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C O M P U TAT I O N  A N D  S Y ST E M S

Analyzing receptive fields, classification images 
and functional images: challenges with opportunities 
for synergy
Jonathan D Victor

In neurophysiology, psychophysics, optical imaging and 
functional imaging studies, the investigator seeks a 
relationship between a high-dimensional variable, such as 
an image, and a categorical variable, such as the presence or 
absence of a spike or a behavior. The usual analysis strategy is 
fundamentally identical across these contexts—it amounts to 
calculating the average value of the high-dimensional variable 
for each value of the categorical variable and comparing these 
results by subtraction. Though intuitive and straightforward, 
this procedure may be inaccurate or inefficient and may 
overlook important details. Sophisticated approaches have 
been developed within these several experimental contexts, 
but they are rarely applied beyond the context in which they 
were developed. Recognition of the relationships among these 
contexts has the potential to accelerate improvements in 
analytic methods and to increase the amount of information 
that can be gleaned from experiments.

Many systems neuroscience experiments are based around a common 
basic design—identifying an association between a high-dimensional 
variable, such as a complex stimulus, and a variable that can be eas-
ily categorized, such as the presence or absence of neural spiking. For 
example, in receptive field analysis, the investigator presents stimuli 
drawn from a large set of images1–8 or sounds9,10 and records one of two 
neuronal responses—the presence or absence of a spike. Psychophysical 
‘classification image’11,12 studies take a conceptually related approach. 
In this case, the response is a subject’s detection or lack of detection of 
a target embedded in experimentally controlled noise. The response 
being measured is different, but the goal of the analysis is similar—to 
determine which aspects of the stimuli lead to a particular neural or 
behavioral response (Fig. 1a). Functional imaging studies also share this 
basic design, but the high-dimensional variable is no longer under the 
experimenter’s control, so some aspects of the problem are reversed. 
For example, the investigator repeatedly presents stimuli from one of 
two categories and records many examples of images of neural activ-
ity elicited by the stimuli. In a simple optical imaging experiment13 in 

visual cortex, the two categories might consist of vertical and horizontal 
gratings; in a functional brain imaging experiment14, the two categories 
might consist of a behavioral task and a baseline state or two contrasting 
sets of sensory stimuli. In these experiments, the goal of the analysis 
is to determine which aspects of the brain image are associated with 
each category (Fig. 1b).

These are only the simplest prototypes. The multivariate quantity 
may be spatiotemporal sequences and not just static spatial images. 
The categorical quantity may have more than two possible values (for 
example, multiple orientations presented in an imaging experiment in 
visual cortex or temporal sequences of spikes in receptive field map-
ping). However, the essence of the analytic challenge in all of these 
experimental approaches remains one of relating a highly multivari-
ate quantity to a categorical quantity. By far the most common, and 
perhaps most intuitive, strategy is fundamentally identical across these 
different experiments—it amounts to calculating the average value of 
the high-dimensional variable for each value of the categorical variable 
and subtracting one average from the other. This is also at the heart of 
reverse correlation techniques, which are pervasive in receptive field 
mapping or differential imaging.

However, intuitive methods may be inaccurate or inefficient and 
may overlook important details. In this article, I will consider this 
class of problems abstractly, highlighting certain similarities and dif-
ferences between the problems faced by the different experimental 
approaches. My first goal is to illustrate the reasons why the intuitive 
analysis strategy may not be the best, and the conceptual challenges 
that must be faced. I will then describe (without technical detail) sev-
eral approaches to these challenges that have been recently developed 
and applied within individual experimental approaches. I suggest that 
wider recognition of the common conceptual problem being solved 
in the different contexts, including both a focus on aspects that are 
specific to one approach as well as application of methods beyond 
their original context, will benefit both the development of analytic 
tools and the analysis of data.

Why analysis is challenging
To understand what analysis of these datasets might entail, consider a 
geometric view of a highly reduced experiment in which the goal is to 
categorize an image consisting of only two pixels (Fig. 2). In each panel, 
each image is represented by a point whose horizontal (x) and vertical (y) 
coordinates represent the image value of the two pixels. The color assigned 
to each point corresponds to the category associated with that image, as 
determined experimentally.

Jonathan D. Victor is in the Department of Neurology & Neuroscience, Weill 
Medical College of Cornell University, 1300 York Avenue, New York, New York 
10021, USA.
e-mail: jdvicto@med.cornell.edu.

Published online 23 November 2005; doi:10.1038/nn1607

P E R S P E C T I V E
©

20
05

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

en
eu

ro
sc

ie
nc

e



1652 VOLUME 8 | NUMBER 12 | DECEMBER 2005  NATURE NEUROSCIENCE

For definiteness, I will discuss the problem 
in terms of receptive field analysis, but the 
ideas apply equally well to classification image 
analysis. Consider an idealized (and highly 
simplified) receptive field mapping experiment 
(Fig. 2a) in which the stimulus consists of 
uncorrelated Gaussian noise at two pixels, and 
the neuron responds to only one pixel. The value of the stimulus in the 
pixel that drives the neuron is represented by the horizontal coordinate 
in Figure 2a. Because the pixel values in the stimuli are assumed to be 
uncorrelated, the stimuli form a circularly symmetric cloud. The neuron 
is assumed to respond to only one pixel, so the probability that a point is 
assigned to the two response categories depends only on its horizontal 
position. The demarcation between ‘blue’ responses (left half) and ‘red’ 
responses (right half) is not sharp, to represent the presence of neural 
noise that combines additively with the stimulus.

