
Spike train metrics
Jonathan D Victor
Quantifying similarity and dissimilarity of spike trains is an

important requisite for understanding neural codes. Spike

metrics constitute a class of approaches to this problem. In

contrast to most signal-processing methods, spike metrics

operate on time series of all-or-none events, and are, thus,

particularly appropriate for extracellularly recorded neural

signals. The spike metric approach can be extended to

multineuronal recordings, mitigating the ‘curse of

dimensionality’ typically associated with analyses of

multivariate data. Spike metrics have been usefully applied to

the analysis of neural coding in a variety of systems, including

vision, audition, olfaction, taste and electric sense.
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Theoretical background
Introduction

Variability is a prominent feature of neural activity and its

sources and functional implications are the focus of much

investigation. Variability places limits on the reliability of

signals, but can also provide a rich language for neuronal

populations and their interactions. To analyze variability,

onemust first quantify the extent to which two patterns of

neural activity are dis-similar, that is, one needs a ‘metric’

for comparing patterns. Metrics that are specifically

applicable to spike trains (see glossary) are the focus of

the present review.

Although laboratory measurements never correspond to a

mathematical ideal [1], the choice of an appropriate

mathematical framework is a prerequisite for rigorous

data analysis. This choice is particularly crucial to the

study of neural coding, because neural coding is funda-

mentally an abstraction: the relationship between stimuli,

actions, and/or behavioral states, and the activity of one or

more neurons.
www.sciencedirect.com
A voltage record, the starting point for most neurophy-

siologic analyses of neural activity, is typically acquired as

a set of closely spaced digital measurements. It seems

natural to conceptualize a voltage record as a continuous

function of time. However, we might also choose to

conceptualize a neurophysiologic voltage record as a

sequence of stereotyped events. This viewpoint of a

voltage record as a realization of a ‘point process’ (see

glossary) is especially appropriate for extracellularly

recorded neural signals, given the all-or-none nature of

the action potential and its effects on postsynaptic neu-

rons [2–4]. The point process viewpoint (discrete events

in continuous time) is intermediate between the vector

space viewpoint (continuous time, continuous events)

and a third alternative, symbol sequences (discrete time,

discrete events). The symbol sequence viewpoint is often

used in application of information theory and nonlinear

dynamics to neuronal data [5–8]. The choice of viewpoint

can influence the results of data analysis, both quantita-

tively and qualitatively. These considerations are funda-

mental to the rationale for the spike metric approach.

As detailed in Box 1, the continuous-record viewpoint

leads naturally to metrics that have a particular mathe-

matical structure (Euclidean distances [see glossary]

within a vector space). Given the prominence of non-

linearities at many stages of neural processing and the

kinds of ‘spaces’ (see glossary) that neural activity ulti-

mately must represent, this restriction might not be

desirable. Metrics based on the point process viewpoint

do not have these constraints.

This review describes several kinds of metrics that can be

applied to point processes in general, but that are moti-

vated by neurophysiologic considerations specific to ser-

ies of action potentials (‘spike trains’). I consider metrics

applicable to single-unit and multineuronal activity and

recent examples of their use. Computational considera-

tions are summarized in Box 2.

A simple example

To describe the nature of metrics and metric spaces, we

use a simple example, consisting of a set of cities A, B, . . .
linked by commercial airlines. We begin with a table of

airfares that provides a list of costs for travel between

various pairs of cities. We assume that fares between any

two cities are independent of the direction of travel, that

is, the costs are ‘symmetric’. The table of pairwise costs

does not constitute a metric, because the cost c(A,B) of a
flight from A to B might be greater than the sum of the

cost of a flight from A to X, and from X to B. However, we

can turn the table of costs into a metric by defining the
Current Opinion in Neurobiology 2005, 15:585–592
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Glossary

Note to readers: definitions are intended to explain the concepts,

not to provide mathematical rigor.

Edit-length distance: a distance defined on a space of sequences,

based on minimizing the cost of transforming one sequence into

another by a sequence of ‘edits’ (e.g. insertions, deletions, and

substitutions). Edit-length distances are typically not Euclidean.

Euclidean distance: a distance that has the familiar properties of

Euclidean geometry, including the existence of unique parallel lines

and perpendiculars.

Fisher discriminant: a classical approach [41] to divide multivariate

data into two categories, based on a weighted sum of the data values.

