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Abstract

Information theory provides a theoretical framework for addressing fundamental questions concerning the nature of neural codes.
Harnessing its power is not straightforward, because of the differences between mathematical abstractions and laboratory reality. We
describe an approach to the analysis of neural codes that seeks to identify the informative features of neural responses, rather than to
estimate the information content of neural responses per se. Our analysis, applied to neurons in primary visual cortex (V1), demonstrates
that the informative precision of spike times varies with the stimulus modality being represented. Contrast is represented by spike times
on the shortest time scale, and different kinds of pattern information are represented on longer time scales. The interspike interval
distribution has a structure that is unanticipated from the firing rate. The significance of this structure is not that it contains additional
information, but rather, that it may provide a means for simple synaptic mechanisms to decode the information that is multiplexed within
a spike train. Extensions of this analysis to the simultaneous responses of pairs of neurons indicate that neighboring neurons convey
largely independent information, if the decoding process is sensitive to the neuron of origin and not just the average firing rate. In
summary, stimulus-related information is encoded into the precise times of spikes fired by V1 neurons. Much of this information would be
obscured if individual spikes were merely taken to be estimators of the firing rate. Additional information would be lost by averaging
across the responses of neurons in a local population. We propose that synaptic mechanisms sensitive to interspike intervals and dendritic
processing beyond simple summation exist at least in part to enable the brain to take advantage of this extra information.  2000
Elsevier Science B.V. All rights reserved.
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1. Introduction Neural systems need to represent a broad range of
domains (objects, odors, intentions, movements), perform a

How neurons represent and process information is of great variety of tasks, and operate under diverse constraints
fundamental interest in neuroscience. It is an intrinsically (size and weight is at a premium in insects, ability to learn
abstract question, since, at a minimum, it seeks a descrip- is more critical to human survival). Ultimately, one would
tion of a mapping from events, percepts, and actions to like to understand coding both at the algorithmic level and
something very different: patterns of neural activity. It is in terms of the biophysical processes that implement these
tempting to assume that a common set of principles algorithms. At the sensory and motor peripheries, there is
governs neural coding, but it is yet unclear what these often sufficient knowledge about the cellular and subcellu-
principles are, or at what level of detail they can be lar mechanisms of transduction so that the algorithmic
applied. It is perhaps more reasonable to anticipate that aspects of coding can be inferred. However, within the
there is a diversity of biological solutions to the coding brain, the combined complexities of synaptic [1,35] and
problem. dendritic biophysics [39] and of neural connectivity make

this bottom-up approach less straightforward.
1 Many interesting questions concerning the algorithmicPublished on the World Wide Web on 16 August 2000.

aspects of coding can be phrased in terms of the notion of*Tel.: 11-212-746-2343; fax: 11-212-746-8984.
E-mail address: jdvicto@med.cornell.edu (J.D. Victor). ‘information.’ Perhaps the most basic issue is what aspects

0006-8993/00/$ – see front matter  2000 Elsevier Science B.V. All rights reserved.
PI I : S0006-8993( 00 )02751-7



34 J.D. Victor / Brain Research 886 (2000) 33 –46

of patterns of neural activity carry information. Possi- examine aspects of coding across even small populations
bilities include the total number of spikes averaged over a of neurons.
time window or a population of cells, the precise times of For these reasons, we use a variety of strategies to
individual spikes, the presence of bursts, and patterns of approach questions of sensory coding in primate visual
correlated activity across cells, such as oscillations. We cortex. First, we can address focused questions such as,
would also like to know how this information corresponds with what resolution does the timing of individual spikes
to perceptual qualities, whether a neuron’s performance carry information, via alternative methods (also based on
reflects its ideal information capacity or rather a com- the principle of uncertainty reduction) to estimate in-
promise reflecting the biological costs of achieving this formation; we describe these methods below. Second, we
capacity [32], and how information is transferred from one use computational approaches to identify aspects of the
neuron to another or from one brain area to another. temporal structure of spike trains that are not expected

