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The space of visual signals is high-dimensional and natural visual images have a highly complex statistical struc-
ture. While many studies suggest that only a limited number of image statistics are used for perceptual judgments,
a full understanding of visual function requires analysis not only of the impact of individual image statistics, but
also, how they interact. In natural images, these statistical elements (luminance distributions, correlations of low
and high order, edges, occlusions, etc.) are intermixed, and their effects are difficult to disentangle. Thus, there is a
need for construction of stimuli in which one or more statistical elements are introduced in a controlled fashion, so
that their individual and joint contributions can be analyzed. With this as motivation, we present algorithms to
construct synthetic images in which local image statistics—including luminance distributions, pair-wise correla-
tions, and higher-order correlations—are explicitly specified and all other statistics are determined implicitly by
maximum-entropy. We then apply this approach to measure the sensitivity of the human visual system to local
image statistics and to sample their interactions. © 2012 Optical Society of America

OCIS codes: 330.5510, 330.5000.

1. INTRODUCTION
Basic visual judgments, such as detection, discrimination, and
segmentation, are fundamentally statistical in nature. Because
the space of signals that the visual system encounters is very
high-dimensional, there is a very wide variety of image statis-
tics that, a priori, could be used to drive these judgments. On
the other hand, there is much evidence that only a very limited
number of image statistics are, in fact, actually used. For ex-
ample, in texture discrimination and segmentation, only cer-
tain features of the luminance histogram appear perceptually
relevant [1] and, with a limited number of exceptions, only
pair-wise spatial correlations are used [2–4]. However, these
conclusions are based on stimuli in which a single, mathema-
tically-convenient, image statistic is introduced or manipu-
lated. This is in contrast to natural visual stimuli, whose
statistical structure is complex [5,6]: the well-known “1/f” cor-
relation structure [7] coexists with highly non-Gaussian lumi-
nance statistics [8], as well as many other kinds of statistical
features [9–12].

Thus, to understand visual responses to natural images, it is
necessary to analyze not only how image statistics are pro-
cessed individually, but also how they interact. To pursue such
an analysis, it is desirable to have stimulus sets in which multi-
ple image statistics—including luminance statistics and spatial
correlations—can be introduced in a controlled and indepen-
dent fashion. Thegoal of this paper is to present aprocedure for
doing this and to illustrate its use in delineating the perceptual
saliency of these statistics, alone and in combination.

A related motivation for this work arises out of the analysis
of receptive fields at the physiologic level. As a consequence
of the high-dimensional nature of visual signals, one cannot
characterize input-output relationships exhaustively—so it
is necessary to sample the space of inputs in some fashion.

Generally, the sampling strategies fall into two categories.
One category has a primarily mathematical motivation, and
relies on stimuli such as sinusoids and white noise because
they are convenient for determining the parameters of simple
model classes (such as linear transformations or Taylor ex-
pansions and their generalizations). The other category is pri-
marily biologically-motivated and focuses on the inputs under
which the visual system functions and evolves, i.e., “natural
scenes.”

Either approach alone appears to be insufficient. Mathema-
tical models built from stimuli such as white noise provide
only a fair account of responses to natural scenes [13]. The
obstacle is that mathematically-convenient stimuli rarely sam-
ple the kinds of stimulus features that are common in natural
scenes, so substantial errors in model structure may be over-
looked. The use of naturalistic stimuli avoids that problem,
but makes it difficult to achieve a mechanistic understanding.
This is because natural scenes have many different kinds of
statistical structure (as mentioned above: luminance histo-
grams, correlations of low and high order, edges, occlusions,
etc.). Since these elements are entangled in natural scenes,
the role(s) that they play in visual processing can be difficult
to sort out. As is the case for understanding visual function at
a psychophysical level, there is a need for principled stimulus
sets in which multiple statistical elements can be indepen-
dently controlled.

To meet this need, three related issues need to be ad-
dressed. First, because the number of image statistics is so
large, one must select a subset to focus on. Second, selecting
this subset of statistics and specifying their values stops short
of specifying the entire stimulus, because of all the other im-
age statistics whose values are unspecified. Thus, it is also ne-
cessary to have a principled procedure for choosing the values
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of the statistics that are not specified explicitly. Finally, one
needs a procedure to create images that exemplify these
statistics.

In choosing the statistical elements to focus on, two con-
siderations are immediately relevant: which image statistics
are informative about natural images and which ones are sali-
ent to the visual system. The notion of “efficient coding” [14]
suggests that these considerations are likely to be aligned. A
recent analysis of natural images [10] supports this view, not
only for luminance statistics and pair-wise correlations, but
also for multipoint correlations. The latter analysis used binar-
ized natural images; this made it possible to enumerate the
distribution of four-point configurations that are present in
natural images. A main conclusion of the analysis [10] was
that only some kinds of four-point correlations were informa-
tive. Moreover, the dichotomy between informative and unin-
formative configurations matched the dichotomy between
four-point correlations that are visually salient and those that
are not [4].

Therefore, we focus on the correlations that this previous
study[10] identified as both informative and visually-salient:
the statistics of 2 × 2 arrays of binarized pixels. As we show
below, the joint probability distribution that describes the
ways that these arrays can be colored is specified by 10 para-
meters, i.e., 10 local image statistics.

Having selected a subset of image statistics and specified
their values, the next step is to address the second issue:
choosing the values of all of the image statistics outside of
the selected subset. Here our strategy is guided by the goal
of analyzing the effect of the specified statistics on visual pro-
cessing. In view of this goal, it makes sense to choose the
other statistics in a manner that adds no further structure.
We do this implicitly—by maximizing the entropy of the image
ensemble, subject to the constraints of the subset of specified
image statistics. Maximizing the entropy of the image ensem-
ble solves the problem of choosing values for all other statis-
tics, since the maximum-entropy distribution is unique.

Because the maximum-entropy criterion represents a prin-
cipled way to create distributions that are as assumption-free
(i.e., as random) as possible given specific constraints [15,16],
maximum-entropy methods have been applied in numerous
domains, including analysis of neural data [17–19] and image
analysis [20]. Maximum-entropy distributions are simple and
easy to construct when the constraints are few and simple: a
Poisson distribution maximizes the entropy when the mean is
constrained, a Gaussian distribution maximizes the entropy
when the variance is constrained, and a Markov process
maximizes the entropy when sequential correlations are
constrained.

When the constraints are more complex—as they are for
local image statistics—maximum-entropy distributions are
less-familiar and explicit construction of them is not necessa-
rily straightforward. The basic problem that arises is that
iterative constructions—which are guaranteed to work for
one-dimensional processes such as Markov chains—may fail
for two-dimensional processes. The reason that iterative con-
structions do not necessarily extend from one dimension to
two dimensions is that the constructions along each dimen-
sion may conflict with each other. Below, we use an important
result of Pickard [21] to determine when these conflicts occur.
In the absence of such conflicts, iterative constructions enable

creation of examples of images with the desired statistics (i.e.,
sampling the maximum-entropy ensemble). In the presence of
these conflicts, we develop a set of alternative image-
synthesis algorithms, that allow us to achieve our goal. The
result is a set of procedures for construction of images that
have independently specified values of the 10 local image sta-
tistics. Finally, we use these stimulus sets in psychophysical
studies, to demonstrate the selective sensitivity of the visual
system to the individual statistics and their interactions.

Although we focus on construction of maximum-entropy
binary images given a specified set of statistics for 2 × 2 ar-
rays, most of the strategies we develop are not restricted to
this particular case. Therefore, to facilitate extensions of this
approach, we describe not only the algorithms themselves,
but also their interrelationships and the conditions that allow
them to succeed.

2. IMAGE CONSTRUCTION
There are two components of this paper: first, algorithms for
the construction of visual stimuli that are specified by a set of
image statistics and second, psychophysical studies based on
selected examples of these constructions. As mentioned in the
Introduction, we focus on the image statistics that describe
2 × 2 blocks of pixels in a binary image. In this section, we
show that this is a 10-dimensional space and how to navigate
in it. That is, we construct stimuli along the coordinate axes,
stimuli on or near the coordinate planes, and in other direc-
tions, corresponding to arbitrary natural stimuli. Below
(Section 4), we use these stimuli in psychophysical experi-
ments: we measure the sensitivity along the axes of the space
and in selected coordinate planes, to provide a glimpse of the
ways in which the coordinates interact. The results of the psy-
chophysical experiments are also important to support some
of the strategic choices made during stimulus construction.

The basic problem that we wish to solve is the following:
given a set of local image statistics, construct images that are
as random as possible—i.e., maximum entropy—given these
constraints. As described below, the local image statistics we
consider are those that refer to the contents of a 2 × 2 array of
pixels or on a subset of this array.

We begin this section by setting up a notation and defining
the key terms. We then use this notation to refine the state-
ment of the problem and to provide a formal characterization
of the solution. The formal characterization, though, does not
provide a construction, and a constructive solution is neces-
sary to achieve our goal. We then develop constructive
solutions, proceeding incrementally from the simplest case
(independent pixels) to correlations along one dimension,
to correlations along two dimensions that are specified by
a single parameter, to correlations along two dimensions that
are specified by pairs of parameters, to more complex corre-
lation structures, including those that arise in natural images.

A. Preliminaries: Ensembles, Images, and Block
Probabilities
To make the notion of randomness rigorous, we need to
consider image ensembles, rather than individual images. An
image ensemble is simply a collection of images, with a prob-
ability assigned to each. Within the ensemble, individual
images are represented as an array of values aij , where aij
is the luminance of the pixel in row i and column j. Arrays
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are of finite size (so that averages can be simply calculated),
but we are only concerned with the limiting behavior as the
size of the array grows without bound.

We will only consider binary images: each aij is either 0 or
1, with 0 arbitrarily is assigned to represent black and 1 to
represent white. We note, though, that many of the construc-
tions below readily generalize to images with multiple gray
levels (see for example Appendix A).

A “block probability” is the probability that a set of pixels in
particular configuration have a given set of values. As a simple
example, p�0� is the probability that a pixel value aij is black;
p� 0 1 � is the probability that a 1 × 2 window contains a
black pixel on the left and p

�
1
1 1

�
is the probability that an

L-shaped region contains three white pixels.
To ensure that the formalisms of image ensembles are re-

levant to laboratory experiments and real world visual beha-
vior, it is essential that the statistics of local patches of images
typify the statistics of the ensemble. To meet this criterion, we
require that the ensemble of images has two properties: sta-
tionarity and ergodicity. Stationarity formalizes the notion
that the statistics of the images are the same in all locations
and ergodicity formalizes the notion that the statistics of an
individual image typify those of the ensemble. Each of these
properties can be expressed in terms of different ways of cal-
culating the block probabilities. For example, one can choose
a specific location and sample that location across the ensem-
ble. Or, one can choose a specific image within the ensemble
and sample that image at all locations. Stationarity asserts that
the first calculation does not depend on the location sampled.
Ergodicity asserts that the second calculation yields the same
result as the first. Together, these properties ensure that the
statistics of local patches typify the statistics of the ensemble.

B. A Coordinate System to Simplify the Dependencies
among Block Probabilities
While at first it might appear that the individual block prob-
abilities are the most natural way to describe local statistics,
they have a significant drawback: the property of stationarity
(along with the general rules of probability) implies certain
interrelationships among them. So our next step is to intro-
duce a coordinate system for the block probabilities that sim-
plifies the task of specifying sets of block probabilities that
conform to these constraints.

To see how these constraints arise, assume that we have
specified the block probabilities for all colorings of a 2 × 2 ar-
ray, as p�A

C
B
D
�. These implicitly specify the probabilities of

smaller blocks—for example,

p

�
A B

C

�
� p

�
A B

C 0

�
� p

�
A B

C 1

�
(1)

and

p

�
A B

�
� p

�
A B

0

�
� p

�
A B

1

�

� p

�
A B

0 0

�
� p

�
A B

0 1

�
� p

�
A B

1 0

�

� p

�
A B

1 1

�
: (2)

Similarly, p�
C D

� can be written in terms of the 2 × 2 block
probabilities:

P

�
C D

�
� p

�
0
C D

�
� p

�
1
C D

�

� p

�
0 0
C D

�
� p

�
0 1
C D

�
� p

�
1 0
C D

�

� p

�
1 1
C D

�
. (3)

Stationarity requires that p
�AB� � p

�
AB

�
. Thus, for A � C

and B � D, the right-hand sides of Eqs. (2) and (3) must be
equal. This in turn means that for each of the four ways of
assigning binary values to A and B, there is a linear relation-
ship among eight of the 2 × 2 block probabilities:

p

�
A B

0 0

�
� p

�
A B

0 1

�
� p

�
A B

1 0

�
� p

�
A B

1 1

�

� p

�
0 0
A B

�
� p

�
0 1
A B

�
� p

�
1 0
A B

�
� p

�
1 1
A B

�
:

(4)

Similar relationships among subsets of block probabilities
follow from stationarity requirements for the probabilities
of 2 × 1 blocks, namely,

p

�
A

C

�
� p

�
A

C

�
(5)

and individual pixels, namely,

p

�
A

�
� p

�
A
�
� p

�
A

�
� p

�
A

�
. (6)

An additional complication is that these relationships are not
independent of each other.

As we next show, we can replace the block probabilities
with a coordinate system in which these interdependencies
are eliminated. The coordinate system is a transformation
of the block probabilities:

φ
�
s1 s2
s3 s4

�
�

X
A1;A2 ;A3;A4

p

�
A1 A2

A3 A4

��
−1

�
A1s1�A2s2�A3s3�A4s4

;

(7)

where s1, s2, s3, and s4 are 0 or 1. Note that the original block
probabilities can readily be obtained from the transformed
quantities φ:

p

�
A1 A2

A3 A4

�
� 1

16

X
s1 ;s2 ;s3 ;s4

φ
�
s1 s2
s3 s4

��
−1

�
A1s1�A2s2�A3s3�A4s4

.

(8)

This is because the new quantities φ are, in essence, the Four-
ier transforms of the block probabilities, along the four inten-
sity axes A1 through A4. (For additional details on this
construction, its further properties, and how it generalizes
to images with multiple gray levels, see AppendixA.)

The reason that the transformed quantities φ simplify the
relationships among the block probabilities is the following:
setting one of the indices si to 0 in Eq. (8) removes Ai from
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the exponent and hence produces transformed quantities that
sum over the corresponding location Ai. For example, φ�s1

s3

s2
0 �

depends only on p�A1
A3

A2� and φ�s10 s2
0 � depends only on p�A1 A2�.

So the stationarity constraints [Eq. (5)] due to 1 × 2 block
probabilities, p�A B� � p�

A B
�, are compactly expressed in

the transformed coordinates as

φ
�
s1 s2
0 0

�
� φ

�
0 0
s1 s2

�
: (9)

This is a much more compact form than Eq. (4), which entails
eight of the original block probabilities.

In like manner, the stationarity constraints related to the
2 × 1 block probabilities [Eq. (5)] are equivalent to

φ
�
s1 0
s3 0

�
� φ

�
0 s1
0 s3

�
; (10)

and the stationarity constraints related to individual pixels,
[Eq. (6)], becomes

φ
�
s 0
0 0

�
� φ

�
0 s

0 0

�
� φ

�
0 0
s 0

�
� φ

�
0 0
0 s

�
. (11)

The 16 2 × 2 block probabilities must of course also sum to 1
and this is equivalent to

φ
�
0 0
0 0

�
� 1: (12)

The constraints (9), (10), (11), and (12) are still not indepen-
dent, but their relationship to each other is much simpler than
that of Eq. (4) and its analogs. Specifically, when expressed in
terms of the transformed quantities φ, the constraints are
nested: setting one of the arguments in Eqs. (9) or 10 to zero
leads to Eq. (11), and setting both to zero leads to Eq. (12).
This motivates our final step in setting up the coordinate sys-
tem: ranking the quantities φ according to the number of ar-
guments that are nonzero. The result is 10 independent
quantities, as follows:

α � φ
�
1 1
1 1

�
; (13)

θ⌟ � −φ
�
0 1
1 1

�
; θ⌞ � −φ

�
1 0
1 1

�
;

θ

⌟

� −φ
�
1 1
0 1

�
; θ

⌝

� −φ
�
1 1
1 0

�
;

(14)

β− � φ
� 1 1

0 0

�
� φ

� 0 0

1 1

�
;

βj � φ
� 1 0

1 0

�
� φ

� 0 1

0 1

�
;

β∖ � φ
� 1 0

0 1

�
;

β∕ � φ
� 0 1

1 0

�
; (15)

and

γ � −φ
�
1 0
0 0

�
� −φ

�
0 1
0 0

�
� −φ

�
0 0
1 0

�
� −φ

�
0 0
0 1

�
:

(16)

(We have introduced minus signs in Eqs. (14) and (16) for
consistency with previous work [22,23]).

