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@ Binless strategies for estimation of information from neural data
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We present an approach to estimate information carried by experimentally observed neural spike trains
elicited by known stimuli. This approach makes use of an embedding of the observed spike trains into a set of
vector spaces, and entropy estimates based on the nearest-neighbor Euclidean distances within these vector
spacesL. F. Kozachenko and N. N. Leonenko, Probl. Peredachi28f9 (1987]. Using numerical examples,
we show that this approach can be dramatically more efficient than standard bin-based approaches such as the
“direct” method [S. P. Strong, R. Koberle, R. R. de Ruyter van Steveninck, and W. Bialek, Phys. Re®&0, ett.

197 (1998] for amounts of data typically available from laboratory experiments.
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INTRODUCTION while bins that are too narrow lead to biases associated with
extreme undersampling. Stand&dB—-15 and jackknife es-
How neurons represent, process, and transmit informatiotimators[16] of bias at stagéiv) can be helpful, but no bias
is of fundamental interest in neurosciencg?2]. It is ac- correction is effective when the amount of data is very lim-
cepted that neural information processing relies on the transted. Metric-space method47] avoid the binning problem,
mission of a series of stereotyped events. The basic biophysut still may underestimate information due to the clustering
ics that underlies the generation of these action potentialat stage(ii). The fundamental difficulty is that estimates of
(spikes is well established. However, the statistical featuresSnformation that make few assumptions concerning the na-
that convey information are not well understood. Possibili-tyre of the code suffer biases because of limited amounts of
ties include not only obvious features, such as the number Qfata, while methods that reduce the dimensionality of the
spikes fired by a population of neurofi8], but also more  proplem by considering a parametric family of codes suffer
subtle ones, such as, their precise times of occurrBh&:  piases if the neural code does not belong to one of the fami-
the pattern of intervalg6], and various kinds of patterns of |iog
activity across a populatiofv,8]. A direct experimental as- This paper presents a strategy that bypasses the difficul-

ZzuéLgr?]iT;TC?ru;Seté?lqcz ggz}cjgug'tﬂ;f éﬂgg'pglsggiclct ties associated with binning and clustering, while making
9 P only weak assumptions concerning the nature of the code.

of neural activity are likely to change others. Thus, an appro- )
priate theoretical infrastructure is required to disentangl Essentially, we assume that the neural code respects the con-

such potential confounds e‘Einuity of time, but we make no assumptions as to the rela-
Shannon’s groundbreaking work in information and Com_tionships between spike trains with different numbers of

munication theorf9] is the natural basis for this theoretical SPIkes. That is, we recognize the distinctive topology of the
infrastructure[1]. Quantifying the amount of information SPace of spike trains: there is a discrete component, corre-
contained in neural activity, often in conjunction with appro- SPonding to the number of spikes in a response, and there is
priate simulations and models, makes it possible to dete@ continuous component, corresponding to the timing of
mine the relevant statistical features of spike trdit@ and  those spike$18].
to examine overall biological strategies for information Implementation of the idea rests on a little-known asymp-
transfer[11]. totically unbiased “binless” estimator of differential entropy
However, as is becoming increasingly appreciated, estif19]. We first show that this estimator has substantial com-
mation of information content from empirical data can beputational advantages in a broader context: estimation of the
fraught with difficulties. Estimation of information in spike entropy of a continuous distribution from a finite set of em-
trains generally consists of several stefpsembedding spike pirical samples in a Euclidean space. We then proceed to
trains into a spaceii) clustering similar spike trains into apply this estimator to spike trains. This requires grouping of
groups,(iii) using a “plug-in” estimate for transmitted infor- the spike trains into strata according to the number of spikes
mation based on how these groups relate to the stimuli, anthat they contain, followed by separate analysis of each stra-
(iv) estimating biases due to small sample size. Traditionajum. To preserve the advantages of the binless estimator
approachese.g., the “direct” method of Stron@t al. [12]) within each stratum, we use linear, continuous embeddings
subdivide a spike train into narrow time biiisinning as  of spike trains, rather than embeddings based on binning.
part of the embedding stag®, with each bin corresponding Information is then estimated from the difference between
to a separate dimension. Bins that are too wide lead to urthe entropy of the set of all spike trains, and the entropies of
derestimates of information since temporal detail is lostthe spike trains elicited by each stimulus. In simulations, the
rapid convergence of the binless entropy estimator leads to
marked improvements in information estimates in the regime
*FAX: 212 746 8984. Email address: jdvicto@med.cornell.edu of limited data.
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RESULTS gleaned from the number of spikes in each response and
another (iming) that can be gleaned from their timinkgg,
is estimated via standard methods. While the estimate of
'We focus on estimating the amount of information trans-| ' must be debiased, the bias is small and independent of
mitted by a neuron in a particular but common neurophySitime resolution. g is further subdivided into contribu-
ologic laboratory situation. Each member of discrete collecyjgns liming(N) from responses that contain exaatlyspikes,
tion of stimulia, (k=1,2,...5) is presented repeatedly to the 4 step that incurs no estimation error. To estimigfg.q(n),
preparation. The neural response elicited by each stimuluge exploit the fact that spike trains that contain exactly
presentation is a “spike train,” namely, a sequence of stereogpikes are parametrized ycontinuous parametetsamely,
typed eventdspikes in a predefined observation period fol- the times of the spikesThus, it is natural to consider esti-
lowing the presentation of the stimulus. In a typical experi-mation of their entropies within the context of estimation of
ment, the observation period following each presentation igntropies of continuous probability distributions on a Euclid-
on the order of 0.1-1 s, the number of spikes may ranggan vector space. This additional structure provides a tool
from 0 to 20, the number of stimulb is 2-12, and each h4; avoids the difficulties associated with binning. As shown
stimulus is presen.ted sgveral do_zgn t|m¢s. The |nvest|gat(Hy Kozachenko and Leonenkfld], for a finite sample
keeps tyack of Wh'Ch. stimulus elicits Wh'(?h responses, bujan from a continuous distribution in a Euclidean vector
would like to determine the extent to which the reSpOnse%pace, the statistics of the Euclidean distances between near-

themselves allow the stimuli to be distinguished. est neighbors provide for an asymptotically unbiased and
As pointed out above, estimation of Shannon’s “transmit- €19 P ymp y
consistent estimate of the entropy.