The red and blue circles represent the results of analyzing these data 
by determining the average stimulus that led to each response. This is 
the approach taken in the standard method of reverse correlation. The 
horizontal displacement of these circles properly reveal a dependence 
of the neural response on only one pixel value. Moreover, the best par-
titioning of the stimuli into subsets that are associated with the two 
responses (based on the experimental data) is given by the perpendicular 
bisector of the line between these averages. This line separates the points 
that are closest to the center (average) of the red cloud from those that 
are closest to the center of the blue cloud. Thus, averaging suffices to 
answer two basic questions: what is the average stimulus corresponding 
to each response (Qcenter), and what is the best way to determine which 
response will be elicited by a particular stimulus (Qrule). Averaging will 
answer these questions when the multivariate data are independent and 
identically distributed, the system is linear and noise is additive. As the 
next panels show, relaxation of these conditions can lead to very dif-
ferent results.

In cases where there is correlation between the two pixel values 
(Fig. 2b), averaging fails to capture the full relationship between stimulus 
and response. Such correlations are typically present in natural images. 
Even though the neuron only responds to the pixel represented by the 
horizontal coordinate, the average stimulus corresponding to each 
response class (circles) is now displaced along the diagonal, as a conse-
quence of the pixel-to-pixel correlation present in the stimulus. Thus, 
the perpendicular bisector between the centers of the clouds, which 
is oblique, no longer represents the best rule for determining which 
response will be elicited by a given stimulus. Rather, the best rule remains 
a vertical line (as in Fig. 2a). In short, correlations within the stimulus 
set induce bias when averaging or reverse correlation is applied. This 
bias can be corrected if the stimulus correlations are known, and have 

a sufficiently simple form (for example, if the correlation is Gaussian). 
However, for stimulus sets such as natural stimuli, these conditions do 
not apply6,7. When the correlation structure of the stimulus set is suffi-
ciently complex, bias correction is problematic and the ‘average’ stimulus 
may not be typical of any stimuli (Fig. 2b, inset).

Even if the stimuli are uncorrelated, averaging will still be inadequate 
if the neuron is nonlinear. The next examples show how nonlinearity 
(non-additive combination of stimulus components) leads to additional 
complexities (Figs. 2c–e). Consider a neuron whose response depends on 
only one pixel, but this dependence has a small quadratic contribution 
in addition to the linear response (Fig. 2c). Because of this nonlinearity, 
stimuli with a large negative value at pixel x also lead to a response in the 
red category. More importantly, the optimal partitioning of the stimuli 
into classes corresponding to the two responses (that is, the description 
of what the two responses ‘represent’) consists of two vertical lines, not 
one. Averaging gives no hint of the bipartite distribution of red responses 
but rather misleadingly summarizes the distribution of red responses by 
a single point—which might even lie within the blue distribution. The 
latter situation would arise if the nonlinearity dominates, as would be the 
case in a stereotypical neuron with a symmetrical on-off response.

In another example of nonlinearity, the model neuron is an ‘energy’ 
unit15 (Fig. 2d). It produces one response if x2 + y2 (the energy) exceeds 
a criterion and the other response if it does not. The optimal parti-
tioning of the stimuli into the two classes is a circle that lies on the 
energy threshold. Yet another example of nonlinearity is an idealized 
edge detector (Fig. 2e): this neuron produces one response if x and y 
have opposite sign and the other response if they do not—that is, its 
response is determined by an interaction of the two pixel values, the 
product xy. In this case, the optimal rule for partitioning stimuli is 
described by intersecting lines that run along the axes. For both types of 
neuron, however, the means of the stimulus subsets that correspond to 
the two response classes coincide (red and blue circles in Fig. 2d,e). This 
means that a correlation analysis will not detect any signal at all, even 
though there is simple (but nonlinear) relationship between stimuli and 
response. When there is a mixture of linear and nonlinear contributions 
(Fig. 2c), a correlation analysis properly indicates the neuron’s depen-
dence on input stimuli, but the signal-to-noise (that is, the separation 
of the mean stimuli of each class) is less than that in Figure 2a because 
the average includes stimuli with large negative x values.

Figure 1  Two kinds of experiments in which a 
highly multivariate quantity (yellow box) is to be 
related to a categorical quantity (purple box). 
(a) The multivariate quantity is the stimulus, 
and the categorical quantity is the response (as 
in receptive field mapping and classification 
image studies). (b) The multivariate quantity is 
the response, and the categorical quantity is the 
stimulus (as in optical imaging and functional 
brain imaging). In each case, the investigator 
determines the categories in advance (items 
outlined in red versus blue), but the instances of 
the multivariate quantity associated with each 
category (items outlined in pink versus pale blue) 
are determined from the experiment.
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For the converse problem, where the stimulus is the categorical vari-
able and the multivariate quantity is measured (that is, in optical or 
functional imaging), analogous situations can arise (Figs. 2f–j). In the 
simple, ideal situation in which the stimulus activates only one pixel and 
there is uncorrelated, additive Gaussian measurement noise in both pix-
els (Fig. 2f), the cloud of responses elicited by each stimulus is circularly 
symmetric, and the horizontal displacement of these clouds represents 
the mean response. As described earlier (Fig. 2a), the mean response to 
each stimulus provides an unbiased estimate of the positions of these 
clouds, and the perpendicular bisector between these means is the opti-
mal partitioning of the responses into two categories.