Note that the expressions for γ, β, and θ involve φ’s with
zero arguments. (Here and below, an unsubscripted β or θ de-
notes any one of the β’s or θ’s.) Thus, when expressed in terms
of block probabilities, γ, β, and θ can be calculated from smal-
ler blocks [as can be seen formally from Eq. (7)]. For example,

θ⌟ � p

� 1

1 1

�
− p

� 0

1 1

�
− p

� 1

0 1

�
� p

� 0

0 1

�

− p

� 1

1 0

�
� p

� 0

1 0

�
� p

� 1

0 0

�
− p

� 0

0 0

�
; (17)

β− � p� 1 1 � − p� 0 1 � − p� 1 0 � � p� 0 0 �; (18)

and
γ � p�1� − p�0�: (19)

In sum, the linear transformation (7) replaces the 16 inter-
dependent block probabilities by 10 independent quantities,
fγ; β−; βj; β∖; β∕; θ⌟; θ ⌝

; θ

⌟

; αg, which we denote collectively by

φi (i ∈ f1; :::; 10g). (The reverse transformation, from the φi

to the block probabilities according to Eq. (8), is provided
in Table 1). Each of these range from −1 to 1 and has a simple
interpretation. γ captures the overall luminance bias of the im-
age: γ � 1 means that all pixels are white, γ � −1 means that
all pixels are black. The β’s capture the pair-wise statistics:
β � 1 means that all pixels match its nearest neighbor (in
the direction indicated by the subscript) and β � −1 means
that they all mismatch. The θ’s capture the statistics of triplets
of pixels arranged in an L: θ � 1 means that all such L-shapes
contain either three white pixels or one white pixel and two
black ones; θ � −1 means the opposite. α captures the statis-
tics of quadruplets of pixels in a 2 × 2 block: α � 1 means that
an even number of them are white and α � −1 means that an
odd number are white. For an image in which all pixels are
independently assigned to black and white, with equal prob-
ability, all of these coordinates are 0.

Each kind of coordinate thus corresponds to a “glider”—for
γ, a single pixel; for β, a pair of pixels that share an edge or
corner; for θ, a triplet of pixels in an L, and for α, four pixels in
a 2 × 2 block. The value of the coordinate compares the frac-
tion of positions in which the glider contains an even number
of white pixels to the fraction of positions in which the glider
contains an odd number of white pixels. Specifically, for an
image R, the value of a coordinate φi can be expressed as

φi�R� �
n��R; i� − n−�R; i�

n�R; i� ; (20)

where n��R; i� denotes the number of placements of the gli-
der for φi that contain an even number of white pixels,
n−�R; i� denotes the number of placements that contain an
odd number of white pixels, and n�R; i� � n��R; i� � n−�R; i�
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denotes the total number of placements. We call n��R; i� and
n−�R; i� the “parity counts.” In sum, the gamut of each coor-
dinate φi is from �1 to −1: a value of �1 indicates that all
glider placements contain an even number of white pixels
(n−�R; i� � n�R; i�) and a coordinate value of −1 indicates
that all placements contain an odd number of white
pixels (n−�R; i� � n�R; i�).

We mention that there are bounds on certain linear combi-
nations of the coordinates because block probabilities and their
sums must be nonnegative. Some examples are: the expres-
sions for p� 0 0 � and p� 1 1 � (Table 1) together imply that

2jγj ≤ 1� β−; (21)

the expressions for p�11 11� � p�10 10� � p�00 01� � p�01 00� and similar
quantities together imply that

jθ⌟j � jθ⌞j ≤ 1� β−; (22)

and the expressions for p�11 11� � p�10 01� � p�01 00� � p�00 10� and
similar quantities together imply that

jθ⌟j � jθ

⌝

j ≤ 1� β∖. (23)

C. Formal Solution and Overview of Approach
Our aim is to construct images in which one or more of these
coordinates are assigned a value and all other image statistics
are chosen so that the ensemble is as random as possible. In
principle, this consists of two steps: first, determination of the
image ensemble whose entropy is maximum, given the con-
straints of the coordinates φi and, second, unbiased sampling
of images within this ensemble. The first step has a formal
solution that follows readily from general properties of
maximum-entropy distributions. However, the formal solution
is not a constructive one: that is, while it determines the

Table 1. Conversion between Block Probabilities and Coordinatesa

1 × 1 blocks

p�0� � 1
2 �1 −1γ�

p�1� � 1
2 �1 �1γ�

1 × 2 blocks

p� 0 0 � � 1
4 �1 −2γ �1β�

p� 1 0 � � 1
4 �1 −1β�

p� 0 1 � � 1
4 �1 −1β�

p� 1 1 � � 1
4 �1 �2γ �1β�

2 × 2 blocks

p

�
0 0
0 0

�
� 1

16 � 1 −4γ �2β− �2βj �1β∖ �1β∕ −1θ⌟ −1θ⌞ −1θ

⌝

−1θ

⌟

�1α �

p

�
1 0
0 0

�
� 1

16 � 1 −2γ −1β∖ �1β∕ −1θ⌟ �1θ⌞ �1θ

⌝

�1θ

⌟

−1α �

p

�
0 1
0 0

�
� 1

16 � 1 −2γ �1β∖ −1β∕ �1θ⌟ −1θ⌞ �1θ

⌝

�1θ

⌟

−1α �

p

�
1 1
0 0

�
� 1

16 � 1 �2β− −2βj −1β∖ −1β∕ �1θ⌟ �1θ⌞ −1θ

⌝

−1θ

⌟

�1α �

p

�
0 0
1 0

�
� 1

16 � 1 −2γ �1β∖ −1β∕ �1θ⌟ �1θ⌞ �1θ

⌝

−1θ

⌟

−1α �

p

�
1 0
1 0

�
� 1

16 � 1 −2β �2βj −1β∖ −1β∕ �1θ⌟ −1θ⌞ −1θ

⌝

�1θ

⌟

�1α �

p

�
0 1
1 0

�
� 1

16 � 1 −2β −2βj �1β∖ �1β∕ −1θ⌟ �1θ⌞ −1θ
⌝

�1θ

⌟

�1α �

p

�
1 1
1 0

�
� 1

16 � 1 �2γ −1β∖ −1β∕ −1θ⌟ −1θ⌞ �1θ

⌝

−1θ
⌟

−1α �

p

�
0 0
0 1

�
� 1

16 � 1 −2γ −1β∖ �1β∕ �1θ⌟ �1θ⌞ −1θ

⌝

�1θ
⌟

−1α �

p

�
1 0
0 1

�
� 1

16 � 1 −2β− −2βj �1β∖ �1β∕ �1θ⌟ −1θ⌞ �1θ

⌝

−1θ

⌟

�1α �

p

�
0 1
0 1

�
� 1

16 � 1 −2β− �2βj −1β∖ −1β∕ −1θ⌟ �1θ⌞ �1θ

⌝

−1θ

⌟

�1α �

p

�
1 1
0 1

�
� 1

16 � 1 �2γ �1β∖ −1β∕ −1θ⌟ −1θ⌞ −1θ

⌝

�1θ

⌟

−1α �

p

�
0 0
1 1

�
� 1

16 � 1 �2β− −2βj −1β∖ −1β∕ −1θ⌟ −1θ⌞ �1θ

⌝

�1θ

⌟

�1α �

p

�
1 0
1 1

�
� 1

16 � 1 �2γ �1β∖ −1β∕ −1θ⌟ −1θ⌞ −1θ

⌝

−1θ

⌟

−1α �

p

�
0 1
1 1

�
� 1

16 � 1 �2γ − 1β∖ �1β∕ �1θ⌟ −1θ⌞ −1θ

⌝

−1θ

⌟

−1α �

p

�
1 1
1 1

�
� 1

16 � 1 �4γ �2β− �2βj �1β∖ �1β∕ �1θ⌟ �1θ⌞ �1θ

⌝

�1θ

⌟

�1α �
aTabulated coefficients are determined from the inverse transformation [Eq. (8)] and the definitions [Eqs. (13) through (16)].
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unique maximum-entropy distribution, it does not show how
to create it. The formal solution therefore does not directly
address the second step, that of choosing typical images from
within this distribution. Therefore, we need to develop
special-purpose constructive algorithms to sample the distri-
bution and show that the samples they construct correspond
to the distribution specified by the formal solution.

The formal solution is a specification of the probability p�R�
of encountering a large block R in an image drawn at random
from the ensemble (or, equivalently, in a random location
within a single typical image). These probabilities are to be
determined so that the entropy

H � −
X
R

p�R� ln p�R� (24)

is maximized, subject to the block-probability constraints φ0
i

for one or more of the coordinates φi. The constraints φ0
i refer

to the expected value of a coordinate φi�R�, averaged over all
regions placements on R:

φ0
i � hφi�R�i �

X
R

p�R�φi�R�: (25)

In view of Eq. (20), this can be written as

φ0
i �

X
R

p�R�n��R; i� − n−�R; i�
n�R; i� : (26)

Note that n�R; i�, which is the number of ways that the glider
corresponding to φi can be placed on the block R, depends
only on the shape of the glider and of R, but is independent
of how R is colored. Thus, n�R; i� is constant for all terms in
the above sum.

We use a standard approach to maximize the entropy
[Eq. (24)] under the constraints of Eq. (26), namely, Lagrange
multipliers. To apply the Lagrange multiplier method, we in-
troduce a multiplier λi for each constraint [Eq. (26)], as well as
a multiplier λ0 for the normalization

P
Rp�R� � 1. We then

maximize

Q � −
X
R

p�R� ln p�R� �
X
i

λi
X
R

p�R�n��R; i� − n−�R; i�
n�R; i�

� λ0
X
R

p�R�; (27)

by setting ∂Q∕∂p�S� � 0 and considering each of the p�S�’s to
be independent. This yields equations for the p�R�’s in terms
of the Lagrange multipliers λi, which then need to be solved to
satisfy the constraints of Eq. (26) and the normalization con-
straint. Importantly, the maximizing distribution p�R� is guar-
anteed to be unique, since the constraints [Eq. (26)] are linear
and entropy is a convex function. That is, there cannot be two
separate local maxima—because if there were, then a mixture
of them would necessarily yield a solution of even higher
entropy.

To carry out the maximization, we calculate ∂Q∕∂p�S� from
Eq. (27) and set it to 0:

∂Q

∂p�S� � −1 − ln p�S� �
X
i

λi
n��S; i� − n−�S; i�

n�S; i� � λ0. (28)

Setting this to 0 yields a formal solution:

p�S� � exp
�
μ0 �

X
i

μi�n��S; i� − n−�S; i��
�
; (29)

where we have used μ0 � λ0 − 1 and μi � λi∕n�S; i�. (The lat-
ter is justified since n�S; i�, the number of placements of the
glider for φi, depends only on i and the size of the region S and
not on its contents.)

As is typical of maximum-entropy problems, we can
eliminate the multiplier μ0 by enforcing the normalization
constraint:

p�S� � Z�S�
Z

; (30)

where

Z�S� � exp
�X

i

μi�n��S; i� − n−�S; i��
�

(31)

and

Z �
X
S

Z�S�: (32)

Z corresponds to the “partition function” that is central to the
maximum-entropy problems that arise in statistical me-
chanics. As in statistical mechanics, the partition function pro-
vides for a concise formal representation of the constraints.
Combining Eqs. (32), (31), and (26) yields

∂ ln Z

∂μi
� 1

Z

∂Z

∂μi
� n�S; i�φ0

i : (33)

We note that Eq. (29) [or Eqs. (30) and (31)] have an intui-
tive interpretation that extends the tie-in to statistical-
mechanics. Since n��S; i� and n−�S; i� count the number of
occurrences of even- and odd-parity counts of white pixels
for each placement of the glider for φi, we can view the
Lagrange multiplier μi as an kind of interaction energy within
each placement of the glider. We calculate Z�S� by inspecting
each glider placement, one by one, and accumulating counts
for n��S; i� and n−�S; i�. If the number of white pixels in the
glider is even, n��S; i� is incremented, which in turn changes
the probability of the configuration S by a factor of eμi . If the
number of pixels is odd, n−�S; i� is incremented and the prob-
ability is changed by the reciprocal of that factor.

AlthoughEq. (30) provides an expression for the block prob-
abilities of the unique maximum-entropy ensemble, it is not a
constructive solution. The reason is that the Lagrange multi-
pliers μi are as yet unknown. Finding them requires solving
the constraint equations for the counts n��S; i� and n−�S; i�
[Eq. (26) or, equivalently, Eq. (33)], which are nonlinear. If this
can be done, then the image ensemble is explicitly specified via
Eq. (30) and we can then choose random samples from within
it. In some cases (Section 2.4–Section 2.7), the direct approach
works; in other cases, another strategy appears necessary
(Section 2.8).

D. Ensembles Specified by a Bias on the Number
of White and Black Pixels
We consider first the simplest case, in which there is only a sin-
gle constraint and it is a constraint on γ, the bias between
the number of white and black pixels. Since there are no
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correlations between pixels, the solution to the maximum-
entropy problem is well known: an image ensemble in which
each pixel is independently colored (an independent,
identically-distributed (IID) distribution). The probabilities
of white and black pixels are determined by p�1� − p�0� � γ
[Eq. (19)] and the normalization constraint p�1� � p�0� � 1.
Nevertheless, it is helpful to carry out this simple example
in detail, as it illustrates how the above formalism works in
a situation in which the constraint equations can be solved.
This will also indicate how elements of this IID solution can
be generalized.

We begin by calculating the partition function, Eq. (32).
Here, there is only one multiplier μ1. Substituting Eq. (31) into
Eq. (32) yields.

Z �
X
S

Z�S� �
X
S

exp
�
μ1�n��S; 1� − n−�S; 1��

�
: (34)

This is a sum over all possible colorings S. For each coloring
S, n��S; 1� is the number of black pixels (i.e., a 1-block con-
taining an even number of white pixels) and n−�S; 1� is the
number of white pixels (i.e., a 1-block containing an odd num-
ber of white pixels). Since each term of the sum [Eq. (34)] de-
pends only on the number of pixels of each color and not their
arrangement, we can evaluate the sum by grouping the con-
figurations S according to the number of black and white
pixels (n� and n−, with n� � n− � n) that it contains. The
number of such configurations is given by the binomial coef-
ficient � n

n�
� � n!

n�!n−!
: With this regrouping, we find,

Z �
X

n��n−�n

n!

n�!n−!
exp

�
μ1�n� − n−�

�
: (35)

Applying the binomial theorem yields a simple expression for
the partition function:

Z � �eμ1 � e−μ1 �n: (36)

Equation (33) now yields the relationship between the un-
known Lagrange multiplier μ1 and the constraint, φ0

1 � −γ:

−γ � φ0
1 �

1
n

∂ ln Z

∂μ1
� eμ1 − e−μ1

eμ1 � e−μ1
� tanh�μ1�: (37)

The Lagrange multiplier μ1 is thus given by

μ1 � −tanh−1�γ� � 1
2
ln

1 − γ
1� γ (38)

so the partition function [Eq. (36)] is equal to

Z �
� ������������

1� γ
1 − γ

s
�

������������
1 − γ
1� γ

s �n

�
� ������������

1� γ
1 − γ

s �
1� 1 − γ

1� γ

��n

�
�

2�����������������������������
�1� γ��1 − γ�

p �
n

. (39)

We can now obtain an expression for the probability of any
configuration. We start with Eq. (30), p�S� � Z�S�∕Z, and sub-
stitute the value of μ1 determined by Eq. (38) into Eq (31) for
Z�S�. This yields

p�S� � 1
Z
exp μ1�n��S; 1� − n−�S; 1�� �

1
Z

�
1 − γ
1� γ

�n��S;1�−n− �S;1�
2

:

(40)
We then use Eq. (39) for the partition function Z:

p�S� � 2−n��1� γ��1 − γ��n∕2
�
1 − γ
1� γ

�n��S;1�−n− �S;1�
2

. (41)

Making use of the relationship n � n��S; 1� � n−�S; 1� leads
to the desired result, which has a simple and symmetric form:

p�S� �
�
1 − γ
2

�
n��s;1�

�
1� γ
2

�
n−�s;1�

(42)

Equation (42) thus defines the maximum-entropy ensemble
constrained by φ0

1 � −γ. The result is not surprising and cor-
responds to an IID process: if a configuration S has n��S; 1�
black pixels and n−�S; 1� white pixels, then its probability is a
product of n��S; 1� copies of the probability of a black pixel
(p�0� � 1−γ

2 ) and n−�S; 1� copies of the probability of a white
pixel (p�1� � 1�γ

2 ).
There are two important aspects of this analysis that are

crucial for the more complex cases that we consider below.
First, we note that Eq. (42) does more than just define the
probability of a configuration S—it also provides a way of gen-
erating samples that have the desired probability distribution.
Specifically, it indicates that each pixel’s color can be as-
signed independently. Each pixel is considered in turn and
it is colored white with probability p�1� � 1�γ

2 and black with
probability p�0� � 1−γ

2 . This construction, rather than the expli-
cit value of p�S�, is our goal. For other kinds of textures, we
will be able to sample the distribution, but we may not be able
to write an explicit expression for the probability of any given
configuration. The latter requires explicit summation of the
partition function [Eq. (32)], as well as solution of the con-
straint equations, Eq. (33).