ted information”[1,9] is natural for this purpose. In essence, : . .
the transmitted information is the difference between the en- 1© |mplement this approach., and to show that '.t indeed
tropy of all of the spike trains, and the entropy of the spikehas pra(_:tlcal a_dvantag_es, requires a number of Ioglcal steps.
trains elicited by repeated presentations of the same stimulu/e Pegin by introducing the binless entropy estimator of
Thus, estimating transmitted information is closely related td<0zachenko and Leonenka9] for continuous distributions
estimating entropy. in a Euclidean space, for one-dimensional distributions, and
Were a neural response fully characterized by the numbehen for multidimensional ones. We next shévia numeri-
of spikes it contained20], it would suffice to describe an cal experimenisthat this estimator indeed has practical ad-
ensemble of spike trains in a discrete fashion. This descripvantages over the traditional estimators that rely on binning.
tion would be a tabulation of the list of the probabilities that, We then describe how the binless estimator can be adapted to
given a stimulusa,, a response containing exactlyspikes  the estimation of information in neural data sets of the sort
is elicited. In this case, procedures for obtaining entropy esdescribed above. This requires several stépsstratification
timates from discrete distributions could be applied. Suctof spike trains into discrete sets based on how many spikes
procedures are well known, and their behavior, includingthey contain,(b) estimation of the informatiot,g,,; associ-
their biases, are well understopti3—15. ated with stefa), (c) embedding the spike trains within each
However, it does not suffice to characterize a spike trairof these discrete sets into a separate Euclidean spacég)and
merely by the number of spikes that it contains, since thepplication of the binless estimator within each of the Eu-
timing of the spikes in the response may also contributeclidean spaces to obtain contributionsl i@ -
to the ability to discriminate among the several stimuli  The results of Kozachenko and Leonerit8], along with
[1,2,4,6—8,17,21,22 The usual and currently standard ap- the chain rule property of informatidr24], guarantee that, in
proach is to break up the observation interval into a numbethe limit of an infinite amount of data, the proposed proce-
of discrete time bing12]. Once this is done, procedures for dure provides an unbiased estimate of information. With lim-
obtaining entropy estimates from a discrete distribution carited data acquired at finite resolution, there are practical
again be applied. The fundamental difficulty with this ap-problems that arise in the implementation of sta®s(c),
proach is that the bins must be made small enough to captuend (d). We make generic choices for how to solve them in
the intrinsic precision of spike times, which may be as fine aghe course of the development below. We make no claim that
1 ms[22,23. This requires estimation of a very large numberthese choices are optimal, and we mention several variations
of response probabilitie@ne for each possible way to dis- in the Discussion and Appendix. Nevertheless, as a variety of
tribute then response spikes into these binghis in turn  numerical simulations demonstrate, these choices result in a
incurs a large bias in the entropy estimates: bias is approxprocedure that has substantial advantages in comparison to
mately proportional to the number of response probabilitiegraditional binned approaches, for data sets whose size and
to be estimated13—15, and the latter increases exponen-nature are typical of those obtained in the neurophysiology
tially with the time resolution used to analyze the responsedaboratory.
Since the estimated information is a difference between two Finally, we note that this approach can also be applied to
estimated entropies, and the biases of these entropy estimasgperimental data that consist of continuous respo(eses,
are large and unequal, large biases in estimated informatidireld potential$ rather than spike trains, and also to situations
can result. in which the stimulus set is continuous rather than discrete.
The present approach avoids this exponential growth imhe former situation is simpler than the one we consider in
bias with increasing time resolution. The transmitted infor-detail, since the partition of information into continuous and
mation is broken into two parts: ond,, that can be discrete components is not necessary.

Statement of the problem and overview of the approach
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Binless entropy estimates of one-dimensional distributions

1
Let p(x) be a continuous probability density on the real Hain =~ J; logz p(x)dy. @

line [ —<,0]. Our immediate goal is to estimate the differen- _ ) ) ) )
tial entropy[25] of p(x), defined as This equation states that the differential entropy is deter-

mined by the average of lgg(x), where the average is
] equally weighted with respect to the cumulative probability
H it = —f p(x)log, p(x)dx, (1) densityy. However, the available data consist only of the
o sample pointx; , andy is unknown. We estimatgby taking
it to be the function that iexactlythe cumulative probability
from a finite sample of observations, ... Xy drawn accord-  distribution of theN observed samples. That isis estimated
ing to p(X). by a function that is 0 at=— and has an abrupt step of
The differential entropy 4 characterizes the behavior of sjze 1N at each value; . Sincey is a step functiondy is a
the entropy of discretized versions @f(x) in the limit  formal sum of& functions of weight IN at each value; .
of small bin widthsb, which we denotédys{b). In the limit  This provides an approximation of the integral of E2). by
of small bin widthsb, the probability that a samplg is  the sum

betweenx; and x;+b is approximated bybp(x;). Using N

Zbp(x)=1, it follows (in the limit of small b) that the _ 1
differential entropy and the discretized entray;.{(b) are Haitr~ — 2’1 1092 P(X;). ()
related by

Note that thex; are determined by random draws according
to p, in contrast to the; above, which are determined by the
Hgisdb)~— Z bp(x;)log, bp(x;) positions of equally spaced bins.
: We now estimate logp(x;) from the Euclidean distance
betweenx; and its nearest neighbor. The rationale for an
~—log, b— 2 bp(x)log, p(x;) estimate of this sort is that in some sense, it is as local as
! possible given the available data. We proceed as follows. Let

o d(\) be the probability that, afteX—1 other samples have
~—log, b— f p(x)log, p(x)dx been drawn according g the nearest neighbor to a sample
o Xj is at a distance of least The probability density fok is
=H iz —log, b, thus—dg/dA. As A increases byA\, q(\) decreases accord-

ing to the probability of encountering any of tHé—1
samples in either of two intervals of lengit\ extending on
either side of; . The continuity assumption fgrmeans that
within a sufficiently small neighborhood of;, we can ap-
proximate p by a locally uniform distribution of density
p(X;). That is, we can approximate

where thex; are the centers of equally sized bins of width
For information estimates obtained via discretization,

only this limiting behavior is of interest, since it captures the

greatest amount of detdis formalized by the data process-

ing theoren 24]). The final term—log, b in the above equa-

tion is irrelevant to estimates of information, since the infor- dq

mation estimates are differences of two entropy estimates, o~ ~2(N=Dp(xj)a(n), (4)

each obtained with the same bin size. The continuous ap-

proach bypasses this limiting process, and replaces the di&ind consequentlysinceq(0)=1),

ference of discretized entropies with the equivalent differ-

ence of differential entropies. q(A)~exd —2N(N=1)p(x))]. ®)
We seek an estimate for the differential entrgfg. (1)] Using Egs.(4) and (5) and the substitutioru=2\(N—1)

that depends continuously on the individual observations. W (x:)

would like to exploit the(assumejlcontinuous nature gp, o

but to keep the estimation procedure local, so that sensitivity o dq
to the shape op is preserved. The analysis below should be (logz \)= fo '092()‘)( - ﬁ)d)‘
viewed as heuristic development of the binless estimator. For
a rigorous proof, the reader is referred to Kozachenko and o u 4
Leonenko[19]. Nf log, 2(N—1)p(x)|© du
The first step is to change the variable of integration in J
Eq. (1) to the cumulative probability density, defined by v
=—log,[2(N—1)p(x;)]— 2’
X
y=f p(t)dt. where y=—[{e VInvdv, the Euler-Mascheroni constant
o (=~0.577 215664 P This can be rewritten as
tL:Qr?sefrortrr:: tcc:)hange of variabledy=p(x)dx, and Eq.(1) —10g, p(x;) ~(log; \) + log,[2(N— 1)] + ﬁ 6)
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the desired relationship between jagx;) and the Euclidean The strategy of estimating differential entropy from
distance to the nearest neighbor. This relationship, when sulmearest-neighbor Euclidean distances is related to the strat-
stituted into Eq(3), gives the estimate egy of estimating fractal dimension from the statistics of
nearest-neighbor distances, the third approach discussed by
1 y Grassbergef26]. Note, however, that the dimension corre-
Hdiﬁ”ﬁgl log, Aj+10g[2(N—1)]+ in2)" (7)  sponds to the slope of the dependence of (ogarest-
neighbor distangeon log (number of samplgswhile differ-
where \; is the observed distance from to its nearest €ntial entropy corresponds to the intercept. Thus, the
neighbor. debiasers developed in RdR26] for the dimension do not
immediately extend to the present situation, in which the
dimension is a known integer, and entropy is to be estimated.

N

Binless entropy estimates of multidimensional distributions

The above strategy readily extends to multidimensional
distributionsp(x), wherex is a point in anr-dimensional Numerical examples: Entropy estimates
Euclidean space. The differential entropiq. (1), inter-
preted as a multidimensional integralnd the discretized
entropy calculated with respect to ardimensional bin of
width b are related by

The asymptotically unbiased and consistent nature of the
binless estimators suggests, but does not guarantee, its utility
in practical application to finite data sets. We therefore illus-
trate the performance of the binless estimators of Egs.

