures, with correlation strength

specified by a. Textures for which a = 0 are a specific

family of binary textures with luminance bias specified
by c. By examining discrimination of textures defined

in the (c,a)-plane, we can determine whether these cues

interact, and if so, how.
2. Methods

2.1. Subjects and training

Studies were conducted in four normal subjects

(2 male, 2 female), ages 25–51. Two subjects (AO and

CC) were naı̈ve to the purpose of the experiment. All

subjects were practiced psychophysical observers in

tasks involving visual textures and had visual acuities

(corrected if necessary) of 20/20 or better.

2.2. Stimuli

Stimuli were presented on a PC programmed in Mat-

lab with the PsychToolbox extensions (Brainard, 1997).

Stimuli subtended an 11.6� square when viewed binocu-

larly at 57cm. The monitor had a luminance 57cd/m2

and a refresh rate of 75Hz. Contrast was 1.0, and pres-

entation duration was 160 ms.
Stimuli consisted of a 64 · 64 element array of black

and white checks centered on a background of mean

gray luminance. A 16 · 64 element rectangle within this

array (the ‘‘target’’) was filled according to one rule for

texture generation, designated the ‘‘foreground’’ texture.

The remaining checks were colored according to a differ-

ent rule, designated the ‘‘background’’ texture. The fore-

ground could occupy any of four positions with equal
probability: vertically oriented in the middle of the left

or right half of the array, or horizontally oriented in

the middle of the top or bottom half of the array (see

Fig. 1C for examples).

Textures (both foreground and background) were

drawn from a two-parameter family T(c,a), illustrated
in Fig. 1A and described in greater detail in Appendix

B. The parameter c denotes the extent of luminance bias.
The fraction of white checks is equal to 1

2
ð1þ cÞ and the

fraction of black checks is equal to 1
2
ð1� cÞ, so that c = 1



Fig. 1. (A) The two-parameter space of texture stimuli T(c,a), in which a determines the strength of the fourth-order correlation, and c determines

the luminance bias. Although a and c individually can range from �1 to 1, only limited values of the parameter pairs (c,a) can be realized. This

restricted two-parameter space is illustrated by the textured region of the (c,a)-plane. At each point T(c,a) in this region, the corresponding texture

rule T(c,a) is used. In the stimuli used in the experiment, discrete values of a and c were used to create uniform texture arrays. The locations of the

specific values used are illustrated in panel B. In panels A and B, the origin (c,a) (0,0) is at the center. (C) Stimuli corresponding to the three labeled

points in panel B. As indicated, each point corresponds to a particular (c,a)-pair, with values as indicated. For each (c,a)-pair, two stimuli

(corresponding to the two experimental conditions) are shown: one stimulus consisting of a target patch of texture T(c,a) on a background of texture

T(0,0), and another stimulus consisting of a target patch of texture T(0,0) on a background of texture T(c,a). In C1((c,a) = (0,0.85), ‘‘even’’), the

targets are located at the bottom of the stimuli; in C2((c,a) = (0.125,0.58), combined ‘‘bright’’ and ‘‘even’’), at the left of the stimuli, and in

C3((c,a) = (0.25,0), ‘‘bright’’), at the top of the stimuli.
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denotes a texture that is completely white, c = �1 denotes

a texture that is completely black, and c = 0 denotes a tex-

ture in which half of the checks are white, and half are

black. The second parameter, a, determines the strength
of the fourth-order correlation, where a = 1 denotes the

even texture, a = �1 denotes the odd texture, and a = 0

denotes a texture with no fourth-order correlations.

For each value of c, variations in a leave the second-

and third-order statistics unchanged. As described in

Appendix B, there is a restricted two-parameter space

of (c,a)-pairs for which these properties can be realized.

This two-parameter space, from which all foreground
and background textures are drawn, is illustrated in

Fig. 1A.

The specific values of (c,a)-pairs used in these exper-

iments are shown in Fig. 1B. Along each of the cardinal

axes, five values were chosen, equally spaced on a linear
scale up to a maximum value of jcj = 0.25 or jaj = 0.85.

Along the diagonals, one set of values was chosen at

jcj = 0.125 and jaj = 0.58, and a second set was chosen

at 70% of the distance from the origin to these points
(jcj = 0.09 and jaj = 0.41). This yielded 20 (c,a)-pairs
along the axes, and eight along the diagonals (see Fig.

1B). For each (c,a)-pair, stimuli were constructed with

that texture as foreground and the random ((c,a) =
(0,0)) texture as background, and with the assignments

of the textures reversed (40 assignments along the axes,

16 along the diagonals)—see examples in Fig. 1C. In

each experimental block, these assignments were pre-
sented with the target in each of the four possible posi-

tions, yielding 160 stimuli along the cardinal axes, and

64 along the diagonals. Two realizations of the stimuli

along the diagonals were included in each block, thus

yielding a total of 288 = 160 + 2 · 64 = trials per block.
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The scan of a CRT necessarily induces small correla-

tions in luminance between adjacent pixels along the ras-

ter lines, which, to a first approximation, is akin to an

anisotropic blurring filter. However, we doubt that these

artifacts played a significant role in these experiments,

since (a) the texture checks were approximately 8 display
pixels wide, (b) there was no difference in performance

for targets that were horizontal or vertical, and (c) all

of the stimuli had the same (flat) spectrum.

2.3. Procedure

The subject�s task was to identify the position of the

target (a four-alternative forced choice texture segrega-
tion task). Subjects were told that it was equally likely

to be in any of four locations (top, right, bottom, left),

and were instructed to maintain central fixation on a

one-pixel dot, rather than to attempt to scan the stimu-

lus. This task is essentially identical to the one used by

Chubb and coworkers in the study of IID textures

(Chubb, Landy, & Econopouly, 2004). Subjects prac-

ticed to stability (2–3h) prior to data collection. Feed-
back on error was provided with a tone in practice

and data collection runs. After performance stabilized,

blocks of the 288 trials described above (with trials pre-

sented in randomized order) were presented. We col-

lected data from 15 such blocks (4320 trials per

subject), grouped into three or four experimental

sessions.
3. Results

3.1. Performance along cardinal and diagonal axes

We first describe performance in the texture segrega-

tion task along the cardinal axes of the stimulus space of

Fig. 1. Along the horizontal axis c, target and back-
ground differed only in first-order (luminance) histo-

gram statistics but not in fourth-order statistics. Along

the vertical axis a, target and background differed in

fourth-order statistics but not in luminance.

Performance for the four observers is shown in the in-

sets of Fig. 2. The sigmoidal dependence of fraction cor-

rect on the strength of the statistical cue (a or c)
suggested fitting these data with Weibull functions (Wei-
bull, 1951). Since chance performance was 0.25, the

model along the isodipole axis was

fmodelð0; aÞ ¼
1� 3

4
exp � a

aisoþ

��� ���b� �
;

1� 3
4
exp � a

aiso�

��� ���b� �
8>>><
>>>:

ð1Þ

with the first alternative (scale parameter aiso+) chosen

for a > 0, and the second alternative (scale parameter
aiso�) chosen for a < 0. Similarly, the model along the

luminance axis was

fmodelðc; 0Þ ¼
1� 3

4
exp � c

alumþ

��� ���b� �
;

1� 3
4
exp � c

alum�

��� ���b� �
8>>><
>>>:

ð2Þ

with the first alternative (scale parameter alum+) chosen

for c > 0, and the second alternative (scale parameter

alum�) chosen for c < 0. Thus, we constructed fits sepa-
rately along the positive. and negative axes, for each

of the four cardinal directions. The model was deter-

mined by the Weibull exponent b and the four scale

parameters aiso+, aiso�, alum+, and alum�. We used a sepa-

rate set of scale parameters for the trials in which (i) the

target was structured and the background was random

(black in Fig. 2), or (ii) the target was random and the

background was structured (gray in Fig. 2). However,
a single Weibull exponent b was used for all eight curves

within each subject. Thus, for each subject, nine param-

eters were simultaneously determined via maximum like-

lihood: two sets of values of the four scale parameters,

and a single value of the Weibull exponent b. This fit

was constrained by 40 measurements: 4 directions ·
5 distances · 2 target conditions. Allowing the Weibull

exponent to vary according to direction and/or target
condition produced only minimal improvement in the

fits.