The second point is even though we only specified one co-
ordinate (in this case, φ1 � −γ), the maximum-entropy con-
struction determined the values of the other coordinates,
and these values turn out to be nonzero. This is readily seen
from Eq. (42): the probability of a two-pixel block S with two
white pixels is �1�γ�2

4 ; with one white pixel, �1�γ��1−γ�
4 ; and with

no white pixels, �1−γ�2
4 . From these, it follows [e.g., from

Eq. (18)] that β � γ2. Similar calculations show that θ � γ3
and α � γ4. That is, the trajectories specified by maximum en-
tropy (here, �β; θ; α� � �γ2; γ3; γ4�), are curved with respect to
the coordinate axes, a phenomenon that is characteristic of
“information geometry” [24]. Near the origin (i.e., near γ � 0),
this curvature is small and the maximum-entropy trajectories
approximate the coordinate axes. As our psychophysical data
will show, this mild curvature does not interfere with mea-
surement of meaningful thresholds along the coordinate axes.

E. Ensembles Specified by One Parameter
The above analysis immediately puts us in a position to con-
struct maximum-entropy ensembles specified by a single-
parameter constraint φi � φ0

i , for parameters other than
φ1 � −γ. The main point is that we can construct samples S

of these ensembles in a pixel-by-pixel fashion. This will lead to
expressions for the probability of a sample p�S� that are
similar to Eq. (42). As is the case for φ1 � −γ, this is equivalent
to an expression of the form [Eq. 29)], which demonstrates
that it is indeed maximum-entropy.
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To begin, we note that each of the coordinates φi corre-
sponds to a “glider”, i.e., a configuration of pixels that are
relevant to the calculation of n��S; i� and n−�S; i� [see com-
ments following Eq. (33)]. We now assign colors to each pixel
in S in sequence: top row to bottom row and left to right. The
first pixel, a11, is assigned to white or black with equal prob-
ability. As each subsequent pixel is considered, we determine
whether it is the last pixel to be assigned within a glider. For
example, in the case of the glider for β− (a 1 × 2 block), the
second pixel completes a glider (at positions a11 and a12),
as does each subsequent pixel within each row. In the case
of the glider for α (a 2 × 2 block), the entire first row does
not complete any gliders, but the second and subsequent
pixels in the later rows do so.

The assignment of a color depends on whether the pixel
completes a glider. If it does not, it is randomly assigned to
white or black, each with probability 0.5. If it does complete
a glider, we need to choose whether to give it a color which
makes the total number of white pixels within the glider even

or odd. We do the former with probability
1�φ0

i

2 and the latter

with probability
1−φ0

i

2 . The average number of gliders that con-

tribute to n��S; i� is thus n�S; i� 1�φ0
i

2 and the average number

of gliders that contribute to n−�S; i� is thus n�S; i� 1−φ
0
i

2 , where,
as above, n�S; i� is the number of times that the glider can be
placed entirely within the region S.

We now verify that this construction has the required prop-
erties. The first requirement is that the expected value of the
coordinate φi is, in fact, φ0

i (i.e., that the construction satisfies
the constraint). This is straightforward and follows from the
biased assignment of colors that is invoked when a pixel com-
pletes a glider:

hφii �
hn��S; i�i − hn−�S; i�i

n�S; i� � 1� φ0
i

2
−
1 − φ0

i

2
� φ0

i : (43)

The other requirement is that p�S� is of the form of Eq. (29),
which means that it is maximum-entropy. To show this, we
begin by noting that, according to the above construction,
the assignments of pixels to colors were made in one of three
ways. Some of the pixels were assigned to white or black with
equal probability, since these pixels did not complete a glider.
For a region S of size n, the number of such pixels is
ninit � n − n�S; i�, since n�S; i� is the number of pixels at
which a glider was completed. After these initial pixels were
assigned, the others (the ones that completed gliders) were
assigned in a biased fashion. There were n��S; i� such assign-
ments, each with probability

1�φ0
i

2 , that resulted in an even
number of white pixels within a glider and there were
n−�S; i� assignments, each with probability

1−φ0
i

2 , that resulted
in an odd number of white pixels within a glider. Thus,

p�S� �
�
1
2

�
n−n�S;i��1� φ0

i

2

�
n��S;i��1 − φ0

i

2

�
n−�S;i�

(44)

analogous to Eq. (42). Using the relationship n�S; i� �
n��S; i� � n−�S; i�, this is seen to be equivalent to

p�S� � 2−n��1� φ0
i ��1 − φ0

i ��n�S;i�∕2
�
1� φ0

i

1 − φ0
i

�n��S;i�−n−�S;i�
2

. (45)

Since n�S; i�, the number of pixels at which a glider was com-
pleted, is independent of the way in which S is colored,
Eq. (45) is in the form of Eq. (29). Thus, the construction is
indeed maximum-entropy and satisfies the coordinate
constraints.

Equation (44) or, equivalently Eq. (45), summarizes how the
analysis in the previous section for φ1 extends to each of the
other coordinates. For these other coordinates, whose gliders
are larger than a single pixel, there is an initial step in which
ninit � n − n�S; i� pixels are colored at random. Following
this, the colors of the remaining n − ninit � n��S; i� � n−�S; i�
pixels are assigned to make the parity of the white pixels with-
in the glider as either even or odd, with a probability ratio of
1�φ0

i

1−φ0
i

. Note that while this choice (even versus odd) is indepen-

dent at each pixel, the resulting color (white or black) de-
pends on the previous assignments. Thus, the exponents
n��S; i� and n−�S; i� tally the choices of even and odd, not
the colors themselves.

For reference, we restate the results of the previous section
in a form that applies to all coordinates. The generic form of
the partition function [Eq. (35)] is

Z � 2ninit

X
n��n−�n−ninit

�n − ninit�!
n�!n−!

exp�μi�n� − n−��; (46)

which, after applying the binomial theorem, becomes

Z � 2ninit�eμi � e−μi�n−ninit : (47)

The generic form of Eq. (38) for the Lagrange multiplier μi is

μi � tanh−1�φ0
i � �

1
2
ln
1� φ0

i

1 − φ0
i

; (48)

so the partition function [Eq. (47)] can be rewritten as

Z � 2ninit

0
@ 2�����������������������������������

�1� φ0
i ��1 − φ0

i �
q

1
An−ninit

: (49)

Figure 1 shows examples of images generated according to
this construction, for each of the coordinates. As can be seen
from these examples, each coordinate φi leads to a different
kind of structure. All are visually salient, but to different
degrees—an informal observation that we will quantify below
(Section 4).

Interestingly, these differences in salience are solely due
the processing limitations of the visual system: from the point
of view of an ideal observer (limited only by the statistics of
sampling of images), the alterations in image statistics asso-
ciated with movement along each of the coordinates is equally
salient. This property of the coordinates φi is demonstrated in
Appendix B.

Finally, we mention that specification of a nonzero value
for one coordinate can lead to nonzero values for the others,
as is the case for φ1 � −γ. This happens for β− or βj: in these
cases, α � β2. This can be seen by calculating the 2 × 2 block
probabilities from Eq. (44) and then calculating α � φ�11 11�
from Eq. (7).
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F. Ensembles Specified by Two Parameters, along One
Dimension
The next sections consider the construction of maximum-
entropy ensembles specified by two parameters, say φi and
φj . We begin with the simplest case, in which the gliders
associated with these parameters lie within a single spatial di-
mension (i.e., a row, a column, or a diagonal). For definite-
ness, we focus on γ paired with β−, but the analysis applies
equally well to γ paired with one of the other β’s.

Since the coordinates γ and β− only refer to correlations
within rows, the rows of the maximum-entropy ensemble
must be independent. It therefore suffices to provide an algo-
rithm to generate a row of the image and then to apply this
algorithm separately to each row. To create each row, we
use a recursive procedure, a Markov process, to define each
pixel assignment. We show that probabilities of the resulting
image samples are consistent with Eq. (29), which confirms
the maximum-entropy property. A Markov process is a natural
strategy for a maximum-entropy construction, since each
state of a Markov process depends only on the previous one.

The Markov property, along with the 1 × 2 block probabil-
ities, specifies the probabilities of all 1 × k blocks. To see this,
we first determine the probabilities of the 1 × 3 blocks:

p�A1 A2 A3 � � p�A1 A2�p�A3jA2� �
p�A1 A2�p�A2 A3 �

p�A2�
:

(50)

Here, the first equality expresses the Markov property (that
the assignment of A3 depends only on the state of A2 and

not on A1) and the second equality follows from the fact that
joint probability p�X; Y� is related to the conditional probabil-
ity p�Y jX� by p�X; Y � � p�X�p�Y jX�.

Equation (50), applied recursively, specifies the probabil-
ities of all 1 × k blocks:

p�A1 � � �Ak��
p�A1 A2�p�A2 A3�•…•p�Ak−1 Ak�

p�A2�p�A3�•…•p�Ak−1�
: (51)

The numerator is the product of all 1 × 2 block probabilities
contained within the 1 × k block; the denominator is the pro-
duct of all the singleton probabilities, excluding both ends. We
note that the 1 × 2 block and singleton probabilities are
known, since they are determined from the constraints
φ1 � −γ and φ2 � β− via Eq. (8) (also, see Table 1).

To show that the probabilities of image samples generated
in this fashion are consistent with Eq. (29), we proceed as fol-
lows. The probability of an image S is a product of terms such
as Eq. (51), one for each row. For each of the four kinds of
1 × 2 blocks, the corresponding block probability will occur as
a factor in the numerator every time that this block appears in
S. A similar reasoning applies to the denominator. Thus,

p�S� � p� 0 0 �n00p� 0 1 �n01p� 1 0 �n10p� 1 1 �n11

p�0�n0p�1�n1
; (52)

where nAB counts the number of �A B � blocks in S and nA

counts the number of A-singletons in the interiors of the rows
of S. To show that these probabilities are consistent with
Eq. (29), the key step is to relate the block counts nAB and nA

in the above equation to the parity counts n��S; i� and
n−�S; i�. These count the occurrences of even- and odd-parity
1 × 2 blocks (n��S; 2�) and the black and white singletons
(n��S; 1�). The relationship between the block counts and
the parity counts follows from the transformation between
the block probabilities and coordinates [Eq. (7)] and Table 1).
For example,

n00 � np00�S� �
n

4
�1 − 2γ�S� � β−�S��; (53)

where pX �S� indicates the probability of an X block in S and
φ�S� indicates the transformed coordinate φ evaluated from
the block probabilities within S. Note that Eq. (53) neglects
“end effects”, but this is justified because in the large-k limit,
the interior pixels are far more numerous than the edge pixels
and consequently dominate the product [Eq. (52)].

Equation (53) and its analogs for the other blocks, along
with Eq. (20), lead to the desired relationships between the
block counts and the parity counts n��S; i�:

n00 � n
4 � n��S;2�−n−�S;2�

4 � n��S;1�−n−�S;1�
2

n01 � n
4 −

n��S;2�−n−�S;2�
4

n10 � n
4 −

n��S;2�−n−�S;2�
4

n11 � n
4 � n��S;2�−n−�S;2�

4 −
n��S;1�−n−�S;1�

2

n0 � n
2 � n��S;1�−n−�S;1�

2

n1 � n
2 −

n��S;1�−n−�S;1�
2

: �54�

Substitution of Eqs. (54) into Eq. (52) yields an equation of the
form Eq. (29), confirming the maximum-entropy property of
the construction.
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Fig. 1. The image-statistic coordinate axes. Each patch is a typical
sample of an image ensemble in which the indicated statistic is set to a
nonzero value and higher-order statistics are determined by maximum
entropy.
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G. Ensembles Specified by Two Parameters, along Two
Dimensions: Pickard Case
Next we continue the construction of ensembles specified by
a pair of constraints, but now consider the case when these
constraints correspond to gliders that involve both spatial di-
mensions. The natural approach is to attempt to extend the
Markov construction to two dimensions. However, it is not
clear whether this approach will work, as the correlations
in the two dimensions may interact. As we will see, the exten-
sion works in most cases (the cases in which the “Pickard con-
ditions” [21] hold), but not in all. We first discuss these cases
and then handle each of the “non-Pickard” cases separately.

Extending the Markov construction to two dimensions con-
sists of two stages: creating 2 × k blocks by a Markov process
and then assembling these blocks by a second Markov pro-
cess. The rationale for creating the rows in pairs (i.e., 2 × k

blocks rather than 1 × k blocks) is that the second row is
needed to allow for correlations in the vertical dimension.

To determine the feasibility of this approach, we begin with
the row process and calculate the probability of a 2 × 3 block,
as a Markov process on 2 × 2 blocks with one column of
overlap:
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That is, the probability of a 2 × 3 block is the product of the
probabilities of the 2 × 2 blocks it contains, divided by the
probability of the 2 × 1 block at their intersection. Once we
have created a 2 × k row by a Markov process, we can con-
sider assembling these rows via a second Markov process.
At the very least, we need to assemble two 2 × 3 rows to form
a 3 × 3 block:
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(56)

Here, the denominator, the probability of the 1 × 3 block inter-
section, is determined by “marginalizing” Eq. (55), i.e., sum-
ming over the possible states of the pixels A1k that are in
the previously determined row:
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Equations (56) and (57) reveal an issue that did not arise in the
one-dimensional case: we need to verify that the probabilities
of the lower-row 2 × 2 subblocks of Eq. (56) are consistent
with the probabilities of the upper-row 2 × 2 blocks that we
started with. Here, the Markov processes along the two di-
mensions may interact, via the 1 × 3 block probabilities of
Eq. (57). So stability of the 2 × 2 block probabilities across
rows is not guaranteed. For the one-dimensional case
(Section 2.F.), this issue did not arise, since each row was
created independently.

1. Pickard Conditions
Pickard [21] identified conditions on the block probabilities
that not only guarantee the above stability, but also something
much stronger: that the two-dimensional Markov construction
samples a maximum-entropy distribution, constrained by the
2 × 2 block probabilities (see also [25]). We state the Pickard
conditions and then discuss how they fulfill the above need.

One set of Pickard conditions is that

p
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: (58)

This condition may be mirrored in either the horizontal or
vertical axis to obtain an alternative set of conditions [not
equivalent to Eq. (58)]:
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As Pickard showed (see also [25]), if a set of block probabil-
ities satisfies both halves of (58), or both halves of (59), then
the Markov algorithm will generate maximum-entropy sam-
ples. Pickard [21] stated the conditions in terms of conditional
probabilities, e.g.
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: (60)

This form emphasizes that the Pickard conditions effectively
factorize the way that the two dimensions interact; Eq. (60) is
readily seen to be equivalent to Eq. (58) above according to
the rules of conditional probabilities.

While we do not reproduce Pickard’s proof that either set of
conditions guarantees that construction is maximum-entropy,
we carry out a simpler calculation that provides an intuition
for why this is true: we show how the Pickard conditions are
related to the stability of the 2 × 2 block probabilities. Addi-
tionally—and this will be useful in situations when the Pickard
conditions do not hold—the calculation shows that half of a
Pickard condition simplifies the expression for 1 × 3 (or 3 × 1)
blocks. In particular, we will show that the first half of either
Eq. (58) or Eq. (59) simplifies the expression for 1 × 3 block
probabilities, when the Markov process is run from left to
right and top to bottom. This, in turn, allows us to show that
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the 2 × 2 block probabilities are stable for a left-to-right, top-
to-bottom process. Consequently, when both halves of a Pick-
ard condition hold, then the 2 × 2 block probabilities are
stable when the two-dimensional Markov process is run from
left-to-right and then from top-to-bottom OR, from right-to-left
and then from bottom-to-top. Intuitively, this stability and

reversibility are the reasons that the Markov algorithm is a
maximum-entropy construction that satisfies the desired
constraints (see [21] and [25] for background).

To show that the first half of the Pickard condition simpli-
fies the expression for the 1 × 3 block probabilities, we
calculate as follows:
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(61)
where the first equality is from Eq. (57), the second equality follows from the first half of the Pickard condition [Eq. (58)], and the
final equality follows by marginalizing over X .

This simplified expression for 1 × 3 block probabilities, along with Eqs. (55) and (56), combine to provide an expression for the
3 × 3 block probabilities, which we need to determine whether the 2 × 2 probabilities are stable:
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To show that the 2 × 2 probabilities are stable, we show that the distribution of 2 × 2 blocks in the interior of the image is identical
to their distribution in the rows and columns that have already been generated. We carry this out by marginalizing over the states of
the pixels in the first row and first column of the left-hand-side of 3 × 3 block probabilities [Eq. (62)] and then use the first half of the
Pickard condition (58) to simplify the resulting expression:

X
A11;A12;A13;A21;A31

p

0
BBB@
A11 A12 A13

A21 A22 A23

A31 A32 A33

1
CCCA �

X
A11;A12;A13;A21;A31

p

�
A11 A12

A21 A22

�
p

�
A12 A13

A22 A23

�
p

�
A21 A22

A31 A32

�
p

�
A22 A23

A32 A33

�
p�A22�

p

�
A12

A22

�
p

�
A22

A32

�
p�A21 A22 �p�A22 A23 �

�
X

A12;A21

p

�
A12

A21 A22

� p

�
A12

A22 A23

�
p

�
A21 A22

A32

�
p

�
A22 A23

A32 A33

�
p�A22�

p

�
A12

A22

�
p

�
A22

A32

�
p�A21 A22 �p�A22 A23 �

�
X

A12;A21

p�A21 A22 �p
�
A12

A22

�
p�A22�

p

�
A12

A22 A23

�
p

�
A21 A22

A32

�
p

�
A22 A23

A32 A33

�
p�A22�

p

�
A12

A22

�
p

�
A22

A32

�
p�A21 A22 �p�A22 A23 �

�
X

A12;A21

p

�
A12

A22 A23

�
p

�
A21 A22

A32

�
p

�
A22 A23

A32 A33

�

p

�
A22

A32

�
p�A22 A23 �

�
p�A22 A23 �p

�
A22

A32

�
p

�
A22 A23

A32 A33

�

p

�
A22

A32

�
p�A22 A23 �

� p

�
A22 A23

A32 A33

�
. (63)

J. Victor and M. Conte Vol. 29, No. 7 / July 2012 / J. Opt. Soc. Am. A 1323



This analysis applies, by symmetry, to the other halves of the
Pickard conditions. For example, if only the second half of the
second Pickard condition, Eq. (59), held, then the result (63)
would still be valid for left-to-right and top-to-bottom pro-
cesses, but the expression (Eq. 61) for 1 × 3 blocks would
need to be replaced by a similar expression for 3 × 1 blocks.