H gisd b)~Hgis— log, b. (8  and(10) with some numerical examples, focusing on a com-
parison with standard estimates based on binning. Figure 1
The finite sum approximatiofEq. (3)] remains valid, but  considers a one-dimensional Gaussian of unit variance. The

the relationship betweep(x;) and the expected distribution Upper panels show that the binned estimates approach the
g(\) of Euclidean distances to the nearest neighbox;of ~correct value asymptotically, provided that the bin width is
must be modified Egs. (4) and (5)]. This is because the sufficiently small(i.e., 0.125 or 0.5 We show the behavior
volume associated with a change in Euclidean distance frorfif two bias corrections for the binned estimatésthe bias

A to X+ AN is the volume of am-dimensional spherical shell correction of Miller [14] and Carlton[13] (which corre-
of radius\ and thicknes\\. That is, sponds[27] to the bias correction for entropy proposed by

Treves and Panzefl5] and is henceforth referred to as the
dq 1 “classical” correctior), and(ii) the jackknife[16]. The latter
ax = TSN HN=Dpxg)a(n), (9 correction tends to result in a somewhat higher value and a
smaller error, especially in the small-sample, small bin-width
where regime. The lower panels of Fig. 1 show that for a fixed
number of samples, binned estimatesen if debiasedun-
rat’? derestimate differential entropy when the bin width is small,
and overestimate differential entropy when the bin width is
large. The binless estimat@eproduced in all three upper
panel$ has essentially no bias, as expected from the analyti-
cal results of Kozachenko and Leonerfd®]. The trade-off
for this lack of bias is that the binless estimates are consid-
erably less precise than the binned estimates.

Numerical experimentgnot shown revealed similar be-
havior for other one-dimensional distributions, including: a
uniform distribution, a one-sided exponential distribution,
and a Lorentz distribution. The similarity is remarkable, con-
sidering that these distributions differ in whether their sup-
port is compact, semi-infinite, or infinite; whether the densi-

S =
r

r-i-l
2

is the area of a unitr-dimensional spherical surface
($,=2,5,=27,S3=4m,...). Following the same lines as
the one-dimensional analysis above, we find

SA'(N=1)p(x))
r

Q(K)M%XF{—

and

1 S.(N—1)p(x) ties have discontinuities, and whether the distributions have
(logy Ny~ _( — |ng[ PO ¥ ) , finite variance.
r r In(2) Figure 2 compares these estimators for a three-

dimensional Gaussian distribution. The above features re-
main, but their relative importance has changed. When bin
size is small(0.5 or les$, the underestimate of differential
n Y (10) entropy associated with finite sample size has become so
In(2)" severe that hundreds of samples are required to achieve an
acceptable estimate. The upward bias in differential entropy
This is Eg.(2) of Kozachenko and LeonenKd9]. It was due to noninfinitesimal bins has also become severe. Thus,
shown by these authors to be asymptotically unbiased andnly a very narrow range of bin widthga. ) will yield an
consistent, provided thg@tobeys certain conditions that con- acceptable estimate. On the other hand, the imprecision of
trol the convergence of integrals for the differential entropy.the binless estimator has increased only slightly. Conse-

which, when substituted into E¢3), provides the estimate

S(N-1)

r

N
r
H g~ sz'l log>(X ) +log,
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2
‘ A ﬁm FIG. 1. Differential entropy of
2 poe a one-dimensional Gaussian dis-

tribution (unit variance, as esti-

N

1 b 1 mated from a finite sample of data
via binned and binless ap-
o o o proaches. Horizontal line: correct

bin width=0.5 bin width=2.0 value, ca. 2.047. Triangles: mean
r of binned estimates, corrected via
the classical methoddown tri-

bin width=0.125

> 4 16 e 2% 1024 YT 16 e 256 1024 4 16 64 256 1024 angles and the jackknife(up tri-
I samples angles. Open circles: binless esti-
|f, mates, calculated from Eq(7).
3r 3 3r ;
(These estimates do not depend on
bin size, but are reproduced across
A 5 bin sizes to facilitate comparison
4 with the binned estimates.The
error bars represent the standard
1 ! 1 deviations of the estimates. Forty
L independent runs for each set of
04' 0 0 conditions. All calculations were
16 samples 128 samples 1024 samples carried out in MATLAB version
\ 5.3.1 for Windows.
003125 0125 05 2 003125 0125 05 2 0d3125 0125 05 2
bin width

guently, an acceptable estimate of differential entropy can beerned that the performance of the binless estimator will
obtained with 100 or fewer samples. These trends are evdme degraded when the dimensionality of a dataset is not
more apparent for a five-dimensional Gaussian distributiortlearcut. This is addressed in Fig. 4, which examines differ-
(Fig. 3. ential entropy estimates for a three-dimensional Gaussian
Since Eq. 10 has a bias correction term that explicitywhose variances along its three axes are in the ratio
depends on the number of dimensian®ne might be con- 1:10:100. The measurable bias associated with the binless

10 10 10

8 8 8

s?Hré-a—H—H—"

2 2 2
bin width=0.125 oJ bin width=0.5 bin width=2.0 ) )
0 ¥ 0 FIG. 2. Differential entropy of
) S . ) ) ) a three-dimensional Gaussian dis-
- 2 15 6 25% 10 4 16 64 256 1024 4 16 64 256 1024 tribution (unit variance, estimated
2 samples from a finite sample of data via
-y . .
z binned and binless approaches.
W g 10 107 Correct value, ca. 6.141. Ten inde-
pendent runs for each set of con-
8 8 ditions. Display conventions as in
Fig. 1.
o o ?
4 4
2 2
ol 16 samples 128 samples 0 1024 samples
2 . 2 2 -
0.03125 0.125 0.5 2 0.03125 0.125 0.5 2 0.03125 0.125 a5 2
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6 6 6F
4 4 at
2 2 2
bin width=0.125 bin width=0.5 bin width=2.0
0 of 0
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- 4 16 64 256 1024 3 16 64 256 1024 4 16 64 256 1024
3 samples
=
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12 12 12
1A 10— 0—0—0—0—O (P
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6 6 6
ar 4 4
2t 2F 2
16 samples 128 samples 1024 samples
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-2 -2 n -2
003125 0.125 0.5 2 0.03125 0.125 0.5 2 0.03125 0.125 0.5 2
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FIG. 3. Differential entropy of a five-dimensional Gaussian distributiorit variancé, estimated from a finite sample of data via binned
and binless approaches. Correct value, ca. 10.236. Ten independent runs for each set of conditions. Display conventions as in Fig. 1.