When a stimulus-driven response confined to one pixel adds to noise 
that is correlated across the two pixels (Fig. 2g)—for example, by vas-
cular pulsations—the cloud of points that represents the pairs of pixel 
values corresponding to each stimulus becomes elongated and oblique 
because of the background correlation. The mean image elicited by each 
stimulus category is no different than that of Figure 2f. However, the 
optimal way to discriminate between these sets of images is no longer 
a vertical line: it is an oblique line whose slope is determined by the 
degree of correlation of the noise background. There is a second, more 
subtle, effect of the fact that the set of images elicited by each stimulus 
forms an elongated cloud. The oblique axis does not contribute to sepa-
ration of the two clouds, but variability along it reduces the reliability 
of the estimates of the clouds’ centers. Thus, noise correlation has two 
effects: the optimal rule for discriminating the two image classes does 
not correspond to the perpendicular bisector of the line between their 
means, and a more reliable estimate of the difference between the means 
can be obtained by eliminating dimensions that contain large variance 
and small signal.

As is the case for receptive field mapping, a nonlinear relationship 
between the stimulus and the multivariate response makes straightfor-
ward averaging inadequate for capturing the relationship between signal 
and the stimulus that drove it (Fig. 2h–j). There is evidence that brain 
states are manifest not only by mean activity but also by changes in power 
and correlation structure16–18, suggesting that such nonlinear relation-
ships indeed exist. These nonlinear relationships affect the mean position 
of each cloud of points and the lines and curves that optimally separate 

the clouds, in a way similar to the analogous 
nonlinear relationships shown in Figure 2c–e.

The challenges of analyzing a real dataset 
are substantially greater than these simple 
examples would suggest for several reasons. 
First, in a real dataset, variability would 
be much higher than in the illustration in 
Figure 2, so that the clouds would overlap to 
a much greater extent. Second, although we 
considered separately the effects of deviations 
from Gaussian uncorrelated noise (Fig. 2b,g), 
local nonlinearities (Fig. 2c,h), and spatial 
interactions (Fig. 2d,e,i,j), these phenomena 
are typically all present to some degree. Third, 
the dimensionality of the multivariate data-
set is typically large: 100 to 1,000 in recep-
tive field mapping or classification image 
experiments, and 105 or larger in optical or 
functional imaging experiments. Figure 2 
considers only two-dimensional datasets. As 
a result, a typical dataset represents only a 
sparse sample of the multivariate distribu-
tion. Thus, in contrast to these examples 
where the dataset provides a good estimate 

of the shape of the distribution of the multivariate quantity, good 
estimates of the distribution of the multivariate quantity may not 
be available.

These various considerations have led to the development of sophis-
ticated methods for analysis of such datasets. However, development 
of methods to deal with the effects of correlations have generally pro-
ceeded along separate lines in receptive field mapping, image classifi-
cation, and imaging contexts. Attempts to analyze nonlinearities have 
been developed primarily for the purpose of receptive field mapping, 
and not in the other contexts.

Two basic questions
As highlighted in Figure 2, there are two basic questions that can be 
asked about the correspondence between a multivariate quantity and a 
categorical one: Qcenter—what is the most typical value of the multivari-
ate quantity that corresponds to each value of the categorical variable 
(that is, where is the center of each cloud)  —and Qrule—what is the best 
rule for distinguishing these clouds. I do not mean to imply that the 
answers to these questions are the endpoints of the analysis or suffice to 
draw scientific conclusions, merely that they are common conceptual 
places to begin.

For receptive field analysis, it is natural to focus on Qrule. Even for a 
neuron with very simple properties, the center of the cloud will depend 
on the choice of stimuli used in an experiment. But the rule, which can 
be thought of as a computation performed on the stimuli and an indica-
tion of what a neuronal response represents, can in principle represent 
a more universal characterization of the neuron.

For imaging experiments, Qcenter and Qrule are interesting and quite 
distinct, even if the stimulus-response relationship is linear (Fig. 2g). 
This is because the multivariate quantities (the pixel values) are typi-
cally highly correlated, both by the underlying physiology and the 
physics of imaging. The center of each cloud indeed indicates the 
average response to each stimulus. However, the answer to Qrule pro-
vides additional information—how best to ‘read out’ a pattern of 
activity. The distinction between the two questions cannot be avoided, 
because the experimenter cannot control the correlation structure of 
the multivariate data.