Addressing these questions experimentally requires that consequences of their firing rates, and thus represent clues
we can quantify the information content in neural activity. to encoding and decoding strategies. Third, methods
Shannon’s ground-breaking work in communication theory similar to the ‘direct method’ [60] can be used, provided
[56], which provides a formal definition of information, that we restrict consideration to information rates over
has long been the basis of these efforts [50,59]. The basic brief periods of time, and bear in mind that information
idea is that information is equivalent to a reduction in rates may not be additive [18]. Together, these approaches
uncertainty. If observation of a symbol (a ‘word’) at the help to paint a picture of how the temporal structure of
output of a communication channel allows the observer to spike trains within and across visual cortical neurons
refine knowledge of what was present at the input, then represents visual information.
information was transmitted. Application of this idea to
characterize man-made communication channels is rela-
tively straightforward, because the set of words is known a 2. Metric-space approach: overview
priori. Difficulties arise in attempting to apply information
measures to biologic systems, because the words are In view of the above considerations, we recently de-
unknown. To make full use of information theory (and to veloped a new strategy for the analysis of neural coding.
avoid assuming answers to the above questions), one This strategy, based on the mathematical formalism of
would want to begin with as few assumptions as possible. metric spaces [66,68], focuses on particular physiologically
The minimal assumption is that each possible configuration motivated hypotheses concerning the nature of the neural
of neural activity (i.e., each arrangement of spikes across code, while allowing certain other assumptions, often made
time and a set of neurons) is a candidate for a word. implicitly, to be subjected to empirical study. The most
Ideally, this would be the starting point, and the formalism fundamental of these assumptions is whether regarding a
of information theory would then determine the actual set spike train as an estimator of a time-varying firing prob-
of words (and hence, the structure of the neural code). ability suffices to understand coding [6]. The alternative is
However, this strategy rapidly runs into practical difficul- that the richer possibilities that derive from the event-like
ties. Experimental estimates of information are biased by nature of the spike train must be considered, as has been
finiteness of datasets, and the extent of this bias is directly suggested on theoretical grounds by Hopfield [25]. In order
proportional to the size of the a priori set of words to ask this question, we manipulate spike trains as abstract
[14,40,43]. Consequently, progress can only be made by sequences of events, the action potentials, rather than the
making some compromises, e.g., by making somewhat more traditional approach, which is based on regularly
more restrictive assumptions as to the code structure, spaced samples of estimates of firing probability.
which are then checked for internal consistency. From an information-theoretic point of view, if two

One such strategy is the ‘direct method’ of information responses have different likelihoods of occurring in re-
estimation [60]. Here, one assumes limits on the length of sponse to a set of external stimuli, then the distinction
each word, and on the meaningful precision of each spike. between these two responses has the potential to convey
If the ratio of these two timescales is not too large and that information. It is impractical to collect sufficient data to
the intrinsic variability of neural responses is sufficiently determine these probabilities empirically, if one adheres
small, useful estimates of information can be obtained rigidly to the notion that any difference between responses
from real datasets. These conditions hold in certain insect (e.g., even a submillisecond shift in the time of occurrence
sensory systems [8] and allow the structure of the neural of a single spike) constitutes a difference. Understanding a
code to be identified. Difficulties arise in the mammalian neural code requires a more refined notion of when two
central nervous system, because of the presence of tempo- neural responses should be considered similar or different.
ral structure at both very short [12,15] and very long In addition, the choice to work with spike trains as
[13,52] timescales, and the intrinsic variability of re- sequences of events rather than as binned estimates of
sponses that may or may not be a part of the coding firing probability has major implications for the properties
scheme. These difficulties are compounded in attempts to of the ‘distances’ between responses. A sequence of binned
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estimates naturally constitutes a vector and lends itself to trains depends on the timing of the individual spikes, and
operations such as averaging and extraction of Fourier not just on the overall firing rates.
components. Moreover, vectors carry with them an implicit To determine whether individual spike times carry
geometrical structure that is embodied in properties of the information, we use a family of metrics denoted by

spike spikedistances between vectors. For example, there is built-in D [q]. The distance D [q] between two spike trains
notion of how responses, considered as vectors, can be is defined as the minimum total ‘cost’ to transform one
‘added’: addition of a response C to any pair of responses spike train into the other via any sequence of insertions,
A and B results in two new responses, A1C and B1C. deletions, and time-shifts of spikes. The cost of moving a
The distance between the new responses A1C and B1C is spike by an amount of time t is set at qt, and the cost of
guaranteed to be identical to the distance between the inserting a spike or deleting it is set at unity. Thus, spike

spikeoriginal responses A and B. That is, the notion of distance trains are considered similar (in the sense of D [q])
is translation-invariant, and respects linearity. Another only if they have approximately the same number of
consequence of the vector space structure is more topo- spikes, and these spikes occur at approximately the same
logical: any pair of responses A and B can be connected by times, i.e., within 1 /q or less. For neurons that can be
a continuous trajectory xA1(12x)B of mixtures of the considered to behave like coincidence detectors, the value
original responses. That is, the space is not only ‘con- of q for which stimulus-dependent clustering is highest
nected’ but also ‘convex.’ These and other properties of describes the precision of the coincidence-detection. This
vector spaces and the constraints they place on the is because shifting a spike by more than 1/q makes just as
associated distances are mathematically convenient, but much a difference as deleting the spike altogether — either
they may well be inappropriate for modeling of perceptual maneuver moves the spike train by one unit of distance.
domains [25,71]. Another general feature of neuronal biophysics is that

Notions of distance that arise when working with spike the postsynaptic response may depend on the pattern of
trains as sequences of events are more general than intervals of an arriving signal, independent of any activity
distances based on vectors, and are not subject to the above

at other synapses [1,9,31,35,51,54,58,64]. This motivates
constraints. Since the neural code is ‘read’ by other intervalanother family of metrics, denoted by D [q], which is
neurons, it is natural to consider notions of distance that