10 10 10
8 8
q q
6
g
4 4
2 2
ol bin width=0.125 k bin width=0.5 0 bin width=2.0
- 2 N s 2 . . . : 2 N " .
8. 4 16 64 256 1024 4 16 64 256 1024 4 16 64 256 1024
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107 10
8 8
& &
4 4
2F 2
0 128 samples 0 1024 samples
2 N 2 " N . 2 N
0.03125 0.425 05 2 0.03125 0.125 05 2 003125 0.125 05 2

bin width

FIG. 4. Differential entropy of a three-dimensional Gaussian distribution whose variances along the orthogonal axes are in the ratio
1:10:100, estimated from a finite sample of data via binned and binless approaches. Correct value, ca. 6.141. Ten independent runs for each

set of conditions. Display conventions as in Fig. 1.
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estimators is restricted to small sample numiletr46), and  break the transmitted information into two kinds of contribu-
is much less than the bias associated with the binned estiméens: one due to spike counts, and one due to spike times.
tors, even after the latter have been “debiased.” We can then use binned estimates to determine the informa-

In sum, it appears that the binless estimates of a distribution carried by spike counts, and binless estimates to deter-
tion’s differential entropy have significant advantages ovemine the information carried by spike times.
binned estimates, particularly for high-dimensional distribu- More formally, we write
tions and when the size of the dataset is in the range 10— .
1000.

| =lcountt 2 P(A(X) =) Liming(N), (13

Information estimates in a Euclidean space

We next consider estimation of information transmitted inWherep(d(x)=n) is the probability that a responsecon-
the following setting: the input consists of a discrete seBof (@iNS exactiyn spikes,| countis the information carried by the
symbolsa, ,....as, presented with probabilities,,...,qs. ~ nuUMber of spikes elicited by each stimulus, dggy(n) is
The resulting output are characterized by conditional the information carried by the distribution of spike times of
probability densitiep,(x) = p(x|a,) in a Euclidean space of gll responses containingspikes. The cham rqle property of
dimensionr. In this context, the transmitted information is Information[24] guarantees that the partitioning of informa-

given by ([24], Sec. 2.4 tion expressed by |_5q13) is rigorously correct: information
is unchanged by first considering how many spikes a re-
S sponse contains, and then, conditional on each particular
I'=Hgir — kZl dkHair(X[ay), (12) number of spikes in a response, how those spikes are distrib-

uted in time. Note that this partitioning of information cor-

. . . . responds precisely to McFadden’s partitioning of the entropy
whereH 4 is the differential entropy for theunconditional) of a point process into “numerical’ and “locational” com-
density p(x), andHgx(x|a,) is the differential entropy for ponents 18].

the gondltlonal den5|tpk(x):p(x|ak). Substitution of Eq. Unfortunately, estimatinglgming(n) by embedding the
(10) into Eq. (12) yields spike trains containing spikes into am-dimensional space
N S becomes impractical when is large. Therefore, the above
|~ LE log AN D ﬁlog Ne—1 (12  Strategy must be modified in the following way. A maximal
N = 2 AJ-* N 2N-1" embedding dimensiobD is chosen. Each spike train of length
n is then embedde¢see below for detai)sas a point in a
Here Ny is the number of presentations of tkth stimulus ~ Space of dimension=min(n,D). This dimensional reduction
(Ne=qxN), \; is (as beforg the minimum Euclidean dis- for n>D may lead to a downyvard bias in the estimate of
tance between the observatienand any other observation, liming(N) (by the data processing theord@v]), but as the
and\? is the minimum Euclidean distance between the oplumerical results will show(Fig. 6 and following, this
servationx; and any other observation elicited by the samedownward bias is tolerable. Thus, given a choice of the
stimulus. That is, Eq(12) estimates information from the Maximal embedding dimensidd, we estimate
ratio between the minimum Euclidean distances between ob-

) L e N(n)
servations elicited by the same symbol, and the minimum L ()= i | Aj
Euclidean distances between observations elicited by all timing() = N(n) <4 0% A
symbols.

S N(n,ay) N(n,a,)—1
_2 k k

Information estimates for spike trains k=1 N(n) ez N(n)—1 ’ (14

We now consider how we can adapt this procedure to ) . . . .
neural data, in which the outpuisesponsesconsists of Where r=min(nD) is the embedding dimension for
spike trains. The main problem is that we cannot apply Eqsi-€lement spike trains, thg summation is over alN(n)
(11) and (12) directly to neural data, since these equationsSPike trains containing exactly spikes, andN(n,a,) is the
assume that the spike trains are represented by quantiti§&mber of trials in which a stimuluay elicits a response
lying within a Euclidean space of a particular dimension ~ containingn spikes.\; and\} are the minimum Euclidean
parameters are required to describe a spike train contamingdistances betweer; and all other responses that contain
spikes—effectively one for each spike time. Thus, the collecexactlyn spikes ¢;) or those that contain exactly spikes
tion of all spike trains of finite duration can be considered toand are also elicited by the same stimulus<a$\[). Note
constitute a set of spaces, one of each dimen@on, 2,..), that the embedding process utilizes a single space for each
with the spike trains containingn spikes occupying the dimension less than or equal tB 1), but multiple spaces
n-dimensional space. The binless approach outlined abowvef dimensionD (one for each value ofi=D). Each spike
can deal with the distribution of responses within each oftrain is embedded into exactly one of these spaces, and the
these spaces, but it cannot deal with the overall distributiorcalculation of Eq(14) is performed separately in each space.
of responses across these spaces—since the latter is not ch@ther than the downward bias due to the dimensional reduc-
acterized by any single dimension. This suggests that wéon for n>D, it follows from the results of Kozachenko and
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Leonenkd 19] that the estimate of Eq14) is asymptotically  spike timesr,,= 7(t,,) are approximately equally spaced in
unbiased and consistenfAs noted above, the results of the intervall —1,1]. This can be accomplished by ordering all
Kozachenko and Leonenkd9] posit certain integrability spike times serially, and assigning thth spike to the time
conditions on the distributions of the embedded spike trains.

These conditions are quite weak, and are guaranteed to hold i—3

if each multidimensional distribution of spike times is
bounded and of finite support.

Two quantities in Eq.(13) remain to be estimated. whereM is the total number of spikes. A set of spike times
p(d(x)=n), the probability that the number of spikes in a that are identical up to measurement precision are replaced
response is equal tg can be estimated &(n)/N. | o ,ccan by the mean of the values that would otherwise be assigned
be estimated from a plug-in estimate based\{n,a,), the by the serial ordering and E(L7). The purpose of this trans-
number of trials in which a stimulug, elicits a response formation is to allow the creation of approximately indepen-

(17)

containingn spikes: dent coordinates via standard orthogonal polynomials.
N S The embedding coordinates are based on the Legendre
- N(n, ay) polynomials P,,, which are orthogonal ofi—1,1]. In the
| count™ = 2 N 109 N(n.a0 usual normalization,

nmax (

+2

s 11 1
log, N(n) + gl 109 A+ 1 pias» 2 f,lph(T)Pk( ndr= 2h+ 1 Ohke (18

(15  The hth embedding coordinate,, uses thehth Legendre

polynomlal to map a spike trair; (containingn spikes at
where Ny, is the maximum number of spikes in any re- timest; ,....t; ) into the value
n

sponse. The bias in the estimatel gf,.can be estimated by

standard methods for discrete entropy calculations. In the

numerical examples, we will use two choices: the classical Ch(Xj)=+2h+ 12 Pr( 7). (19
correction for entropy estimat¢$3—15 k=1

(S=1)(Nya1) Together, the first Legendre polynomials yield an embed-
PO D L 1 ding of a spike trairx; into a vector space of dimension
bias (16) . -
2NIn2 namely, the point specified by tklretuple clgxlg,...,ci((xj).
. . . By virtue of the chosen normalization, if the spike times
and the jackknife debias¢L6] tiooty, within each spike trairx; were drawn at random

from the pool of spike times, the mean-squared value of the
hth coordinate of a spike train with spikes would ben,