2. Pickard Conditions in Transformed Coordinates
To see how the Pickard conditions apply to our setting, we
transform them into the coordinates φi. We begin with the first
half of the condition [Eq. (58)]. The first step is to transform
the block probabilities into the coordinates φi, via Eq. (8) and
Eqs. (14) through (16):
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When the above expressions are substituted into the first half
of the Pickard condition [Eq. (58)], most terms cancel. The
ones that do not cancel have a common factor �−1�B�C ; re-
moving this leads to

−�−1�Dθ⌟ � β∕ − �−1�Dγβ∕ � γθ⌟
� γ2 − �−1�Dγ�β− � βj� � β−βj: (65)

This equation must hold both for D � 0 and for D � 1. This
means that the terms not involving D must be equal, as must
the terms that are multiplied by �−1�D. The terms not involving
D yield

β∕ � γθ⌟ � γ2 � β−βj; (66)

and the terms multiplied by �−1�D yield

θ⌟ � γβ∕ � γ�β− � βj�: (67)

Because of symmetry, the transformed version of the second
half of the Pickard condition (58) can be obtained from
Eqs. (66) and (67) by replacing θ⌟ with θ

⌝

:

β∕ � γθ

⌝

� γ2 � β−βj; (68)

θ

⌝

� γβ∕ � γ�β− � βj�: (69)

Thus, it follows that if either half of the Pickard condition
holds, then the other half is equivalent to θ

⌝

� θ⌟.
Note that the Pickard conditions are nonlinear in the coor-

dinates. Geometrically, this means that the coordinates that
satisfy either or both halves of a Pickard condition lie in a
curved subset within the coordinate space.

Table 2. Specification of Maximum-Entropy Ensembles from Pairs of Coordinatesa,b

Value

Coordinate Method Pair and {Multiplicity} γ β− βj β∖ β∕ θ⌟ θ⌞ θ

⌝

θ

⌟

α

�γ; β−�{2} 1DM (P2) γ β− γ2 γ2 γ2 γβ− γβ− γβ− γβ− β2−
�γ; β∖�{2} 1DM (P1) γ γ2 γ2 β∖ γ2 γ3 γβ∖ γ3 γβ∖ γ2β∖
�γ; θ⌟�{4} 2DM (P1) γ γ2 γ2 γ2 γ2 θ⌟ γ3 γ3 γ3 γθ

⌝

�γ; α�{1} 2DM (P2) γ γ2 γ2 γ2 γ2 γ3 γ3 γ3 γ3 α

�β−; βj�{1} 2DM (P2) 0 β− βj β−βj β−βj 0 0 0 0 r1�β−; βj�
�β−; β∖�{4} 2DM (P1) 0 β− 0 β∖ 0 0 0 0 0 r2�β−; β∖�
�β∖; β∕�{1} 2DMO 0 0 0 β∖ β∕ 0 0 0 0 β∖β∕
�β−; θ⌟�{8} 2DM (P1) 0 β− 0 0 0 θ⌟ 0 0 0 r3�β−; θ⌟�
�β∕; θ⌟�{4} 2DM (P1) 0 0 0 0 β∕ θ⌟ 0 0 0 0
�β∖; θ⌟�{4} 2DMT-DA 0 0 0 β �

∖ 0 θ �
⌟ 0 β∖θ �

⌟ 0 0

�β−;α�{2} 2DM (P2) 0 β− 0 0 0 0 0 0 0 α
�β∖;α�{2} 2DM (P1) 0 0 0 β∖ 0 0 0 0 0 α

�θ⌟; θ ⌝

�{2} 2DM (P1) 0 0 0 0 0 θ⌟ 0 θ

⌝

0 0

�θ⌟; θ⌞�{4} 2DM-DA 0 0 0 0 0 θ⌟ θ⌞ 0 0 0

�θ⌟; α�{4} 2DM (P1) 0 0 0 0 0 θ⌟ 0 0 0 α
aThe row headed by each pair of coordinates indicates the subspaces in which simple maximum-entropy ensembles may be sampled by specific algorithms.

Algorithms designated as follows: 1DM: one-dimensional Markov process; 2DM: two-dimensional Markov process; P1: One set of Pickard conditions [Eq. (58)
or Eq. (59)] hold; P2: Both sets of Pickard conditions hold; 2DMO: two-dimensional Markov process on oblique axes; 2DMT: two-dimensional Markov process
on a tee-shaped glider. For this algorithm, * denotes that the parameter values obtained are highly accurate approximations, but not exact—see Appendix C,
Section C2. DA: donut algorithm. r1�β−; βj�, r2�β−; β∖�, and r3�β−; θ⌟� denote the roots of specific cubic polynomials (see Appendix C, Section C3).

bBecause of symmetry, the 45 pairs that can be drawn from the 10 coordinates fγ; β−; βj; β∖; β∕; θ⌟; θ⌞; θ ⌟

; θ⌟; αg constitute 15 unique classes; only one member of
each class is listed. The number in braces next to each coordinate pair indicates the total number of pairs in that class. For example, �β∖; θ⌟� indicates the four pairs
�β∖; θ⌟�, �β∖; θ ⌝

�, �β∕; θ⌞�, and �β∕; θ ⌟

�

1324 J. Opt. Soc. Am. A / Vol. 29, No. 7 / July 2012 J. Victor and M. Conte

jdvicto
Sticky Note
The subscript of the theta should be rotatetd 180 deg so that its angle is pointing towards the lower right, just like the theta at the extreme left of this row



3. Coordinate Pairs, Case-by-Case
Pickard’s result [21] means that the two-dimensional Markov
procedure is valid within the curved subsets specified by the
Pickard conditions, Eqs. (66) and (67) or Eqs. (68) and (69).
Thus, to determine the coordinate pairs for which we can use
this procedure to sample the maximum-entropy ensemble, we
need to relate the various coordinate planes �φi;φj� to the
Pickard conditions. We begin with some general comments
and then consider the planes in a case-by-case fashion below.
The full analysis is summarized in Table 2 and samples of
images are shown in Figure 2.

In many of the coordinate planes, the Pickard conditions
hold. This is because within a coordinate plane, two of the

texture coordinates are nonzero, and the remaining 8 coordi-
nates are zero. The Pickard conditions involve subsets of the
six coordinates fγ; β−; βj; β∕; θ⌟; θ ⌝

g and fγ; β−; βj; β∕; θ⌞; θ ⌟

g—
so if at least one of these subsets is entirely contained in the
eight coordinates that are orthogonal to the plane of interest,
the Pickard conditions will hold. For these coordinate pairs, a
two-dimensional Markov process creates images that are spe-
cified by the coordinate pair of interest and are otherwise
maximum-entropy.

Among the coordinate planes that are not strictly within the
Pickard subset, many are closely approximated by it, i.e., they
are tangent to the Pickard subset at the origin. In these cases,
our goal of creating images that probe the effects of a pair of

Fig. 2. The image-statistic coordinate planes. Each patch is a typical sample of an image ensemble in which the indicated pair of statistics is set to a
nonzero value and the rest are determined according to Table 2.

J. Victor and M. Conte Vol. 29, No. 7 / July 2012 / J. Opt. Soc. Am. A 1325

jdvicto
Sticky Note
There is an error in this panel of Figure 2c.  The corrected version can be downloaded from www-users.med.cornell.edu/~jdvicto/vico12.html

jdvicto
Sticky Note
This subscript should be a backslash.



coordinates are, in fact, best served by working within this
curved subset. The curved subset is a more natural choice
than the coordinate plane itself, because of the natural
curvature of the space. The natural curvature can be seen
by focusing on single texture coordinates. Specifically, (as
mentioned above), the maximum-entropy ensembles speci-
fied by the coordinate γ, the IID images, do not lie on the co-
ordinate axis itself, but rather, form a curved trajectory,
�β; θ; α� � �γ2; γ3; γ4�. A further justification for the use of a
curved trajectory is that in these cases, the deviation between
the curved set and the planes is well below perceptual thresh-
old (see Section 3.B). After considering the coordinate pairs
whose planes are tangent to the Pickard subset, we will han-
dle the remaining few pairs, whose planes are not close to the
Pickard subset, via another approach, in Section 2.H.

We now turn to the individual coordinate pairs; Table 2 pro-
vides a comprehensive summary. (Since there are 10 coordi-
nates, there are a total of 45 coordinate pairs, but because of
symmetries among the β’s and θ’s, only 15 coordinate pairs
need to be considered explicitly.)

To begin, the coordinate pairs �γ; β−� and �γ; β∖� have al-
ready been handled as one-dimensional Markov processes,
so each of them necessarily satisfies a Pickard condition. Note
that even in this simple case, it is natural to work in a curved
subset, in which the unspecified coordinates are given non-
zero values (e.g., the unspecified β’s are set equal to γ2). These
are the unique choices for which the one-dimensional Markov
processes are independent of each other—thus guaranteeing
maximum entropy—and, for the β’s and θ’s, they are the un-
ique choices for which the Pickard conditions hold.

For �γ; θ� and �γ; α�, the second coordinate corresponds to a
glider that occupies more than one row or column, so the one-
dimensional Markov construction is not applicable. But here,
the Pickard conditions hold, with the appropriate choices for
the β’s and the unspecified θ’s. These choices also guarantee
independence of the pixels within the unspecified gliders. The
choice of α is unconstrained by the Pickard conditions, so, for
�γ; θ�, its value is chosen to achieve maximum entropy within
the 2 × 2 block. α � γθ⌟ achieves this because it means that
the pixel not contained in the θ⌟-glider is independent of
the ones constrained by θ⌟. (The procedure of Appendix C,
Section C3, confirms that this choice for α maximizes the
entropy.)

�βj; β � and �βj; β∖� also satisfy the Pickard conditions. A
zero value for γ and the θ’s is the maximum-entropy choice
by the following symmetry argument, based on contrast-
inversion. Since contrast-inversion negates the value of γ and

θ, the entropy of an ensemble with nonzero values of these
parameters could always be further increased by mixing it
with its contrast-inverse. Consequently, when maximum-
entropy is achieved, these parameters must have a zero value.
The choice of α, however, is less straightforward, since any
value is consistent with the Pickard conditions and with
the above symmetry argument. Appendix C, Section C3 details
how it is chosen as a function of the β’s to maximize entropy.

�β∖; β∕� is the first coordinate pair that does not satisfy
either Pickard condition, even for limitingly small values of
the coordinates. However, we can handle this case by noting
that the gliders corresponding to both coordinates only induce
correlations of pixels Aij for which i� j have the same parity.
That is, these gliders only induce correlations within the two
diagonal sublattices (corresponding to the “red” and “black”
pixels of an ordinary checkerboard) and not between them.
Since these sublattices are independent, we can construct
the image on each of them separately. The latter construction
is straightforward: within each diagonal sublattice, �β∖; β∕� be-
haves like �βj; β �. In sum, the �β∖; β∕� case is equivalent to the
�βj; β � case on each of two independent sublattices: the sub-
lattice for which i� j is even and the sublattice for which i�
j is odd.

The �β; θ� cases depend on how the gliders relate. For a hor-
izontal or vertical β (e.g., �β−; θ⌟�), a Pickard condition holds
and α is chosen to maximize entropy (Appendix C,
Section C3). For a diagonal β that is contained within the θ
glider (e.g., �β∕; θ⌟�), the Pickard conditions hold as well
and the choice of α � 0 corresponds to independence of
the fourth pixel in a 2 × 2 block and hence, maximum-entropy.
Finally, for a diagonal β that is not contained within the θ gli-
der (e.g., �β∖; θ⌟�), the Pickard conditions do not hold; this
case will be treated in the next section (and in detail in
Appendix C, Section C1 and Section C2).

The �β; α� cases are straightforward: they all satisfy at least
one Pickard condition and symmetry requires that the
maximum-entropy choices of the other parameters are zero.

The �θ; θ� cases differ, depending on how the gliders relate.
When they overlap on a diagonal (e.g., �θ⌟; θ ⌝

�), a Pickard
condition holds and a symmetry argument (discussed in
Appendix C, Section C2, in relation to the �β∖; θ⌟� case) shows
that α � 0 is the maximum-entropy choice. When they overlap
along an edge (e.g., �θ⌟; θ⌞�), the Pickard conditions do not
hold and we use the method described in the following
section.

Finally, the �θ; α� case satisfies both Pickard conditions.

Fig. 3. Donut construction for maximizing entropy while maintaining 2 × 2 block probabilities. Left: a pair of 3 × 3 regions is identified, for which
the outer eight pixels match identically. Right: the interior pixels of the two regions are swapped. This step preserves all 2 × 2 block probabilities.
Iterations of this step destroy longer-range correlations.
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H. Donut Algorithm
Wenowconsider the two coordinate pairs, �β∖; θ⌟� and �θ⌟; θ⌞�.
Because the Pickard conditions do not hold, it is necessary to
depart from the Markov construction. The alternative we de-
scribe turns out to be much more useful than just providing
a solution for these last cases: it also allows for creation of
maximum-entropy image ensembles constrained by the 2 × 2
block probabilities derived from an arbitrary image.

The basic idea is a two-step process. In the first step, we
generate an ensemble (or a large example drawn from an en-
semble) that satisfies the coordinate constraints, but is not ne-
cessarily maximum entropy. That is, we generate an ensemble
that satisfies the constraints on 2 × 2 blocks, but may have un-
necessary correlations among larger blocks. This step is
somewhat ad hoc; we use different constructions for �β∖; θ⌟�
and �θ⌟; θ⌞�, as described below. In the second step, which is
generic, we increase the entropy of this ensemble by mixing it,
in a way that preserves the constraints.

The second step—a procedure for maximizing the entropy
by scrambling the pixels in a manner that preserves 2 × 2
block probabilities but not longer-range correlations—is dia-
grammed in Figure 3. The image is searched to identify two 3 ×
3 regions for which the outer 8 pixels match identically. (Since
there are 28 possible configurations, many such matches will
be present in a typical image of thousands to millions of
pixels.) Then, the interior of two such randomly-chosen “do-
nuts” are swapped, say, between locations A and B. This swap
necessarily preserves the number of 2 × 2 blocks of each con-
figuration, since the 2 × 2 blocks at location A have now been
moved to location B and vice-versa. However, longer-range
correlations have been reduced, since the pixel at location
A now has the longer-range context (e.g., next-nearest neigh-
bors) of B and vice-versa. The procedure is then iterated until
the statistical properties of the image have stabilized. Further
details and background on this algorithm are provided in
Appendix D, including comments on the mathematical justifi-
cation for the algorithm, its relationship to the classical
Metropolis algorithm [26] and how it can be implemented
efficiently.

1. Applying the Donut Algorithm to the Non-Pickard
Cases
The simpler of the non-Pickard cases is that in which the co-
ordinates �θ⌟; θ⌞� are specified. With γ, the β’s, and the unspe-
cified θ’s (θ

⌟

and θ

⌝

) set to zero, the second halves of both
Pickard conditions [in block probability form, Eqs. (58) and
(59)] hold, since all pixels within the θ

⌟

and θ

⌝

gliders are in-
dependent. As shown in Appendix C, Section C1, this ensures
that when the block probabilities are used to drive a two-
dimensional Markov process, the resulting image retains
the same block probabilities. However, this does not mean
that the construction is maximum-entropy, since neither Pick-
ard condition holds in its entirety, only one half of each. The
problem is nonstationarity: the two gliders θ⌟ and θ⌞ combine
to induce correlations of the end pixels within a 1 × 3 block.
The reason for this becomes apparent from considering a
block �A

D
B
E
C
F
�. Say we choose the first row at random, since

we would like the β’s to be zero. θ⌟ biases the parity of the
pixels �

D
B
E
� andθ⌞ biases the parity of the pixels �B

E F
�. Since

these two blocks both contain B and E, the parity biases with-
in each induce a correlation among D and F , the end pixels of

the second row of the block, �D E F �. This happens even
if no correlation were present between the end pixels of the
first row, �A B C �. It is unclear how to choose the original
row to ensure that subsequent rows have similar and
maximally-random statistics.

The donut algorithm circumvents this problem. Applying it
to the results of the two-dimensional Markov process pre-
serves the 2 × 2 block probabilities and the scrambling pro-
cess guarantees that a stable, maximum-entropy sample
results. In this case—as is seen from Figure 4(a)—there is vir-
tually no change in the entropy that results from the donut
procedure or in the visual characteristics of the image sam-
ples. So, while the donut procedure is necessary for the con-
struction to be rigorously correct, it appears to have little
practical impact.