sensitive to the interval structure of a spike train. Likeare based on the biophysics of how neurons operate. spike intervalD [q], the distance D [q] is defined on the basis ofNeurons can act as simple integrators, but they can also act
the minimal total cost of transforming one spike train intoas coincidence detectors [2,10,35,39,57], and they can be
another via a prescribed sequence of steps. However, thesesensitive to the temporal pattern of their individual inputs
elementary steps operate on intervals rather than individual(e.g., synaptic depression and post-tetanic potentiation).
spikes. That is, the parameter q specifies the cost qt ofThese behaviors suggest a variety of candidate notions of
expanding or contracting an interspike interval by andistance (formally, ‘metrics’). Our strategy is to evaluate
amount t. Note that expanding or contracting a singlethese candidates experimentally by determining the extent
interval by an amount qt necessarily shifts the time of allto which they separate neural responses into classes that
subsequent spikes, since the subsequent intervals arecorrespond to the stimuli that elicited them. By quantifying

intervalunchanged. Consequently, the metrics D [q] andthe stimulus-dependent clustering induced by each candi-
spikeD [q] are quite distinct. Closeness in the sense ofdate metric, we can determine whether various stimulus
spikeD [q] does not imply closeness in the sense ofattributes can be signaled by the precise time of occurrence
intervalD [q], since the former depends on absolute timesof a spike or by the pattern of interspike intervals and if so,

and the latter only on relative times. For example, spikeat what resolution. In combination with resampling tech-
trains that consist of similar stereotyped bursts are similarniques, we then can determine whether this signaling is

intervalin the sense of D [q] whether or not the bursts occurmerely a consequence of underlying firing rate modulation.
at similar times. The same spike trains would be similar in

spikethe sense of D [q] only if the times of occurrence of the
bursts were similar as well.3. Which aspects of a spike train are reliably

For both families of metrics, the parameter q indicatesstimulus-dependent?
the relative importance of timing (either of individual
spikes or of interspike intervals) compared to spike count.To address this question, we introduce two families of
In the limit of q50 (very low temporal resolution), bothmetrics. The first set of metrics assesses the extent to

spike intervalwhich individual spike times (in addition to the number of D [q] and D [q] become independent of the
spikes) are reliably stimulus-dependent, and thus have the timing of the individual spikes, and are sensitive only to
potential to carry information. Individual spike times the total number of spikes. We denote these reduced

spike interval count countwould be expected to be crucial for information transmis- metrics D [0] and D [0] by D . D is
spikesion if neurons acted as coincidence detectors. This is identical to a vector-space distance, but D [q] and

intervalbecause the frequency of coincidences between two spike D [q] (for q.0) are qualitatively different.
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intervalD [q] does not respect linearity, and neither metric a limited number of stimuli have been explored. This is
corresponds to a connected topology. merely an honest statement about the difficulties of

spike intervalFor both D and D , we examined a wide range understanding how the brain represents information, not a
of values for q, since neural coincidence-detectors with failure specific to our approach. These difficulties notwith-
precisions ranging from milliseconds to seconds have been standing, comparison of H values across a range of metrics
identified [10], and the range of timescales for which firing is a rigorous way to determine which aspects of a spike
rates influence synaptic efficacy is also large. Fortunately, train depend systematically on the stimulus, and thus have
there are highly efficient algorithms [68] to calculate these the potential to carry usable information.
distances, based on the dynamic programming techniques
[53] to compare nucleotide sequences.

If the temporal features that govern a candidate metric
can signal a stimulus attribute (such as contrast or orienta- 4. Application to coding of visual attributes by single
tion), then responses to stimuli that share the same value of neurons
attribute will tend to be close to each other in the sense of
this metric, while responses to stimuli that differ along this We applied the above analysis to responses of visual
attribute should be separated by a greater distance. That is, cortical neurons in primary (V1) and secondary (V2)
the position of the response in the space whose geometry is visual cortex to stimuli that varied across several attributes,
determined by the metric will reduce the uncertainty about including contrast, orientation, size, spatial frequency, and
this stimulus attribute. To quantify the extent of this texture (Fig. 1). These recordings were carried out in alert
stimulus-dependent clustering and consequent uncertainty monkeys trained to fixate; further experimental details are
reduction, we use a dimensionless quantity, the trans- provided in [66]. For each dataset, we determined the

spikeinformation H [5]. extent to which the two families of metrics D [q] and
count intervalIf the largest value of H is achieved for D , then D [q] led to consistent stimulus-dependent clustering,

individual spike times or interspike intervals have no and we quantified this clustering by the corresponding
systematic dependence on the stimulus beyond what is transinformation H. The scattergram in Fig. 2 shows a
implied by overall spike count. On the other hand, if larger comparison of this measure across all neurons and the five

spike intervalvalues of H are achieved for D [q] or D [q], then stimulus attributes. In most cases, the spike time metrics
spikethe corresponding features (spike times or spike intervals) D [q] do a better job of segregating the responses than

intervalof the spike train are stimulus-dependent, in a manner that the spike interval metrics D [q], as seen by the
is not predictable on the basis of the spike count alone. preponderance of points below the diagonal. This scatter-
Thus, these temporal features have the potential to repre- gram gives hints that the several stimulus attributes may be
sent a stimulus domain with greater fidelity than the coded in distinct fashions. For example, the relative

spike intervalrepresentation provided by spike counts. advantage of D [q] over D [q] is greatest for
The value of q that maximizes H is denoted q . coding of contrast and check size, as seen by the scatteringmax