Point process: a process that produces a time series of identical

events. The mathematical specification of a point process determines

the probability of every such sequence. A ‘realization’ of a point

process is an individual time series, chosen according to this

probability rule.

Smoothing kernel: a mathematical function describing how nearby

values of a time series are to be weighted when these values are

averaged together to smooth a signal. Typical smoothing kernels have

rectangular (‘boxcar’), Gaussian, or triangular shapes.

Space: a generic mathematical term for a collection of objects,

usually with one or more properties and/or operations that apply to

these objects. In a ‘metric space’, there is a well-defined distance

between any two objects. In a ‘vector space’, the operations of vector

addition and multiplication by scalars (e.g. the real numbers) are

defined on the objects (vectors). Typical vector spaces also have a

scalar product (also known as an ‘inner product’ or a ‘dot product’)

that produces a scalar from two vectors. The existence of a scalar

product implies the existence of a Euclidean distance.

Spike train: a sequence of action potentials originating from a single

neuron.

Box 1 Motivation for the point process view.

A spike train can be considered as a continuous function of time

(e.g. the extracellularly recorded voltage record) or as abstracted

into a ‘point process’, a sequence of stereotyped events. Here,

we briefly discuss some implications of these viewpoints.

Vector spaces and point processes

Continuous functions of time form a vector space, in which

specific algebraic operations are defined: addition of vectors;

multiplication of vectors by scalars; and scalar product (also known

as an ‘inner product’ or a ‘dot product’), which produces a scalar

from two vectors. These operations form the underpinning of

signal-processing methods such as filtering, averaging, spectral

estimates and signal detection. For point processes, these

operations are not directly applicable. They are replaced by

other procedures, such as the analysis of inter-event intervals,

which are not directly applicable to continuous signals.

Procedures specifically applicable to spike trains (but not

continuous signals) are recognized as crucial to the descriptive

[48–50], statistical [51] and information-theoretic [52,53] analysis

of neural data.

Distances and metrics
In vector spaces of continuous signals, the scalar product defines

a distance. The distance has the familiar properties of Euclidean

geometry. For example, a line is the set of points that lie along the

shortest path between two points, and a perpendicular is the

unique shortest path from a point to a line that does not run

through the point. Distances, known as ‘metrics’, can also be

defined in a space of event sequences. However, these distances

do not typically have Euclidean properties [54�]. There is no

guarantee that a continuous ‘line’ can be constructed as the

shortest distance between two event sequences, and

‘perpendiculars’ might not be unique. The present use of the term

‘metric’ is consistent with the topological definition of this term

[55], and emphasizes that it endows a set of event sequences (the

spike trains) with the properties of a topological ‘metric space’.

Importantly, perceptual spaces are not typically Euclidean. For

example, although human color vision is a three-parameter

space determined by the three cone absorption spectra,

perpendiculars (as defined by perceptual distances) need not

be unique [56]. In olfaction, the situation is far more complex.

Olfactory perceptual space might not even have a well-defined

dimension, and mixing of odorants need not lead to intermediate

percepts. Thus, the Euclidean geometry implied by vector spaces

might be too confining to support a correspondence between

neural activity and sensory perception [57]. These strictures of

vector spaces are not present in the more general metric-space

formalism.
metric distance between two cities as the least total cost of

transportation between them, making use of however

many stopovers are necessary. More formally, we define

the metric distance d(A,B) between two points A and B as

dðA;BÞ ¼ min
Xn�1

j¼0

cðXj ;Xjþ1Þ
( )

(1)

where {X0,X1,. . .,Xn} is an itinerary from A to B, with
X0 = A and Xn = B. This definition guarantees that the

metric distances between three points A, B, and C satisfy

the triangle inequality d(A,C) � d(A,B) + d(B,C), because
the cheapest itinerary from A to C cannot be more

expensive than an itinerary that is constrained to stop

at B. It is easy to construct examples of metrics that

violate the rules of Euclidean geometry.

Cost-based metrics for spike trains

With some fine print, Equation 1 provides a way to turn

any set of (symmetric) costs into a metric. In the present

context, each spike train A, B, . . ., is a point in the metric

space (i.e. a ‘city’). The sequence of steps corresponding

to each term on the right side of Equation 1 constitutes a

path of elementary steps that transforms a spike train A
into a spike train B. In spike train metrics, the costs

c(Xj,Xj+1) of the elementary steps are determined by a

small number of rules [9,10] that are intended to capture

basic biological features of how spike trains influence

postsynaptic neurons.
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Spike time metrics

The ‘spike time’ family of metrics is motivated by a

caricature of a neuron as a coincidence detector [11–14].

