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Abstract
Understanding how neurons represent, process, and manip-
ulate information is one of the main goals of neuroscience.
These issues are fundamentally abstract, and information the-
ory plays a key role in formalizing and addressing them. How-
ever, application of information theory to experimental data is
fraught with many challenges. Meeting these challenges has
led to a variety of innovative analytical techniques, with com-
plementary domains of applicability, assumptions, and goals.
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The goal of this review is to identify some of the questions in
neuroscience for which information-theoretic techniques pro-
vide useful insights and approaches, and to survey the variety
of techniques that are applicable to the analysis of neurophys-
iologic data.

How neurons represent, process, and transmit informa-
tion is of fundamental interest in neuroscience. The basic bio-
physics that underlies neuronal action potential generation is
well established, as is the biophysics underlying many aspects
of synaptic physiology and dendritic information processing.
Nevertheless, the features of neuronal activity that convey and
manipulate information are not well understood. Among the
possibilities are relatively straightforward features, such as the
number of spikes fired by a population of neurons (Shadlen
and Newsome 1998), but also more subtle ones, such as, their
precise times of occurrence (Softky 1994; Théunissen et al.
1996; Berry et al. 1997; Gawne 2000), the pattern of inter-
vals (Sen et al. 1996), the presence or absence of correlations
and synchrony (Meister et al. 1995; Dan et al. 1998; Rodriguez
et al. 1999; Samonds et al. 2006), oscillations (Gray and Singer
1989), or other patterns of activity (Abeles and Prut 1996).

Questions related to neural coding are intrinsically ab-
stract, since, at a minimum, they seek a description of a map-
ping from events, percepts, and actions to something very dif-
ferent: patterns of neural activity. Although it may be tempting
to assume that a common set of principles governs neural cod-
ing, it is more reasonable to anticipate that there is a diversity
of biological solutions to the coding problem. That is, we an-
ticipate that neural coding will differ greatly according to the
pressures under which a system has evolved. Such “design”
criteria likely include minimizing the number of neurons or
their connections, minimizing energy utilization, minimizing
response latency, maximizing robustness in the face of in-
jury, or maximizing the capacity for learning. We anticipate
that coding strategies may differ across brain regions, even
within a single “system.” For example, cortical regions early
in visual processing (V1, V2) are tightly topographically orga-
nized, while visual regions at the “top” of the inferotemporal
stream, which interact extensively with polysensory areas and
the hippocampus, have little topographic organization. Even
within the early stages of visual processing, there is a quali-
tative change between coding in V1, and coding in V2—with
temporal multiplexing of multiple visual submodalities much
more prominent in V2 (Victor and Purpura 1996a). Finally,
strategies for representing information, even within a particu-
lar cell type, are likely task dependent and subject to top-down
influences. For example, attention modulates firing rate (Luck
et al. 1997; Reynolds et al. 2000) and synchrony (Roelfsema
et al. 2004; van der Togt et al. 2006). However, it is as yet
unclear what is the primary neural correlate of attention.

Need for joint experimental and theoretical/compu-
tational approach. A purely experimental approach to these

questions is not likely to succeed, in that manipulation of one
feature of neural activity (e.g., increasing firing rate by elec-
trical stimulation) is certain to change other aspects as well
(e.g., interval structure and degree of correlation). Thus, while
such experiments (Salzman and Newsome 1994) are critical
in demonstrating that a particular brain region is relevant to
a particular function, they provide little insight into neural
coding.

An appropriate theoretical infrastructure is needed to dis-
entangle these confounds, and also to compare results across
a range of modalities, preparations, brain areas, and species.
Shannon’s groundbreaking work in information and communi-
cation theory (Shannon and Weaver 1949) is the natural start-
ing point for this theoretical infrastructure (Rieke et al. 1997).
But, while application of Shannon’s ideas to man-made com-
munication channels is relatively straightforward, difficulties
arise in attempting to apply information measures to biologic
systems. Fundamentally, the Shannon theory was designed for
characterizing communication systems whose principles were
understood, not for the “inverse problem” of determining the
principles by which a system works from observations of its
behavior.