spike intervalAccording to the definitions of D [q] and D [q], of red and green points that lie substantially below the
intervalshifting spikes (or intervals) by more than 1/q results in a diagonal. On the other hand, in some neurons, D [q]

spikespike train that is just as ‘different’ as adding or deleting a has a slight advantage over D [q], but this is almost
spike. Consequently, 1 /q is the width of the temporal exclusively for coding of texture (pink) and spatial fre-max

window within which the fine structure of spike times quency (yellow).
contributes to signaling. That is, q can be viewed as the Fig. 3 provides a closer look at the dependence ofmax

spikeinformative precision of spike timing, and is thus a key coding on stimulus attribute. Here, we focus on D [q]
descriptor of the neural code. In principle, q is limited and examine the value q that provides the optimalmax max

not by the temporal resolution of sensory processing (e.g., stimulus-dependent clustering. In primary visual cortex
the frequency response of the front-end neurons), but (V1), q is somewhat higher for coding of contrast thanmax

rather by the intrinsic precision of spike generation. q is for coding of the other attributes, but this difference ismax

also not directly related to the temporal characteristics of modest. In V2, there is a more dramatic difference. Coding
the stimuli; rather, it is the time resolution that best of contrast is characterized by q of approximately 100max

21distinguishes the dynamics of the responses that they elicit. s , corresponding to a temporal precision (1 /q ) of 10max

It is important to note that our inferences will be drawn ms. Coding of orientation and check size is characterized
21from the relative size of the transinformation H and its by an intermediate value of q of approximately 30 s ,max

dependence on the metric. That is, although H is motivated corresponding to a temporal precision of 30 ms. Coding of
by information-theoretic considerations, it cannot be spatial frequency and texture is characterized by the lowest

21equated with the actual information contained in a spike temporal precisions (q ca. 10 s ), corresponding to amax

train, which is typically larger. There are many reasons for temporal precision of 100 ms. This means that contrast and
this: (i) the brain does not use our decoding scheme; (ii) pattern information are multiplexed. The same spike train
our decoding is almost certainly not optimal; and (iii) only primarily signals contrast when examined with high tem-
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Fig. 1. Examples of visual stimuli used to characterize the informative precision of spike trains.

poral resolution but primarily signals spatial information analysis of neural responses in V1 to drifting sine gratings
when examined at lower temporal resolution. and edges. Responses to drifting sinusoidal gratings

These characterizations of coding and temporal preci- showed essentially no evidence of temporal coding, but
sion represent averages over the entire response duration. drifting edges resulted in temporal coding of contrast that
Typically, cortical neurons’ responses to the abrupt appear- was comparable to what we have seen [69] for transient
ance of a pattern consist of a transient response at stimulus stimuli. This suggests that the burst of excitatory activity
onset followed by a tonic or sustained component. We have associated with a transient (whether resulting from abrupt
recently analyzed the coding characteristics of these com- onset of a static pattern, the transit of an edge across the
ponents separately [45], in recordings of V1 neurons RF, or an eye movement) provides a resetting or
elicited by stimuli varying in contrast. During the initial synchronizing event for its intrinsic circuitry [44]. It is
transient, temporal precision can be as high as 1 ms noteworthy that the typical intersaccadic interval [70] is
Conversely, the contribution of temporal pattern during the well-matched to the period over which spike train dy-
sustained component is often minimal, with no advantage namics are informative [66].

spike countfor D [q] over D [q]. Thus, it appears that the
ultimate biophysical precision of cortical neurons observed
in vitro [34] is indeed available for signaling. 5. Individual spikes: merely estimators of a firing

However, the notion that temporal structure in spike rate, or something more?
times relative to stimulus onset can be used for signaling
only makes sense if the cortex somehow ‘knows’ when The above analysis shows that the temporal pattern of a
stimulus onset occurs. In the laboratory, transient presenta- cortical sensory neuron’s activity contains information
tion of a stimulus (the abrupt appearance of contrast) about the contrast and spatial attributes of a visual
triggers an excitatory burst of population activity. Under stimulus. However, it stops short of showing that the
natural viewing conditions, the eyes make approximately timing of individual spikes is significant. The alternative
three saccades per second, and the visual scene is more or possibility is that the information conveyed solely by the
less fixed during each intersaccadic interval [70]. Each time-course of the average firing rate, which varies in a
saccade results in abrupt contrast changes that likely stimulus-dependent manner as a function of time. In the
trigger a burst of population activity. In either case, the brain, this average firing rate might be extracted by
population burst marks stimulus onset, and hence provides averaging over a population of similar neurons [55]. In the
a reference for the times of subsequent spikes (both for laboratory, the average firing rate can be determined by
decoding and encoding). If this view is correct, then a averaging responses to many replications of the same
transient in the visual stimulus might facilitate the appear- stimulus.
ance of informative temporal structure in the spike train. The idea that the time-course of firing can convey
Indeed, this is what we found [37] in a metric-space spatial information is firmly grounded in sensory physi-
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Fig. 2. The extent to which information concerning five visual attributes (contrast, size, orientation, spatial frequency, and texture type) is carried by spike
spiketimes and interspike intervals, as determined from recordings in V1 and V2. The abscissa indicates the maximal information achieved by D [q], and the

intervalordinate indicates the maximal information achieved by D [q]. A correction for chance clustering has been subtracted, and information values have
been normalized by the maximum achievable value, log (number of stimuli). For further details, see [66]. Adapted from Fig. 5 of [66] with permission of2

the Publisher.