For thesemetrics, deleting or inserting a spike has a cost of

1.This rule sets an overall scale for themetrics and ensures

that any spike train can be transformed to any other spike

train by a path: the path that successively deletes all spikes

from train A, and then successively inserts all spikes into

trainB. The second rule, which confers sensitivity to spike

timing, is that the cost of moving a single spike in time is

proportional to the amount of time that it ismoved.That is,

if two spike trains A and B are identical except for a single

spike that occurs at ta in A, and tb in B, then c(A,B) =
qjta � tbj, where q (in units of 1/sec) is a parameter that

determines the relative sensitivity of the metric to spike

count and spike timing.
www.sciencedirect.com
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Box 2 Computational considerations.

Computation of the metrics that correspond to Euclidean distances

[25,26] is straightforward: spike trains are convolved with a

smoothing kernel, and the scalar product of the resulting time

series is calculated. The computational burden is proportional

to the duration of the spike trains.

The cost-based metrics Dspike[q] and Dinterval[q] are similar to

‘alignments’, ‘edit-length distances’ and ‘string-matching

procedures’ used for comparison of genetic sequences [58] and

electroencephalogram (EEG) analysis [59], in which there is a

cost associated with insertions, deletions and shifts. This kinship

provides an efficient dynamic programming algorithm to calculate

these metrics [9,10]. In particular, efficient calculation of the

minimal cost sequence is enabled by the following observations

concerning the elementary steps in a minimal-cost sequence. First,

if the last spikes in the two trains are neither inserted nor deleted,

then they must be connected by a shift. Second, the paths taken

by two spikes cannot cross. Third, no spike needs to be shifted

more than once. The computational burden of the algorithm is

proportional to the product of the number of spikes in the trains

to be compared.

For the multineuronal metric Dspike[q,k], a clever algorithm in which

the two spike trains are treated asymmetrically has been devised

[60], which has a computational burden proportional to NLþ1, where

N is the number of spikes in a typical train, and L is the number

of labels (neurons).

Other cost-based metrics can be envisioned [9] (e.g. enabling both

single-spike shifts as in Dspike and interval changes as in Dinterval).

However, no efficient computational algorithm for such metrics is

available at present.
These rules, along with equation 1, suffice to provide a

metric distance between all spike trains, denoted Dspike

[q]. Intuitively, the distance between two spike trains is

the minimum total cost of a set of elementary steps that
Figure 1

A diagram of a sequence of elementary steps that transforms spike train A

that they rest on denotes time. Each elementary step is one of three types:

(inserted spike shown in green), or shifting a spike in time (blue arrows).

www.sciencedirect.com
transforms one spike train into the other (Figure 1). When

q is very small, then the times of individual spikes have

little influence on the calculated distance between spike

trains. For q = 0, then spike timing is irrelevant, in that

spikes can be shifted in time ‘for free’. Thus, for q = 0, a

minimal path between spike trains A and B consists of

deleting or inserting enough spikes into A so that the total

count matches that of B, and then shifting the spikes in

time so that they match. That is, Dspike[0](A,B) = jn(A) �
n(B)j, where n(X) denotes the number of spikes in the

train X. Dspike[0] can, thus, be thought of as formalizing a

‘spike count’ code: spike trains are considered different

only if they contain a different number of spikes.

As q increases, the metric Dspike[q] becomes increasingly

sensitive to spike timing. To see this, consider spike

trains A and B that each contain only one spike, at ta in
A, and tb in B. There are two paths to consider in Equation

1: first, deleting the spike in A and reinserting it into B;
second, shifting the spike from ta to tb. The first path has a

cost of 2; the second path has a cost of qjta � tbj. The

distance Dspike[q](A,B) is the minimum of these two num-

bers. The break-even point is for jta � tbj=2/q. That is, in

the metric Dspike[q], two spikes are only considered as

comparable if they occur within an interval of 2/q sec.