To implement the above plan, we need to embed eachecause the transformed spike times are approximately
n-element spike train as a point in a Euclidean space of diequally spaced in the intervat-1,1]. Moreover(again as-
mensionr =min(n,D). There are many reasonable choicessuming that spike times were drawn at randpooordinate
for how to do this. However, the form of Eq&l2) and(14)  values would be uncorrelated. This embedding thus fulfills
indicates that the estimated information will be insensitive tothe goal of creating approximately independent dimensions
certain aspects of these choices. The information estimatesf approximately equal weighif the spike times were inde-
depend only on the ratio of Euclidean distances to nearegfendently drawn However, we do not require the spike
neighbors. Thus, different embeddings related by a continutimes or interspike intervals to be independent. If they are
ous distortion will lead to substantially the same estimatenot independent, the above embedding nevertheless suffices
provided that there are sufficiently many data points so thato apply Eq.(14). The estimation procedure remains valid,
the distortion is relatively constant within the nearest-but may suffer a loss of efficiency. Despite the possible loss
neighbor radius of each sample. This statement is nothingf efficiency, the numerical examples of Figs. 8 and 9 show
more than a reminder that information estimates are onlyhat the present approach retains its advantages when inter-
likely to be valid if one has a sufficient amount of data to spike intervals are strongly correlated.
delineate the main features of the response probability distri- We emphasize that the above embedding is based on the
bution. transformed spike times,,. Thus, the resulting information

On the other hand, both common sense and the numericaktimates will not depend on the actual spike times, but only
examples of entropy calculatioriBig. 2 vs Fig. 4 suggest on their order(within and across spike trainsAt first this
that the estimate is likely to be more efficient if each of themight seem counterintuitive. However, the warping is, after
dimensions are relatively independent, and each contributesll, an invertible topological transformation on the spike
comparably to the overall scatter of the points. This moti-trains, which therefore cannot affect the information content.
vates the following strategy, which we will use in the nu- As a computational device, forcing the spike density to be
merical examples that follow. First, the list of all spike times uniform in the transformed time helps to make the embed-
tm (in all responsesis examined. A monotonic time-warping ding coordinates approximately independent, and thus makes
transformation 28,29 7(t) is applied so that the transformed the information estimate more robust.

The embedding
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As indicated above, the entire estimation procedure is 15 n
parametric in a choice of a maximal embedding dimension
D. Too small a choice fob will downwardly bias informa-
tion estimates since it leads to a loss of detail about re-
sponses fon>D. On the other hand, too large a choiceDof s
will also lead to a downward bias of the information esti- €
mate, but for a different reason: the asymptotic regime of theg
binless estimator is not reached. When the dimension of thes o5
embedding space is large, most of the embedded spikes a1
close to the boundary of the region of data. For points near
the boundary, only a portion of the surrounding solid angle | | | | | |
can possibly contain a nearest neighbor. The data-
independent tern$, of Eq. (9) is too large to take into ac-
count this edge effect, and consequently, differential entropy samples

estlmgteisuch as Eq(10)] Qr.e upV\_/ar.dIy l?'ased- Th!s edge FIG. 5. (a) Information estimates from simulated Poisson data,
effef:t is Iar_ger for the conditiondWithin-stimulug estl_rrjate using Eqs(13)—(15), with a maximal embedding dimensi@nof 2.
of dlfferer.mal entropyH (x|ay) .than for the unconditional  gjmylated spike trains had duratid s and mean rates 2, 4, 6, 8,
across-stimulus estimaté] s, since there are fewer data and 10 Hz.(This is identical to the simulation of Figs. 4A—D of
points in the former estimate. Consequently, the ultimate efvictor and Purpurd17].) 2048 such spike trains were generated in
fect on the information estimatgeq. (11)] is a downward  response to each stimulus, and we estimated information from
bias before the asymptotic regime is reached. datasets consisting of 8, 16, 32,..., 1024 examples of each response.
Thus, since we anticipate downward biases both for largeolid horizontal line: correct value. Triangles: contribution from
D and for smallD, the systematic way to proceed is to per- spike count alond,.,,[Eqg. (15)] as corrected by the classical bias
form the above calculations parametricallyDn and to take estimate(down triangley and the jackknife bias estimafep tri-
the maximal value of the resulting information estimates isangles. Lines marked by squares and diamonds indicate total infor-
taken as the final estimate of The examples belowFigs. ~ mation estimat¢Eq. (13)], adjusted by the classical and jackknife
6—9 show that this strategy is indeed practical, and thabias estimates, respectively. There are two traces marked by each
information estimates typically reach their maximal value forSet of symbols, corresponding to the strategy for handling terms in
D=2, 3, or 4. We also note that terms in E44) may be Eq. (14) that are u.ndeflned due to smg.leto@ee the Appendix
undefined either because there are two spike trains that afé'® UPPer tracéwith error bars extending only upwajdsorre-
embedded at precisely the same pdand thus, the nearest _sponds t_o estimates generatgd by considering smgletons maximally
neighbor has a Euclidean distance af@ because there are informative. The lower tracéwith error bars extending only down-

no nearest neighbors. These eventualities can be handled 4&d9 corresponds to estimates generated by considering single-
) . . tons maximally uninformative. Error bars represent one standard
described in the Appendix.

deviation of the range of values calculated in multiple independent
simulations, and many error bars overl@p. Estimates of informa-
tion derived from binning the embedded spike trains to obtain
ltiming» rather than Eq(14). Down and up triangles:cqu, With the
We illustrate the above approach with some calculationglassical and jackknife bias corrections, as in Fig) 55quares and
based on simulated data. The first simulatibigs. 5 and §  diamonds: total information estimates, corrected by the two kinds of
considers responses to five stimuli that produce Poissobias estimates applied to the binned data. Since singletons are not
spike trains differing in mean rate. Figurdap illustrates treated as special cases, each kind of bias estimate leads to only one
information estimates obtained via the binless procedurestimate(plotted with a double-sided error barather than the
[Egs. (13)—(15)]. With increasing sample size, the debiasedupper and lower estimates of Figi@h The embedding dimension
contribution from spike count aloné.,,[Eq. (15)], con-  Dis 2[as in Fig. $a)]; the bin width is 1. Here and in subsequent
verges to the correct value. Prior to convergence, the classiigures, the numbers along each abscissa refer to the number of
cal bias estimatédown triangles underestimates the correct SamplesN that are used in the information estimates.
value, while the jackknife bias estimatep triangle$ over-
estimates the correct value. than those of the binless strategy. However, they have sub-
In this simple simulation consisting of Poisson data, thestantially less accuracy in the 32—256 sample range for the
contribution of spike timingand thus,|ni,g) to the infor-  classical debiaser, and across the entire range for the jack-
mation is zero. Nevertheless it is useful to assess the bias akdife debiaser. Over most of the range of sample number, the
scatter of estimates dfining [EQ. (14)]. As seen in Figure improved accuracy of the binless estimategy. 5a)] com-
5(a), the estimates offming INdeed add considerable scatter. pared to the binned estimatgsig. 5(b)] more than compen-
The classical debiasésquarestypically underestimates the sates for the inferior precision of the binless approach.
correct value, while the jackknife debiageliamonds typi- Figure 6 considers a wider set of information estimates
cally overestimates the correct value. for this simulation. The first three rows extend the compari-
Figure 5a) compares these information estimates to thosesons of Fig. 5 to a range of maximal embedding dimensions
obtained by estimatingiying in @ binned fashion from the D=1, 2, and 3. The choice @ has relatively little effect on
embedding of Fig. &). The estimates have greater precisionthe binless information estimates. However, for binned esti-