For the �β∖; θ⌟� case, only one half of one Pickard condition
holds and the argument of Appendix C, Section C1, does not
apply. Thus it is not readily apparent how to create a
starting image with the requisite 2 × 2 block probabilities.
Appendix C, Section C2 shows one way to do this, via a Mar-
kov process based on a “tee” configuration of pixels, �A B

D
C�. A

consequence of this construction is that weak correlations are
induced at a horizontal spacing of 3 (i.e., between the end-
pixels of a 1 × 4 block), but not in a vertical direction. Since
the parameters themselves are symmetric with respect to in-
terchange of horizontal and vertical axes, the presence of hor-
izontal but not vertical correlations must be a violation of
maximum-entropy.

As shown in Fig. 4(b), the donut algorithm fixes this: as it
proceeds, horizontal correlations spread into the vertical di-
rection, until they are equal in strength. Even though vertical
correlations are generated, overall entropy increases, because
of the effect of the swapping procedure on high-order correla-
tions and larger blocks. As is the case for the θ⌟‐ and θ⌞-
construction [Figure 4(a)], the changes induced by the donut
algorithm have only a minor effect (if any) on the visual ap-
pearance of typical images.

2. Other Applications of the Donut Algorithm
Above, the donut algorithm was used to fine-tune a procedure
that already generated nearly maximum-entropy samples.
However, it is much more widely applicable, because it can
be applied independent of the way in which the starting image
is created. Thus, it can be applied to create classes of ensem-
bles that are not at all close to those that are created by the
Markov procedure. We illustrate this with two examples: first,
construction of a maximum-entropy image specified by four
texture coordinates and second, construction of a maximum-
entropy image constrained by the 2 × 2 block probabilities of a
binarized natural image.

The first example, Fig. 5, is constructed to have a nonzero
value of all the θ’s, i.e,. θ⌟ � θ⌞ � θ

⌟

� θ

⌝

� 0.2, and all other
texture parameters equal to zero. Here, no Pickard conditions
hold and the Markov approach also cannot be applied, be-
cause it is unclear how it should be initialized. However, this
kind of ensemble is readily generated by mixing together a
pair of ensembles, each of which satisfies the Pickard condi-
tions: one with θ⌟ � θ

⌝

� 0.4 and one with θ⌞ � θ

⌟

� 0.4.
Swapping of pixels is carried out by the above donut proce-
dure, with pixels free to swap between the ensembles. Since
the swaps preserve the combined 2 × 2 counts, the resulting
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mixture has the desired block probabilities. In contrast to the
examples of Fig. 4, the swapping procedure does have a visual
effect: the diagonal structure of the starting images is lost. Not

surprisingly, this is accompanied by a much larger change in
the entropy (approximately 0.1 bit/pixel) compared to
Fig. 4 (<0.01 bit∕pixel).
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Finally, since the donut algorithm does not depend on the
structure of the image, it can be applied to natural images as
well. We illustrate this in Fig. 6, starting with a texture from
the Brodatz [27] library [Fig. 6(a)]. We first binarize it and de-
trend it, Fig. 6(b), and then apply the donut algorithm. The

result is an image in which the general diagonal correlation
structure is preserved, but the multiscale detail (of bricks
and mortar) is lost [Fig. 6(c), Fig. 6(d)]. This is just as one
would expect from a procedure that explicitly preserves only
the short-range correlations and the long-range correlations
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are limited to those that the short-range correlations imply.
Put another way, the original image has both a short-range
structure (the texture of the bricks and the typical orientation
of the brick/mortar interface) and a long-range structure (the
regularity of the brickwork lattice). The donut algorithm cap-
tures the former, but not the latter, and the resulting image

[Fig. 6(d)] shows that the overall slant of the lattice, but
not its regularity, is implied by the short-range structure.

3. PSYCHOPHYSICAL METHODS
As described above, we established a coordinate system for
the local statistics of binary images and developed algorithms
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that generate visual textures which have specified values of
these statistics. Next, we determine visual sensitivity to these
statistics, alone and in selected combinations. This section de-
scribes the psychophysical methods employed.

Each experiment focuses on one pair of image statistics
(i.e., one coordinate pair) and consists of a determination
of the salience of each coordinate in isolation and an analysis
of how they interact. We use one of two schemes to explore
each coordinate pair: a scheme in which we sample five points
along each coordinate axis and two points along each of the
four diagonals of the coordinate plane or a scheme in which
we sample three points in each of 12 directions (including the
four coordinate axes). To measure the visual salience of a set
of image statistics, we used the texture segmentation para-
digm developed by Chubb and coworkers in the study of
IID textures [1], described below.

A. Stimuli
The basic stimulus consisted of a 64 × 64 array of pixels, in
which a target region (a 16 × 64 rectangle, positioned eight
pixels from one of the four edges of the array) is distinguished
from the remainder of the array by its statistics. To ensure that
the subject responds on the basis of segmentation (rather
than, say, a texture gradient), we randomly intermix trials
of two types: (a) trials in which the background is random
and the target has a nonzero value of one or more image sta-
tistics and (b) trials in which the background has the nonzero
values and the target is random. The range of values of the
image statistics was determined in pilot experiments, to

ensure that the experiment included conditions for which
performance ranged from near-chance to near-ceiling.

Stimuli were presented on a mean-gray background, fol-
lowed by a random mask. The display size was 15 × 15 deg
(check size, 14 min), contrast was 1.0, and viewing distance
was 1 m. Initial studies were carried out on a CRT monitor
with a luminance of 57 cd∕m2, a refresh rate of 75 Hz, and
a presentation time of 160 ms driven by a Cambridge Research
VSG2/5 system, later studies were carried out on an LCD
monitor with a luminance of 23 cd∕m2, a refresh rate of
100 Hz, and a presentation time of 120 ms, driven by a Cam-
bridge Research ViSaGe system. Results (including one sub-
ject, MC, tested under both conditions) were very similar
under these two conditions: for γ, sensitivities (see below)
were 0.141 for both setups; for θ⌟, thresholds were 0.730
for the VSG 2/5 system versus 0.735 for the ViSaGe; and for
α, 0.495, and 0.523 for the VSG (two measures) versus.
0.536 for the ViSaGe.

B. Subjects
Studies were conducted in 6 normal subjects (two male, four
female), ages 25 to 51. Three subjects (AO, CC, RM) were na-
ïve to the purpose of the experiment. Five subjects (all but
DT) were practiced psychophysical observers in tasks invol-
ving visual textures. DT had no observing experience prior to
the current study. All had visual acuities (corrected if neces-
sary) of 20/20 or better.

C. Procedure
The subject’s task was to identify the position of the target (a
four-alternative forced choice texture segregation task). Sub-
jects were told that the target was equally likely to appear in
any of four locations (top, right, bottom, left), and were in-
structed to maintain central fixation on a one-pixel dot, rather
than to attempt to scan the stimulus. Auditory feedback for
incorrect responses was given during training but not during
data collection. After performance stabilized (approximately
two hours for a new subject), blocks of the 288 trials de-
scribed above (with trials presented in randomized order)
were presented. We collected data from 15 such blocks
(4320 trials per subject), grouped into three or four experi-
mental sessions, yielding 120 to 240 responses for each coor-
dinate pair.

D. Analysis
Measured values of the fraction correct (FC) are fit to Weibull
functions via maximum likelihood:

FC�x� � 1
4
� 3

4
�1 − 2−�x∕ar�

br �. (70)

Initially, this is carried out separately along each ray r. For the
rays along the coordinate axes, x is the coordinate value; for
the rays in the oblique directions, x is the distance from the
origin. In most cases, the Weibull shape parameter (the expo-
nent br) was in the range 2.2 to 2.6 for each ray or had con-
fidence limits that included this range. Therefore, we then fit
the entire dataset in each coordinate plane by a set of Weibull
functions, constrained to share a common exponent b, but al-
lowing for different values of the position parameter ar along
each ray. The fitted value of ar , which is the value of the image
statistic that yields performance halfway between floor and

(c) (d)

cycle 0

cycle 10000cycle 3000

(a) (b)

Fig. 6. Application of the donut algorithm to a natural texture. The
starting image is a region taken from Brodatz texture 1.4.01 [panel
(a)], median-thresholded to create a 64 × 64 binary image (b). (c)
and (d): The result of applying the donut algorithm. These images have
the same 2 × 2 block probabilities as the starting image [panel (b)];
other statistics are determined by maximum entropy. Even though
only short-range correlations are specified, long-range correlations re-
sult. Following application of the donut algorithm, the overall oblique
slant remains apparent, but the distinction between the two scales
(mortar and bricks) is lost.

J. Victor and M. Conte Vol. 29, No. 7 / July 2012 / J. Opt. Soc. Am. A 1331



ceiling, is taken as a measure of threshold. This measured
threshold provides a single point on an isodiscrimination
contour (e.g., Fig. 8). Correspondingly, its reciprocal 1∕ar
measures perceptual sensitivity to changes in the direction
of the ray r. Error bars (95% confidence limits) were deter-
mined via 200-sample bootstraps.

4. PSYCHOPHYSICAL RESULTS
Here, we measure the salience to the human visual system of
the image statistics described above to the human visual sys-
tem, alone and in combination. Following the work of Chubb
et al. [1], salience is operationally defined by the ability of a
change in a value of the statistic to support texture segmenta-
tion. We first consider changes in individual statistics, and
then sample their interactions.

A. Discrimination along Coordinate Axes
Figure 7 shows psychometric functions for performance in a
four-alternative forced-choice segmentation task (see
Methods), driven by variations of each of the kinds of texture
coordinates.

As seen from the individual plots, the variation across ob-
servers was quite small, for both the shape and position of the
psychometric functions. In terms of the thresholds ar [corre-
sponding to a fraction correct of 0.625, halfway between
chance and perfect, Eq. (70)], there was approximately a
10% scatter for γ, β−, and β∕ and a 20% scatter for θ⌟ and α.

Within observers, there was little difference in salience for
negative versus positive variations of the coordinates: a 20%
difference for α (higher sensitivity for positive variations than
for negative ones, p < 0.01, two-tailed paired t-test) and less
than a 10% difference (p > 0.1) for the others.

Across all observers, the thresholds for a fraction correct of
0.625 are γ, 0.157� 0.006, n � 5; β−, 0.286� 0.003, n � 2; β∕,
0.415� 0.009, n � 2; θ⌟, 0.824� 0.047, n � 6; α, 0.648�
0.042, n � 6 (mean � s.e.m, number of subjects). This
corresponds to a sensitivity rank-order of γ>β−>β∕>α > θ⌟,

consistent across all subjects. While sensitivity to lower-order
statistics is generally greater than for higher-order statistics,
there is only a fivefold difference between the least-salient and
the most-salient statistic and sensitivity is not a monotonic
function of rank order (i.e., salience is greater for α than
for θ⌟). Thus, the human observer is sensitive to statistics
of all orders and the high-order statistics are not simply a se-
quence of progressively smaller corrections.

The relative sensitivities to the parameters are relevant to
the logic of choosing coordinate axes, rather than maximum-
entropy loci, when these entities differ. For example (as men-
tioned above at the end of Section 2.D.), the coordinate axis
corresponding to γ (namely, all other parameters set to zero)
is not the same as the maximum-entropy locus corresponding
to γ [namely, �β; θ; α� � �γ2; γ3; γ4�]. For measuring the sal-
ience of γ, this distinction is moot—even when γ is twice
threshold (e.g., γ � 0.3) and performance is at ceiling, the
other parameter values are far below their thresholds:
�β; θ; α� � �0.09; 0.027; 0.0081�. However, when measuring
the threshold for α, the distinction is critical: thresholds are
at approximately α � 0.5. Had we attempted to measure this
along a maximum-entropy trajectory, we would have chosen
γ � α1∕4 (rather than γ � 0), which would have been markedly
suprathreshold. This generalizes: for measuring the sensitivity
to a high-order parameter, low-order parameters must be set
to zero so that they don’t contribute to detection, but for mea-
suring the sensitivity to a low-order parameter, this choice
(set-to-zero versus maximum-entropy) is moot.

B. Discrimination in Selected Planes
To determine how image statistics interact at the level of per-
ception, we measured segmentation thresholds along oblique
directions in coordinate planes. As indicated in Table 2, there
are 15 unique kinds of planes, once the symmetries of the co-
ordinates are taken into account. Here we focus on five of
these planes (�γ; α�, �θ⌟; α�, �γ; θ⌟�, �β∕; θ⌟�, �β−; α�); this suf-
fices to identify several kinds of behavior and suggest what
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is likely to be generic. (The unspecified coordinates are set to
zero or chosen by maximum entropy as discussed above; see
Table 2.)

Results are shown in Fig. 8. Along each ray, the distance to
the plotted contour indicates ar [Eq. (70)], the threshold for a
fraction correct of 0.625 in the corresponding direction in the
coordinate plane. (For the rays that are along the axes, the
plotted values correspond to the thresholds measured in
the experiments of Fig. 7). The contours are not circular, be-
cause the thresholds depend on the direction in parameter
space: the axis of elongation (highest threshold) corresponds
to the direction in which changes are least salient. Both on
and off the axes, there is close agreement across subjects.

In three of the coordinate planes (�γ; α�, �θ⌟; α�, and �β∕; θ⌟�),
the contours are approximately elliptical, with their axes par-
allel to the coordinate axes. The elliptical shape is consistent
with a Euclidean perceptual distance based on two indepen-
dent mechanisms (of unequal sensitivity) aligned with the
two axes. In the other two planes (�γ; θ⌟� and �β−; α�), the con-
tours are also elliptical, but are somewhat tiltedwith respect to
the axes: a counterclockwise tilt of 3 to 5 deg for �γ; θ⌟� and
about 20 deg for �β−; α�. Qualitatively, the tilt indicates that
the salience of these two parameters varying in the same direc-
tion (i.e., both positive or both negative) is greater than when
they vary in opposite directions. Tilted elliptical isodiscrimina-
tion contours are also consistent with a Euclidean perceptual
distance based on two independent perceptual mechanisms,
but the tilt requires that the mechanisms do not coincide with
the axes. The directions of these mechanisms cannot be deter-
mined unambiguously from the shape of the ellipse [28], but the
fact that the ellipse is tilted means that the perceptual mechan-
isms cannot be the same as the coordinate axes: one or more
must lie in an oblique direction (and these directions need not
even be within the coordinate planes).

5. DISCUSSION
The broad motivation for this work was to combine the
benefits of two broad classes of approaches to study vision—

those based on stimulus sets that are mathematically simple
with components that are easy to manipulate (such as gratings
and white noise) and those based on stimulus sets that are
biologically relevant (natural scenes). Our strategy was to
choose local image statistics that are informative about natur-
al scenes and to use maximum-entropy extension to create
stimulus sets that isolated one or more of these statistics. This
led to a specific mathematical challenge: how to sample an
ensemble of images that is specified by the joint probability
distribution of binary pixels and is otherwise maximum entro-
py. As we showed, this challenge can be met: standard ap-
proaches from the maximum-entropy formalism solve part
of the problem, results related to two-dimensional Markov
processes [21] solve most of the rest, and some new algo-
rithms fill in the remaining gaps. Together, these strategies al-
low for navigation in a nontrivial space of image statistics.
Moreover, they enable projection of an arbitrary natural image
into this space, as illustrated in Fig. 6.

It is worthwhile mentioning how this approach contrasts
with that of Portilla and Simoncelli [29], which is another
way of creating images with multiple specified image statis-
tics. Here, we specify a handful of local image statistics at
a single scale and the remaining image statistics are deter-
mined implicitly by maximum entropy—and it is guaranteed
that the resulting ensembles achieve (or very nearly achieve)
the specified statistics. In contrast, in the approach of Portilla
and Simoncelli [29], a large number of image statistics, of low
and high order and multiple scales, are specified. While the
latter approach has the advantage that a much wider variety
of image ensembles can be synthesized—including those that
are very similar to natural visual textures—it has an important
limitation: the image statistics are over-complete. Conse-
quently, they have complex algebraic interrelationships and
there is no guarantee that a prespecified set of statistics is
self-consistent or can be achieved. Thus, the Portilla and Si-
moncelli parameters cannot be regarded as “coordinates” for
a texture space and there is no way to assure that changing
one of them will not change many others. The complementary
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Fig. 8. Isodiscrimination contours (ICs) in five coordinate planes. The distance of the contour from the origin indicates the threshold ar for
individual image statistics (along the axes) and their mixtures (in oblique directions); threshold is defined by the value required to achieve a
fraction correct of 0.625, halfway between chance and perfect [Eq. (70)]. The outermost circle corresponds to a coordinate value of 1.0. Error
bars, most no larger than the contour line thickness, are 95% confidence limits. Task and subject key as in Fig. 7. ICs are approximately elliptical,
and in some planes, they are tilted.
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nature of the approaches reflects, in part, their distinct goals:
here, the goal is to analyze the impact of image statistics and
their combinations; in [29], the goal is to model natural
textures.