To make full use of information theory (and to avoid as-
suming answers to the above questions), one would want to
begin with as few assumptions as possible about the nature
of the neural code. A minimal assumption is that each possi-
ble configuration of neural activity (i.e., each arrangement of
spikes across time and a set of neurons) is a candidate for a
code word. Ideally, the formalism of information theory would
then determine the actual set of words (and hence the structure
of the neural code) from this starting point. Unfortunately, this
program rapidly runs into practical difficulties. Experimental
estimates of information are biased by finiteness of datasets,
and the extent of this bias is directly proportional to the size of
the a priori set of words (Carlton 1969). Moreover, the Shannon
theory does not attempt to describe the relationship between a
sensory or motor domain and neural activity (i.e., the nature
of the neural representation) but merely provides an index of
how faithful this representation is. As we will see below, these
considerations motivate a variety of approaches to the analysis
of neural coding. These approaches share the goal of quan-
tification of information. However, they differ substantially in
the scope of the assumptions concerning neural coding, by the
extent to which they yield a description of the representation
provided by the code, and the kinds of data to which they may
be applied.

Correlation and Causation
Correlation of a behavior or stimulus with a statistical fea-
ture of the neural response does not imply that this feature
of the neural response is used by the nervous system. Some
of the approaches described below, coupled with appropriate
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experimental design, may be useful in determining causal rela-
tionships. For example, a multichannel recording of neural ac-
tivity (e.g., field potential activity at different locations: Schiff
et al. 2000) or multiple neurons within a cluster (Reich et al.
2001b) can be partitioned into two subsets of channels, one
considered as the “input,” and one considered as the “output.”
One can then determine whether statistical features in the “in-
put” activity can predict later activity in the “output” channels.
A positive answer demonstrates that the statistical features of
the input are indeed used at later times in neural processing,
thus going a substantial step beyond merely demonstrating the
presence of these features.

Alternatively, because information cannot be created de
novo within the nervous system, it may be possible to rule
out a candidate neural code, by showing that it cannot support
the sensory performance of the organism. This strategy has
demonstrated the importance of spike timing in retinal coding
(Nirenberg et al. 2006).

Information-Theoretic Tools Applicable to
Neural Data

General Comments: A Wide Variety of Approaches
Many strategies for the application of information-theoretic
tools to neural data have been proposed (Table 1). As seen
in the table, these strategies have diverse, and to some extent
complementary, domains of applicability, limitations, concep-
tual underpinnings, and questions that can be addressed. We
precede our survey by some general comments on these inter-
related axes.

Experimental Design A typical experiment in classical sen-
sory neurophysiology consists of recording neural responses
to a large number of presentations of a small set of sensory
stimuli. The set of sensory stimuli is generally chosen to be
“simple,” with elements that vary along some perceptually
salient parameter, or set of parameters. For example, in charac-
terizing neurons in primary visual cortex, a typical stimulus set
consists of gratings of varying contrast and/or orientation. Re-
sponses to such stimuli can be analyzed (without information-
theoretic tools) to provide measures of neural “tuning” to these
parameters. The information-theoretic viewpoint considers the
neuron to be a communication channel. The “transmitted in-
formation” is a natural measure of to what extent an observer
of the neural response can reduce uncertainty about which
stimulus was presented. There is no pretense that this kind
of experiment can fully characterize the response properties
of the neuron. Nor can it hope to determine its information-
transmitting capacity, since the set of stimuli is intentionally
restricted to a tiny subset of all possible stimuli. Rather, the goal
of information-theoretic analysis of this kind of experiment is
to determine which aspects of the response are responsible for

coding a perceptual parameter of interest, and the extent to
which this coding is reliable.

An alternative experimental design, especially popular in
vision, is based on the rapid presentation of a large set of stimuli
(Wu et al. 2006), repeated a small number of times if at all. The
stimuli might be chosen for analytic convenience (e.g., white
noise, m-sequences), or in the hope that they represent etho-
logically important stimuli (e.g., real-world movies). The goal
of this kind of experiment is to build a model for the functional
relationship between a neuron’s input and its output. Such a
model can then be tested by its ability to predict responses
to other stimuli. Information-theoretic tools can then be ap-
plied to determine the information rate for the neuron’s output
under the conditions of the particular experiment. Moreover,
if a believable model for the neuron’s behavior can be con-
structed, then, at least in principle, the maximal information-
transmitting capacity of the neuron (across all possible stimuli)
can be calculated.