The fitted parameters are shown in Table 1, along

with confidence limits as determined by a bootstrap pro-

cedure. To calculate bootstrap confidence limits, we pro-

ceeded as follows: in a given single simulation (of the

1000 performed for each subject), for each condition

(five conditions along each main half-axis and two con-
ditions along each half-diagonal), we took the simulated

data in that condition from a binomial distribution

based on the observed proportion correct, and number

of trials in that condition. The surrogate data were then

fitted by maximum likelihood, and confidence limits

were then calculated from these surrogate fits via the

standard bootstrap procedure (Efron & Tibshirani,

1998).
The scale parameters in the positive and negative iso-

dipole (a)-direction, aiso+ and aiso� were three to fourfold

higher than the scale parameters in the positive and neg-

ative luminance (c)-direction, alum+ and alum�, indicating

a corresponding ratio of sensitivities. There was no con-

sistent difference in the scale parameter along the posi-

tive versus the negative c-direction. However, for three

of the four subjects, (AO, MC, and CFC), the scale
parameter was significantly smaller in the positive isodi-

pole (even, a > 0) direction than in the negative isodi-

pole (odd, a < 0) direction for the random-target

conditions, indicating a lower threshold for detecting a

random target on an even background, than on an
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Fig. 2. Psychophysical performance on the texture segregation task for the four subjects. Insets show observed fraction correct for stimuli along each

of the cardinal axes (data points), along with the Weibull functions (curves) fit via maximum likelihood. Black curves correspond to conditions in

which the target was structured and the background was random; gray curves correspond to conditions in which the target was random and the

background was structured. Main graphs compare these Weibull functions (smooth curves) with the observed fraction correct for stimuli along

adjacent diagonal directions. The directions corresponding to the isolated data points are designated as follows: squares, a > 0; triangles, a < 0;

symbols without a central dot, c > 0; symbols with a central dot, c < 0. Error bars (shown only in the upper main graph and upper inset) indicate 95%

confidence limits determined by binomial statistics.
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odd background. This difference reversed for two sub-

jects (AO and MC) when the target was structured
and the background was even.

The main graphs of Fig. 2 compare performance

along the diagonal directions of the stimulus space (iso-

lated symbols) with the performance along the adjacent

cardinal directions (smooth curves taken from the corre-

sponding insets). In the conditions represented by the

isolated symbols, target and background differed both

in local histogram statistics and fourth-order statistics.
In all cases, performance was better than predicted from

the individual cues in isolation. This relationship held in
all four diagonal directions and in all four subjects.

These data thus indicate that isodipole (a) and lumi-

nance (c) cues could be combined.

3.2. Error patterns

For three of the four subjects, we collected a detailed

log of the error patterns in some or all of the blocks.



Table 1

Maximum-likelihood estimates and 95% confidence limits on model parameters of Eq. (4) for the four subjects

Parameter Subject AO Subject MC Subject CFC Subject CC

Random background

Structured target

alum+ 0.140 0.152 0.143 0.164

(0.128, 0.152) (0.132, 0.169) (0.129, 0.159) (0.149, 0.183)

alum� 0.161 0.154 0.125 0.177

(0.146, 0.175) (0.139, 0.174) (0.112, 0.137) (0.159, 0.201)

aiso+ 0.533 0.570 0.438 0.447

(0.497, 0.573) (0.526, 0.623) (0.401, 0.477) (0.419, 0.488)

aiso� 0.490 0.447 0.444 0.477

(0.452, 0.529) (0.404, 0.495) (0.406, 0.485) (0.447, 0.525)

Random target

Structured background

alum+ 0.124 0.137 0.121 0.124

(0.113, 0.136) (0.125, 0.155) (0.108, 0.134) (0.112, 0.138)

alum� 0.129 0.136 0.156 0.120

(0.117, 0.141) (0.119, 0.150) (0.142, 0.172) (0.094, 0.132)

aiso+ 0.444 0.409 0.358 0.493

(0.411, 0.478) (0.379, 0.493) (0.328, 0.387) (0.458, 0.563)

aiso� 0.649 0.646 0.454 0.438

(0.597, 0.709) (0.590, 0.712) (0.413, 0.492) (0.406, 0.504)

Weibull exponent b 2.570 2.368 2.131 2.564

(2.328, 2.860) (2.005, 2.694) (1.937, 2.357) (2.233, 2.839)

Minkowski exponent m 2.350 2.114 2.143 2.386

(2.047, 2.857) (1.838, 2.721) (1.849, 2.539) (2.029, 3.068)

Confidence limits (95%) were determined by a bootstrap.
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When wrong, subjects chose the position opposite to

that of the target disproportionately often. If errors were

made at random, each false position would account for

1/3 of the errors. However, we found that the opposite

position was selected in 42% of the error trials (AO),

43% of the error trials (MC), and 45% of the error trials

(CC). This pattern of performance, which was stable

over time, suggests that subjects were able to detect
the orientation but not position of the target boundary.

No subject had a clear bias for left versus right-sided tar-

gets, but two subjects (AO and CC) had a response bias

directed towards the bottom target position and one

subject (MC) had a smaller response bias directed to-

wards the upper target position. These biases were inde-

pendent of the parameters (c,a) of the target.
3.3. Analysis of cue combination

To analyze how the isodipole and luminance cues

combine, we considered a range of combination rules,

based on Minkowski geometries. In a combination rule

corresponding to a Minkowski geometry with exponent

m (Poirson & Wandell, 1990), the distance from the ori-

gin to a general point (c,a), here denoted d(c,a), is pos-
tulated to be related to the distances along the axes,

d(0,a) and d(c, 0) by the following rule:

dðc; aÞ ¼ ðdðc; 0Þm þ dð0; aÞmÞ1=m: ð3Þ
For m = 2, Eq. (3) is the Pythagorean rule, and the dis-

tances correspond to a Euclidean distance. In the limit

m ! 1, Eq. (3) states that d(c,a) is the maximum of

d(0,a) and d(c, 0), i.e., there is no subthreshold summa-

tion. At the other extreme (m = 1), the distances com-

bine according to ‘‘city block’’ geometry.

To carry out this analysis, we fitted the psychophysi-

cal performance data to Weibull functions along the
examined eight directions. The scale parameter of the

Weibull functions along the four diagonal directions

was determined by a Minkowski combination of the

scale parameters alum and aiso along the adjacent coordi-

nate axes. Thus, the observed fraction correct data f(c,a)
were fit to the following model:

fmodelðc; aÞ ¼ 1� 3

4
exp � c

alum

����
����
m

þ a
aiso

����
����
m� �b=m

 !
: ð4Þ

The scale parameter alum is chosen to be one of the two

values, alum+ or alum�, depending on the sign of c, and
similarly, the scale parameter aiso is chosen to be aiso+,
and aiso�, depending on the sign of a. The parameters

alum+, alum�, aiso+, and aiso� are also allowed to depend

on whether the target was structured or random. As in

the cardinal-axis fits, only a single value of the Weibull

exponent b and the Minkowski exponent m were used.

Thus, a tenth parameter (the Minkowski exponent)

was added to the nine parameters determined by the car-

dinal-axis fits. This additional parameter was constrained
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by 16 data points (performance in the four diagonal

directions, at two levels, and for two target conditions).

Values of m obtained by a maximum-likelihood fitting

procedure, and confidence limits (determined as above

via a bootstrap procedure) are given in the final row

of Table 1.
Across subjects, the results are remarkably consistent.