1
4

ey

8 32 128 512 8 32 128 512

Numerical examples: Information estimates
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bin width=0.5 bin width=1.0 bin width=2.0 bin width=4.0
D=1
o i I3 1 L 1 L 1 1 1. L 1 1 i 1 1
8 32 128 512 8 32 128 512 8 32 128 512 8 32 128 512 8 32 128 512
D=2
0 1 1 I 1 'l L 1 L 1
8 32 128 512 8 32 128 512 8 32 128 512 8 32 128 512 8 32 128 512
c .
2
"5 D=3
g 0 1 1 1 L P-Ep 1 N i 2 i 1 1 1 1
(o] 8 32 128 512 8 32 128 512 8 32 128 512 8 32 128 512 8 32 128 512
s
[=
- time bin=0.125s time bin=0.25s time bin=0.5s time bin=1.0s
r B \N
0 1 1 J_n 1 L 1 i 1 1 1 L
8 32 128 512 8 32 128 512 32 128 512 8 32 128 512

L I L

0
8 32 128 512 8 32 128 512

samples

FIG. 6. A broader exploration of information estimates for the simulation of Fig. 5. First three rows: comparisons of information
estimates obtained with the unbinned estimator and maximal embedding dimBnsibn2, and Jfirst column, displays conventions as in
Fig. 5(a)] or with binned estimatorfgemaining columns, display conventions as in Figp)b Fourth row: information estimates obtained via
standard time binning of the raw spike trains; bin widths 0.125, 0.25, 0.5, and 1 s. The analysis based on 1 s bins reflects spike counts only,
since the spike trains @rl s induration. Bias corrections and range of estimators displayed as in (Big.ndte that estimates are largely
off-scale for a bin width of 0.125 s. Fifth row: information estimates obtained via a binless approach based on metric-space elfb@ddings
The spike count contributiofup and down triangles, for the two kinds of bias corrections, here superimpesedculated from the “spike
count” metric of[17]. The total informationdiamonds and squares, for the two kinds of bias corrections, here superimisosaltulated
from the optimum “spike time” metric of 17]. The two graphs reflect two choices of the clustering expomeantd calculations are limited
to sample sizes of 256 or less because of computational constraints. For further details, see text and Victor arjld AuBiasacorrections
and range of estimators displayed as in Fign)5

mates,D and bin width have large effects. As bin width nentz) of responses is performed directly in the metric space.
decreases, the upward bias of the jackknife estimate becom@&$e information estimate is based on how faithfully the re-
large. This effect is magnified at higher maximal embeddingsponse clusters reflect the original stimuli, at the optimal
dimensionsD, so much so that the estimate is off-scale forvalue ofq. As shown here, the estimators have a precision
much of the range of sample size. that is comparable to those derived from binning, but, as
The fourth row of Fig. 6 shows information estimates previously noted17], there is a modest downward bias, even
calculated by direct binning. That is, rather than embeddindor large sample sizes.
spike trains into a vector space by a procedure such as Eqg. The simulation of Figs. 5 and 6 shows that binned entropy
(19) and performing estimatdsither binned or unbinng@dn  estimates, even when debiased, depend strongly on maximal
the embedded data, each response is represented as a ambedding dimensio® and bin width. Since these simula-
qguence of integers corresponding to the number of spikeSons are based on Poisson traifar which there is no con-
that occur in each of several time bins. This is essentially théribution of spike timingper sg, an accurate estimate of
“direct” method of Stronget al.[12]. Precision is better than information can be obtained by choosing a large bin width.
for the binned estimates derived from embedditap three  For non-Poisson spike trains, the contribution of spike timing
rows, second through fifth columnsbut accuracy is dra- will only be evident when the bins are fine enough to capture
matically worse, especially for time bins of 0.25 s or less. the informative temporal structure of the spike train. As
The final row in Fig. 6 shows information estimates cal-a consequence, it may be difficult to choose a bin small
culated via another unbinned approach, the metric-spacenough to capture the temporal structure, and large enough to
method of Victor and Purpurfl7]. In this approach, spike eliminate bias due to limited data size. In this regime, the
trains are embedded in a metric space via a range of differefiitinless estimators are expected to have a considerable advan-
candidate “spike time metrics,” parametrized by a quangity tage. This is illustrated in Fig. 7.
that indicates the relative importance of spike timing and Figure 7 shows the analysis of simulated spike trains gen-
spike count. Clusteringparametrized by an averaging expo- erated by a gamma process whose coefficient of variation is
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bin width=0.5 bin width=1.0 bin width=2.0 bin width=4.0
% l % % FIG. 7. Information estimates
32 128 512 3 128 512 32 123 512 8 3'2 1l28 5:2 8 3IZ 1‘28 5;2 for simulated data Consisting of
highly regular spike trains. Spike
D=2 zw w trains are generated by a gamma
process of order 64and thus the
— P M T — TR — interspike intervals have a coeffi-
B 32 128 512 8 32 128 512 8 32 128 512 8 32 128 512 8 32 128 512 cient Of variation Of 0125 The
g mean firing rates and other details
= D=3 2 are otherwise identical to the
£ N o P simulation of Figs. 5 and GThis
:9" 32 128 512 32 128 512 8 32 128 512 8 32 128 512 8 32 128 512 IS. Identlcal to the S|mu|at|0n Of
£ time bin=0.125s _ time bin=0.255 time bin=0.5s time bin=1.0s FIgS. 4E-H O_f VI_C'[OI’ and Purpura
3r [17].) The solid line(no symbol$
e ‘? W indicates the information esti-
mated by the binless approach
s ¥ 2 sn 8 32 128 512 8 32 128 512 § sz 120 512 with a sample size of 4096 and
D=4 (the value ofD in {1,...,6
. that provided the maximum infor-
mation). Display conventions oth-
erwise as in Fig. 6.
18 32 128 512 8 3:2 1128 5;2
samples

0.125. Because firing rates are more regular, the contributiosample size of less than or equal to 64. The binned estimators
of spike counts to information is greater than in Fig. 5. More-for D=2 straddle this asymptotic value widely, but do not
over, the regularity of the spike traiper seshould provide approach it very closely, even for 1024 samples of each re-
an additional but modest contribution to the information.sponse type. Direct time binnin@ext to last row results in
This is becausdgiven the extreme regularity of the spike estimates that are either downwardly biased because the bin
traing even a single short interval is unlikely at the lower size is too largébin width greater than or equal to 0.5 sr
firing rates. This increment=0.2 bits, is evident for the es- far from the asymptotic value because of limited déian
timates based o =2 or 3, both for the binned and un- width less than or equal to 0.25. Metric-space estimates
binned estimategFailure to identify this increment informa- (last row) converge more rapidly but have some downward
tion for D=1 is consistent with the fact that the timing bias.

contribution reflects information carried by pairs of spikes.  Figure 9 considers inhomogeneous Poisson spike trains
Note that for the binned estimates based on embedding, thtkat differ in mean rate and in their transient firing envelopes.
incremental information can only be seen for a bin width lessThus, information is carried both in the spike counts and in
than or equal to 2. That is, there is a very narrow range ofpike timing, and is not uniformly distributed in time. As is
bins(ca. 2 that is both large enough to avoid a large bias fortypical of cortical responseft], the systematic difference
Poisson datdFig. 6), and small enough to capture the addi- between the times of the onsets of the transients is compa-
tional information in the regularity of the spike traifBig.  rable to the typical interspike interval. This represents a par-
7). For information calculated by direct binning, the situationticularly severe challenge for binned approaches. Other than
is worse(fourth row of Fig. 3. Only a time bin width less a nonzero contribution df.,,, the behavior of the estima-
than or equal to 0.25 s begins to capture the information irors is generally similar to that of Fig. 8. Binless estimates
the regularity of the spike trains, but these time bins lead t@ppear to achieve a maximum with=3 or 4 and asymptote
unacceptable bias for Poisson déEég. 6). The spike metric  with a sample size of less than or equal to 64, while the
estimators(last row in Fig. 7 provide an acceptable esti- binned estimators are highly sensitive to the choice of bin
mate, but they are negatively biased for the Poisson trainsize, and have not reached asymptotic behavior even with a