Figure 2  A geometric view of associations of multivariate and categorical data. In each panel, each 
instance of the multivariate (here, bivariate) data is represented by a point whose coordinates X and Y 
are the values of its two components (in this case, pixel intensities). The color assigned to each point 
indicates which of the two categories is associated with it. (a–e) Experiments in which the multivariate 
quantity is the stimulus, and the categorical quantity is measured. (f–j) Experiments in which the 
multivariate quantity is measured, and the categorical quantity is the stimulus. a and f indicate the 
simplest situation (uncorrelated and Gaussian bivariate data, with category linearly determined by 
one of its components). Other panels introduce correlation structure into the bivariate data (b,g), 
nonlinearities (c,d,h,i), or both (e,j). The large colored symbols in each panel indicate the centroids of 
the respective clouds, and are superimposed in panels d, e, i and j.
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The answers to Qcenter and Qrule are usually displayed as maps, but 
it is important to emphasize that these maps represent very different 
things. For Qcenter, the map is simply an instance of the multivariate 
quantity, but the answer to Qrule is a rule, not an instance of the mul-
tivariate quantity. If the rule is linear, it can be rendered as a map in 
the following manner: a linear rule is characterized as an assignment 
of weights (‘sensitivities’) that multiply each pixel of the stimulus; the 
partitioning is based on a sum of these products. Thus, the map that 
portrays a linear rule is a map of sensitivities (that is, quantities whose 
units are the reciprocal of the units of the multivariate data). Nonlinear 
rules can also be displayed in a map-like fashion, but here, too, the map 
describes rules to be applied to stimuli, not stimuli themselves.

In the following sections, we consider a variety of approaches to 
answer Qcenter and Qrule.

Uncorrelated multivariate data
Standard analysis (subtraction of mean responses for imaging13, cross-
correlation for receptive field2,3,19 or classification image11 analysis), 
address Qcenter. Qcenter and Qrule are equivalent only under very special 
circumstances (Fig. 2). When the linearity condition is relaxed but the 
multivariate quantity remains independent and identically distributed 
(Fig. 2c–e), Qrule can be determined by generalizations of the cross-
correlation approach. The desired characterization corresponds to the 
‘kernels’ of Wiener-like2,3,19 procedures. For example, the basic compu-
tation in the recently developed spike-triggered covariance method4,5,8 
is equivalent to the standard Lee-Schetzen cross-correlation estimate 
for the second-order kernel19,20, followed by diagonalization.

In settings such as receptive field or classification image analysis in 
which the investigator has control over the multivariate quantity, the use 
of ‘designer’ stimulus sets (sinusoidal sums21 and m-sequences1) are par-
ticularly advantageous. Such approaches are often effective in character-
izing nonlinear (as well as linear) response properties. This is because these 
finite stimulus sets are, in some sense, more nearly uncorrelated than a 
random sample drawn from a large uncorrelated ensemble.

However, ‘designer’ methods cannot be applied to imaging data or 
to situations in which natural scenes6,7,22 or sounds10,23 are used for 
receptive field determination. These multivariate stimulus sets typically 
contain strong correlations that cannot be controlled or fully character-
ized. Here, the answer to Qrule provides information about the stimulus-
response relationship that is not available from Qcenter. Moreover, as 
will be sketched below, Qrule, along with the covariance structure of the 
stimulus, can provide a better estimate of Qcenter than averaging.

Correlated multivariate data, linear relationship
Even when correlations within the high-dimensional variable are 
present, linear regression identifies the linear function of a stimulus 
sequence that does the best job (in the mean-squared sense) of pre-
dicting the binary response (spike versus no spike; target seen versus 
target not seen). Thus, it is a natural approach to finding Qrule under 
the assumption that the stimulus-response relationship is linear and  
correlations are present within the high-dimensional variable. Also, it 
can be extended in a Wiener-like fashion to nonlinear relationships, 
as has been done in the context of receptive field analysis24. Of note, 
linear regression was used in the original description of the classifica-
tion image method12. Other than a few exceptions25, this approach is 
not often taken because there are statistical difficulties that confound 
direct application of linear regression to the experimental contexts we 
are considering. However, as we next describe, there are recently devel-
oped techniques that can surmount these difficulties.

In essence, finding Qrule via linear regression requires two steps 
(Supplementary Note online): (i) estimating the covariance matrix 

S of the multivariate set, and (ii) multiplication of the mean differ-
ence between the two multivariate clouds by S–1, the matrix inverse of 
S. The covariance matrix S is a symmetric array whose entries sjk are 
the correlations of the jth and kth pixels. For independent, identically 
distributed data, S is proportional to the identity matrix, and linear 
regression reduces to simple subtraction, as S–1 is also proportional 
to the identity. In imaging data, pixel values are coupled by motion, 
light scatter, blood flow and other physiologic factors; in receptive field 
analysis, pixel values are coupled by the statistics of natural scenes23,26. 
Thus, linear regression and the related approaches described below 
differ fundamentally from the subtraction method, as S is far from a 
multiple of the identity matrix.

The main pitfall in linear regression is that of overfitting: namely, the 
estimated answer to Qrule may work well for the particular experimental 
sampling of the multivariate dataset but does not generalize to a larger 
sample. Linear regression provides an answer to Qrule that generalizes 
if the correlation structure of the multivariate data is well character-
ized by the experimental sample. This characterization requires enough 
samples to estimate its covariance matrix S, along with an assumption, 
typically that the distribution of the multivariate dataset is Gaussian, to 
determine higher-order correlations from second-order correlations. For 
optical or functional imaging data, there are typically many more pix-
els (105 to 106) than samples (∼104). For receptive field or classification 
image data, the undersampling problem is present but less severe (103 
to 104 pixels; number of samples in the same range), but the correlation 
structure (especially of natural images) is likely to be very non-Gaussian. 
Because of undersampling and/or non-Gaussian characteristics of the 
multivariate data, direct application of standard linear regression is likely 
to produce results that are worse than simple subtraction.