ology [11,21,65], and the computational elements required average firing rate, can also contribute to the transmission
for this to occur are clearly present in neural circuitry. For of information. A much-reduced version of the Hodgkin–
example, to a first approximation, the firing rate of a retinal Huxley neuron, integrate-and-fire neuron, behaves in this
ganglion cell can be considered to be a linear function of way [29,30] since stimulus intensity is determined by the
its input. This linear function has two components: a fast interval between two successive spikes, so that it is not
component from the receptive field center, and a slower, necessary to average across replicate runs or neurons.
antagonistic component from surrounding space. Conse- The reason for this behavior is that spike trains produced
quently, stimuli that are restricted to the receptive field by an integrate-and-fire neuron (and more realistic model
center tend to produce a sustained discharge. Stimuli that neurons) are more structured than what would be produced
are more spatially extended recruit the delayed, antago- by neurons that generate spikes at uncorrelated and random
nistic surround component as well, and consequently result times, constrained only by an overall firing rate that may
in a more transient response. More generally, any combi- vary with time. The latter kind of spike train, a time-
nation of inputs that differ both in their spatial and dependent Poisson process, is guaranteed to carry in-
temporal characteristics will result in a coupling of the formation only in its (possibly time-varying) average firing
spatial aspects of the input into the temporal aspects of the rate.
average response. Conversely, spike trains that are not time-dependent

But the basic biophysics of neurons suggest that the Poisson processes cannot be described solely by their
temporal structure of individual responses, and not just the average time-course, and the deviations from Poisson
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Fig. 3. Characterization of temporal representation of five visual attributes in V1 and V2. Plotted values are the geometric means of q , the value of themax
spikecost parameter q at which the information extracted by D [q] is maximal. q determines the informative precision of spike times, which is high formax

contrast, and low for pattern attributes. The difference in coding across attributes is more marked in V2 than in V1. For further details, see [66]. Adapted
from Fig. 6 of [66] with permission of the Publisher.

behavior may be useful for carrying information or decod- comparison to an analysis of the original spike trains. This
ing. Neural simulations based on reduced or extended gap represents the information contained in the temporal
Hodgkin–Huxley models [20,36,57] characteristically lead pattern of each response beyond what is present in the
to spike trains with non-Poisson characteristics. average firing rate elicited by each stimulus.

Thus, there is ample reason to believe that the firing rate We conclude that the spike trains of cortical neurons are
can carry information about two attributes, such as contrast not examples of a Poisson-like process with a time-depen-
and pattern. However, there is also reason to believe that dent firing rate. Non-Poisson spike trains allow more
the information in the time-course of the response is not efficient decoding schemes than population averaging
solely carried by average firing rate. To determine whether (even if the goal is to extract average firing rate), and they
a cortical neuron’s firing rate is the sole carrier of such make available a much richer set of possibilities for the
information, we created surrogate datasets that preserved manner in which spike trains to represent visual stimuli.
the time-course of the average firing rate but disrupted the The non-Poisson nature of the spike trains generated by
temporal structure of the individual responses. If infor- neurons in primary visual cortex can readily be demon-
mation is contained solely in the time-course of the strated without recourse to information-theoretic calcula-
average firing rate, then this maneuver will leave the tions. Variability in spike counts is typically in excess of
amount of transmitted information unchanged. Conversely, the Poisson prediction [16,24,66]. This can have surprising
if the surrogate datasets carry less information, then the ramifications, including an apparent excess of precisely
arrangement of spikes in the individual responses must be timed spike patterns [42]. Another non-Poisson feature, the
significant. presence of bursts [33], has been postulated to play an

To create these surrogate datasets, we used an ‘exchange important role in information transmission. The analysis
resampling’ procedure [66]. In exchange resampling, pairs we present below provides both another direct demonstra-
of spikes are randomly and repeatedly swapped between tion of the non-Poisson nature of a V1 neuron’s responses,
different examples of responses to the same stimulus. For and some insight into how this temporal structure might be
each stimulus, the resulting spike trains have the same used for signaling (further discussed in [46]).
firing rate time-course as the original dataset, since they As diagrammed in Fig. 4, we [46] recorded responses of
are built out of the same spikes. The only difference V1 neurons elicited by a sequence of pseudorandom
between the surrogate dataset and the original dataset is the checkerboards (m-sequences [61–63]). The sequence of
correlation structure within individual responses. When checkerboards was long enough to characterize the recep-
these surrogate datasets are analyzed by the spike metric tive field, yet short enough to permit recording of re-
method, we find (e.g., Fig. 7C and Table 3 of [66]) that sponses to multiple identical trials. The first analysis
clustering is reduced, on average, by about 20% in applied to these spike trains is a tabulation of the dis-
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Fig. 4. Scheme for the use of m-sequences to analyze interspike interval structure and its relationship to receptive field organization. An interspike interval
histogram (Fig. 5) is created from the responses elicited by a sequence of pseudorandom checkerboards. The interspike interval histogram anticipated from
rate modulation is obtained from the interspike intervals in a surrogate dataset created by randomly exchanging spikes between trials (hollow red arrows).
Responses to the m-sequence are also cross-correlated against the stimulus (hollow black arrows) to obtain an estimate of the spatiotemporal receptive field
(Fig. 7) [49,61–63].