(Fig. 6). sample size of 1024.
Figure 8 considers responses that are inhomogeneous
Poisson processes with identical mean firing rates. Conse- DISCUSSION

quently, information is carried only by spike timing. For
D=1, neither the binless estimator nor the binned estimator
(based on embedded spike traicaptures the full informa- Entropy and information are usually defined and esti-
tion. This is consistent with the fact that the response geormmated for probability distributions on a discrete set or on a
etry is that of a circlgof phasel and any one-dimensional Euclidean space. The space of spike trains has a distinct
projection entails ambiguity. Wit =2, the binless estima- hybrid topology[18], and this has implications for the esti-
tors closely approximate their asymptotic value, even for anation of information. Spike trains have a discrete character,

The hybrid topology of spike trains
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bin width=0.5 bin width=1.0 bin width=2.0 bin width=4.0
FIG. 8. Information estimates
for simulated data consisting of
8 32 128 512 32 1?8 512 8 32 128 512 . 32 128 512 8 32 128 512 Sinusoida”y modulated inhomo_
T \ [ geneous Poisson traingeight
equally spaced phases, mean rate
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S - Ao Y impulses/s, duration 1)s The
D=3 i F T \ solid line (no symbol$ indicates
= S & e . the information estimated by the
._‘g 38 32 128 512 1?8 512. 8 .128 5}2 8 . 32 128 512 . 32 128 512 binleSS approach Wlth a Samp|e
g I ‘on F hg N\‘M size of 4096 and =3 (the value
= D=4 | of Din {1,..., § that provided the
= FEESES Trgepexs Theepess TRLepess TRRESR® maximum information First four
- o o o rows: estimates based on embed-
3_tilm? bing(_).e1_2e5.se _t;me bin=0.25s time bin=0.5s time bin=1.0s ding in dimensions 1, 2, 3, and 4,
2| - N £ followed by the binless estimator
s ——— F—— : or binned estimators of a range of
% = s sz 8 %2 s e e e A A bin widths. Fifth row: estimates
3 - based on direct binning. Sixth
of =8 Looz=2 row: estimates based on spike
P- o metrics. Display conventions oth-
‘% m erwise as in Fig. 6.
samples
because the number of spikes in any spike train must be an Variations

integer. Spike trains also have a continuous character, owing Within the framework of binless estimators applied to

to the continuous nature of time: two spike trains may begpike trains, there are a number of reasonable variations on
considered to be “close” to each other if they have the samgng particular implementation proposed here. The time warp-
number of spikes, and the corresponding spikes occur g transformatior[Eq. (17)] is not an essential step: it im-
nearly identical times. Reducing a spike train to a dlscretebroves convergence but entails a modest penalty in compu-
series of integerévia binning destroys this topology, in that {ation time and the scatter of the information estimates.
small shifts in the time of a spikéhat cause a spike to cross  The choice of embedding functiorere, the Legendre

a bin boundaryresult in as much of a change as moving apolynomials) is a generic one, not necessarily the most ap-

spike to an arbitrarily distant bin. One of the appeals of in-,ohriate for all situations. Fourier coefficients might be par-
formation measures is that they are independent of smootlye|arly appropriate for periodic stimuli and Laguerre poly-
invertible, trgnsformatlons of the underlymg space. Howeverp,jmials might be particularly appropriate for responses that
they arenot independent of transformations that destroy they, e intial transients. Principal components are another rea-

topology. Thus, since formal information is only preservedggnapie choice. While stratification by spike count is critical
when the topology of the response space is preserved, apy deriving a rigorously valid estimator, this step is not a
proaches that ignore the continuous aspects of the topologyerequisite for estimators that have practical utility. For ex-
might not even converge to the correct answer. The preseifypie one could lump together all spike trains regardless of
approach both respects and exploits this natural hybrid toloobount, and simply add an embedding coordinate equal to the
ogy of spike trains, and is thus more likely to be robust andspjke count, ignoring the fact that the distribution is discrete.
efficient than procedures that ignore it. A strategy of this sort expresses the notion that spike trains
The numerical examples presented above indicate thahat differ in just one spike should be considered “similar,”
these theoretical considerations are highly relevant for thelthough each spike is a discrete event. If all spike trains
typical size of experimental dataséfsgs. 5—9. Of the es-  contain sufficient spikes, one anticipates only small biases
timators considered, the binless approach provides the modue to this discretization, and a gain in the precision of the
robust and rapidly converging estimators for information inestimator since all spike trains are pooled. Numerical studies
spike trains. Direct binning of the spike trains provides thesuggest that this regime is reached once there are three or
least useful estimators. Estimators that use an embeddirfgur spikes in each train. Hybrid schemes based on lumping
that reflects the hybrid topology but then calculate informa-together spike trains once the spike count exceeds some cri-
tion by binning the embedded data have an intermediatéerion may also fill a practical niche.
level of performance. The benefit of exploiting the underly- The basic binless information estimdteq. (12)] and the
ing topology of a distribution applies not only to information entropy estimat¢Eq. (10)] that underlies it are based on the
calculations, but also to simple estimates of entrdpigs. Euclidean distance to the nearest neighbor. Analogous esti-
1-4). mators can be constructed basedtmnearest-neighbor dis-
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e V- % FIG. 9. Information estimates
T for simulated data consisting of
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tanced 25]. These have been studied in detail, but the exactopology of spike trains. Also, it is designed for the limited-
result of Kozachenko and Leonenk®9] was not demon- duration situation and not to the pseudorandom sequence
strated beyond dimension [B0]. Numerical studiegnot situation. As shown herdFigs. 6—9, the spike metric
shown) suggest that this modification generally leads to esimethod converges at least as rapidly as the present method,
timates that converge less rapidly as a function of the numbduut is somewhat downwardly biased. These approaches have
of samples, but have a somewhat lower variance. Since thsomewhat different goals. By virtue of the work of Koza-
strategy would also need to handle many more special casebenko and LeonenKd 9], the present method is demonstra-
than just the “singleton” situatiorisee the Appendix it is bly unbiased, and, with sufficient data, will converge to the
unlikely that it would provide a significant practical advan- amount of information present. However, it provides little
tage. insight into how this information is carried. In contrast, the
metric-space method is based on comparing various families
Comparison to other approaches of biologically motivated(but stereotypedmetrics. Thus, it

is capable of determining which aspects of a spike train are

it dﬂ:je prt(_)poselql z_atprér(k))ach_ aplpllets_ to Ir)exraltLesptongesl of IIrTilr'lformative, but there is no guarantee that it will extract the
Ited duration, elicited by Singie stimull. Another typical €X- ., ayima| amount of information that is present.
perimental situation is that of prolonged responses elicited

by rapid presentation of multiple stimuliypically in a pseu-
dorandom sequengeln those situations, existing methods
(the reconstruction method of Bialek al. [21], and the di- Although we have focused on the estimation of informa-
rect method of Strongt al.[12] are clearly appropriate. The tion carried by a single neuron’s spike trains elicited by a
rapid sequential presentation of stimuli in the latter approacldiscrete set of stimuli, the proposed approach is not limited
acts to destroy whatever temporal structure might be genete this setting. For example, if the stim@iare drawn from
ated by the neural response to a single transiently presentedcontinuous distribution, Eq11) can be replaced with
stimulus. Thus, it makes sense that bin-based methods work
well, and the topology of the response space is less crucial. I =Hgir(@) +Hgirr(X) —Hair(@,%), (20
The goals of these two kinds of experiments are different.
In the case considered here, the intent is to determine howhereHgg(a,x) is the differential entropy of the joint dis-
faithfully a neuron can transmit information about a particu-tribution of a andx, andH g(a) andHg¢(x) are the differ-
lar stimulus set considered relevant to the neuron’s functiomntial entropies of the marginal distributions afndx, re-
(such as a set of gratings of various contradis the pseu- spectively. Binless estimators féty;(a,x) along the lines
dorandom sequence approach, the intent is to determine tloé Eqs.(12) and(14) can be constructed in the product space
maximal amount of information that the neuron can transmitof the domain ofa and the embedding af-element spike
We previously introduced17] another binless approach trains, and binless estimators for the marginal entropies
based on a metric-space embedding. Similar to the presefnty(a) andH 4x(x) follow from the projection of this prod-
approach, the metric-space approach explicitly considers thact space onto the domain afand the spike train embed-