Although we focused on one of the simplest cases—only
binary textures and only four pixels—the strategies presented
are more general. The linear reorganization of block probabil-
ities into a set of transformed coordinates, each of which is
identically salient to an ideal observer, applies to any number
of gray levels, as described in Appendix A. The donut algo-
rithm, which is the key strategy for completing the construc-
tion, also is not restricted to the specific case we consider.
However, as the number of gray levels increases, the probabil-
ity of matching donuts rapidly decreases: if there are G gray
levels, there are G8 distinct donuts. The number of pixels in
the image must be large enough so that such matches are fre-
quent; this requires images containing ∼100; 000 pixels for 3
gray levels and ∼1; 000; 000 pixels for 4 gray levels. Thus,
for the “non-Pickard” cases and more than four gray levels,
other approaches are needed. A possible approach is to mod-
ify the donut algorithm to allow for inexact matches, but the
details remain to be worked out. An important limitation is
that our approach focuses on one spatial scale—the chosen
pixel size. Natural images have structure across a wide range
of spatial scales; inclusion of statistics at multiple spatial
scales is not readily accomplished by the techniques de-
scribed here (see Fig. 6).

One of the advantages of the coordinate system introduced
is that in the neighborhood of the origin, changes in all
directions are equally detectable to the ideal observer. The hu-
man visual system, however, has limited resources and the
way that these resources are deployed is likely to be shaped
by evolutionary, developmental, and neurophysiological
constraints.

As we showed (Fig. 7 and Fig. 8), the human observer is in
fact selective: there are substantial andhighly consistent differ-
ences in the perceptual salience of each image statistic. Some
of these differences are not surprising from first principles—
for example, that the most salient statistic is the one that indi-
cates overall luminance (γ) and that simple correlations (the
β’s) are more salient than the higher-order ones (the θ’s and
α). But a priori, it is unexpected that fourth-order correlations
are more salient than third-order correlations (Fig. 7) and that
there are interactions that are manifest by maximal salience in
directions oblique to the coordinate axes (Fig. 8).We speculate
that this is a manifestation of the efficient coding hypothesis
[14]—that the visual salience of each of the directions in the
space of local image statistics corresponds to the informative-
ness of these statistics about natural scenes. It is interesting to
note that if this form of the efficient coding hypothesis holds,
then the distribution of local statistics of natural scenes must
delineate specific directions in the coordinate space that are
maximally informative, and that these directions are, in gener-
al, oblique to the coordinate axes.

APPENDIX A: TRANSFORMED
COORDINATES
This Appendix provides background for the approach taken to
parameterize the space of block probabilities that are consis-
tent with spatial homogeneity. Specifically, we show how the
coordinates φ defined in the main text [Eq. (7)], can be

considered to be Fourier transforms with respect to gray level
and, consequently, how the approach applies to images with
more than two gray levels. In fact, the mathematical issues are
clearer in this more general setting—so we present it first and
then note how it reduces to the approach taken in the main
text when only two gray levels are present.

We consider images with G gray levels (G ≥ 2), which we
denote by the integers from 0 to G − 1. For definiteness, we
focus on the statistics that characterize 2 × 2 blocks, but
the approach readily extends to blocks of any number of pix-
els, n. The image intensity at each of the n pixels is thus a
separate variable (which we denote A1,…, An), each of which
can take a value from 0 to G − 1.

For the purpose of parameterizing the allowed block prob-
abilities, the G gray levels serve as abstract tokens, with no
particular relationship to each other. This is because the space
of allowed block probabilities has a built-in symmetry: it is
preserved under any permutation of the gray levels. That
is, if a set of block probabilities is allowed, then so is the
set of block probabilities that is obtained from the first by re-
labeling the gray levels f0; 1;…; G − 1g in a different order. A
special case of this symmetry is cyclic permutation of the gray
levels: replacing 0 by 1, 1 by 2, …, and G − 1 by 0. In view of
this, the block probabilities can be considered to be periodic
functions of the gray levels. A coordinate system that takes
this into account will have analytical advantages because it
makes use of a fundamental symmetry of the problem.

Coordinates that are Fourier transforms with respect to
gray level necessarily respect the cyclic permutation symme-
try, since they consider block probabilities to be periodic
functions of the gray levels f0; 1;…; G − 1g. An immediate ben-
efit of this Fourier approach is that in the transformed coor-
dinates, the constraints of stationarity are simple to express.
This is because stationarity is a constraint on the probabilities
of smaller blocks, which are obtained by marginalizing the full
2 × 2 block probabilities with respect to several pixels. Each
marginalization with respect to a pixel corresponds to evalu-
ating a Fourier component at a frequency of 0, since the DC
component of a Fourier transform amounts to an average of
the untransformed quantity.

To create the Fourier coordinate system explicitly, we in-
troduce a new set of variables, s1, …, sn, one for each pixel.
We now transform the original block probabilities (functions
whose arguments are the pixel variables Ak) into functions φ
that depend on the sk. Carrying this transformation out sepa-
rately on each pixel leads to:

φ
�
s1 s2
s3 s4

�
�

XG−1
A1�0

XG−1
A2�0

XG−1
A3�0

XG−1
A4�0

p

�
A1 A2

A3 A4

�

× e−
2πiA1s1

G e−
2πiA2s2

G e−
2πiA3s3

G e−
2πiA4s4

G

�
X

A1;A2;A3;A4

p

�
A1 A2

A3 A4

�
e−�

2πi
G
��A1s1�A2s2�A3s3�A4s4�.

(A1)

This is a discrete Fourier transform in n � 4 variables, each
of which can be equal to one of G different values. It reduces
to Eq. (7) in the main text for G � 2, since eπi � −1.
Since Eq. (A1) is a discrete Fourier transform, the inverse
transformation is immediate:
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p

�
A1 A2

A3 A4

�
� 1

G4

X
s1 ;s2 ;s3;s4

φ
�
s1 s2
s3 s4

�
e�

2πi
G
��A1s1�A2s2�A3s3�A4s4�;

(A2)

which reduces to Eq. (8) for G � 2.
As in the G � 2 case considered in the main text, stratifying

the transformed coordinates φ according to the number of
nonzero entries provides a simple way of expressing the nor-
malization and stationarity constraints, as indicated by
Eqs. (9)–(12). First-order coordinates have exactly one non-
zero argument, second-order coordinates have exactly two
nonzero arguments, etc.

With this stratification, stationarity of the 1 × 1 blocks is
equivalent to the statement [Eq. (11)] that the first-order co-

ordinates, φ
�
s 0
0 0

�
, φ

�
0 s

0 0

�
, φ

�
0 0
s 0

�
, and φ

�
0 0
0 s

�
, all

have the same value. That is, the stationarity constraints on
the 1 × 1 blocks are encapsulated by the requirement that
the first-order transformed coordinates depend only on the
value of their sole nonzero argument, not on its position. Note,
though, that whenG ≥ 3, there is more than one possible value
for this nonzero argument. Thus, rather than denote the first-
order coordinates by a single quantity γ, the G ≥ 3 case
requires a (G − 1)‐element set of coordinates, fγ1;…; γG−1g.
Similarly, in the G ≥ 3 case, each of the four second-order co-
ordinates β is a �G − 1�2‐element set of two-subscripted quan-
tities, rather than a single scalar. For example, β− corresponds

to the set of elements φ
�
s1 s2
0 0

�
, where both s1 and s2 are

nonzero. The stationarity constraints on the 1 × 2 and 2 × 1
block probabilities correspond to the requirement
that the second-order transformed coordinates β− and βj
have values that depend only on the relative position of

their arguments, i.e., that φ
�
s1 s2
0 0

�
� φ

�
0 0
s1 s2

�

and φ
�
s1 0
s3 0

�
� φ

�
0 s1
0 s3

�
.

Because the coordinates are Fourier transforms of the
block probabilities, they facilitate the description of how im-
age ensembles combine. Specifically, suppose the coordinates
φ1 describe the block probabilities of the images in the ensem-
ble U1 and φ2 describe the block probabilities of the images in
the ensemble U2. A natural way to combine these ensembles
is by pixel-wise addition of a random choice of an image in U1

to a random choice of an image inU2, and interpretation of the
result mod G. The probability distribution of images in the
new ensemble U is the convolution of the probability distribu-
tions of U1 and U2, since an image I in U can arise from any
choice of I1 in U1 and I2 � I − I1 in U2. Since Fourier trans-
formation converts convolutions into products, it follows that
the coordinates φ of U are given by φ � φ1φ2. This relation-
ship is useful in creating ensembles with specified statistics
and also underlies the demonstration of Section C.2.3.

Finally, we mention that for G ≥ 3, there are further symme-
tries that we have not exploited—for example, a permutation
of the labels 1 and 2, which is not a cyclic permutation of theG
gray levels. These further symmetries, which result in relation-
ships among the transformed coordinates, can be exploited
via generalizations of standard Fourier analysis.

APPENDIX B: ENTROPY AND INTRINSIC
DISCRIMINABILITY
Here we calculate the entropy per pixel of samples S drawn
from a maximum-entropy ensemble specified by one or more
constraints of the form φi � φ0

i , in the limit of a large number
of pixels. A main motivation for this calculation is that it de-
termines the ability of an ideal observer to distinguish an im-
age specified by the constraints φi � φ0

i from a completely
random texture (specified by φi � 0).

1. Setup
The linkage between intrinsic discriminability and entropy
is via the Kullback–Leibler divergence, DKL [16,30]. The
Kullback–Leibler divergence DKL�P∥Q� is a measure of the ex-
tent to which an ideal observer can determine that samples
drawn from a distribution P do not come from some alterna-
tive distribution, Q. Specifically, given a set of observations S
that are drawn from a distribution P, in which they have prob-
ability p�S�, the Kullback–Leibler divergence

DKL�P∥Q� �
X
S

p�S� ln p�S�
q�S� (B1)

is the expected difference between the log likelihood that
these observations were in fact drawn from P, and the log like-
lihood that they were drawn from an alternative distribution
Q, in which they have probability q�S�. (For background and
further details, see [16,30]). Thus, DKL�P∥Q� � 0 only if the
distributions are identical, and increasingly positive values
of the divergence correspond to greater discriminability. An
equivalent statement is that DKL�PjjQ� is the number of bits
per observation available to an ideal observer who is asked
to determine whether observations that are actually drawn
from P were, instead, drawn from Q.

A basic fact about the Kullback–Leibler divergence [which
can be deduced from Eq. (B1)] is that when all probabilities in
the distribution q�S� are equal (i.e., when Q is “completely
random”), the Kullback–Leibler divergence is the diff-
erence in entropies between P and Q, i.e., DKL�P∥Q� �
H�Q� −H�P�. Thus, the entropy of an image is a principled
way of quantifying its intrinsic discriminability from
randomness.

For the calculation of the entropy, our starting point, from
the main text, is

p�S� � Z�S�
Z

; �B2�

where

Z�S� � exp
�X

i

μin�S; i�φi�S�
�

(B3)

and

Z �
X
S

Z�S�. (B4)

[Equation (B2) is text Eq. (30); Eq. (B3) follows from text
Eq. (34) via Eq. (20); and Eq. (B4) is text Eq. (32).]
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The entropy H � H�P� is defined by

H � −
X
S

p�S� ln p�S�. (B5)

Using Eqs. (B2) and (B4) for p�S�, this is equivalent to

H � −
X
S

p�S� ln Z�S� � ln Z; �B6�

which, via Eq. (B3), is equivalent to

H � −
X
S

p�S�
X
i

μin�S; i�φi�S� � ln Z. �B7�

The sum can be simplified, since
P

Sp�S�φi�S� is the average
value of φi�S�, namely, the constrained value φ0

i . Thus,

H � −
X
i

μin�S; i�φ0
i � ln Z. �B8�

We consider two special cases: ensembles defined by a sin-
gle constraint (which need not be small) and ensembles de-
fined by multiple constraints, all of which are small. In
both cases, we calculate the entropy per pixel and we focus
on the limit in which the number of pixels is large. In this limit,
we can ignore the distinction between n, the number of pixels
in S, and n�S; i�, the number of placements of the glider for φi

in S, since they differ only by the number of pixels ninit along
some of the edges of S. Consequently, the entropy per pixel, h
(in natural-log units) is given by

h � lim
n→∞

1
n
Hn � −

X
i

μiφ0
i � lim

n→∞

1
n

lnZn; (B9)

where Zn is the partition function for an ensemble of size n.

2. One Constraint
For this case, we use the results from the one-parameter
analysis in the main text. The Lagrange multiplier is explicitly
given in Eq. (48) by

μi �
1
2
ln�1� φ0

i � −
1
2
ln�1 − φ0

i �; �B10�

The partition function [Eq. (49)] is

Zn � 2n
�

1�����������������������������������
�1� φ0

i ��1 − φ0
i �

q �
n−ninit

; (B11)

so the required limit on the right-hand-side of Eq. (B9) is

lim
n→∞

1
n

ln Zn � ln 2 −
1
2

ln�1� φ0
i � −

1
2

ln�1 − φ0
i �. �B12�

Substitution of these quantities into Eq. (B9), followed by
straightforward algebra, leads to

h � −

�
1� φ0

i

2
ln

1� φ0
i

2
� 1 − φ0

i

2
ln

1 − φ0
i

2

�
. (B13)

This is the expected result: it is the entropy of a binary choice
in ratio �1� φ0

i �∕�1 − φ0
i �; this is the binary choice that is made

when the colors of the interior pixels are chosen.

3. Many Constraints, All Constraint Values Small
In the regime that all of the constraint values φ0

i are small, our
strategy is to find Lagrange multipliers μi that are approximate
solutions of the constraint equations [Eq. (33)] and then to use
these solutions to approximate both terms of the
right-hand-side of Eq. (B9). In the large-n limit, Eq. (33) is
equivalent to

1
n

∂ ln Zn

∂μi
� φ0

i . �B14�

This is a nonlinear system, but it is solved exactly at the origin
of the coordinate system (when all φ0

i � 0, corresponding to a
completely random image) by μi � 0, as indicated above.

Near the origin, we find approximate solutions of Eq. (B14),
by using the first term in a Taylor expansion to approximate
∂ ln Zn

∂μi :

1
n

∂ ln Zn

∂μi
≈
1
n

X
j

μj
∂2 ln Zn

∂μj∂μi
. (B15)

The right-hand-side is evaluated via

∂2 ln Zn

∂μj∂μi
� ∂

∂μj

�
1
Zn

∂Zn

∂μi

�
� −

�
1
Zn

∂Zn

∂μj

��
1
Zn

∂Zn

∂μi

�
� 1

Zn

∂2Zn

∂μj∂μi
.

�B16�

For the first derivative, we use Eq. (B14), which may be
restated as

1
Zn

∂Zn

∂μi
� nhφii; �B17�

since the constraint value, φ0
i , is equal to the ensemble average

hφii. For the second derivative [again neglecting edge effects,
i.e., setting n � n�S; i� in Eq. (B3)], we calculate

1
Zn

∂2Zn

∂μj∂μi
� 1

Zn

∂2

∂μj∂μi
X
S

exp
�
n
X
k

μkφk�S�
�

� 1
Zn

X
S

n2φj�S�φi�S� exp
�X

k

μkn�S; k�φk�S�
�

�
X
S

n2p�S�φj�S�φi�S�.

(B18)

That is, the second derivative is proportional to the expected
value of the product of φj�S� and φi�S�, averaged over all sam-
ples S. Combining Eqs. (B16), (B17), and Eq. (B18) thus yields

∂2 ln Zn

∂μj∂μi
� n2�hφjφii − hφjihφii� � n2h�φj − hφji��φi − hφii�i.

�B19�

This quantity is the covariance of the coordinate values, as
estimated from samples S of size n.
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At the origin (~μ � 0), these covariances are simple to cal-
culate. Each placement of the glider for φi contributes either
�1 or −1 to n��S; i� − n−�S; i� and these alternatives occur in-
dependently, each with probability 1∕2. So the sum of these n

contributions, nφi�S� � n��S; i� − n−�S; i�, are binomially dis-
tributed, with variance n. The off-diagonal terms correspond
to the covariance of the counts for different kinds of gliders.
This is zero: even if the gliders are overlapping, there must be
some pixels that are contained in one glider but not another
and since these pixels are randomly assigned, the contribu-
tions of the gliders are independent. Thus,

∂2 ln Zn

∂μi∂μj

����
μi�μj�0

� nδij. �B20�

Substitution of Eq. (B20) into Eq. (B15) yields the desired ap-
proximation to the left-hand-side of the constraint equations,
Eq. (B14):

1
n

∂ ln Zn

∂μi
≈
1
n

X
j

μj
∂2 ln Zn

∂μj∂μi
≈ μi. �B21�

That is, near the origin, the constraints [Eq. (B14)] are satis-
fied when the Lagrange multipliers are approximated by the
coordinates themselves:

μi ≈ φ0
i . (B22)

To complete the estimation of Eq. (B9), we also need to
approximate Zn near the origin.

We do this via a Taylor expansion, again using Eq. (B20) for
the second derivatives:

ln Zn�~μ� ≈ ln Zn�0� �
1
2

X
i;j

∂2 ln Zn

∂μi∂μj

����
μi�μj�0

μiμj

� ln Zn�0� �
n

2
j~μj2 � n ln 2� n

2
j~μj2. (B23)

[The first derivative terms are zero because of the constraint
equations and we made use of Eq. (B11) for Zn�0�].