However, extensions of linear regression27–29 developed for imaging 
are applicable to the undersampled regime by recasting the problem in 
a form that does not require explicit inversion of S. These approaches 
focus on the eigenvectors of the covariance matrix S and related matri-
ces (Supplementary Note). The eigenvectors of S (which are its ‘prin-
cipal components’) are a small set of images from which all images can 
be reconstructed. Eigenvectors can be ranked in importance accord-
ing to their eigenvalue. The larger the eigenvalue corresponding to an 
eigenvector, the greater the extent to which the stimulus set explores the 
corresponding image direction. On the basis of the eigenvalues, one can 
select a subset of eigenvectors within which a linear regression–like pro-
cedure can be carried out accurately. In the example of Figure 2g, such 
a procedure would correspond to restricting the estimation process to 
the direction that crosses the narrow axes of the ellipse and forgoing an 
attempt to estimate the position of the ellipse centers along their long 
axes, where variability is greater.

As detailed in the Supplementary Note, there are several useful 
variations on this theme. The ‘truncated inverse’ method28 selects 
the eigenvectors of S whose eigenvalues are sufficiently large. More 
elaborate approaches select a subspace on the basis of not only on the 
overall covariance structure of S but also on the covariances within the 
subset of stimuli that lead to each categorical response. This includes 
the classic Fisher27 discriminant method, which restricts analysis to 
the one-dimensional projection that optimally discriminates between 
Gaussian fits to the two clouds. The ‘indicator function’ method30 
projects into several dimensions (the ‘canonical variates’), chosen on 
the basis of a significance criterion. Canonical variates are also the 
basis of a method for characterizing spatiotemporal aspects of images 
acquired in fast fMRI studies31,32. A further variation is the ‘generalized 
indicator function method’29, which considers the eigenvectors of a 
linear mix of S and the within-group covariances and weights these 
eigenvectors in a graded fashion (Supplementary Note).

©
20

05
 N

at
ur

e 
P

ub
lis

hi
ng

 G
ro

up
  

ht
tp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
en

eu
ro

sc
ie

nc
e



P E R S P E C T I V E

NATURE NEUROSCIENCE  VOLUME 8 | NUMBER 12 | DECEMBER 2005 1655

These approaches all represent methods of dimensionality reduc-
tion—selection of subspaces that are likely to contain a large signal-
to-noise ratio (SNR). Within this general framework, independent 
component analysis33 can be viewed as a strategy for using higher 
moments of the images to identify mixtures of subspaces that are likely 
to contain signal34. There are other approaches to enhance SNR in 
functional imaging data that exploit specific features of such images 
(such as vascular artifacts35), but because these approaches are domain 
specific, we do not discuss them here.

Dimensional reduction can also be viewed as a form of ‘regulariza-
tion’36–38 to avoid the pitfalls of estimating the covariance structure 
from very limited data. The generalized indicator function method29 
can be viewed as a regularized determination of canonical variates37,38. 
‘Ridge regression’38 (Supplementary Note) is a regularization strategy 
(widely applied outside of neuroscience) that chooses a compromise 
between the estimated covariance matrix and the identity matrix. 
Variations of ridge regression that take into account smoothness con-
straints have recently been used to extract receptive field maps from 
natural stimuli, both in the visual22 and auditory10 domains, but appar-
ently have not been applied in optical or functional imaging.

Correlated multivariate data, nonlinear relationship
In functional imaging, analytical methods (including the recent devel-
opments reviewed above) assume that the relationship between the 
imaged signal and neural activity is linear39, and the analytical focus 
has been on determining this relationship when the activity-dependent 
signal represents a very small fraction of the image. In receptive field 
analysis, it is generally considered that the neural response will be sub-
stantially greater than background when the stimulus is appropriate, 
but it is recognized that the stimulus-response relationship may not 
be linear6,40. This has driven the development of efficient methods for 
identifying nonlinear relationships that succeed even in the presence 
of strongly non-Gaussian multivariate data6,40. Moreover, the neural 
response, even if considered categorical, is generated in a manner that 
has stochastic and dynamic aspects. Understanding the implications 
of spike generation for the convergence and bias credentials of various 
estimation techniques40, and the interpretation of the resulting recep-
tive fields41,42 is another focus of current work.

Time for a convergence?
One can readily identify several reasons for the separate development of 
analytical techniques in receptive field and classification image analysis 
on the one hand, and optical and functional imaging on the other, 
owing to various differences between these settings. However, I argue 
that the implications of these differences are less compelling than gener-
ally assumed and, consequently, that there are likely to be substantial 
opportunities for synergy.