Extensions
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ding. The key quantities in this estimator are the ratio of thewherel ,iion is the information associated with the discrete
Euclidean nearest-neigbor distances in the product space partitioning of n-spike trains into the disjoint subse,,
the Euclidean nearest-neighbor distances in each of the tWo, ;, Z5,....Zypm), lcontinuouéN) iS the binless estimate
projections. [Eq. (14)] of transmitted information restricted to-spike

It is also straightforward to extend this approach totrains within the setC,, and N(xe C,) is the number of
multineuronal responses, at least in principle. As in thespike trains inC,. [If no spike trains are at a distance of
single-neuron case, there is a contributigy,;due to spike  zero from each other, then onlg, is nonempty, and
counts alone, but this stratification would need to be peri,o(n) =1 continuouéN) and! partitior(N) =0.]
formed independently for the spike count associated with With C, written as Z,, for notational convenience,
each of them neurons. Each neuron’s spike trains are then,,;:,(n) can be estimated by a plug-in estimate
independently embedded. Within each such response subset,

the estimate(14) can then be used to determine the addi- b(n) S N(X &€ Zp m.ak)

tional contribution ofliming. Since there would be many _!pariior™ = 24 k§_)1 Tbgz N(Xe Zpm,a)

response subsetsne for eachm-tuple), it might be useful @ M=

(though not rigorously justifiabjeto lump together subsets b(n)

i ] N(XxeZ,m)
with similar mtuples. + N— log, N(xe Z, m)
Finally, it is straightforward to apply this approach to re- m=0 (n)

sponses that are continuous functions of time. For such data s N(n,ay) N(n,ay)

sets, the stratification stage is superfluous, and the estimate +> 1k K o (22
. . . 00, partition,basis ( )

(12) can be used directly, once an embedding of the data into k=1 N(n) N(n)

a low-dimensional space is accomplished. Such an embed- _ )
ding could be accomplished in several ways, including orWhere N(xeZ, ,,a) is the number of observations of a

thogonal functions or principal components. spike train inZ, , elicited by a stimulusy . | parition bias!S the
bias estimate for this discrete partitioning. Since there are
APPENDIX b(n)+1 response categori€s,, Z, 1, Zn2,.--Znpm), the

classical estimatfanalogous to Eq(16)] for this bias is

In a practical implementation, undefined terms may arise [ w
. . . partition,bias In2
in Eq. (14), the estimate of jning(N), Via two routes: “zero 2N(n)In
distances” and “singletons.” A Euclidean distance of zero i o L i
between two spike trains can arise either because of finitdneres(n) is the number of stimuli that elicit spike trains
measurement accuracy of the spike times, or because tidth n spikes. _ o ,
embedding procedure happens to map distinct spike trains to 1he Strategy for dealing with singletons builds on the
the same point. Another problem is that some stimuli may’;\bove idea. Singletons arise when one or more spike trains,
elicit only one spike train containingspikes. These “single- S&YXj,---Xj,, are the sole examples @, of the responses

Two implementation details

(23

ton” spike trains will have no nearest neighbors within theirto their respective stimuldy; ) ,....ax;,- In this case, the
stimulus class from which to calculate® in Eq. (14). We  nearest-neighbor distaneg from eachx; to another spike
now describe how we deal with these eventualities. train elicited by the same stimulus is undefined. This even-

To deal with “zero distances,” the spike trains containing tuality is a direct consequence of having a limited amount of
exactlyn spikes that are uniqué.e., at a nonzero Euclidean data, so our strategy is based on considering two ways of
distance from all other spike trainare placed into a s&,.  extrapolating to what the dataset might plausibly consist of,
The remaining spike trains, each of which is at a distance ohad additional data been available. One extreme is that addi-
zero from at least one spike train, are grouped into maximalional observations of responses to each stimalys, would
gfj?]motf ?ﬁgsgtszfgl 'etzn'zo,r.{t. ’i’?vb(n) QL:?I‘? trZItnS,EWIgI?de only yield responses that coincide with the observed single-

c se subsets containing spike trains at a Eucli ~ : :

. gsp : Bn x; . In this case, eack; should be considered to consti-
distance of zero from each other. That &, contains the . . .
tute a singleton set along with the aba¥g,. | sontinuousiS

spike trains that are all distinct while eadl ., is a set of ) . )

spike trains that appear to be identical. Informatigg,q(n) ﬁgzno:/icdoﬁopmed zcr:]((:jc:rdmg(rt](; ig%ﬁg“:&?ﬁ;jg‘ggggf d
L . S . ; Cp, timing B

related to the timing of spikes within thespike trains can . g to Egs.(21)—(23), with the list of zero-distance sef

now be subdivided into a discrete component, correspondin . ? .
b P sed in the calculation df,,yiion augmented by tha single-

to the partition of spike trains into disjoint se®,, Z,,, ) e .
Zn2---Zn iy » @nd @ continuous component, correspondingtons{xii}' The other extreme is that additional observations

to distinctions within each of these subsets. However, sinc&ould indicate that each of the singleton responses; is
spikes within the subset&,;, Z,,,....Znpmn all appear completely uninformative. In this caskming is then recom-
identical, the only continuous contribution to information puted with the singletons removed fronC,, and
comes fromC,,. In sum, N(xe C,) is reduced by in Egs.(21) and(22), but the list
of zero-distance sets is left unchanged. With reasonably large
i (M) = 1o o) + N(xeCp) leoninuond)s  (21) datasets, the two extremes yield very similar values for
timing partitio N(n)  contnuoustip liming(N), @s the numerical examples have shown.
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A chain rule for bias estimates or via the jackknife. That is, the bias estimate does not de-
» and Pend on whether the bias is estimated at each of the two
stages and then addéas we have done hereor by consid-
ering the two stages of partitioning as a single step.

To deal with the eventualities of “zero spikes
“singletons,” the partitioning of spike trains according to
spike countn is followed by a second partitioning into the
subsetsZ, ,,. Both stages of partitioning contribute a dis-

crete component to the overall information. The contribu- ACKNOWLEDGMENTS
tion of the second stage contains a separate component,
| pariiior(N), cOrresponding to each number of spikesThe This work was presented in part at the 2001 meeting of

chain rule for informatiorj24] implies that it is equivalent to the Society for Neuroscience, and was supported by NIH
add the information associated with each of these two stagd$El EY9314. The author thanks Bruce Knight, Peter
or to consider the entire partitioning as a single step. ALatham, Partha Mitra, Rodrigo Quian Quiroga, Peter Grass-
simple counting argument shows that the chain rule also exberger, Satish lyengar, and especially Liam Paninski for
tends to bias estimates, either via the classical bias correctidrelpful discussions.
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