In all the four subjects, the Minkowski exponent m clus-

ters around values just slightly higher than 2. Thus, the

two cues appear to combine in a Euclidean fashion.

Moreover, the Weibull exponent b and the Minkow-

ski exponent m are statistically indistinguishable in all

four subjects. Equality of these exponents (for any

geometry specified by m) corresponds to probability
summation. This can be seen as follows. If m = b, Eq.

(4) can be rewritten

fmodelðc; aÞ ¼ 1� 3

4
exp � c

alum

����
����
b

 !
exp � a

aiso

����
����
b

 !
:

ð5Þ

Since this is a 4-alternative forced choice paradigm, the

model fraction correct fmodel is related to the model hit

rate hmodel by fmodel ¼ hmodel þ 1
4
ð1� hmodelÞ ¼ 1

4
þ 3

4
hmodel.

Substituting this into Eq. (5) leads to

1� hmodelðc; aÞ ¼ exp � c
alum

����
����
b

 !
exp � a

aiso

����
����
b

 !
: ð6Þ

It follows (if m = b) that

1� hmodelðc; aÞ ¼ ð1� hmodelðc; 0ÞÞð1� hmodelð0; aÞÞ; ð7Þ

or

hmodelðc; aÞ ¼ hmodelðc; 0Þ þ hmodelð0; aÞ
� hmodelðc; 0Þhmodelð0; aÞ ð8Þ

as required for probability summation of the contribu-

tions of the two components.
3.4. Isodiscrimination contours

The Minkowski exponent determines the shape of the

iso-discrimination contours. In the Euclidean case
(m = 2), each quadrant of the iso-discrimination contour

is a sector of an ellipse. In the limit m ! 1, the iso-

discrimination contours form rectangles aligned with

the cardinal axes. For m = 1, the iso-discrimination con-

tours are quadrilaterals, with their vertices on the cardi-

nal axes.

In general, the relative extent of the iso-discrimina-

tion contour along each axis also depends on the crite-
rion fraction correct. However, when m = b, the shape

of the iso-discrimination contour (but not its size) is

independent of the choice of criterion. When m = b,
the fraction correct along any 0 direction c = zc0,
a = za0 given by

fmodelðzc0; za0Þ ¼ 1� 3

4
exp

z
aðc0; a0Þ

����
����

� �b

ð9Þ

with

1

aðc0; a0Þ

����
����
b

¼ c0
alum

����
����
b

þ a0
aiso

����
����
b

: ð10Þ

Eq. (10) states that the shape of the psychophysical func-

tion is characterized by the same Weibull exponent b, for

all the directions in the (c,a) plane. Consequently, the
distance from the origin to an iso-discrimination contour

in the direction c = zc0, a = za0 is proportional to

a(c0,a0). The proportionality constant depends on the

criterion fraction correct and b, but not on the direction.
Thus, when the Minkowski and Weibull exponents

are identical (or nearly so), the shape of the iso-discrim-

ination contour is a particularly useful way to summarize

the perceptual data. The iso-discrimination contours are

plotted in Fig. 3 for the four subjects, for a fraction cor-

rect of 62.5% (halfway between chance and perfect per-

formance). As is expected from the finding that

b � m � 2, these contours are very nearly elliptical.
The main deviation from ellipticity in Fig. 3 was that

the extent of the iso-discrimination contours along the

positive and negative axes were not the same, and also

depended on whether the target was structured and the

background was random (black curves), or whether

the target was random and the background was struc-

tured (gray curves). In subjects AO and MC, an even

texture (a > 0) was easier to discriminate as background
than as foreground, while an odd texture (a < 0) was

easier to discriminate as foreground than as back-

ground. Subject CFC showed the foreground versus

background asymmetry only for even textures. Subject

CC did not show these asymmetries. Asymmetries were

also seen along the c-axis, but these were less consistent:
bright texture (c > 0) easier to discriminate as back-

ground than foreground for subject CC; dark texture
(c < 0) easier to discriminate as background than fore-

ground for subjects AO and CC; but easier to discrimi-

nate as foreground than background for subject CFC.

3.5. Intrinsic discriminability of the textures

The psychophysical findings have several features. (i)

Sensitivity to first-order histogram statistics c is three to
four times greater than sensitivity to local fourth-order

statistics a (compare values of alumþ and alum� to aisoþ
and aiso� in Table 1). (ii) Three of the four subjects show

an asymmetry between the even (+a) and odd (�a)
directions (subjects AO, MC, and CFC). (iii) In the sub-

jects that show this asymmetry, the asymmetry is in

opposite directions for a structured target on a random



Fig. 3. Isodiscrimination contours for the four subjects. Data points indicate the coordinates (c,a) for 62.5% correct for discriminating a structured

target from a random background (black), or a random target from a structured background (gray), as interpolated from the psychometric functions

of Fig. 2, fitted separately along each direction. The error bars correspond to 95% confidence limits. The curves correspond to the model of Eq. (4).
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background, versus a random target on a structured

background. (iv) In all subjects, the cues combine in

an approximately Euclidean fashion. We next determine

to what extent these findings might be due to the statis-

tical properties of the stimuli themselves, rather than
revealing the limitations of visual processing.

Standard information-theoretic analysis (Cover &

Thomas, 1991; Latham, 2002) provides a way to quan-

tify the extent to which two probability distributions

are discriminable. Suppose P and Q are two probability

distributions on a set of elements xj, with pj representing

the frequency of xj in P, and qj representing the fre-

quency of xj in Q. Consider an observer who expects
that a stream of observations is drawn from Q (‘‘the

background’’), and whose task is to detect when the

source of the observations is switched to P (‘‘the fore-

ground’’). Under these circumstances, the minimum

number of observations required to reach a criterion

level of performance is proportional to the Kullback–

Leibler divergence of P and Q, K(PkQ). This quantity

is defined by

KðPkQÞ ¼
X
j

pjlog2
pj
qj

 !
: ð11Þ

The above definition can be extended to the situation in

which P and Q represent texture ensembles, and the

‘‘elements’’ xj represent indefinitely large samples of

the textures. As we show in Appendix B, when the tex-
tures are generated from Markov random fields (as they

are here), the Kullback–Leibler divergence (per unit

area) can be evaluated in closed form from the 2 · 2

block probabilities. Thus, lines of constant intrinsic dis-

criminability correspond to lines of constant Kullback–
Leibler divergence.

Fig. 4 shows contour lines for the Kullback–Leibler

divergences corresponding to discriminating a struc-

tured texture from a random background (black), or a

random texture from a structured background (gray),

plotted in the (c,a)-space of the stimuli. Note that the

central contour lines are nearly circular (see also Eq.

(38) of Appendix B), and there is little deviation between
the black and gray contours. Thus, in contrast to our

experimental results, lines of constant intrinsic discrim-

inability contours do not show (i) elongation along the

a-axis, (ii) asymmetry between the positive and negative

directions along either the a-axis or the c-axis, or (iii) a
foreground-background asymmetry. However, the anal-

ysis of intrinsic discriminability does predict the ob-

served Euclidean combination of cues within the range
examined.
4. Discussion

In this report, we systematically investigate discrimi-

nation of textures that differ both in histogram statistics



Fig. 4. Intrinsic discriminability of textures. Contour lines are lines of

equal Kullback–Leibler divergences corresponding to discriminating a

structured target from a random background (black), or a random

target from a structured background (gray). Each contour line

represents 0.05 bits.
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and correlation structure. We begin by summarizing our

findings, and then consider the possible mechanisms that
may underlie our findings.

We found that the absolute sensitivity to differences

in luminance statistics (as parameterized by c) was

approximately four times greater than sensitivity to dif-

ferences in isodipole statistics (as parameterized by a).
Luminance and isodipole cues combined according to

probability summation in all subjects (concordance of

the Minkowski exponent m and the Weibull exponent
b). We note, however, that consistency with probability

summation does not imply that probability summation

is actually performed; other mechanisms might lead to

the same behavioral outcome.