Depending on whether the spike times in two trains A
and B are similar, Dspike[q](A,B) can range from

jn(A) � n(B)j (spike times in A and B match, no shifting

of spike times needed) to n(A) + n(B) (no spike times in A
and B are within 2/q sec; spikes must be deleted from A
and then reinserted into B). Thus, q explicitly represents
into spike train B. Each rectangle represents one spike, and the line

deletion of a spike (deleted spike shown in red), insertion of a spike

Current Opinion in Neurobiology 2005, 15:585–592



588 New technologies
the relative importance of spike times and spike counts: a

change in the time of a spike by 1/q sec influences the

total cost of a path as much as deleting the spike alto-

gether. For neurons that act as a coincidence detector

with integration time (or temporal resolution) 1/q, spike
trains will have similar postsynaptic effects if they are

similar in the sense quantified by Dspike[q]. Often, tem-

poral resolution is not known in advance — so, q is

retained as a parameter, with the goal of using the

dependence on q to analyze coding (see below and Box 3).

Spike interval metrics

For the ‘spike interval’ metrics [9,10], denotedDinterval[q],
the heuristic is that the postsynaptic effects of a spike

might depend strongly on the recent activity at that

synapse [4,15,16]. Correspondingly, the temporal depen-

dence of Dinterval[q] is based on the intervals between

spikes, rather than their absolute times. For Dinterval[q],
the cost of insertion or deletion of an interspike interval is

1. The second rule is that shortening or extending an

interspike interval by an amount t has a cost qt. Note that

changing the length of an interval differs from changing

the time of a spike, in that when an interval length is

changed, the time of all later spikes are also changed. For

this reason, Dinterval[q] and Dspike[q] have fundamentally

different topological characteristics [9].

Multineuronal cost-based metrics

Multineuronal recordings that enable the study of pat-

terns of activity across neurons are increasingly available
Box 3 Spike metrics and information theory.

Information theory (IT) [61] (see Cover and Thomas [62] for a

general review) forms a natural framework for the analysis of

neural coding [7]. However, IT was originally developed for the

understanding of man-made communication systems, and its

application to neural systems — especially the empiric estimation

of mutual information from laboratory data — is not straightforward.

One barrier is that the experimentalist must estimate stimulus–

response probabilities from limited data, leading to estimates

that are biased, imprecise, or both. The estimation problem is

only exacerbated in experiments that explore a stimulus space

comprehensively or involve recording from several neurons

simultaneously — because both increase the number of

stimulus–response probabilities that need to be estimated. For

these reasons, naı̈ve application of IT to datasets of the size

typically obtained in the laboratory can yield misleading estimates

of information [63,64].

Use of spike metrics can mitigate this problem, in that estimates

of IT quantities based on spike metrics [9] make implicit use of

the hypothesis that similar responses have similar stimulus-

dependent probabilities. Such estimates are typically downwardly

biased, because the notion of similarity postulated by a spike

metric is likely to deviate from the true ‘neural code’. However,

the combined use of metric-spaced measures or related

techniques, along with nonparametric approaches with

complementary bias characteristics, supports the validity of the

estimates [65]. Additionally, the dependence of an estimate of

information on the parameters of the spike metric describes

which features of spike trains are crucial for carrying information

[9,10,22,32–36,37��].

Current Opinion in Neurobiology 2005, 15:585–592
[17–19] and methods to analyze such data effectively are

receiving increasing attention [20,21]. A multineuronal

recording might be considered to be a sequence of

labeled events. In this view, cost-based metrics are read-

ily extended to the multineuronal context. The simplest

approach [22] is to add a rule that sets the cost of changing

the label associated with an event. This results in a two-

parameter family of metrics, Dspike[q,k], where k is a

parameter that sets the cost of changing a label. k = 0

corresponds to the notion that the neuron of origin of a

spike is irrelevant (because there is no cost associated

with changing this label). k = 2 corresponds to a ‘labeled

line’ interpretation, because changing the neuron of

origin of a spike has the same cost as deleting a spike

associated with one neuron, and inserting a spike asso-

ciated with another neuron.

Other metrics

Within the cost-based framework, one can also construct

metrics sensitive to motifs of spikes [23] (by having a rule

associated with the cost of moving a set of spikes), and

metrics that combine the rules of Dspike[q] and Dinterval[q].
Metrics on spike trains can also be obtained by binning

[24] or convolving them with a smoothing kernel (see

glossary) [25,26], and then using standard vector-space

distances between the derived temporal functions. These

latter approaches necessarily lead to Euclidean distances.