tribution of interspike intervals (the interspike interval including neurons with bimodal and even unimodal ISIH
histogram, ISIH), shown in Fig. 5. Note that the binning distributions. The difference between the ISIH predicted
on the abscissa is logarithmically spaced, to facilitate by rate modulation alone and the experimentally-observed
visualization of the extremes of the interspike interval ISIH cannot be due to the absolute refractory period, since
distribution. There are three modes in this distribution: a the differences between the two ISIHs are prominent for
population of short intervals with a mode at approximately long intervals as well as short intervals. But other intrinsic
2 ms, a population of long intervals with a mode at neuronal properties may contribute to the observed ISIHs,
approximately 150 ms, and population of intermediate and their conserved features across neurons. For example,
intervals (between 3 and 38 ms). a slow calcium conductance is known to underlie the

Because these spike trains were elicited by stimulation bursts seen in the spike trains of thalamic neurons [27,28]
with an m-sequence that strongly modulated the neuron’s and may play a role in defining the short interspike
firing rate, one might wonder if the shape of this ISIH can intervals. However, it is unclear what mechanisms might
be explained solely by rate modulation. To test this, we contribute to the two longer modes.
also calculated the ISIH of exchange-resampled responses Although the biophysical basis for these modes is at
(red curve in Fig. 5). Were the original responses rate- present unclear, we can nevertheless ask about the roles
modulated Poisson processes, the two ISIHs would be that the interspike intervals play in signaling. As dia-
identical. However, a marked difference between the two grammed in Fig. 4 and described in detail elsewhere
ISIHs is evident. [49,61–63], reverse correlation of the observed spike trains

Of the 66 neurons studied [46], 11 neurons showed this with the m-sequence stimulus leads to a spatiotemporal
trimodal structure, and across these neurons, the positions map of the receptive field. This map has dual interpreta-
of the three modes were conserved. In another 29 neurons, tions: (i) the average stimulus that most likely precedes a
the ISIH was bimodal. In the bimodal ISIHs, the partitions spike, and (ii) the net excitatory or inhibitory contribution
between the modes coincided with the partitions observed of each point in space-time to the firing probability. (These
in the trimodal histograms. In eight of these neurons, the are approximate statements, rigorously valid only in the
short interspike interval mode remained distinct, and the limit of a linear receptive field). The first row of Fig. 7
medium and long modes appeared merged. In the remain- shows the receptive field map of a typical cortical complex
ing 21, the long mode remained distinct, and the short and cell (with a unimodal ISIH), demonstrating a vertically
medium modes were merged. The consistency of these oriented excitatory region peaking at 67 ms prior to spike
mode boundaries across neurons is shown in Fig. 6. onset (red) flanked in both space and time by a much

As in Fig. 5, the Poisson prediction failed to account for stronger inhibitory region (blue). That is, spikes are
the ISIH distribution in more than half of the neurons, generated by this neuron preferentially in response to
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Fig. 5. The interspike interval histogram of a cell in V1 stimulated by an m-sequence, as diagrammed in Fig. 4 (gray profile), and the prediction based on
rate modulation (red). Note the presence of three modes in the histogram obtained from the neural response, and the qualitative discrepancy between this
histogram and the prediction based on rate modulation. Unit 35 /1, a simple cell. Adapted from Fig. 3 of [46] with permission of the Publisher.

Fig. 6. The boundaries between the modes of interspike interval histograms in 66 V1 neurons, including 11 neurons with trimodal structure (as in Fig. 5)
and 37 neurons with bimodal structure. Adapted from Fig. 2 of [46] with permission of the Publisher.
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Fig. 7. Top row: the spatiotemporal receptive field of a V1 neuron estimated by reverse correlation of all spikes with an m-sequence (as diagrammed in
Fig. 4). Bottom three rows: the spatiotemporal receptive field determined by reverse correlation of subsets of spikes, selected on the basis of their preceding
interspike interval. The spike subsets are defined by partitioning the interspike interval histogram of this neuron, illustrated on the right, according to the
boundaries between modes identified across all neurons, as shown in Fig. 6. Note that each spike subset defines a different spatiotemporal receptive field.
Complex cell 33 /1. Adapted from Fig. 4A of [46] with permission of the Publisher.

patterns that have a vertical orientation, and also at a more elongated and more sharply defined subregions,
particular time. Despite the clearly-defined receptive field consistent over a range of time. That is, spikes that follow
map, the message carried by any single spike is ambigu- short interspike intervals preferentially signal a vertical
ous: even if no noise were present: spikes can be generated orientation, and are relatively less affected by the dynamics
by stimuli that are suboptimal spatially but optimal tempo- of the stimulus. Conversely (bottom row), the receptive
rally, or vice-versa, or of high contrast but not particularly field map for spikes that follow long interspike intervals
optimal either in space or in time. does not reveal spatially antagonistic subregions, but rather