Most obviously (Fig. 1), the categorical and multivariate character-
istics of stimulus and response are swapped. This has two implications. 
If the experimenter is willing to choose a ‘designer’ stimulus set, then 
there are opportunities for improved experimental design in receptive 
field or classification image analysis that are not available for optical 
or functional imaging. We do not focus on these here, however, and 
these are irrelevant to receptive field and classification image studies 
using natural stimuli. The other implication is that this distinction leads 
to a difference in how noise is considered. In imaging, no threshold 
is typically postulated; rather, neuronal and measurement variability 
smoothly combine with the ‘signal’. For receptive field and classifica-
tion image analysis, it is generally assumed that after a computation is 
performed on the multivariate quantity, there is a threshold (such as a 
firing threshold or a decision threshold) that may be in part stochastic. 

However, many treatments seek a rule for the firing rate (or decision 
variable) that minimizes the mean-squared prediction error, rather than 
an explicit maximum-likelihood solution for a model with a threshold. 
Because a mean-squared error criterion is essentially a maximum-like-
lihood criterion for an assumed Gaussian noise, it is tantamount to 
ignoring the statistical consequences of the threshold.

Consequently, unless detailed dynamics of spike trains are of inter-
est, the stimulus-response inversion does not prevent application of 
analysis methods for receptive field mapping to imaging, and vice-
versa. Explicit modeling of spike train dynamics may result in further 
improvement and insight40–42. But dynamics (that is, the effect of 
stimulus sequence and time course on response) are also present in 
an optical or functional experiment, suggesting that techniques to 
examine dynamics developed for receptive field analysis might use-
fully be applied to imaging.

Another apparent difference between these settings is what is typically 
considered limiting. In classification image experiments, the number 
of trials that can be obtained may be limited to 103 to 104, as each trial 
requires an explicit behavioral response. In imaging, the main hurdle 
to analysis is usually considered to be an intrinsically low SNR: 1 in 103 
to 1 in 104 for optical imaging, and 1 in 102 for fMRI. There may also 
be sources of variability that lead to highly structured artifacts such as 
pulsatile movements of the tissue. Because receptive field studies often 
have the implicit goal of prediction of responses to stimuli outside of 
the experimental sample, undersampling of the stimulus space is often 
considered to be the main problem, as (even when the SNR is high) a 
far greater sampling is required to construct a nonlinear model than to 
construct a linear model. However, SNR, number of trials and sampling 
of the stimulus space are always limiting. Analytical approaches that 
make better use of a given data set to identify smaller signals, provide 
greater spatial detail or shorten the experiment time to obtain results of a 
given quality are always useful, especially given the increasing availability 
of computational resources and the costs (not just direct economic) of 
obtaining neurophysiological data. In sum, analyzing imaging data in 
the presence of structured noise is closely analogous to identification 
of receptive fields from ‘natural’ stimulus sets6, which have strong but 
incompletely determined statistical structure.

In optical and functional imaging, the relationship of the multivari-
ate quantity to a behavioral index is typically assumed to be linear39, 
whereas a linear relationship is not always assumed in classification 
image analysis43,44 and in receptive field mapping2,3. But there is increas-
ing recognition16–18 that stimulus-induced changes in the correlation 
structure of brain activity, and not just its mean level, are behaviorally 
and mechanistically relevant. Identifying such changes in imaging data 
is closely allied with identifying nonlinear aspects of a neural stimulus-
response relationship in the receptive field mapping context.

Even for imaging studies that do not seek a nonlinear relationship 
between stimuli and the imaging data, inclusion of a nonlinearity in the 
model might nevertheless benefit the goal of signal extraction: that is, by 
identifying the rule that distinguishes responses to the members of the 
stimulus set. An analytic procedure that forces a nonlinear relationship 
to be modeled as a linear one necessarily causes some ‘signal’ (devia-
tion of a systematic nonlinear response from a linear one) to appear as 
‘noise’. Application of traditional nonlinear kernel methods is problem-
atic, as the introduction of a large number of free parameters would likely 
defeat any benefit of capturing more signal. However, it would be very 
worthwhile to explore the use of recent receptive field mapping methods 
that seek simple nonlinear relationships in an efficient manner6,40. It 
should be emphasized that even if the relationship between the imaging 
signal and neural activity were strictly linear39, one would still expect 
this approach to be of value. Such linearity applies to the mean signal, 
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not its fluctuations, and in the noisy, multivariate regime, the latter may 
dominate the stimulus-response relationship. Moreover, mean neural 
activity may not be linearly related to the categorical variable—an issue 
that becomes relevant in experiments in which the categorical variable 
can take on more than two values, such as an orientation or spatial fre-
quency experiment.

Conversely, to maximize the ability to test mechanistic or functional 
receptive field models, it is necessary to identify not only the large, read-
ily resolvable components, but small contributions as well, as illustrated 
by the recent analysis of complex cell receptive fields in terms of spike-
triggered covariances5,8. Moreover, it is evident that further insight into 
neuronal properties can be gleaned from receptive field characterization 
with stimulus sets have complex statistics, including natural scenes6,7,23. 
For both of these reasons, analytical methods developed for imaging that 
improve signal-to-noise by using subspace selection38 may be useful. 
One might even envision that such methods could be further refined (for 
receptive field characterization) by guiding the estimation of covariances 
by the known statistical regularities of natural images26,45,46.