One might argue that the distinction between these
two kinds of experiments is not very meaningful, since an
information-theoretic analysis method that is intended to be
applied to one kind of experiment can be forced to apply to
the other. However, such application is unlikely to be prac-
tical, or to achieve its intended goal, even though there is
nothing in the formalism of these approaches that prevents
such attempts. The basic issue is that, like any other applica-
tion of mathematical concepts to laboratory data (see Slepian
[1976] for an elegant discussion), a rigorous implementation
of information-theoretic analyses requires evaluation of limits
that cannot be achieved in the laboratory. Short of these limits,
there is no guarantee that values estimated from laboratory
data are close to their values at these limits. This difficulty
typically persists even if one goes through the efforts of ana-
lyzing exactly how rapidly the limits are approached—since
this analysis is also only an asymptotic one.

Thus, although the distinctions between the methods we
discuss have clear-cut and rigorous theoretical foundations,
their practical domains of applicability are distinguished by
qualitative terms and fuzzy borders (Table 1). But this should
not be taken as an excuse to ignore the philosophical differ-
ences between these approaches. At a concrete level, such
differences can be recovered by an analysis of how two kinds
of procedures differ in simple test cases, whose behavior can be
determined analytically. More fundamentally, ignoring the dis-
tinctions between these approaches would deny one of the im-
portant contributions of the mathematical biologist—namely,
creation of formalisms that allow testing, refinement, and ex-
tensions of biological intuition.

Response Types All information-theoretic methods dis-
cussed here can be applied to experiments in which the re-
sponses are the sequences of stereotyped action potentials
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(“spike trains”) produced by a single neuron—the substrate
for information transmission over large distances. Many of
the methods are also applicable to neural signals other than
action potentials. For example, subthreshold fluctuations of
membrane voltage carry information within neurons. Some
small neurons, such as the interneurons of the retina, do not
generate action potentials, and use these continuously vary-
ing voltage fluctuations for transmission of electronic sig-
nals between neurons. Another signal that is appropriate for
information-theoretic analysis is the “local field potential,” an
extracellularly recorded voltage that represents a combination
of synaptic activity, subthreshold fluctuations of membrane
voltage, and, to a lesser extent, summed spiking activity, in a
neighborhood of approximately 1 mm or less.

A spike train is most naturally represented as a point pro-
cess, while intracellular and extracellular voltages are most
naturally represented as a continuous real-valued function of
time. As we will see below, some information-theoretic ap-
proaches are directly applicable to the point process itself.
Other approaches have functions of time as their primary ob-
ject of analysis. They can also be applied to spike trains, but
only after the latter are converted into functions of time. Meth-
ods for making this conversion include convolution with a
standard template, such as a Gaussian, or simply considering
the spike trains to be a train of delta functions. The latter ap-
proach can only be used for methods that do not require that
the signals be continuous. Finally, the methods that are the
most directly tied to Shannon’s ideas (Shannon and Weaver
1949) have a discrete sequence of symbols drawn from a finite
set, typically {0,1}, as their primary object of analysis. These
methods can be applied to spike trains by dividing the data
record into narrow time bins, and keeping track of how many
spikes occurred in each. They can also be applied to continu-
ous signals, by sampling them in time and discretizing them in
amplitude. The utility of these approaches depends critically
on how information estimates vary with bin width, which in
turn depends on the biological system and the amount of data
available.

Understanding neural coding requires not only a charac-
terization of the behavior of individual neurons, but also of
their joint activity. Datasets in which many channels of simul-
taneously recorded neural activity (spikes, continuous signals,
and combinations) are increasingly available. All of the meth-
ods we will consider have immediate formal extensions from
single channels to multiple channels, but these extensions dif-
fer widely in practicality. The “multichannel” regime deserves
to be broken into two regimes—that of “few” channels and
“many” channels. Some methods effectively require estima-
tion of the number of parameters that grows exponentially with
the number of channels; these methods are likely to break down
in the “few” channel regime. For other methods, the effective
number of parameters to be estimated grows more slowly if at
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all, but these methods may have computational demands that
may limit application when many channels are present.

A Survey of Methods for Information Estimation
The Direct Method The “direct method” (de Ruyter van
Steveninck et al. 1997; Strong et al. 1998) for the estimation
of information in spike trains is closest to a literal implementa-
tion of Shannon’s ideas, and makes only minimal assumptions
about the nature of the code. Thus, it provides a rigorous esti-
mate of information, provided that sufficient data are available.