Using a modification of the reverse correlation tech- a temporal transition from excitatory to inhibitory between
nique, we can determine whether the spikes belonging to 97 and 81 ms prior to stimulus onset. That is, spikes that
each of the three modes help to parse this information. In follow long interspike intervals indicate that there has been
this analysis, we partition the interspike interval distribu- a change in overall luminance at a particular time, and they
tion along the lines of the conserved mode boundaries are relatively independent of the spatial structure of the
(Fig. 6), even though these modes are not clearly apparent stimulus. Spikes that follow the intermediate interspike
in this neuron’s responses. The rationale for this partition- intervals (third row) show a mixture of these features, with
ing is an assumption that there is a common synaptic or some spatial antagonism and intermediate temporal selec-
post-synaptic neural machinery for decoding this infor- tivity; indeed, the receptive field map of these spikes is
mation. Such machinery might rely on the common very similar to the overall receptive field map (top row).
dynamics of synaptic depression and facilitation [1,54], These general features were typical of the neurons we
rather than on neural measurement of the (possibly examined: spikes that followed brief interspike intervals
idiosyncratic) statistics of individual spike trains. The spike tended to yield receptive field maps that were more
train is thus partitioned into three subsets: spikes that spatially selective, while spikes that followed long inter-
follow the short, medium, and long interspike intervals spike intervals tended to yield receptive field maps that
observed in the entire population. Reverse correlation of were more temporally selective.
each of these three subsets against the m-sequence stimuli In summary, the interspike interval structure of a spike
yields the maps shown in the lower three rows of Fig. 7. train has structure that is not merely a consequence of its
The receptive field map for the short interspike intervals time-varying firing probability, and this structure appears
(second row) has a more pronounced spatial structure, with to be useful in decoding the intrinsic ambiguity of a single
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spikeneuron’s response. This kind of information is readily For k50, the metric D [q,k] ignores the neuron of
accessible to known mechanisms that act at the level of origin. That is, responses are compared after all the
individual synapses (e.g., synaptic depression and facilita- component spike trains are merged into a population
tion), and that modulate sensitivity to spikes based on the response. With increasing k, the neuron of origin plays an
length of the preceding interspike interval. increasingly larger role in determining the similarity of two

multineuronal responses. At k52, the metric is maximally
sensitive to the neuron of origin. In this case, spikes from

6. Firing patterns across neurons each neuron are kept completely segregated, since moving
a spike from one neuron to another has the same cost as

A single spike is intrinsically ambiguous, and the deleting it from one neuron’s response and inserting it into
temporal structure of the spike train may help to dis- another neuron’s response. Thus, when k52, the distance
ambiguate the information it carries. In particular, we between two multineuronal responses is the sum of the
showed above that the interspike interval structure allows distances between each of the corresponding single-unit
postsynaptic neurons to extract different messages from the responses. At intermediate values of k, the metric has an
same spike train, via preferential sensitivity to intervals of intermediate sensitivity to the neuron of origin. Changing
particular durations. However, it is unlikely that temporal the neuron of origin of a spike from one neuron to another
structure within single spike trains is the sole clue to has the same effect as changing the number of spikes in
disambiguate neural information. Indeed, one might expect each neuron’s response by k /2, or, of keeping the neuron
that the pattern of activity across a local cluster of neurons of origin the same, but shifting the spike in time by k /q.
plays a greater role in visual coding [38]. Recordings were made with tetrodes [23] in V1 of

One can imagine a range of decoding schemes for anesthetized, paralyzed monkeys, and spikes were classi-
reading out this pattern of activity. Perhaps the simplest fied using in-house modifications of spike-sorting software
such scheme is the notion [55] that the average firing rate [19]. Two-hundred and eighty-seven neurons at 57 distinct
of a cluster of functionally similar neurons is the primary sites were recorded, in clusters of two to eight neurons.
signal. At the other extreme is the notion [3,4,7] that the The analysis described here is limited to pairs of neurons
detailed relationship of spike times across neurons is that were cleanly isolated and had stable, robust responses.
crucial. Stimuli consisted of gratings whose orientation and spatial

Summation of activity within a local cluster to estimate frequency was either optimal or close to optimal for both
an average firing rate provides a signal that reflects the neurons of the pair. Stationary gratings were presented
average tuning properties of the local cluster. To the extent abruptly at each of 16 spatial phases (positions), and
that nearby neurons have similar tuning properties [26,41] typically 64 responses of the neuron pair to each position
and that differences in individual neurons’ responses were collected and analyzed.
reflect only ‘noise’ [55], this strategy is both simple and Fig. 8 analyzes responses obtained from two representa-
complete. However, when analyzed in quantitative detail, tive neuron pairs (rows), via an information measure of the
adjacent neurons can differ significantly in their tuning clustering induced by the various metrics. For each record-
[17]. Such differences can lead to a more efficient repre- ing, responses were analyzed for the first 100 ms (the on
sentation of visual information, provided that the popula- transient only), the first 256 ms (the entire on response),
tion activity is not decoded merely by summation. and the first 473 ms (the on response and the off response).