Perceptual distances combined in a manner rigorously

consistent with a Euclidean distance in two subjects; in

the other two subjects, the confidence limits for the Min-

kowski exponent extended to 2.05, but not 2. Experimen-
tal identification of deviations from Euclidean distances

can be difficult (Poirson & Wandell, 1990), even when

such deviations are present. However, no subject�s data
were consistent with (95% confidence limits) a Minkow-

ski exponent less than 1.8, or greater than 3.1.

We also found modest asymmetries in the salience of

a texture patch, contingent on the sign of the difference

in isodipole statistics: A random (a = c = 0) patch on an
even (a > 0) background was more readily detected than

an even patch on a random background. The opposite

was true for the odd (a < 0) textures. Foreground-back-

ground asymmetries for first-order histogram statistics

were present but less prominent or consistent.
4.1. Efficiency of the human observer

The above analysis of the intrinsic discriminability of

the textures shows that these features of the data reflect

aspects of human performance, not of the textures them-

selves. However, this analysis, strictly speaking, is not an
‘‘ideal observer.’’ analysis. This is because we examined

the intrinsic discriminability of the textures, not the ideal

strategy for performing this task. A true ideal observer

knows the 56 possible pairings of foreground and back-

ground statistics, and simply inspects the stimulus to

determine (in a Bayesian fashion) which is most likely.

Such a calculation is laborious and gives little insight

into human performance, since the strategy (though
ideal) is highly implausible.

Nevertheless, an estimate of the absolute efficiency of

the human observer can be obtained in two ways. In the

first approach, we choose texture parameters that led to

close to perfect performance among the subjects (Fig. 2)

for the entire 16 · 64 = 1024-check target: a � 0.8 for

even versus random, and c � 0.25 for luminance-biased

versus random. Such near-perfect performance requires
approximately 2 bits of information (distinguishing be-

tween one of four equally-likely alternatives). Based on

the calculation of Eq. (34), we can determine the size

(n1 · n2) of a texture patch required to provide 2 bits

of information in the Kullback–Leibler sense, based

on the mismatch between two Markov random fields.

The ratio of this critical value of n1 · n2 (the size of

the target required by information-theoretic criteria) to
16 · 64 = 1024 (the size of the target required by the

human observer), is thus an estimate of the human ob-

server�s absolute efficiency. These calculations are sum-

marized in Table 2. Note that for luminance statistics,

the absolute efficiency is about 4%. This is about an or-

der of magnitude lower than the efficiency of a human

observer for detecting differences in dot density (Barlow,

1978). For isodipole statistics, the absolute efficiency is
even lower, about 0.3%.

Another way to compare human performance to that

of the ideal observer is to determine the level of statisti-

cal structure that would be required for the ideal obser-

ver to perform at near perfect levels, given access to a

target of size 16 · 64 = 1024. Since the above analysis

indicates that the values of a and c will be small, we

can use Eq. (38) of Appendix B to determine the values
of a and c at which 1024K0 provides the requisite 2 bits

of information. This analysis indicates that near-perfect

performance would be expected when (c,a) lies on a cir-

cle of radius 0.052. Such textures are virtually indistin-

guishable from random for a human observer, even

with scrutiny. Human performance becomes close to

perfect only with a fivefold higher level of structure

along the luminance (c) axis, or a 15-fold higher level
of structure along the isodipole (a) axis. Thus, looked
at either way, human absolute efficiency is very low



Table 2

Efficiency analysis

Target (cP,aP) Background (cQ,aQ) K0 Critical n1n2 Estimated absolute efficiency

(0, ±0.8) (0,0) 0.531 3.8 0.0037

(0,0) (0, ±0.8) 0.737 2.7 0.0027

(±0.25, 0) (0,0) 0.046 43.8 0.0429

(0,0) (±0.25, 0) 0.047 42.9 0.0419

The first two columns specify texture pairs for which human observers performed at close to perfect levels. The column labeled K0 represents the

discriminability of the texture pairs, quantified as the Kullback–Leibler divergence per unit check (Eq. (35)). The fourth column is the number of

checks required for the Kullback–Leibler divergence to reach 2 bits. The fifth column is an estimated absolute efficiency, equal to the ratio of the

number of critical checks to the number of checks required by the human observer, 1024.

1 It should be noted, however, that previous analyses of the

‘‘brightness’’ and ‘‘blackshot’’ systems has used only IID textures in

which black checks occurred very sparsely. It is not clear that the

documented behavior of the blackshot system will generalize to binary

IID textures in which the proportion of black checks is much higher.
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along the luminance axis, and several times lower along

the isodipole axis.

4.2. What image statistics are used to perform these

discriminations?

By definition, an IID texture is determined by the

probabilities assigned to each luminance value i.e., a
histogram of unit area. Studies of IID textures have

shown that a rather complete account of segregation

can be framed in terms of three specific statistics, i.e.,

linear functionals of this histogram (Chubb et al.,

2004). The first two statistics may correspond approxi-

mately to mean and variance. Although the sensitivity

functions characterizing these two statistics have not

been measured, it has been established that (1) neither
of these two statistics is significantly sensitive to third-

or higher-order moments of the texture histogram, and

(2) these two statistics jointly provide sensitivity to

independent variations of both texture mean and tex-

ture variance. For our purposes, it suffices to observe

that at least one of these first two statistics is sensitive

to overall texture brightness as reflected by the histo-

gram mean. The third statistic, ‘‘blackshot’’, is sensitive
to contrasts near the black end of the range, and insen-

sitive to the lighter contrasts. In this account, these

three statistics are independently measured by the vis-

ual system. Two textures are discriminable when they

are sufficiently different along at least one or more of

these measures. However, the possibility that sub-

threshold differences along two or more measures can

combine to result in discrimination has not been explic-
itly ruled out.

Spatial correlations are intrinsically much more diffi-

cult to parameterize than univariate luminance distribu-

tions. Consequently, our understanding of the role of

spatial correlations underlying texture discrimination is

far less comprehensive. Since spatial filtering confounds

histogram statistics and second-order correlations, it is

convenient to focus on isodipole texture pairs, namely,
texture pairs that share the same luminance distribution

and power spectrum. Investigations of discrimination of

isodipole texture pairs have indicated that spatial

arrangement of higher-order correlations, not order of
correlation per se, determines whether textures can be

discriminated (Victor & Conte, 1991). An extensive set

of discriminability data can be accounted for on the

basis of a local analysis that detects aligned contours

in a nonlinear fashion (Victor & Conte, 1991), in accord

with other observations of local grouping operations

(Field, Hayes, & Hess, 1993).

The iso-discrimination contours observed in Fig. 3
are well fit by ellipses whose major and minor axes (cor-

responding to the principal components of salience) are

aligned with the a and c axes. Although it is parsimoni-

ous to conclude that the underlying statistics being ex-

tracted by human vision are a and c, the data allow

other possibilities. As observed by Poirson and Wandell

(1990), if the cue-combination rule is Euclidean (as is

approximately true in the current study), then the axes
of the underlying mechanisms are only defined up to

an arbitrary rotation of the principal components.

Moreover, the statistics used by the visual system might

be distinct from those used to define a and c, but highly
correlated with these parameters for the specific textures

used here.