The primary data consist of records of a single neuron’s
response. These records are first partitioned into segments of
length L. Each segment is converted into a discrete sequence
of symbols (0 or 1) by subdividing it into successive bins of
width �T , and forming an integer sequence in which each
entry indicates the number of spikes within one of these bins.
�T is typically taken to be sufficiently short so that each bin
contains at most one spike. For each integer sequence s, the
probability of its occurrence, p(s), is estimated from exper-
imental data. Two entropies are then calculated. The “total
entropy,” Htotal = −∑

p(s) log2 p(s), expresses the entropy
of the entire repertoire of the observed behavior of the neuron,
for all stimuli. The noise entropy Hnoise is a corresponding sum
but restricted to responses to a single stimulus. The estimated
information is I = Htotal − Hnoise.

The estimated information I depends on the binning pa-
rameters L and �T . Strong et al. (1998) provide a procedure
for extrapolating to the limits of �T = 0 and L = ∞, as is
required for a rigorous true information estimate.

The direct method has been used at several levels of the
visual system, including mammalian retina (Nirenberg et al.
2001), lateral geniculate nucleus (Reinagel and Reid 2000),
primary visual cortex (Reich et al. 2001b), and extrastriate
visual cortex (Buracas et al. 1998). In each of these settings,
the stimulus consisted of a rapidly varying temporal sequence,
often constructed from a pseudorandom sequence but occa-
sionally derived from natural images (Nirenberg et al. 2001;
London et al. 2002). However, the method can also be applied
to data derived from discrete presentation of a small set of
stimuli (Reich et al. 2001a).

Limitations The main limitation of the direct method is that
it is simply not possible to make a rigorous extrapolation to the
limits of �T = 0 and L = ∞. These limits of course cannot be
attained experimentally, but biologic considerations can pro-
vide guidelines for values of �T and L beyond which one can
assume that an asymptotic regime is reached. Unfortunately,
this regime may be inaccessible in practice.

For mammalian cortex, a reasonable choice of �T is 1 ms
(an upper limit for the intrinsic precision of a neuron), while
a reasonable choice for L is 100 ms (a lower limit for the
duration of a response). Consequently, the number of possible

sequences whose probabilities must be estimated is very large
(2L/�T ), and the probability distribution is necessarily under-
sampled by laboratory data. In this regime, entropy estimates
are unreliable and highly biased—the bias is proportional to
the number of probabilities that must be estimated, and in-
versely proportional to the total number of observations. As
described below, debiasing techniques are available, but these
procedures are ineffective when most bins are not even sam-
pled at all. Consequently, the direct approach is limited to
situations in which responses are highly reproducible, such as
insect systems or the retina (so that only a very small number
of the possible spike train configurations occur), or, to esti-
mates of instantaneous information rate (artificially limiting
L).

The direct method may be extended (Johnson et al. 2001;
Nirenberg et al. 2001; Reich et al. 2001b) to simultaneous
recordings from multiple neurons. In an M-neuron experi-
ment, the response within each bin of length �T is described
by an M-tuple of bits, in which each bit represents the fir-
ing of one neuron. Otherwise, the estimation of information
proceeds exactly as for single-neuron responses. However, the
undersampling of the space of all possible sequences is even
more severe, since the number of possible sequences is given
by 2ML/�T .

In sum, the philosophy that keeps the direct method clos-
est to Shannon’s ideas is also its main limitation. Since min-
imal assumptions are made about the nature of the code, the
probability of each response (as represented by a discrete se-
quence) is an independent quantity to be estimated from data.
That is, the tradeoff for an approach that is free of a priori
assumptions is one that, for rigorous implementation, requires
an impracticably large amount of data in many circumstances.
Moreover, the direct method provides little insight into how
information is carried—since how information is carried is ex-
plicitly a statement about the relationships among the response
sequences.