Finally, substituting eqs. (B22) and (B23) into Eq. (B9), we
obtain the entropy per pixel near the origin:

h � lim
n→∞

1
n
Hn � ln 2 −

1
2

X
i

�φ0
i �2. (B24)

This equation states that near the origin, the intrinsic discri-
minability, which is determined by the decrease in entropy, is
determined by the Euclidean distance in the coordinate space
φ. In other words, the threshold isodiscrimination contours
for an ideal observer are circular.

APPENDIX C: DETAILED ANALYSIS OF
SELECTED COORDINATE PAIRS
This appendix provides the calculations and proofs that
support several of the constructions of Table 2. The first
two sections validate the constructions for images containing

the 2 × 2 block probabilities required for the non-Pickard
cases �β∖; θ⌟� and �θ⌟; θ⌞�; these images are the starting points
for the donut algorithm that samples the required image en-
sembles. Though �θ⌟; θ⌞� is of higher order than �β∖; θ⌟�, it
is simpler and we consider it first. The third section derives
the polynomial equations whose roots (r1, r2, and r3, referred
to in Table 2) determine the maximum-entropy choice of α,
given specified values of the βs and θs.

1. The non-Pickard �θ⌟; θ⌞� Pair
In this section, we demonstrate the construction of an image
with specified values of the coordinates θ⌟ and θ⌞ and a value
of 0 for all other 2 × 2 block probability coordinates,
fγ; β−; β∕; β∖; β∕; θ ⌝

; θ

⌟

; αg; these images are used as the start-
ing point for the donut algorithm. We construct this image by
first creating two columns of pixels, and then extending it col-
umn by column.

The first step of the construction is to create an arbitrarily
long n × 2 column of pixels, via a Markov process of overlapp-
ing 2 × 2 blocks. That is, to extend from a 2 × 2 block to a 3 × 2
block, we use

p

0
@A B

D E

G H

1
A � p

�
A B

D E

�
p

�
D E

G H

����A B

D E

�

�
p

�
A B

D E

�
p

�
D E

G H

�
p�D E � . (C1)

Consistency of the 2 × 2 probabilities p�D
G

E
H
� with those of the

original 2 × 2 block follows by marginalizing Eq. (C1) over A
and B. By induction, this applies to all of the 2 × 2 blocks that
span the first two columns.

We now need to show consistency still holds as we
extend this construction to adjacent columns. We extend
the 3 × 2 block to a 3 × 3 block, by first appending pixels
�C
F
� to the upper two rows and then a ninth pixel I in the lower

right. Both steps are carried out in a Markovian fashion,
leading to

p

0
@A B C

D E F

G H I

1
A � p

0
@A B

D E

G H

1
Ap

�
B C

E F

�

p

�
B

E

� p

�
E F

H I

�

p

�
E F

H

� . (C2)

We now need to determine whether the block probabilities in
the second and third column are identical to those in the first
two columns. That is, does marginalizing Eq. (C2) over the
first column yield the same result as Eq. (C1)? This in fact
turns out to be the case, as we now show.

To calculate the marginalization of Eq. (C2) over the first
column, we begin by using Eq. (C1) for the 3 × 2 block in the
first two columns:
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X
A;D;G

p

0
BBB@
A B C

D E F

G H I

1
CCCA �

X
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p

0
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D E

G H

1
CCA
p

�
B C

E F

�

p

�
B

E

�
p

�
E F

H I

�

p

�
E F

H

��
X
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p

�
A B

D E

�
p

�
D E

G H

�
p�D E �

p

�
B C

E F

�

p

�
B

E

�
p

�
E F

H I

�

p

�
E F

H

�

�
X
D

p

�
B

D E

�
p

�
D E

H

�
p�D E �

p

�
B C

E F

�

p

�
B

E

�
p

�
E F

H I

�

p

�
E F

H

� . (C3)

Next, we note that, since β− � βj � θ
⌝

� θ
⌟

� 0, the pixels
in the θ

⌝

glider are all uncorrelated, as are the pixels in the θ

⌟glider. Therefore, the second half of both Pickard conditions,
Eqs. (58) and (59), are satisfied. Using the second half of
Eq. (58) for the denominator and the second half of
Eq. (59) for the numerator yields

X
A;D;G

p

0
BB@
A B C

D E F

G H I

1
CCA �

X
D

p

�
B

D E

�
p�D E �

p�D E �p
�
E

H

�
p�E�

p

�
B C

E F

�
p

�
E F

H I

�

p

�
B

E

� p�E�
p�E F �p

�
E

H

�

�
X
D

p

�
B

D E

� p

�
B C

E F

�
p

�
E F

H I

�

p

�
B

E

�
p�E F �

� p

�
B

E

� p

�
B C

E F

�
p

�
E F

H I

�

p

�
B

E

�
p �E F �

�
p

�
B C

E F

�
p

�
E F

H I

�
p�E F � . (C4)

The last expression is identical in form to Eq. (C1), as re-
quired. This shows that when a third column is adjoined to
the second column via sequential application of the Markov
rule [Eq. (C2)], the resulting second and third columns have
the same statistics as the first two columns. Consequently,
their 2 × 2 block probabilities are identical to those in the first
to columns. Moreover, the probability of a 3 × 2 block that
spans the second and third columns corresponds to a Markov
process in which the first column is ignored—identical to the
process that generates a 3 × 2 block that spans the first two
columns. A similar calculation shows that this holds for
k × 2 blocks that span the second and third columns, for
any k. Inductively, this holds for all subsequent columns. Thus,
we conclude that k × 2 block probabilities (and, hence, 2 × 2
block probabilities) remain consistent throughout the en-
tire image.

The above analysis shows that each column has identical
statistics, but it is worthwhile noting that this is not true of
the rows. The first row can be created in an IID fashion (since
β− � βj � θ

⌝

� 0), but in the second row, correlations arise
because θ⌟ and θ⌞ are both nonzero. Specifically, in the
3 × 3 block considered above,D and F are correlated, because
θ⌟ biases the parity of �

D
B
E
�, while θ⌞ biases the parity of �B

E F
�.

Since both of these subsets share B and E, the combined

effect is that the parity of D and F are correlated by θ⌟θ⌞. This
correlation (at a spacing of two along the rows) can be seen in
the autocorrelograms of Fig. 4(a).

2. The non-Pickard �β∖; θ⌟� Pair
Here we detail the construction described in the main text
that generates maximum-entropy images specified by a β

parameter and a θ parameter that do not satisfy the Pickard
conditions. For convenience, we use the coordinates
�β∖; θ ⌝

� rather than the pair �β∖; θ⌟� of Table 2, as this will
allow us to work from top to bottom of an image (i.e., in
order of increasing row number). The construction starts
with a row created by a Markov process whose pixels sa-
tisfy a particular set of 1 × 3 block probabilities (specified
below). Each subsequent row is iteratively determined from
the previous row by a “tee” recursion, in which each pixel’s
coloring depends on the coloring of the three pixels directly
and diagonally above it. We show that (a) the 1 × 3 block
probabilities in the second row match those of the starting
row and (b) the 2 × 2 block probabilities that span the first
two rows have the specified coordinates β∖ and θ

⌝

, a non-
zero value of θ⌟ � β∖θ ⌝

, and all other coordinates equal to
0. We note, though, that the iteration step induces a subtle
change in the statistical structure of the each newly-created
row: while the 1 × 3 block probabilities of the second row
match those of the first row, it is no longer Markov. As a
result, we cannot prove that subsequent rows have the
same coordinates fβ∖; θ ⌝

; θ⌟g as the first two rows and thus,
the construction is not exact. However, as we show, this
deviation small, and is insignificant for practical pur-
poses. Finally, we show (c) that the other coordinates
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fγ; β−; β∕; β∕; θ⌞; θ ⌟

; αg remain exactly zero as the process is
iterated.

As described in the main text, the donut algorithm can then
be applied to an image generated in this fashion, to preserve
the 2 × 2 block probabilities while randomizing, as much as
possible, all others—resulting in a maximum-entropy texture
with controlled values of β∖, θ ⌝

, and θ⌟ � β∖θ ⌝

.
As in the main text, we use transformed coordinates ana-

logous to Eq. (7) to facilitate these calculations. To specify the
Markov process for the first row of the construction, we
choose

p�A1 A2 A3 � �
1
8

X
s1;s2;s3

φ� s1 s2 s3 ��−1�A1s1�A2s2�A3s3 ;

(C5)

where all φ’s are zero, except for

φ�0 0 0� andφ� 1 1 1 � � −g. (C6)

We will choose the nonzero value g � �β∖�2θ ⌝

for a reason
that will become evident below. Because this row is generated
by a Markov process, probabilities of larger 1 × k blocks are
specified by

p�A1 A2 A3 A4 � � p�A1 A2 A3 �p�A2 A3 A4 jA2 A3 � �
p�A1 A2 A3 �p�A2 A3 A4 �

p�A2 A3 �
�C7�

[see, for example, Eq. (50)] and

p�A1 A2 A3 A4 A5 � �
p�A1 A2 A3 A4 �p�A2 A3 A4 A5 �

p�A2 A3 A4 �
� p�A1 A2 A3 �p�A2 A3 A4 �p�A3 A4 A5 �

p�A2 A3 �p�A3 A4 �
. �C8�

Since the φ’s in Eq. (C5) with one or two nonzero entries are
zero, the 1 × 2 blocks all have probability 1∕4, the 1 × k block
probabilities simplify:

p�A1 A2 A3 A4 � � 4p�A1 A2 A3 �p�A2 A3 A4 �
(C9)

and

p�A1 A2 A3 A4 A5 � � 16 p�A1 A2 A3 �p�A2 A3 A4 �
× p�A3 A4 A5 �. (C10)

To specify the recursive process that creates the subse-
quent row, we choose a set of probabilities on tee-shaped
regions, by

p

�
A1 A2 A3

X

�
� 1
16

X
s1;s2;s3;s4

φ
�
s1 s2 s3

s4

�
�−1�A1s1�A2s2�A3s3�Xs4 ;

(C11)

where all φ’s are zero except for

φ
� 1 0 0

1

�
� β∖; andφ

� 0 1 1

1

�
� θ

⌝

;

andφ
� 1 1 1

0

�
� −g. (C12)

That is, given a 1 × 3 block in the first row, the state of the
pixel under its middle is assigned according to the rule

p

�
A1 A2 A3

Z

����A1 A2 A3

�
�

p

�
A1 A2 A3

Z

�
P
X

p

�
A1 A2 A3

X

�

�
p

�
A1 A2 A3

Z

�
p�A1 A2 A3 �

. (C13)

In the second equality, we used the fact that the block prob-
abilities of Eq. (C11), when marginalized over X , conform to
those specified by Eq. (C5). Because of this, it follows that
when the recursion (C13) rule is applied to rows specified
by Eq. (C5), the resulting tee-shaped block probabilities con-
form to Eq. (C11).

a. Coordinates of 1 × 3 Block Probabilities in the Second
Row
We are now set up to calculate the probabilities of the 1 × 3
blocks in the second row and thus to validate claim (a). First,
we combine Eqs. (C10) and (C13) to obtain an expression for
the block probabilities of a region that determines a 1 × 3
block �B1 B2 B3� in the second row:
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�
p

�
A2 A3 V

B3

�
. (C14)

Next, we marginalize this over all values in the first row. The marginalization over U and V , the first and last elements in the top
row, are straightforward because these pixels only appear in one term of the product:
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B1 B2 B3

�
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X
U;A1;A2 ;A3;V

p
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�
� 16

X
U;A1 ;A2;A3 ;V
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�
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A2 A3 V
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� 16
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p

�
A2 A3
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�
. (C15)

The middle term in the final expression of Eq. (C15) is ob-
tained from Eq. (C11) and the specific values chosen for the
coordinates [Eq. (C12)]. The other terms are obtained by mar-
ginalization of it. Since most coordinates are zero, only a few
terms remain:

p

�
A1 A2 A3

B3

�
� 1

16

�
1� �−1�A1�B2β∖ − �−1�A2�A3�B2θ

⌝

− �−1�A1�A2�A3g

�
; (C16)

p

�
A1 A2

B1

�
�

X
Z

p

�
Z A1 A2

B1

�

� 1
8

�
1 − �−1�A1�A2�B1θ

⌝

�
; (C17)
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Z

p

�
A2 A3 Z

B3

�
� 1
8

�
1��−1�A2�B3β∖

�
. (C18)

Combining the above four equations yields

p

�
B1 B2 B3

�
� 1

64

X
A1 ;A2;A3

�1 − �−1�A1�A2�B1θ

⌝

�

•

�
1� �−1�A1�B2β∖ − �−1�A2�A3�B2θ

⌝

− �−1�A1�A2�A3g

��
1� �−1�A2�B3β∖

�
.

(C19)

Next, we observe that the only terms that survive the summa-
tion are those for which the quantities A1, A2, and A3 occur an

Fig. 9. A symmetry argument (Subsection C.2.3) that the recursive “tee” construction for �β∖; θ ⌝

� produces block probabilities whose coordinates
fγ; β−; β∖; β∕; θ⌞; θ ⌟

;αg are zero. The intersection points represent the centers of individual pixels. The black dots select the pixels lying on two of
every three diagonals. (a). Any placement of a “tee” glider contains two or three of the selected pixels. There are only three ways that these selected
pixels can be configured within a glider, corresponding to the phase of each glider with respect to the diagonals. (b) All β∖ and θ

⌝

gliders contain an
even number of selected pixels. (c1): For gliders in the set fγ; β−; βj; β∕; θ⌞; θ ⌟

; αg, two-thirds of their placements contain an odd number of selected
pixels (shaded), and one-third contain an even number of selected pixels. (c2,c3): Shifting the selected pixels by one column permutes the place-
ments of the gliders fγ; β−; βj; β∕; θ⌞; θ ⌟

; αg that contain an odd number of selected pixels. As shown in Subsection C.2.3, this implies that those image
statistics must be exactly zero.
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even number of times in the exponent of −1. Thus, the only
term of the product that survives is the one that corresponds
to the θ

⌝
term of the first factor and the β∖ terms of the other

two factors:

p

�
B1 B2 B3

�
� 1

8
�1 − �−1�B1�B2�B3β2∖θ ⌝

�. �C20�

This demonstrates claim (a), because for g � �β∖�2θ ⌝

,
Eq. (C20) is identical to Eq. (C5).

b. Coordinates of 2 × 2 Block Probabilities in the First
Two Rows
For claim (b), which concerns 2 × 2 block probabilities, the
calculation proceeds along the same lines, but is simpler:

p

�
A1 A2

B1 B2

�
�

X
U;V

p

�
U A1 A2 V

B1 B2

�
� 4

X
U;V

p

�
U A1 A2

B1

�
p

�
A1 A2 V

B2

�
� 4p

�
A1 A2

B1

�
p

�
A1 A2

B2

�

� 1
16

�
1 − �−1�A1�A2�B1θ

⌝

��
1� �−1�A1�B2β∖

�
� 1

16

�
1� �−1�A1�B2β∖ − �−1�A1�A2�B1θ

⌝

− �−1�A2�B1�B2θ⌟
�
. (C21)

Thus, the β∖ and θ

⌝

coordinates in a 2 × 2 region are the same
as the specified values in the original tee-shaped region and
θ⌟, the final coefficient, is given by θ⌟ � β∖θ ⌝

.

c. Coordinates That Are Exactly Zero
The third claim, (c) asserts that the other coordinates,
fγ; β−; βj; β∕; θ⌞; θ ⌟

; αg, are exactly zero. We show this via a
symmetry argument, which is illustrated in Fig. 9. In Fig. 9(a),
we select the pixels that lie on two out of every three diago-
nals. We now consider the consequences of inverting the
states of these pixels and we will show that it produces an-
other equally likely example of a process that is generated
by the above construction. That is, this inversion does not
change the ensemble that is generated—and consequently,
it must preserve the values of all the coordinates. The proof
will be completed by showing that this inversion can only pre-
serve the values of the coordinates fγ; β−; β∖; β∕; θ⌞; θ ⌟

; αg if
they are in fact exactly zero.

As Fig. 9(a) shows, every placement of a “tee” covers these
selected pixels in one of three ways: the three pixels along the
midline and the left, the two rightmost pixels on the upper bar,
and the three pixels in the arms. We next observe that inver-
sion of any of these sets of pixels leaves the value of the tee
probabilities unchanged:

p

�
A B C

D

�
� p

�
1 − A 1 − B C

1 − D

�

� p

�
A 1 − B 1 − C

D

�

� p

�
1 − A B 1 − C

1 − D

�
. (C22)

This can be seen algebraically from Eqs. (C11) and (C12), but
it can also be seen geometrically, in the following way. As
shown in Fig. 9(b), the subsets of the tee that determine
the block probabilities, i.e., the ones that correspond to non-
zero coordinates listed in Eq. (C12), always contain an even
number of selected pixels. Thus, their contributions are unaf-
fected when the states of all of the selected pixels are in-
verted. In other words, these inversions do not change the
values of β∖, θ ⌝

, or g.
However, inverting these selected pixels (the ones that lie

in two of every three diagonals) affects the other coordinates,
unless the coordinates have a value of zero. To see why this is
true, we begin by noting that the selected subset can be cho-
sen in any of three equivalent ways [Fig. 9(c)]. Consider now
the coordinate γ, the luminance bias. If γ is nonzero, it must be
nonzero on at least one of the three subsets. [This is because

the overall luminance bias is the average of the values calcu-
lated separately from each of the three subsets: if
γ � �γ1 � γ2 � γ3�∕3 is nonzero, then at least one of the γk is
nonzero.] Inverting the kth subset replaces γk by −γk and
therefore changes the value of γ. Since this transformation
must also leave the ensemble unchanged, it follows that all
of the γk must be zero. Figure 9(c) shows that the same argu-
ment holds for the other coordinates in fγ; β−; β∖; β∕; θ⌞; θ ⌟

; αg:
for each of these, each of the three inversions affects a differ-
ent 2∕3 of the values from which the coordinate is calculated.
Since inversion leaves the statistics of the ensemble un-
changed, each of these coordinates must therefore be zero.