4.2.1. Inferences from studies with IID textures

Experiments with IID textures (Chubb et al., 2004)

suggest that human vision has at least two systems, at

least one brightness-sensitive system as well as the black-

shot system, that are relevant to the judgments in the

current experiment. Suppose that when applied to an

IID texture T, the brightness-sensitive system extracts

a statistic M(T) approximately equal to the mean Weber

contrast of the texture. By contrast, the blackshot sys-
tem extracts a statistic B(T) approximately equal to

the proportion of checks in the texture that are black

(i.e., that have Weber contrast close to �1.0) 1. For

the binary IID textures T(c, 0) the statistics B(T) and

M(T) are highly (negatively) correlated, since all checks

are either black or white. Thus the current study does
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not permit us to dissociate the influences on perform-

ance of the brightness and blackshot systems. Rather,

we are restricted to making inferences about the com-

bined influence on performance exerted by the amalgam

of blackshot and brightness systems (the ‘‘B&B

amalgam’’).
Because the brightness and blackshot systems have

only been investigated using IID textures, nothing is

known about their possible sensitivity to spatial struc-

ture. Our results bear on this point. Suppose that the

components of the B&B amalgam were sensitive to the

statistical features controlled by a. For example, sup-

pose that the occurrence in a texture T of an all-black,

two-by-two cluster of checks increases the level of black-
shot by more than the increase produced by four iso-

lated black checks. Let performance be near threshold

for discriminating a texture T(c0,0) from T(0,0). Since

T(0,0) is IID and T(c0,0) is nearly so, we assume that

the B&B amalgam alone drives discrimination between

them. If c is positive (i.e., if there are fewer black checks

in T(c0,0) than in T(0,0)), then B(T(c0,0)) < B(T(0,0)).

Under these assumptions, B(T(c0,a)) will be an increas-
ing function of a (since raising a increases the frequency

of 2 · 2 rectangles of black checks). That is, for a > 0,

B(T(c0,a)) moves towards B(T(0,0)), leading to poorer

performance. Similarly, for a < 0, B(T(c0,a)) moves

away from B(T(0,0)), leading to improved discrimina-

tion of T(c0,a) from T(0,0).

Thus, under the hypothetical scenario in which the

blackshot mechanism is selectively activated by 2 · 2
rectangles of black checks, an iso-discrimination con-

tour running through T(c0,0) would be a line of positive

slope (rather than being vertical as observed in the cur-

rent study). A similar prediction would follow from the

hypothesis that the brightness mechanism was influ-

enced by a, or, indeed, for any influence of a on the com-

ponents of the B&B amalgam that does not cancel. Since

we observe nearly perfect alignment of the major and
minor axes of the threshold contours with the coordi-

nate axes in Fig. 3, the most parsimonious conclusion

is that neither the brightness nor the blackshot mecha-

nism is differentially sensitive to the aspects of spatial

structure controlled by a.

4.2.2. No detectable role for histogram statistics on a

larger scale

The stimuli are designed so that variations in the iso-

dipole-strength parameter a do not change the fraction

of checks that are black or white. Thus, mechanisms

sensitive to the histogram statistics of the luminances

of individual checks cannot be affected by changes in

a. However, it is possible that mechanisms sensitive to

the histogram statistics of the checks also analyze the

image in larger local chunks, e.g., via the analysis of
the distribution of the total luminance in patches of var-

ious sizes. Since alterations in a affect local correlations,
these alterations necessarily affect the distribution of the

summed luminances in larger patches of the texture, e.g.,

those containing m · n checks. Mean and variance of

these distributions are unaffected by a, because of the

isodipole property. In principle, the blackshot mecha-

nism of Chubb and coworkers (Chubb et al., 2004),
which is sensitive to the fraction of the histogram distri-

bution that is very close to black, might provide a dis-

crimination cue were it able to operate on the statistics

of these larger patches. However, as outlined below,

the basic idea of the preceding section shows that this

is not a likely contributor to our results.

Regions containing only black are encountered with

increasing frequency as the value of c becomes increas-
ingly negative, but only if a is positive (i.e., even). This

is because when a < 0, the presence of three black checks

within a 2 · 2 patch biases the fourth check to be

white—thus reducing the likelihood of an all-black

2 · 2 patch. The effect of nonzero values of a on the

probability of larger all-black patches is in the same

direction, but larger—because the above phenomenon

operates within each 2 · 2 sub-patch. Thus, the signa-
ture of a blackshot mechanism selective for larger

patches is that discrimination would be enhanced specif-

ically in the quadrant of the stimulus space in which

a > 0 and c < 0. Since no such asymmetry is observed,

either in the psychometric functions (Fig. 2) or in the

manner in which the data points deviate from the iso-

discrimination ellipses (Fig. 3), we conclude that there

is no evidence for this kind of mechanism.

4.3. Foreground/background asymmetry

A salient feature of the data for three of our observers

(AO, CFC, and MC) is that for textures T(0,a) tending
toward even from IID (a > 0), a structured target T(0,a)
on a random background T(0,0) is more difficult to

localize than a random target T(0,0) on a structured
background T(0,a). For MC and AO, this pattern is re-

versed for textures tending toward odd from IID: that is,

for a < 0, a target T(0,a) on a background T(0,0) is eas-

ier to localize than a target T(0,0) on a background of

(0,a). Thus, there appears to be a foreground-back-

ground asymmetry, whose signature depends on the sig-

nature of the fourth-order correlation a.

4.3.1. Role of figure/ground

To discuss the possible sources of this asymmetry, let

us assume that discrimination of the textures T(0,a)
from T(0,0) is based on some statistic Q, for which

Q(T(0,a)) is a monotonic function of a. Since the target
is much smaller than the rest of the array, we associate it

with ‘‘figure’’, and we associate the remainder of the

stimulus with ‘‘ground’’. It is of course possible that
the visual system simply has a bias to construe regions

higher in Q as ground. However, there are at least two
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other possibilities that are less ad hoc. Previous authors

(Gurnsey & Browse, 1989; Treisman & Gormican, 1988)

have observed that if salience of some feature can be

rated on a scale, then the component of an image in

which this rating is further from zero has a bias to be fig-

ure, and the component closer to zero has a bias to be
ground. Now consider the possibility that the observer�s
subjective notion of ‘‘random’’ is not located at T(0,0),

but rather, at T(0,arandom) for some arandom > 0. (That

is, a texture that is objectively somewhat ‘‘even’’ appears

subjectively random.) In this case, T(0,a) a would have a

bias to appear as background if

j QðT ð0; aÞÞ � QðT ð0; arandomÞÞ j<
j QðT ð0; 0ÞÞ � QðT ð0; arandomÞÞ j ð12Þ

and as foreground under other circumstances. The effect

would be maximal when a � arandom, since at this point,
T(0,a) is subjectively random, while T(0,0) is subjec-

tively ‘‘odd’’. Moreover, consistent with our observa-

tions, the effect would invert when a < 0.

4.3.2. Role of induced long-range or higher-order

correlations

Another possible contribution to the foreground-

background asymmetry is that detection or measure-

ment of positive values of Q is an accelerating function

of the size of the region in which it is displayed. This size

dependence might arise because, as area increases, there

is more opportunity for long edge-like structures (Victor
& Conte, 1991), or large blob-like structures, to be pre-

sent. These induced features, rather than the four-check

local statistics per se, appear to be important for the iso-

dipole discrimination task. When an even texture serves

as the target, it occupies only 25% of the display area,

and there is less of a chance for such structures to be pre-

sent, than when it serves as the background.
5. Summary

Despite the impressive ability of the visual system to

make use of image statistics, much previous work (Caelli

& Julesz, 1978; Caelli, Julesz, & Gilbert, 1978; Chubb &

Landy, 1991; Julesz, Gilbert, Shepp, & Frisch, 1973;

Julesz et al., 1978; Victor & Conte, 1991, 1996) shows
that only specific kinds of image statistics are in fact used

to discriminate textures. Laboratory analysis of these

statistical cues is facilitated by considering histogram sta-

tistics and spatial correlation structure separately, as iso-

lated in IID and isodipole stimuli. In naturally occurring

textures, these analytically-convenient kinds of cues are

combined, rather than present in isolation. Thus, one

might suspect that the IID and isodipole paradigms have
only limited relevance to natural textures. The present

study encourages optimism that this is not the case.