Conclusion
As detailed above, the problem of identifying the relationship between 
a highly multivariate quantity and a categorical quantity (such as a 
discrete stimulus, a behavioral response or the presence of an action 
potential) is deceptively simple. It has been approached by a variety of 
analytical techniques, most often motivated by particular features of 
one of these contexts. We claim that the distinctions between experi-
mental domains are not as deep as generally assumed, and we speculate 
that opportunities for progress will result from applying these tech-
niques (or the ideas behind them) beyond their original domain.

The above considerations are only starting points, not an exhaus-
tive list, and it is likely that the benefits will be relatively specific to 
particular experimental situations and goals. Whether cross-applica-
tion of such methods and ideas will result in new qualitative insights, 
or merely incremental advances, is difficult to predict. Nevertheless, 
recognition of the close relationships between the mathematical chal-
lenges in these domains will enrich and accelerate the development of 
improved analytical techniques.

Note: Supplementary information is available on the Nature Neuroscience website.

ACKNOWLEDGMENTS
The author thanks S. Klein, T. Yokoo, L. Paninksi and P. Buzás for helpful 
discussions.This work is supported in part by grants EY7977 and EY9314 to J.D.V.

COMPETING INTERESTS STATEMENT
The author declares that he has no competing financial interests.

Published online at http://www.nature.com/natureneuroscience/
Reprints and permissions information is available online at http://npg.nature.com/
reprintsandpermissions/

1. Sutter, E. in Nonlinear Vision: Determination of Neural Receptive Fields, Function, and 
Networks (eds. Pinter, R. & Nabet, B.) 171–220 (CRC Press, Cleveland, 1992).

2. Chichilnisky, E.J. A simple white noise analysis of neuronal light responses. Network 12, 
199–213 (2001).

3. Marmarelis, P.Z. & Naka, K. White-noise analysis of a neuron chain: an application of 
the Wiener theory. Science 175, 1276–1278 (1972).

4. Simoncelli, E., Paninski, L., Pillow, J. & Schwartz, O. in The Cognitive Neurosciences 
3rd edn. (ed. Gazzaniga, M.) (MIT Press, Cambridge, Massachusetts, 2004).

5. Touryan, J., Lau, B. & Dan, Y. Isolation of relevant visual features from random stimuli 
for cortical complex cells. J. Neurosci. 22, 10811–10818 (2002).

6. Sharpee, T., Rust, N.C. & Bialek, W. Analyzing neural responses to natural signals: 
maximally informative dimensions. Neural Comput. 16, 223–250 (2004).

7. David, S.V., Vinje, W.E. & Gallant, J.L. Natural stimulus statistics alter the receptive field 
structure of V1 neurons. J. Neurosci. 24, 6991–7006 (2004).

8. Rust, N.C., Schwartz, O., Movshon, J.A. & Simoncelli, E.P. Spatiotemporal elements of 
macaque V1 receptive fields. Neuron 46, 945–956 (2005).

9. Escabi, M.A. & Schreiner, C.E. Nonlinear spectrotemporal sound analysis by neurons in 
the auditory midbrain. J. Neurosci. 22, 4114–4131 (2002).

10. Machens, C.K., Wehr, M.S. & Zador, A.M. Linearity of cortical receptive fields measured 
with natural sounds. J. Neurosci. 24, 1089–1100 (2004).

11. Eckstein, M.P. & Ahumada, A.J., Jr. Classification images: a tool to analyze visual strate-
gies. J. Vis. 2, 1x (2002).

12. Ahumada, A.J., Jr & Lovell, J. Stimulus features in signal detection. J. Acoust. Soc. Am. 
49, 1751–1756 (1971).

13. Grinvald, A. Optical imaging of architecture and function in the living brain sheds new 
light on cortical mechanisms underlying visual perception. Brain Topogr. 5, 71–75 
(1992).

14. Kwong, K.K. et al. Dynamic magnetic resonance imaging of human brain activity during 
primary sensory stimulation. Proc. Natl. Acad. Sci. USA 89, 5675–5679 (1992).

15. Ohzawa, I., DeAngelis, G.C. & Freeman, R.D. Encoding of binocular disparity by complex 
cells in the cat’s visual cortex. J. Neurophysiol. 77, 2879–2909 (1997). 

16. Pesaran, B., Pezaris, J.S., Sahani, M., Mitra, P.P. & Andersen, R.A. Temporal structure 
in neuronal activity during working memory in macaque parietal cortex. Nat. Neurosci. 
5, 805–811 (2002).

17. Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A. & Arieli, A. Spontaneously emerging 
cortical representations of visual attributes. Nature 425, 954–956 (2003).

18. Rodriguez, E. et al. Perception’s shadow: long-distance synchronization of human brain 
activity. Nature 397, 430–433 (1999).

19. Lee, Y. & Schetzen, M. Measurement of the kernels of a nonlinear system by cross-cor-
relation. Int. J. Control 2, 237–254 (1965).

20. de Ruyter van Steveninck, R. & Bialek, W. Real-time performance of a movement 
sensitive neuron in the blowfly visual system: coding and information transfer in short 
spike sequences. Proc. R. Soc. Lond. B. 234, 379–414 (1988).