Thus, the only coordinates that can be nonzero are those
for which every glider placement covers an even number of
selected pixels in Fig. 9. This includes blocks of size 3m ×
3n and pairs of pixels whose centers are offset by multiples
of three. The latter accounts for the periodicity seen in the
autocorrelograms of Fig. 4(b).

Note also that the symmetry argument applies to the final
maximum-entropy ensemble itself and not just to the approx-
imations created by this iterative scheme. Moreover, as men-
tioned in the main text, this symmetry argument also shows
that the maximum-entropy �θ⌟; θ ⌝

� ensemble has zero values
for the coordinates fγ; β−; β∖; β∕; θ⌞; θ ⌟

; αg, since the transfor-
mations of Fig. 9 preserve θ⌟ as well as θ

⌝

and β∖.

d. Comments: Implementation and Deviation from
Exactness
We close this analysis with two comments, one on implemen-
tation and one on the deviation from exactness. With respect
to implementation, Eq. (C20) points the way to a simple strat-
egy: it suffices to initialize the construction procedure with an
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IID first row (all coordinates 0), rather than the Markov pro-
cess corresponding to Eq. (C5). This is because the triplet
probabilities on the second row, as given by Eq. (C20), do
not depend on the value of g.

The second comment concerns the possible deviation of
the coordinates from their desired value, as the process is it-
erated beyond the second row. An analysis similar to that used
to derive Eq. (C20) demonstrates that the second row is not

Markov. We spare the reader the details and quote the result:

p

�
B1 B2 B3 B4

�
� 1

16

�
1 − �−1�B1�B2�B3β2∖θ ⌝

− �−1�B2�B3�B4β2∖θ ⌝

− �−1�B1�B4β∖θ ⌝
g

�
. (C23)

The final term captures the deviation from a Markov process.
A Markov process applied to Eq. (C20) would have yielded a
coefficient of β4∖θ2 ⌝

, in contrast to the value of β∖θ ⌝

g � β3∖θ2 ⌝

which actually arises. Because the second row is not Markov,
this analysis leaves open the possibility that when the tee-
shaped recursion rule is applied to the second row, the
probabilities in the resulting third row differ from those in
the first two rows. Nevertheless, the symmetry argument
(Subsection C.2.3) shows that all coordinates other than β∖,
θ

⌝

, and θ⌟ are exactly zero, so the resulting image still lies
in the desired parameter space.

Moreover, numerical evidence suggests that the desired
block probabilities may, in fact, be exactly achieved—even
though the above argument does not guarantee that this is
the case. For example, a simulation of over 108 pixels (100
examples of a 1024 × 1024 array, beginning with a random first
row and β∖ � 0.3, θ

⌝

� 0.4) yields deviations of <0.0005 for
all coordinates. Thus we speculate that the Markov property is
not necessary for exact equality to hold. Whether or not this
speculation proves correct, the analytic observation that the
deviation from Markov behavior occurs at very high order
[β4∖θ2 ⌝

versus β3∖θ2 ⌝

, Eq. (C23)] likely underlies the reason that
the construction is at least very close to exact.

3. Maximum-Entropy Choices for α
Here, we determine the values of α that maximize the entropy
of the images created by the two-dimensional Markov con-
structions of Table 2, given specifications of pairs of values
�β−; βj�, �β−; β∖�, or �β−; β⌟�. Since our goal is to maximize
the entropy per pixel (in the limit of large areas), rather than
of the 2 × 2 blocks themselves, the first step is to determine
how these two quantities are related.

This relationship follows from the fact that the images are
created first by a Markov process along the rows and then
along the columns. Since the rows are created by a Markov
process determined by the overlapping 1 × 2 blocks, it follows
directly from Eqs. (50) and (51) (or see, for example,
Appendix B of [22]), that the entropy of the 1 × k blocks,
H1×k, is given by

H1×k � �k − 1�H1×2 − �k − 2�H1×1. (C24)

Similarly, since pairs of rows are created via a Markov process
that extends overlapping 2 × 2 blocks horizontally, the entro-
py of the 2 × k blocks, H2×k, is given by

H2×k � �k − 1�H2×2 − �k − 2�H2×1. (C25)

Finally, since a j × k block is generated by a Markov process
that extends overlapping 2 × k blocks vertically, the entropy of
the j × k blocks, Hj×k, is given by

Hj×k � �j − 1�H2×k − �j − 2�H1×k

� �j − 1��k − 1�H2×2 − �j − 1��k − 2�H2×1

− �j − 2��k − 1�H1×2 � �j − 2��k − 2�H1×1; (C26)

where the second equality follows via Eqs. (C24) and (C25).
Thus, the large-area limit of the entropy per pixel, h, is given
by

h � lim
j;k→∞

1
jk

Hj×k � H2×2 −H2×1 −H1×2 �H1×1. (C27)

We now seek to maximize this quantity with respect to α.
Since the 1- and 2-pixel blocks do not depend on α, we only
need to maximize H2×2, by setting ∂H2×2∕∂α � 0.

The analysis is straightforward. The first step is to write
H2×2 in terms of the coordinates. Table 1 provides the neces-
sary conversion between block probabilities and coordinates:
for any block ~b � �b1

b3

b2
b4
�, the relationship is of the form

p�~b� � 1
16

�
1�

X
i

c�~b; i�φi

�
. (C28)

Thus, for any coordinate φj ,

∂H2×2

∂φj

� ∂

∂φj

X
~b

− p�~b� ln p�~b� �
X
~b

�−1 − ln p�~b�� ∂
~b

∂φj

� 1
16

X
~b

�−1 − ln p�~b��c�~b; j� � −
1
16

X
~b

c�~b; j� ln p�~b�.

(C29)

The last equality follows from the observation thatP
~b
c�~b; j� � 0, i.e., that a coordinate φj does not affect the

sum of the block probabilities [see also Eq. (8)]. Thus,
∂H2×2∕∂φj � 0 is equivalent toY

~b

p�~b�c�~b;j� � 1. (C30)

All of the coefficients c�~b; j� are integers, so Eq. (C30) can
readily be reformatted into a polynomial equation. Simplifica-
tion to a cubic generically occurs, as can be seen below for the
specific cases required for Table 2.

Case A (�β−; βj� and �β−; β∖�): here, γ � 0 and all θ’s are 0.
After simple algebra, Eq. (C30) becomes

�1� 2β− � 2βj � β∖ � β∕ � α��1 − 2β− − 2βj � β∖ � β∕ � α�
• �1� 2β− − 2βj − β∖ − β∕ � α��1 − 2β− � 2βj − β∖ − β∕ � α�
� �1 − β∖ � β∕ − α�2�1� β∖ − β∕ − α�2. (C31)

On both sides of the equation, the highest-order term in α is α4,
so a cubic results after cancellation. The value r1�β−; βj� of
Table 2 is the unique positive root of Eq. (C31) when
β∖ � β∕ � β−βj and is approximated by β2− � β2j � O�β2�.
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The value r2�β−; β∖� of Table 2 is the unique positive root of
Eq. (C31) when β∕ � βj � 0 and is approximated by
β2− � O�β4�.

Case B (�β−; θ⌟�): here, γ � 0, β− and θ⌟ nonzero, all other
β’s and θ’s are zero. Equation (C30) becomes

�1� 2β− � θ⌟ � α��1� 2β− − θ⌟ � α��1 − 2β− � θ⌟ � α�
× �1 − 2β− − θ⌟ � α� � �1� θ⌟ − α�2�1 − θ⌟ − α�2; (C32)

which again reduces to a cubic equation for α. The value
r3�β−; θ⌟� of Table 2 is the unique positive root of Eq. (C32)
and is approximated by β2− � O�β4−; β2−θ2⌟�.

APPENDIX D: DONUT ALGORITHM
This Appendix provides further information on several as-
pects of the donut algorithm: the mathematical sense in which
achieves a maximum-entropy sample, its relationship to the
classical Metropolis algorithm [26], and some comments con-
cerning how it can be implemented efficiently.

1. Link between Finite Images and Ensembles
In essence, the donut algorithm is simple: it consists of ran-
dom swaps that preserve local correlations but destroy others.
Here, we link this practical procedure, carried out on single
finite images, with the mathematical ideal of a procedure car-
ried out on ensembles, i.e., infinite sets of infinite images.
Although the basic intuition behind the donut algorithm is
straightforward, this link is not immediate. We consider
two issues: first, why does swapping lead to maximum entro-
py and second, what are the implications of operating on a
finite image, rather than on an infinite ensemble? As detailed
below, the first issue—the link between swapping and maxi-
mum-entropy—is straightforward, provided that infinite en-
sembles are considered. But to confront the implications of
finiteness, we need to formulate a condition that allows finite
images to serve as models of infinite ensembles. As described
below, this need is fulfilled by asserting that every finite block
has a nonzero probability. This condition holds for the cases
necessary for Table 2, provided that we stay away from the
boundary of the parameter space, i.e., that we avoid any sets
of coordinates that would result in a zero probability for a
2 × 2 block.

a. Swapping and Entropy
To make the link between a swapping algorithm and maxi-
mum-entropy, we first consider a simpler situation, in which
we are able to enumerate all images that satisfy a set of block
probabilities. In this case, the desired maximum-entropy dis-
tribution is simple to formulate: each image occurs with equal
probability—since a maximum-entropy distribution on N ob-
jects is one in which each has probability 1∕N . This is the ap-
proach taken for the one-parameter constructions in the main
text: we can calculate the probability of an image and we can
construct every possible image, step by step.

However, we don’t need to know N to sample the maxi-
mum-entropy distribution; we merely need to ensure that
every image is equally likely to be sampled. That is, it suffices
to ensure that the ratio of the probabilities of two images is
correct. This is the insight behind the classical Metropolis
algorithm [26] and it plays a central role here as well.

To see how it works, it is helpful to consider every image as
a “macrostate” of a physical system. We then connect these
macrostates into a graph—i.e., a network in which each node
is a macrostate (i.e., an image), and a connection from node S
to node T represents a macrostate transition. In the present
context, a “macrostate transition” is a pixel swap as specified
by the donut algorithm—that is, macrostates S and T are con-
nected if they are identical, except for swapping a pair of pix-
els with identical surrounds. We now represent a probability
distribution on the ensemble by a probability distribution on
the graph of macrostates. A single image thus corresponds to
a graph in which one node has a probability of one, and the
rest are zero. Our goal is to transform this probability distri-
bution into one in which each node has the same probability.
We then sample this probability distribution by simulating a
particle’s random diffusion (corresponding to random donut
swaps) and choosing the node where it ends.

We therefore need to show that a flat distribution is the
equilibrium configuration of a random diffusion process on
this graph. This follows from the fact that at equilibrium,
the rate at which probability diffuses away from a node must
be identical to the rate at which probability diffuses back to
the node from its neighbors. The rate at which probability dif-
fuses away from a node, S, is rnp�S�, where r is the rate at
which any single swap occurs, n is the number of swaps that
can occur at node S (i.e,. the number of pairs of 3 × 3 blocks
with matching surrounds and distinct centers) and p�S� is the
probability currently assigned to S. Similarly, the rate at which
probability diffuses towards a node is r

P
n
k�1 p�Tk�, where

each Tk is a node that can be converted into S by a single
swap. The crucial observation is that the number of such
nodes is exactly the number of swaps that can be carried
out on S—since each such swap leads to a different result.
In other words, each macrostate transition is reversible and
the graph is symmetric. The consequence of this symmetry
is that at equilibrium,

np�S� �
Xn
k�1

p�Tk�. (D1)

That is, the equilibrium probability assigned to each node S is
the average of the probabilities assigned to its neighbors Tk.
As a consequence, the equilibrium probability distribution
cannot have local maxima or minima. From this, it follows
that the equilibrium probability distribution is constant on
all of the nodes that can be accessed from the starting point.

b. Connectedness
The above analysis establishes the link between swapping and
maximum-entropy, but only for the nodes that are connected
to the node that is initially assigned a probability of one. Thus,
to ensure that the equilibrium probability distribution is con-
stant throughout the entire graph, the graph must be con-
nected. Moreover, we need to define “connectedness” in a
way that is appropriate both for infinite images and for imple-
mentation of the algorithm on finite ones. This is not a trivial
point: for sufficiently small images, a naïve notion of connect-
edness does not hold—there may be multiple images that are
consistent with specified 2 × 2 block probability constraints,
but which have no matching donuts to allow for swaps.
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Therefore, to specify the way in which a finite implementa-
tion of the algorithm is a model of an idealized implementation
on infinite ensembles, we introduce the following notion of
connectedness: that any two finite images, I1 and I2, can
be incorporated into larger images L1 and L2 that can be in-
terconverted by a sequence of swaps. More formally, for any
finite size region R and any assignment of its pixels into dis-
tinct images I1 and I2, our criterion for connectedness is that
we can embed the images I1 and I2 into larger images L1 and
L2 for which (a) Lk � Ik on R and (b) L1 and L2 are connected
by a sequence of swaps.

We now show that a particular technical condition—that
every finite block has a nonzero probability—implies that
above notion of connectedness holds. To show that this is
the case, we construct the connecting path by successively
transforming I1 to I2, working pixel by pixel within R. At each
step of the transformation (say, where we change pixel Aij

from its state in I1 to its state in I2), we need to find a
3 × 3 region in L1 outside of R that matches the surround
of Aij and whose interior matches the state of Aij in I2. A swap
with this region will thus accomplish the desired change for
one pixel in R. Each subsequent transformation of a pixel in R

specifies another 3 × 3 region that must be present some-
where in L1. The condition that all blocks have nonzero prob-
ability guarantees that a configuration containing I1 and all of
these 3 × 3 regions exists and thus, that a connecting sequence
of swaps can be found.

2. Relationship to the Metropolis Algorithm
The donut algorithm is closely related to the classical Metro-
polis procedure of thermodynamics [26]. The Metropolis
procedure provides a way to sample a maximum-entropy dis-
tribution constrained by an average energy. Typically, the en-
ergy of a macrostate of a physical system depends on the state
assigned to each particle and to energies associated with
pair-wise interactions. However, the Metropolis procedure,
although it was devised for pair-wise interactions in physical
systems, readily extends to higher-order interactions. These
interaction energies, after multiplication by 1∕kT , correspond
to the Lagrange multipliers μi in the formal solution given
above [Eq. (29)].

The Metropolis procedure consists of a random walk on the
graph of all possible macrostates. However, in contrast to the
donut procedure, the probability of moving from one state to
another depends on the direction of the transition and on the
energy difference. Specifically, the probability ratio is e−ΔE∕kT ,
where ΔE is the energy difference, k is the Boltzmann con-
stant, and T is the temperature. In the donut algorithm, transi-
tions between macrostates are only allowed if they have
exactly the same energy (i.e., the same number of 2 × 2 blocks
of every kind), but within this stratum, transition probabilities
are symmetric. So the donut algorithm is in some sense a low-
temperature limit of the Metropolis procedure.

The other contrast between the donut algorithm and the
Metropolis procedure is that in a typical application of the lat-
ter, the interaction energies [i.e., the Lagrange multipliers in
Eq. (29)] are known and the block probabilities are to be de-
termined; here, the block probabilities are known, but the
Lagrange multipliers need to be determined. Since determin-
ing the Lagrange multipliers from the block probabilities gen-
erically requires the solution of a set of nonlinear equations,

we cannot simply use the Metropolis procedure. Instead, we
determine them implicitly by creating an initial macrostate, as
described in Appendix C.

3. Implementation Notes
A literal implementation of the donut algorithm—randomly
choosing compatible 3 × 3 blocks at each iteration, and swap-
ping one pair at a time—is quite inefficient and does not make
use of vectorized processing available on many computers.
Therefore, we adopted the following strategy, in which a sin-
gle “cycle” encompasses many pair-wise swaps. Each cycle
begins by assigning a numerical token (0 to 28 − 1) to each
pixel that represents the contents of its eight neighbors, along
with a ninth bit that represents the pixel’s state. (This can be
done by summing the image array and 8 of its shifts, with each
shift multiplied by a different power of 2). Next, we create a
histogram of these numerical tokens and randomly choose
one token that is shared by many pixels of both colors (tallied
in the ninth bit). We then permute these pixels, taking care to
change the state of as many of them as possible. If any of these
pixels are adjacent, then this permutation step may change the
block counts. However, rather than check for adjacency; we
conclude each cycle by verifying that the block counts are un-
changed. If there is a change in the block counts, the permu-
tation is annulled and the cycle is restarted.
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