Estimators of Entropy of a Discrete Distribution A key
component of the “direct method,” as well as of many of the
approaches described below, is that the entropy of a discrete
distribution must be estimated from a finite set of observations.
This seemingly simple problem is surprisingly subtle. The en-
tropy of a discrete distribution with J bins and a probability pj

in each bin is H = −∑J
j=1 pj log2 pj . The naive approach is

to estimate this by setting pj = nj/N , where nj is the num-
ber of times that the j th outcome is observed, and N is the
total number of observations. This “plug-in” estimator is well
known to be biased—fundamentally, because of the curvature
of the log function. A standard fix is to add a bias correction
(Miller 1955; Carlton 1969; Treves and Panzeri 1995). This
bias correction is asymptotically exact for large N but requires
knowledge of the number of kinds of categories (or bins), J ,
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that are occupied with nonzero probability. Moreover, typical
datasets are not in the “asymptotic” regime, which requires that
even the least likely outcome has been observed several times.
An alternative correction is the jackknife (Efron 1982; Efron
and Tibshirani 1998), but this has similar asymptotic behavior.
More sophisticated estimators have recently been introduced,
with clear advantages in regimes relevant to laboratory data.
These include Paninski’s estimator (Paninski 2003), which is
provably the least biased of all polynomial estimators, the
“KT” (Krichevsky and Trofimov 1981) and “SG” (Schurmann
and Grassberger 1996) estimators, which are based on single
Dirichlet priors (Wolpert and Wolf 1995), the “NSB” esti-
mator (Nemenman et al. 2004), which considers a family of
Dirichlet priors, and the Chao-Shen estimator, recently intro-
duced in ecology (Chao and Shen 2003). However, none of
these estimates succeed in the severely undersampled regime
characteristic of cortical datasets.

Metric Space Method
The direct method, though virtually assumption free, can have
prohibitive data requirements, and does not attempt to char-
acterize the manner in which information is represented. The
metric space method (Victor and Purpura 1997; Victor 2005)
represents an alternative viewpoint. By making assumptions
as to the nature of a neural code, it can provide useful estimates
of information in settings in which the direct method will fail
(limited amounts of data, and especially high firing precision
but low firing rate).

The metric space method considers several generic fami-
lies of neural codes, each of which is designed to test a particu-
lar hypothesis of how information is carried, such as via spike
counts, or via the timing of spikes, or via the interval structure
of the spike trains. Each of these hypotheses is then formal-
ized in terms of a family of metrics—notions of distance (i.e.,
dissimilarity) between spike trains. The metrics have a com-
mon structure, which allows comparison of the hypotheses on
a level playing field. Because the metrics explicitly recognize
that neural responses are point processes and their structure re-
spects the continuity of time, the binning process that limits the
use of the direct method is avoided. However, the metric space
method typically underestimates the total information that is
present, since only a few stereotyped (but interpretable!) hy-
potheses for neural codes are considered. Also, because of the
way that information is calculated, the approach is limited to
analysis of episodic responses to a discrete set of stimuli.

Many neurons can be considered to behave like coinci-
dence detectors (Bourne and Nicoll 1993; Mel 1993; Softky
and Koch 1993; Cline 1997; Markram et al. 1997; Usrey et al.
1998). This suggests that the meaning of a spike train is deter-
mined by the timing of the individual spikes, since it is those
timings that determine how the multiple inputs onto a dendritic
tree interact to determine a postsynaptic neuron’s behavior. To

assess the extent to which spike times carry information, the
approach uses a family of metrics denoted by Dspike[q], pa-
rameterized by a quantity q (see below) that describes the role
of temporal pattern. According to the metric Dspike[q], the
distance between two spike trains is the minimum total “cost”
to transform one spike train into the other via any sequence
of insertions, deletions, and time shifts of spikes. The cost of
moving a spike by an amount of time t is set at qt, and the cost
of inserting or deleting a spike is set at 1. Thus, in the sense
of Dspike[q], spike trains are considered similar if they have
approximately the same number of spikes, and these spikes
occur at approximately the same times, i.e., within 1/q or less.
A neuron that behaves like a coincidence detector with tempo-
ral precision 1/q would see incoming spike trains as similar
or different, according to the metric Dspike[q].

A second family of metrics, denoted by Dinterval[q], is
motivated by the notion that a synaptic response depends on
its recent history, and thus, the intervals between successive
spikes may also carry information (Bliss and Collingridge
1993; Sen et al. 1996; Abbott et al. 1997; Usrey et al. 1998).
In metric Dinterval[q], the distance between two spike trains is
defined as the minimum total cost to transform one spike train
into the other via any sequence of insertions of spikes, dele-
tions of spikes, and expansions or contractions of interspike
intervals. The parameter q specifies the cost qt of changing
an interspike interval by an amount t . In the limit that q ap-
proaches 0, both Dspike[q] and Dinterval[q] approach a metric
Dcount , which is sensitive only to the number of spikes, and
not to any aspect of their timing.