When IID and isodipole statistics are combined, they ex-
ert independent influences on texture discriminability:

discrimination deviates at most slightly from a Euclidean

combination rule, and probability summation of the two

cues predicts psychophysical discriminability.
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Appendix A. Historical note: the even and odd

isodipole textures

We recently learned from R. Gurnsey that the even

and odd isodipole textures were introduced by Irwin

Pollack in 1971 (Pollack, 1971a, 1971b, 1972, 1973), sev-

eral years before the paper (Julesz et al., 1978) often
cited in this regard. Pollack (Pollack, 1972, 1973) para-

metrically varied the textures (in a manner correspond-

ing precisely to ‘‘propagated decorrelation’’, our

parameter a) to obtain thresholds as a function of the

strength of higher-order correlations. Pollack cites Ju-

lesz (1962) for the basic scheme for construction of

two-dimensional Markov textures. However, although

the scheme that Julesz (1962) introduced for construc-
tion of two-dimensional Markov textures could have

produced the even and odd isodipole textures, Julesz

did not pursue this route. One possible reason was the

influence of a theorem of Rosenblatt and Slepian

(1962), which indicated that one-dimensional textures

produced in this fashion would necessarily be trivial.
Appendix B. Detailed description of textures and their

construction

Here we describe how we create textures T(c,a) spec-
ified by a luminance bias, parameterized by c, and an

even–odd (fourth-order isodipole) bias, parameterized

by a. We then discuss some properties of, and calculate

information-theoretic quantities from, these textures.
c is the difference between the fraction of checks that

are white and the fraction of checks that are black. c = 0

specifies a texture that has an equal number of white and

black checks; c = 1 specifies a texture that has only white

checks, and c = �1 specifies a texture that has only black

checks. a specifies the difference between the fraction

2 · 2 of blocks that contain an even number of white

checks, and the fraction of 2 · 2 blocks that contain
an odd number of white checks. Thus, a = 1 specifies

a texture in which all 2 · 2 blocks contain an even
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number of white checks, and a = �1 specifies a texture

in which all 2 · 2 blocks contain an odd number of white

checks.

To provide a rationale for the strategy used, we first

point out that this construction is not a trivial matter.

Naı̈vely, one might hope that textures corresponding
to a = 0 (no fourth-order correlations) but c 5 0 (lumi-

nance bias) would be some kind of IID texture. But this

is not the case, for the following reason. In an IID tex-

ture that conforms to a particular value of c; 1
2
ð1þ cÞ of

the checks are white, and 1
2
ð1� cÞ of the checks are

black. Since (by the definition of IID) all of the checks

of a 2 · 2 block are determined independently, the frac-

tion of 2 · 2 blocks with n white checks (denoted wn, for
n = 0,1,2,3,4) is readily determined

wn ¼
4

n

� �
1� c
2

� �4�n
1þ c
2

� �n

ð13Þ

Here,
m
n

� �
� m!

n!ðm�nÞ! is the binomial coefficient, namely,

the number of ways of choosing n distinguishable

objects (here, the checks that are colored white) out of

m (here, 4, the number of checks in a 2 · 2 block). The
value of a is determined by the imbalance between the

fraction of 2 · 2 blocks with an even number of white

checks (w0 + w2 + w4) and the fraction of 2 · 2 blocks

with an odd number of white checks (w1 + w3). That is

a ¼
X4
n¼0

ð�1Þnwn ¼ c4;

where the final equality follows from Eq. (13) via

straightforward algebra. The above analysis shows that

the introduction of low-order statistical structure

(c 5 0) in the naı̈ve fashion results in alteration of

high-order statistics (a 5 0). Thus, it is not clear how

to achieve a texture with arbitrarily specified values of
a and c. Moreover, if it is possible to achieve a particular

(c,a)-pair, then it is likely that there is more than one

texture that does so. These textures will differ in long-

range correlations and/or correlations of order <4, that

are not explicitly specified by a and c. It is not immedi-

ately clear whether, among these possibilities, any par-

ticular texture is the most ‘‘natural.’’

For these reasons, we appeal to the maximum-entro-
py formalism (Zhu, Wu, &Mumford, 1998) for textures.

Informally, a ‘‘maximum-entropy’’ texture is a texture

for which certain statistics are specified explicitly (the

‘‘constraints’’), and higher-order statistics are deter-

mined by maximizing the entropy of the process that

generates the texture, subject to these constraints. The

rationale for maximum entropy (see (Zhu et al., 1998)

for further details) is that this procedure does not intro-
duce correlations of higher order or longer range than

the constraints, except as is necessary to conform to

the constraints. The maximum-entropy formalism also
has advantages for modeling, in that the only infor-

mation available to the observer is contained in the con-

straints. However (Zhu et al., 1998), maximum-entropy

constructions involving statistics of order greater than 2

(as in the present case) are not automatic or straight-

forward.
The use of maximum-entropy distributions as a way

to study interactions of statistics of various orders is also

motivated by the theory of information geometry

(Amari, 2001). A pivotal result of this theory is that

maximum entropy distributions combine constraints of

different orders without introducing new dependencies.

Thus, the approach presented here is a natural one for

studying interaction of texture statistics in general.
However, there is no guarantee that maximum entropy

distributions can always be constructed as explicitly as

in the present case.

For our purposes, the constraints are statements

about the probabilities of the various 2 · 2 blocks and

subsets thereof. Most of the constraints involve c, the
parameter that determines the luminance bias. We re-

quire that the probability of a white check (in any posi-
tion) is

pc ¼ 1
2
ð1þ cÞ ð14Þ

We also require second-order constraints, so that the

resulting textures will be isodipole. In particular, we re-

quire that the probability that any designated pair of
checks is white is p2c . This, along with the fact that every

check pair either contains two white checks, one white

and one black check, or two black checks, determines

the rest of the probabilities for two-check blocks:

pc(1�pc) that a designated check is white and the other

check is black, and (1�pc)
2 that both checks are black.

Together, these second-order constraints guarantee that

the second-order statistics of the texture to be generated
match an IID texture based on pc and 1�pc, i.e., the tex-

ture is locally isodipole. (The maximum entropy formal-

ism will then guarantee that the texture is globally

isodipole). We also require that the local third-order sta-

tistics match those of an IID texture. The rationale for

this is that we do not want our construction to create

third-order structure, since no third-order structure is

present in the IID textures or the isodipole textures
c = 0,a 5 0. Thus, within a 2 · 2 block, we require that

the probability that any designated triplet of checks is

white is p3c , that the probability that any designated

two checks are white and one is black is p2cð1� pcÞ , that
the probability that any designated two checks are black

and one is white is pc(1�pc)
2, and that the probability

that any designated triplet of checks is black is

(1�pc)
3. The third-order constraints imply the second-

order constraints, and the second-order constraints

imply the first-order constraints. This is because higher-

order probabilities determine lower-order probabilities.

For example, every pair of checks can be extended to
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a triple by either adding a white check or a black check.

Thus, the probability of a white pair must be equal to

the probability of a white triplet, plus the probability

that two designated checks are white, and the third is

black. To these constraints involving c, we now add a

single constraint that specifies the fourth-order correla-
tion structure a: the difference between the probability

that the number of white checks in a 2 · 2 block is even,

and the probability that the number of white checks in a

2 · 2 block is odd, must be a.
We next observe that all of these constraints are sat-

isfied by assigning the 2 · 2 block probabilities as

follows:

ghðc; aÞ ¼
1

16
ðð1� cÞ4�hð1þ cÞh þ ð�1Þhða� c4ÞÞ; ð15Þ

where h is the number of checks within the 2 · 2 block

that are white. To see that the constraints related to c
are satisfied, we observe from Eq. (15) that

ghþ1ðc; aÞ þ ghðc; aÞ

¼ ð1� cÞ3�hð1þ cÞhþ1 þ ð1� cÞ4�hð1þ cÞh

16

¼ ð1� cÞ3�hð1þ cÞh

8
¼ ð1� pcÞ

3�hphc ;

where the final equality follows from Eq. (14). The left

hand side indicates the decomposition of a third-order

statistic into a pair of fourth-order statistics. For exam-

ple, with h = 3, it corresponds to the probability of a

white triple at a designated location within the 2 · 2

block, since this is equal to the probability that all four

checks are white, g4(c,a), plus the probability that three

designated checks are white and one is black, g3(c,a).
The right hand side indicates that the assigned values

for g (Eq. (15)) conform to the desired constraints.