Applications
Spike metrics have been applied to data obtained from a

variety of neural systems, to quantify variability per se,
[27,28,29�,30,31], to characterize neural coding (at the

level of temporal coding within single neurons [9,10,32–

36] or neuronal pairs [22,37��]), and to evaluate models

[38,39�].

Electrosensory

Kreiman and co-workers [27] studied the variability of the

P-receptor afferents [40] in the weakly electric fish Eigen-
mannia, whose discharges are loosely phase-locked to the

periodic (200–600 Hz) discharge of its electrosensory

organ. Theymade extensive use ofmeasures of variability

based on Dspike, because these, but not measures based on

spike count or its variance, appeared to capture trial-to-

trial variability in P-receptor activity. They found that the

intrinsic variability of spike trains was not likely to

degrade information transmission, but enabled improve-

ment in coding by averaging across multiple afferent

fibers.

Vision

Blowfly H1

Grewe et al. [28] used Dspike, along with a Euclidean

metric, to examine variability in the responses of the

blowfly wide-field, motion-sensitive neuron H1, driven

by motion stimuli with various levels of added noise. By

determining the ‘equivalent noise’ (the maximum
www.sciencedirect.com
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amount of added noise that enabled a criterion level of

response classification), they deduced that internal noise,

rather than photon noise, limited the performance of the

H1 neuron.

Mammalian retina

Chichilnisky and Rieke [29�] used Dspike to analyze near-

threshold signaling in rod photoreceptors and retinal

ganglion cells of the tiger salamander. Although grouping

of responses into signal versus no-signal clusters was no

more accurate than could be achieved by standard meth-

ods such as the Fisher discriminant (see glossary) [41],

the observation that optimal grouping was achieved for

Dspike[q] at q = 0.1 indicated a meaningful temporal reso-

lution of 100 ms.

Lateral geniculate nucleus

In response to full-field random flicker, retinal and lateral

geniculate neurons often fire in discrete ‘firing events’

consisting of several spikes, at times that are reproducible

across trials [30,38]. Reinagel and Reid [30] used Dspike to

show that other than a possible small overall latency shift,

these timing events were conserved not only across trials,

but also across animals. Keat et al. [38] later used Dspike to

evaluate the ability of models to predict these firing

events.

Visual cortex

Application of spike metrics to single-unit and multi-unit

(single units not separated) recordings in primary visual

cortex (V1) and early extrastriate cortex (V2 and V3) of the

awake macaque [10] revealed that the temporal structure

of spike trains contributed significantly to coding of visual

information. Because information estimates based on

Dspike were generally larger than those based on Dinterval,

it was concluded that spike timing (relative to stimulus

onset), rather than the interval structure, was the more

crucial aspect of temporal structure. Moreover, because

information estimates for the several stimulus attributes

(contrast, spatial frequency, orientation, size, and texture)

had distinctive dependences on q, it was concluded that

typical neurons multiplexed visual information, repre-

senting contrast with high temporal precision (ca. 10–

30 ms), and spatial aspects with lower temporal precision

(ca. 100 ms).

In V1 of the anesthetized macaque, Reich et al. [32] used
Dspike to show that most of the information about contrast

could be extracted from the latency of the first spike,

although additional information could be extracted from

the temporal structure of the response without regard to

latency, and that temporal coding was particularly impor-

tant at higher contrasts, at which the spike rate response

neared saturation. Mechler et al. [33] used a variant of

Dspike appropriate for responses to periodic stimuli to

demonstrate that temporal structure played a much larger

role in the coding of edges (square-wave gratings) than of
www.sciencedirect.com
smooth variations (sine gratings). Cyclic variants of Dspike

were later used [34] to characterize the coding of edge-

like, line-like, and intermediate one-dimensional features

in V1, and showed that many neurons demonstrated

feature opponency and/or feature selectivity for com-

pound gratings.