Each metric is then evaluated by the extent to which it
distinguishes the responses to each of the stimuli—namely,
the transmitted information between stimulus and response
clusters. The dependence of the transmitted information on
q for Dspike[q] and Dinterval[q] characterizes the importance
of spike timing and interspike intervals, across a range of
temporal precisions.

Applications of this approach to neural data, including
visual cortex (Victor and Purpura 1996a; Reich et al. 2001c;
Samonds and Bonds 2004), chemical senses (Stopfer et al.
1997; Di Lorenzo and Victor 2003), and electric sense
(Kreiman et al. 2000) are reviewed in Victor (2005).

The metric space approach is readily extended to the
multineuronal context. A multiunit recording is a sequence
of labeled events, with the label representing the neuron of
origin. To assess the importance of which neuron fires each
spike, multineuronal metrics add an additional transformation
between spike trains: changing the label associated with a neu-
ron. The cost of this transformation is assigned the quantity k.
The extreme k = 0 corresponds to a code in which the neuron
of origin is irrelevant (since it is free to change the label associ-
ated with each spike). The other extreme, k = 2, corresponds
to a labeled-line code (since it costs as much to change the
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label on a spike as it does to remove it from one neuron, and
insert it into another). The above analyses can then be carried
out for the two-parameter family Dspike[q, k].

By introducing a single parameter to explore the contin-
uum between codes in which neuron of origin is irrelevant
and labeled-line codes, the explosion of parameters that might
otherwise hobble attempts to analyze multineuronal data is
circumvented. We have applied this approach to simultane-
ously recorded neural pairs in V1 (Aronov et al. 2001), and
have found that responses are best decoded by keeping track
of which neuron fired which spike, but only a modest amount
of information is lost by ignoring the neuron of origin. This
is in keeping with our analysis of multineuronal recordings
in V1 via the direct method (Reich et al. 2001c), but is com-
plementary to it: the direct method can analyze recordings of
up to six neurons (the limits of our recording), but only looks
at information rates over brief time intervals (e.g., 15 ms). In
contrast, the metric space method can examine responses over
extended periods.

For multineuronal responses, algorithms for the calcula-
tion of distances via straightforward extension of the Sellers
algorithm (Sellers 1974) (see below) yield a calculation time
proportional to c2M , where M is the number of neurons and c is
the typical number of spikes in a spike train. An improved dy-
namic programming algorithm that drops the exponent from
2M to M + 1 was recently found (Aronov 2003). This dra-
matic improvement makes calculations on triplets of neurons
practical on a desktop, and enables analysis of four to eight
neurons (for firing rates typical of cortical neurons) with a
parallel processor array.

Limitations One important limitation of the metric space ap-
proach is that there is no guarantee that the manner of informa-
tion transmission is similar to either of these caricatures. For
example, the informative precision of a spike may be greater
during the transient part of a response than during a later pe-
riod in which firing occurs at a lower rate. In the multineuronal
situation, it may be appropriate to distinguish among some
neurons within the population and not others, rather than to
have a single omnibus cost for changing the label of a neuron.
One can augment the metric-space method by including these
(and other) variations. Consequently, the maximal value of the
transmitted information obtained with any of the candidate
metrics is necessarily an underestimate of the total amount
of information. Since there are also coding strategies that do
not readily fit into the metric structure, it is difficult to place
rigorous bounds on the extent of this underestimate.

A second major limitation of the metric-space method is
a consequence of the clustering stage, in which distances be-
tween responses to the same stimulus and distances between
responses to different stimuli are compared. For the clustering
stage to be effective, the number of samples collected in re-

sponse to each stimulus must be somewhat larger than the
number of stimuli. This makes it impractical to apply the met-
ric space method to responses elicited to long, rich sequences
of continuously presented stimuli.

Relation to Comparison of Genetic Sequences The above
metrics for spike trains have a common structure: distance is
defined as the minimum cost of a transformation of one se-
quence into another, via a sequence of prescribed elementary
transformations. This structure is formally identical to that
of the distances used to compare genetic sequences (Sellers
1974). For genetic sequences, the elementary transformations
include insertion, deletion, and alteration of a discrete element.
The spike train metrics operate on point processes in contin-
uous time, while the distances for genetic sequences operate
on discrete sequences. Despite this topological difference, the
highly efficient dynamic programming algorithms developed
by Sellers (1974) for genetic sequences can be adapted to spike
train metrics, so that the calculations described above can be
carried out efficiently.