21. Victor, J.D., Shapley, R.M. & Knight, B.W. Nonlinear analysis of cat retinal ganglion 
cells in the frequency domain. Proc. Natl. Acad. Sci. USA 74, 3068–3072 (1977).

22. Smyth, D., Willmore, B., Baker, G.E., Thompson, I.D. & Tolhurst, D.J. The receptive-
field organization of simple cells in primary visual cortex of ferrets under natural scene 
stimulation. J. Neurosci. 23, 4746–4759 (2003).

23. Theunissen, F.E. et al. Estimating spatio-temporal receptive fields of auditory and visual 
neurons from their responses to natural stimuli. Network 12, 289–316 (2001).

24. Korenberg, M.J., Bruder, S.B. & McIlroy, P.J. Exact orthogonal kernel estimation from 
finite data records: extending Wiener’s identification of nonlinear systems. Ann. Biomed. 
Eng. 16, 201–214 (1988).

25. Levi, D.M. & Klein, S.A. Classification images for detection and position discrimination 
in the fovea and parafovea. J. Vis. 2, 46–65 (2002).

26. Simoncelli, E.P. & Olshausen, B.A. Natural image statistics and neural representation. 
Annu. Rev. Neurosci. 24, 1193–1216 (2001).

27. Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 
179–188 (1936).

28. Gabbay, M., Brennan, C., Kaplan, E. & Sirovich, L. A principal components-based 
method for the detection of neuronal activity maps: application to optical imaging. 
Neuroimage 11, 313–325 (2000).

29. Yokoo, T., Knight, B.W. & Sirovich, L. An optimization approach to signal extraction from 
noisy multivariate data. Neuroimage 14, 1309–1326 (2001).

30. Everson, R., Knight, B.W. & Sirovich, L. Separating spatially distributed response to 
stimulation from background. I. Optical imaging. Biol. Cybern. 77, 407–417 (1997).

31. Friston, K.J., Frith, C.D., Frackowiak, R.S. & Turner, R. Characterizing dynamic brain 
responses with fMRI: a multivariate approach. Neuroimage 2, 166–172 (1995).

32. Worsley, K.J., Poline, J.B., Friston, K.J. & Evans, A.C. Characterizing the response of PET 
and fMRI data using multivariate linear models. Neuroimage 6, 305–319 (1997).

33. Bell, A.J. & Sejnowski, T.J. An information-maximization approach to blind separation 
and blind deconvolution. Neural Comput. 7, 1129–1159 (1995).

34. Thomas, C.G., Harshman, R.A. & Menon, R.S. Noise reduction in BOLD-based fMRI 
using component analysis. Neuroimage 17, 1521–1537 (2002).

35. Carmona, R.A., Hwang, W.L. & Frostig, R.D. Wavelet analysis for brain function imaging. 
IEEE Trans. Med. Imaging 14, 556–564 (1995).

36. Tikhonov, A.N. & Arsenin, V.Y. Solutions of Ill-Posed Problems (Wiley, New York, 
1977).

37. Hastie, T., Buja, A. & Tibshirani, R. Penalized discriminant analysis. Ann. Stat. 23, 
73–102 (1995).

38. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data 
Mining, Inference, and Prediction (Springer-Verlag, New York, 2001).

39. Boynton, G.M., Engel, S.A., Glover, G.H. & Heeger, D.J. Linear systems analysis of 
functional magnetic resonance imaging in human V1. J. Neurosci. 16, 4207–4221 
(1996).

40. Paninski, L. Convergence properties of three spike-triggered analysis techniques. 
Network 14, 437–464 (2003).

41. Aguera y Arcas, B. & Fairhall, A.L. What causes a neuron to spike? Neural Comput. 15, 
1789–1807 (2003).

42. Pillow, J. & Simoncelli, E. Biases in white noise analysis due to non-Poisson spike 
generation. Neurocomputing 52–54, 109–115 (2003).

43. Neri, P. Estimation of nonlinear psychophysical kernels. J. Vis. 4, 82–91 (2004).
44. Neri, P. & Heeger, D.J. Spatiotemporal mechanisms for detecting and identifying image 

features in human vision. Nat. Neurosci. 5, 812–816 (2002).
45. Field, D.J. Relations between the statistics of natural images and the response proper-

ties of cortical cells. J. Opt. Soc. Am. A 4, 2379–2394 (1987).
46. Dong, D.W. & Atick, J.J. Statistics of natural time-varying images. Netw. Comput. Neural 

Syst. 6, 345–358 (1995).

©
20

05
 N

at
ur

e 
P

ub
lis

hi
ng

 G
ro

up
  

ht
tp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
en

eu
ro

sc
ie

nc
e



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts false
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly true
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.30000
    0.30000
    0.30000
    0.30000
  ]
  /PDFXOutputIntentProfile (OFCOM_PO_P1_F60)
  /PDFXOutputCondition (OFCOM_PO_P1_F60)
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF004e00500047002000570045004200200050004400460020004a006f00620020004f007000740069006f006e0073002e0020003100350030006400700069002e002000320032006e0064002000530065007000740065006d00620065007200200032003000300034002e002000500044004600200031002e003400200043006f006d007000610074006900620069006c006900740079002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 782.362]
>> setpagedevice