Two studies focused on the role of the activity pattern

within a local cluster of cortical neurons. Aronov et al. [22]
used Dspike[q,k] to characterize the coding of spatial phase

across pairs of V1 neurons, isolated using tetrodes (four-

element microelectrodes) [17]. Dependence of informa-

tion estimates on q indicated that spike times had an

informative precision of ca. 30 ms; dependence of infor-

mation estimates on k indicated that the neuron of origin,

and not just the total activity of the local population,

contributed to coding of spatial phase. The geometry of

the stimulus set (the circle of spatial phase) corresponded

to the response similarities as determined by Dspike[q,k].
Greater fidelity of the representation was achieved for

nonzero values of k, thus demonstrating that within a local

cluster, the neuron of origin of a spike, in addition to its

timing, carries information. This study also introduced a

technique (designated ‘temporal profiles’) to identify the

time course of temporal features that are crucial to sti-

mulus representation. Samonds, Bonds and co-workers

[37��,42] examined signaling of orientation in cat primary

visual cortex with Dspike and Dinterval. Although large

angular differences were adequately represented by firing

rate, type analysis [43] of responses of neuronal pairs

suggested that cooperative signaling was present for small

angular differences [42]. Metric-space analysis [37��]
demonstrated that orientation differences of 10 deg or

less were signaled by the temporal fine structure (2–10

ms) of spike times and spike intervals.

Audition

Middlebrooks and co-workers [44] showed that responses

of single neurons in cat ectosylvian gyrus, when analyzed

with a neural-network approach, represent the azimuth of

a sound stimulus in a panoramic (360 deg) fashion. A re-

analysis [9] of these data using Dspike and Dinterval showed

that this representation relied on spike timing, at a

resolution of ca. 4 ms. A comparable conclusion was also

reached in a neural-network analysis of A2 neurons [45]

using surrogate-data methods.

Machens et al. [36] showed that 100 ms samples of natural

songs from up to eight different conspecific grasshoppers

could be distinguished by spike trains of single auditory

neurons via Dspike[q] at q = 100, corresponding to an infor-

mative precision of 10 ms.

Chemical senses

Laurent and co-workers [31] identified a population of

neurons in the olfactory system of the locust, the b-lobe

neurons, that are crucial to reading out the output of the
Current Opinion in Neurobiology 2005, 15:585–592
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mushroom body, a structure involved in odor learning.

Desynchronization of projection neurons (PNs), two

synapses upstream of these b-lobe cells, could be

achieved by blocking fast GABA inhibition with picro-

toxin. This leads to loss of behavioral discrimination of

similar odors, although coarse odor discrimination

remains intact [46]. Dspike was used [31] to show that

information about odors contained in the spike trains

of b- lobe cells is lost when the PNs are desynchronized,

even though no such loss is observedwithin spike trains of

individual PNs. These elegant experiments demonstrate

the functional relevance of neuronal synchronization.

Di Lorenzo and Victor [35] applied Dspike and Dinterval to

the analysis of gustatory coding in single-neuron

responses in the nucleus of the solitary tract of the rat.

In 10 of 19 neurons, the temporal structure of the initial 2

s of the response contributed to the coding of the four

basic taste qualities. The informative precision of spike

timing was much lower than in the other studies reviewed

here, typically about 300 ms, and response dynamics

contributed the most to coding in neurons that were

the most variable, in terms of their overall firing rate.

As in the visual cortex studies described above [10],

analysis of surrogate datasets obtained by shuffling spikes

across trials served to demonstrate that the informative

aspects of spike timing went beyond that of a Poisson

sampling of a firing rate envelope.

Motor

In preliminary work [47] Dspike was used to identify

aspects of single-neuron activity in parietal cortex of

the macaque that were correlated with arm approach

and grasp style. Of note, this re-analysis made use of a

public database and analysis toolkit.

Conclusions
Spike metrics are applicable to data that can be viewed as

discrete events in continuous time. Cost-based spike

metrics are a general strategy for formalizing biologically

motivated notions of distance, and, thus, constitute a

principled approach for the analysis of variability of

single- and multineuronal extracellular recordings. They

have been fruitfully applied in a variety of neural systems,

to characterize and consequently help to understand

neuronal variability and coding. Analyses in several sen-

sory systems have shown that spike count might suffice

for signaling gross sensory differences, but spike timing is

important for signaling subtle differences [31,32,37��].

By parameterizing biologically motivated notions of dis-

tances between time series of events, metric-space meth-

ods complement non-parametric approaches to estimate

information-theoretic quantities from limited data. Spike

metrics are related to edit-length distances (see glossary)

used for genetic analysis, and present related computa-

tional challenges.
Current Opinion in Neurobiology 2005, 15:585–592
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