Not Just Information The metric space approach, and others
to be described below, goes beyond traditional information-
theoretic analysis in an important way. One can determine
whether the presumptive code provides for a representation of
the stimulus domain, and not just for faithful discrimination
of distinct stimuli. One way to accomplish this is to use the
pairwise distances as the starting point for multidimensional
scaling (Victor and Purpura 1997; Aronov et al. 2001). For ex-
ample, reanalysis of the auditory data of Middlebrooks et al.
(1994) demonstrated that the temporal aspects of the spike
trains not only identify the azimuth of origin of a sound, but
also that these temporal aspects represent the azimuth: they
map the responses into a circular locus in an abstract response
space (Victor and Purpura 1997). Moreover, the coordinates
within the multidimensional scaling space are the temporal
features that distinguish and represent the stimuli. Such an
analysis of V1 recordings (Aronov et al. 2001) demonstrated
a consistent temporal representation of spatial phase across
neurons, with one coordinate consisting of the sustained por-
tion of the response, and a second coordinate consisting of a
transient component.

Embedding Method
The “embedding method” is an approach that combines many
of the advantages of the two approaches discussed above
(Victor 2002). Like the metric space method, it exploits the
continuity of time and avoids binning. But in contrast to
the metric space method, it makes no assumptions concerning
the nature of the code, other than that it respects the continuity
of time. Consequently, it is provably unbiased (Kozachenko
and Leonenko 1987), at least when sufficient data are
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available. It can be extended to multichannel data, but its be-
havior is intermediate between that of the metric space method
(a single parameter is added) and the direct method (exponen-
tial growth in number of parameters to be estimated). While
the approach cleanly separates information carried by spike
counts from information carried by spike times, it does not
provide as detailed a parsing of temporal information as does
the metric space method. In contrast to both the metric space
method and the direct method, this approach is immediately
applicable to continuous responses and spike trains.

The key idea behind this approach is a formalization of
a basic attribute that a coding scheme must have in order to
be biologically plausible. A sufficiently small change in the
time of occurrence of a spike cannot result in a change in the
meaning of a spike train, and spike trains that differ by only an
infinitesimal change in a spike time must have nearly identical
probabilities. Thus, like the metric space method, the conti-
nuity of time is used explicitly. But unlike the metric space
method, there is no assumption made concerning the relation-
ship of spike trains that differ by small or large displacements
of a spike. Also, in contrast to the metric space method, the
approach does not assume a relationship between the two spike
trains that differ by insertion or deletion of a spike. These ideas
are naturally formalized in terms of the topology of spike trains
(McFadden 1965). That is, the space of spike trains of finite
duration can be considered to consist of a discrete set of strata,
one for each number of spikes. Spike trains with n spikes form
an n-dimensional manifold (parameterized by the time of each
spike). A neuron’s output is described by a probability distri-
bution on this set of strata. Within each stratum, the probability
distribution is assumed to vary smoothly, but between strata
no assumptions are made.

Thus, to determine the amount of transmitted information
in an experimental dataset, spike trains are stratified according
to the number of spikes n in the response. This partitioning
generates one component of the information, Icount, reflecting
the extent to which the total number of spikes in the response
can distinguish between the stimuli. Since Icount is determined
from a relatively small number of response categories, a stan-
dard discrete calculation may be used, and standard bias cor-
rections are effective. Then, the nth stratum is analyzed to
determine a contribution of spike timing Itiming(n). The total
information is Icount +

∑
n Itiming(n), where the second term is

the total information due to spike timing.
The calculation within the nth stratum crucially exploits

the assumption that the probability distribution is a continu-
ous function of the spike times. To determine Itiming(n), the
spike trains in the nth stratum are embedded into a Euclidean
space of dimension r ≤ n. The coordinates assigned to a re-
sponse are determined by inner products with a set of functions
f1, . . . , fr : a spike train x with spikes at times τ 1, τ 2, . . . ,τn

is mapped to coordinates ch(x) = ∑n
k=1 fh(τk).