To see that the constraint related to a is satisfied by

Eq. (15), we note that the difference between the proba-

bility that a 2 · 2 block contains an even number of

white checks, and the probability that it contains an

odd number of white checks, is given by

X4
h¼0

ð�1Þh
4

h

� �
ghðc; aÞ; ð16Þ

since there are
4

h

� �
configurations of 2 · 2 blocks that

have exactly h white checks. Substitution of the value of

Eq. (15) for gh(c,a) into Eq. (16) yields identically a.
Moreover, as a general consequence of the properties

of the maximum-entropy approach, the solution repre-

sented by Eq. (15) must be unique.

Provided that

c4 � 1� j c jð Þ4 6 a 6 c4 þ 1� j c jð Þ4 ð17Þ

all of the expressions on the right hand side of Eq. (15)

are in the range [0,1]. (This follows from the observation
that the extrema of the first term of Eq. (15) must occur

at h = 0 or h = 4. When equality holds, one or more of

the gh(c,a) equal zero, but no two consecutive values

are zero.)

For (c,a)-pairs within the limits specified by Eq. (17),

we next create a Markov random field in which the 2 · 2
blocks have the probabilities specified by Eq. (15). In the

Markov random field formalism of Zhu et al. (1998), the

‘‘neighborhood’’ associated with a given check will be

the eight checks that are adjacent to it, or make contact

with a corner, and the ‘‘cliques’’ consist of (a) all the iso-

lated checks, and (b) all 2 · 2 blocks. This Markov ran-

dom field will necessarily be a maximum-entropy texture

on the entire plane, constrained by the above 2 · 2 block
probabilities.

The Markov random field generation process is

recursive. The recursion is initialized by assigning the

colors of the checks in the first row and first column

according to pc (Eq. (14)). To generate the interior of

the texture, proceed as follows. Suppose that the check

at location (i, j) is to be assigned, and that checks at loca-

tions (i�1, j),(i, j�1), and (i�1, j�1) have already been
assigned. If h of these checks are white, then completion

of the 2 · 2 block with an additional check will lead to a

block with either h white checks (if the check at (i, j) is

colored black), or to a block with h + 1 white checks

(if the check at (i, j) is colored white). Since the uncondi-

tional probabilities of these blocks must have the ratio
ghðc;aÞ
ghþ1ðc;aÞ

and must sum to gh(c,a) + gh+1(c,a), it follows

that the conditional probability that a check is colored

white, given that h of the remaining three checks in its

block are also white, is given by

P ði; jÞis white j h of ði; j� 1Þ; ði� 1; jÞ;f

ði� 1; j� 1Þ are whiteg ¼ ghþ1ðc; aÞ
ghðc; aÞ þ ghþ1ðc; aÞ

:

ð18Þ

According to the remarks following Eq. (17), the

denominator is always positive, so the propagation rule

is always well-defined.
Textures generated in this fashion have isotropic sta-

tistics, even though the above method for generating

them proceeds in a directional fashion (e.g., from left

to right, and top to bottom). The reason for this is as

follows. Since the block probabilities are symmetric,

the same generation process could have been used, but

proceeding in a different direction. This alternative gen-

eration procedure would necessarily have the same sta-
tistics, since it too would be a Markov random field,

and hence, maximum-entropy with the same con-

straints—because of the uniqueness of maximum-entro-

py processes with identical constraints (Zhu et al., 1998).

A similar argument demonstrates that the checks along

any row, or any column, are all independently colored.

This is because any such strip could be used to initialize
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the texture, with the rule (18) used to propagate the tex-

ture in both directions from the initializing strip. Were it

the case that such textures had statistics that are distinct

from the one described above, the uniqueness of maxi-

mum-entropy processes would again be violated.

Finally, we note that for c = 0, the full range a can be
realized (Eq. (17)). Textures generated in this fashion are

generalizations of the ‘‘propagated’’ decorrelated isodi-

pole textures that have been previously studied (Pollack,

1971a, 1971b, 1972, 1973; Victor, 1985; Victor & Conte,

1989).

B.1. Kullback–Leibler divergences

The Kullback–Leibler divergence K(PkQ) is a natural

measure of the extent to which a probability distribution

P can be distinguished from a probability distribution

Q. More precisely, (Cover & Thomas, 1991; Latham,

2002), assume that P and Q are two probability distribu-

tions on a set of elements X = {xj}, with pj representing

the frequency of xj in P, and qj representing the fre-

quency of xj in Q. An observer, who expects that a
stream of observations is drawn from Q, is given the

task of detecting when the source of the observations

is switched to P. Under these circumstances, the number

of bits per observation is given by the Kullback–Leibler

divergence of P and Q, K(PkQ), namely,

KðPkQÞ ¼
X
j

pjlog2
pj
qj

 !
: ð19Þ

Strictly speaking, this definition applies only to a fi-

nite set of elements X. For probability distributions on

infinite sets (such as the set of textures on an infinite lat-
tice), the Kullback–Leibler divergence is expected to

grow without bound. However, as we show here, this

definition has a natural extension to textures based on

Markov random fields based on block neighborhoods

(Zhu et al., 1998). More precisely, for such textures,

the Kullback–Leibler divergence between two textures

is asymptotically proportional to their area. This pro-

portionality constant, which depends on the textures,
thus indicates the extent to which an ideal observer

can discriminate these textures, per unit area. Moreover,

for Markov random fields, the Kullback–Leibler diver-

gence (per unit area) can be readily calculated from

the 2 · 2 block probabilities.

The key observation concerns a one-dimensional ana-

logue of Markov random fields, namely, Markov chains.

A Markov chain on r symbols S = {s1, s2, . . . ,sr} is de-
fined by a transition matrixM.M is a r · r matrix whose

typical element mjk is the conditional probability that

the symbol sj is followed by the symbol sk. Entries in

M are necessarily within the interval [0,1] , and each

row of M sums to 1 (since each symbol must have a suc-

cessor). Moreover,M has a unique left (row) eigenvector
~m ¼ ðm�
1;m

�
2; . . . ;m

�
r Þ whose entries sum to 1, and for

which ~mM ¼ ~m. This eigenvector is the probability dis-

tribution that is the stable result of repeated applications

of M.

We now consider the quantity

UðPnkQnÞ ¼
X
x2W n

P nðxÞlog2QnðxÞ; ð20Þ

where Wn is the set of words composed of n symbols

drawn from S, and the probabilities Pn(x) and Qn(x)

indicate the probabilities assigned by Markov chains
P and Q to the word x. For example, if x is the word

sj1sj2 . . . sjn, then

PnðxÞ ¼ pj1P j1j2P j2j3 . . . Pjn�1jn
ð21Þ

and similarly for Qn(x).