We recently made multi-unit recordings that allow us to First, we focus on the coding within each of the two
spikeaddress this issue [47,67], with an extension of the spike neurons, as characterized by D [q]. This analysis is

metric analysis described above. The responses from a summarized by the foreground curves in each panel. The
cluster of neurons can be considered to be a sequence of height of the curves at q50 corresponds to the amount of
spikes labeled by the time and neuron of origin. Our focus information that each neuron transmits about spatial phase,
is whether the labeling each spike by its neuron of origin based solely on the number of spikes in its response. As
provides additional information, and if so, how the addi- indicated by the ascent of the curves for increasing values
tional information relates to the informative timing preci- of q, sensitivity to the timing of individual spikes typically
sion of individual spikes. We generalized the spike time increases the amount of information that can be extracted

spikefamily of metrics D to sequences of labeled events by from these individual responses. For optimal sensitivity to
introducing another kind of elementary step — changing spike times, the size of this increase is typically 20–30%
the label. The cost associated with changing the label is a over the amount of information that can be extracted when
parameter k, analogous to the cost q of shifting a spike in spike times are ignored (q50). The maximal increase

spiketime. The efficient computational algorithms for D [q] occurs for q in the range 30–100, corresponding to a
spikecan be generalized to schemes to calculate D [q,k]. The temporal precision of 1 /q510–30 ms. At even higher

generalizations are ‘efficient’ (i.e., run in polynomial time), values of q, information is reduced, indicating that, on
but computationally intensive. average, sensitivity to spike times at even finer precision

The useful range of the new parameter k is from 0 to 2. does not provide additional information about spatial
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Fig. 8. Comparison of coding by pairs of V1 neurons (surface) and individual neurons (lines), in response to transiently presented gratings at a range of
spatial phases. Responses are analyzed for 100, 256, and 473 ms after stimulus onset (columns). The height of each line graph is an information-theoretic

spikemeasure of the extent of stimulus-dependent clustering (see [66]) as determined for a range of candidate codes D [q], where q is the cost / s to shift a
spike. This measure of information, applied to responses from each of the neurons individually, is indicated by the symbols (s) and (1). The sum of these
values, which corresponds to the maximum information that could be transmitted by the pair if their responses were independent, is indicated by the line
with symbols (3). For neuron pairs, the surface indicates the extent of stimulus-dependent clustering of the joint responses as a function of q and a second
parameter, k. The parameter k is the cost to change the neuron of origin of a spike. The increase in information for q.0 indicates the informative value of
spike timing, independent of the neuron of origin. The increase in information for k.0 indicates the informative value of the neuron of origin of each
spike. An estimate of the upward bias of information due to chance clustering has been subtracted. Units 41/1 /6 /s and 41/1 /6 / t (top); 43 /9 /8 / t and
43/9 /8 /u (bottom), all simple cells.

phase. (Note that this is an average measure of precision neuron pair in the top row, the extent of the increase in
across the entire spike train. Had we analyzed only the information as k increases is dramatic, approximately 40%.
initial transient, the useful temporal precision would have More typically, as seen in the neuron pair in the bottom
been higher [22,48]). row, it is relatively subtle, approximately 10%. For both

The surfaces in each panel characterize the joint coding recordings, the importance of the neuron-of-origin label is
by the two neurons via the amount of clustering induced greater when the entire response is analyzed (second and

spikeby D [q,k]. At k50, the neuron of origin of each spike third columns of Fig. 8) than when just the initial response
is ignored, and thus, the response of the two neurons is analyzed (first column). This suggests that the initial
together is interpreted as if it were simply summed into a transient response is relatively stereotyped, while differ-
single spike train. Not surprisingly, the information carried ences in the late response dynamics across neurons are
by this composite train of ‘unlabeled’ spikes is greater than more informative.
the information carried by either train in isolation, indicat- The overall conclusion is that nearby neurons’ responses
ing that the responses are at least not completely re- are much less redundant, provided that their responses are
dundant. However, the information is also much less than not simply summed together. Even when the benefit of
the sum of the information of the two separate responses sensitivity to the neuron of origin is large, only a modest
(curves marked by X), suggesting a large amount of amount of sensitivity (k50.2–0.4) is required, as is shown
redundancy. This could represent real redundancy across by the location of the peak of the surfaces along the
the responses, but it could also indicate an apparent k-axes. Finally, we note that the added information pro-
redundancy, resuling from decoding the responses without vided by the neuron of origin is independent of the added
reference to the neuron of origin. For k.0, the metrics information provided by spike timing. That is, for each

spikebecome increasingly sensitive to which neuron fired each value of k, the amount of information by D [0,k] (only
spike. As shown here, this sensitivity increases the amount the neuron of origin is tracked, but not the spike time) is
of information that can be extracted from the joint re- less than the information that can be extracted by

spikesponse, typically to levels approaching the total infor- D [q,k] for optimal values of q. The optimal sensitivity
mation in the two individual responses. In the case of the to timing for decoding multineural responses is indepen-
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