To establish the behavior of the sum (20), we note

that for a Markov chain, the probability of a word x

can be determined recursively from three sub-words:
the word Lx, obtained by retaining the n � 1 leftmost

(first) elements of x, the word Rx, obtained by retaining

the n � 1 rightmost (last) element of x, and the word

LRx (or RLx), obtained by retaining the n�2 middle ele-

ments of x. The recursive relationship is

PnðxÞ ¼
Pn�1ðLxÞPn�1ðRxÞ

Pn�2ðLRxÞ
: ð22Þ

This follows from Eq. (21), since Pn�1ðLxÞ ¼ pj1P j1j2 . . .
P jn�2jn�1

; Pn�1ðRxÞ ¼ pj2P j2j3 . . . P jn�1jn , and Pn�2ðLRxÞ ¼
pj2Pj2j3 . . . P jn�2jn�1

. We now use Eq. (22) and the parallel

expression for Qn(x) to calculate (for nP2):

UðPnkQnÞ ¼
X
x2W n

P n�1ðLxÞPn�1ðRxÞ
Pn�2ðLRxÞ

� log2
Qn�1ðLxÞQn�1ðRxÞ

Qn�2ðLRxÞ

¼
X
x2W n

P n�1ðLxÞPn�1ðRxÞ
Pn�2ðLRxÞ

log2Qn�1ðLxÞ

þ
X
x2W n

P n�1ðLxÞPn�1ðRxÞ
Pn�2ðLRxÞ

log2Qn�1ðRxÞ

�
X
x2W n

P n�1ðLxÞPn�1ðRxÞ
Pn�2ðLRxÞ

log2Qn�2ðLRxÞ:

ð23Þ

Each of these terms simplifies in a similar manner. We

consider the first term. A summation over all words x

of n symbols can be considered as an outer sum over
all words Lx of length n�1, and an inner sum over all

possible final symbols xjn. The product Pn�1(Lx)-

log2Qn�1(Lx) is independent of the choice of the final

symbol xjn, since it is deleted by L. Because of the con-

struction of the Markov chain, the quotient Pn�1ðRxÞ
Pn�2ðLRxÞ

¼
P jn�1jn . Since each row of the transition matrix P jn�1jn
must sum to 1, we find
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X
x2W n

P n�1ðLxÞPn�1ðRxÞ
Pn�2ðLRxÞ

log2Qn�1ðLxÞ

¼
X

x2W n�1

Pn�1ðLxÞlog2Qn�1ðLxÞ

¼ UðPn�1kQn�1Þ: ð24Þ

Similar reasoning leads toX
x2W n

P n�1ðLxÞPn�1ðRxÞ
Pn�2ðLRxÞ

log2Qn�1ðRxÞ

¼
X

Rx2W n�1

Pn�1ðRxÞlog2Qn�1ðRxÞ ¼ UðPn�1kQn�1Þ ð25Þ

and, by writing

Pn�1ðLxÞPn�1ðRxÞ
Pn�2ðLRxÞ

log2Qn�2ðLRxÞ

¼ Pn�1ðLxÞ
Pn�2ðLRxÞ

� �
Pn�1ðRxÞ
Pn�2ðLRxÞ

� �
Pn�2ðLRxÞlog2Qn�2ðLRxÞ;

ð26Þ
toX

x2W n

P n�1ðLxÞPn�1ðRxÞ
Pn�2ðLRxÞ

log2Qn�2ðLRxÞ

¼
X

LRx2W n�2

Pn�2ðLRxÞlog2Qn�1ðLRxÞ ¼ UðPn�2kQn�2Þ:

ð27Þ

Substitution of the above three results (Eqs. (24),

(25), (27)) into Eq. (23) yields

UðPnkQnÞ ¼ 2UðPn�1kQn�1Þ � UðPn�2kQn�2Þ: ð28Þ
Eq. (28) states that for successive values of n, the se-

quence U(PnkQn) forms an arithmetic progression with

constant difference U(P2kQ2)�U(P1kQ1). In particular,

it follows that

limn!1
UðPnkQnÞ

n
¼ UðP 2kQ2Þ � UðP 1kQ1Þ: ð29Þ

The right hand side can be calculated explicitly from the

probabilities of words of length 1 and 2, respectively.

To extend this result to the two-dimensional context

of Markov random fields, we consider the quantity

UðPn1;n2kQn1;n2Þ ¼
X

x2Bn1;n2

Pn1;n2ðxÞlog2Qn1;n2ðxÞ: ð30Þ

This is analogous to Eq. (20), but here, Bn1;n2 represents

the set of n1 · n2 blocks, and Pn1;n2ðxÞ and Qn1;n2ðxÞ repre-
sent the probabilities assigned to the block x by the

Markov random fields P and Q. We now allow one of

the block dimensions (say, n2) to approach infinity,

while the other block dimension remains finite. A block

of size n1 · n2 can be construed as a sequence of n2
blocks, each of size n1 · 1. That is, with n1 held fixed,

blocks of size n1 · n2 can be considered to constitute a

one-dimensional Markov chain, whose symbols are the
blocks of size n1 · 1. The one-dimensional result (Eq.

(29)) therefore applies, and we find

limn2!1
UðPn1;n2kQn1;n2Þ

n2
¼UðPn1;2kQn1;2Þ�UðPn1;1kQn1;1Þ:

ð31Þ

We next consider the limiting behavior of this expression

as n1 approaches infinity. The one-dimensional result

(Eq. (29)) can now be applied to the right-hand side of
Eq. (31) along the first dimension, yielding

limn1!1limn2!1
UðPn1;n2kQn1;n2

Þ
n1n2

¼ UðP 2;2kQ2;2Þ � UðP 1;2kQ1;2Þ � UðP 2;1kQ2;1Þ
þ UðP 1;1kQ1;1Þ: ð32Þ

Note that since the right-hand side of this result is sym-
metric in the dimensions, the order of limits on the left

does not matter. For P = Q , the above expression is

the entropy per pixel of the texture P.

Finally, since the Kullback–Leibler divergence of P

and Q, K(P kQ) (Eq. (19)) is related to the quantity

U(PkQ) (Eq. (20)) by

KðPn1;n2kQn1;n2
Þ ¼ UðPn1;n2kPn1;n2Þ � UðPn1n2kQn1;n2

Þ;
ð33Þ

we find

limn1!1 lim
n2!1

KðPn1;n2kQn1;n2Þ
n1n2

¼ KðP 2;2kP 2;2Þ � KðP 1;2kP 1;2Þ � KðP 2;1kP 2;1Þ
þ KðP 1;1kP 1;1Þ: ð34Þ

This equation, along the probabilities of Eq. (15) that

characterized our stimuli (i.e., using gh(cp,ap) for P

and gh(cQ,aQ) for Q), generated the graph of Fig. 4.

For convenience, we denote this quantity, which repre-

sents the discriminability per unit pixel, by K0:

K0ðP ;QÞ ¼ lim
n1!1

lim
n2!1

KðPn1;n2kQn1;n2Þ
n1n2

: ð35Þ

For probability distributions that are nearly unbi-

ased, the expressions (20) and (30) for U(PkQ) have a

simple approximate form, which in turn provides for a

simple approximation for Eq. (34). Let P ¼ 1
N þ dP and

Q ¼ 1
N þ dQ, where N is the number words or blocks.

The approximation log2ð1þ uÞ ¼ 1
ln 2

ðu� u2

2
þ � � �Þ leads

to

UðPkQÞ � 1

2N ln 2
�
X

ðdQÞ2 þ 2
X

ðdP ÞðdQÞ
� �

ð36Þ

and, via Eq. (33), to

KðPkQÞ � 1

2N ln 2

X
ðdP � dQÞ2; ð37Þ
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where the errors in the approximations are at most

third-order in dP and dQ.

The analysis up to this point has exploited the

assumption that P and Q are Markov random fields,

but has not made use of the particular assignments for

block probabilities. We now consider the particular case
that the block probabilities for P and Q are given by the

rule (15), (i.e., gh(cP,aP) determines P and gh(cQ,aQ)
determines Q). In this case, combining Eqs. (15), (34)

and (37) leads to

K0ððcP ; aP Þ; ðcQ; aQÞÞ ¼ lim
n1!1

lim
n2!1

KðPn1;n2kQn1;n2Þ
n1n2

� 1

2 ln 2
ððcP � cQÞ

2 þ ðaP � aQÞ2Þ;

ð38Þ

where, as in Eqs. (36) and (37), the error in the approx-

imation is third-order in the deviations of a and c from

zero. Thus, as suggested by Fig. 4, contour lines of the

Kullback–Leibler divergence are expected to be circular

when a and c are small.
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