For continuous signals, there is no discrete component
corresponding to the number of spikes, and all responses are
embedded into a space of the same dimension. A reasonable
choice for the embedding is the natural extension of the above
linear map to continuous signals: a signal v(t) is mapped into
the coordinates ch(v) = ∫

fh(t)v(t)dt.
As in the direct method, transmitted information is cal-

culated as a difference between a “total entropy” determined
from all responses considered together, and a “noise entropy”
determined within the responses to each stimulus. However, in
contrast to the direct method, these entropies are determined
by examining the statistics of the nearest-neighbor distances
(Kozachenko and Leonenko 1987). In particular, the contribu-
tion of spike timing to the information within the nth stratum
is estimated by

Itiming(n) ≈ r

N (n)

N(n)∑
j=1

log2

(
λj

λ∗
j

)

−
s∑

k=1

N (n, ak)

N (n)
log2

N (n, ak) − 1

N (n) − 1
,

where N (n) is the number of spike trains with n spikes,
N (n, ak) is the number of spike trains with n spikes elicited by
the kth stimulus, λj is the distance between the j th spike train
and its nearest neighbor, and λ∗

j is the distance between the j th
spike train and its nearest neighbor elicited by the same stimu-
lus. For quantities of data typically available in an experiment,
this nearest-neighbor estimator (of entropy or of information)
is substantially more efficient than binned methods. Demon-
stration that this estimator is unbiased (Kozachenko and Leo-
nenko 1987) relies critically on the assumption of smoothness
of the probability distribution.

Limitations The limitations of the embedding approach re-
late chiefly to the partitioning of the entropy estimate. When
the range of the number of spikes in responses is large, there
are many discrete partitions. In this regime, the bias estimates
for Icount may be ineffective. Moreover, at the tails of the distri-
butions of spike counts, there are only a few responses, so that
the estimate of Itiming may be ineffective. These difficulties may
be mitigated by lumping together partitions with similar num-
bers of spikes, but this compromises the unbiased nature of the
estimator. The practical difficulties of the discrete component
are exacerbated when the method is applied to multineuronal
data, since a separate partition is required for each combination
(n1, n2, . . . , nM ) of spike counts on each of the M-neurons.
This rate of growth of the number of partitions that must be
separately analyzed, though high, is much lower than in the
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direct method, since it is independent of (rather than exponen-
tial in) temporal resolution.

Relation to General Dynamical Systems Approaches Esti-
mation of entropy from the statistics of nearest neighbors is
related to estimation of dimension of a dynamical system’s
trajectory or attractor set. Grassberger and Procaccia (1983)
describe several versions of such procedures, wherein dimen-
sion is determined from the relationship between the number
of points within a given radius and the radius. When plotted
on log–log coordinates, the slope of this relationship is the
sought-after dimension. But in the present situation, the slope
is known (the dimension of the space in which we have em-
bedded spike trains), and the quantity of interest, the entropy,
is essentially the intercept of this line. Grassberger’s (1988)
finite-sample debiasing procedure applies specifically to the
slope (dimension); the Kozachenko and Leonenko (1987) es-
timator debiases the intercept (entropy).

Grassberger and colleagues (Kraskov et al. 2004) have
recently described a related approach to estimating mutual in-
formation via a nearest-neighbor approach that avoids explicit
estimates of dimension. However, this approach requires that
the response variable has a definite dimension. Thus, for ap-
plication to spike trains, a procedure such as stratification by
spike count is required to obtain an unbiased estimator, as in
Victor (2002).

Context Tree Method
The context tree method is a promising new approach both for
entropy estimation (London et al. 2002; Kennel et al. 2005) and
for estimation of mutual information applicable to the “many-
presentation” experimental design (Shlens et al. 2006). Like
the direct entropy estimator (de Ruyter van Steveninck et al.
1997; Strong et al. 1998), it is based on a discrete representation
of spike trains, but, it also makes crucial use of the dynamic
nature of spike trains—namely, that a spike train is a temporal
sequence in which the recent past influences the probability
of spiking. This dynamic process is modeled as a “context
tree” (Rissanen 1989), which differs from a Markov process
in that the depth of the history dependence can be nonuniform.
This model form is intuitively appealing for neural data, and
results in a substantial increase in efficiency compared with
approaches (see “Compression method”, below) that make
use of dynamics, but do not postulate a model form.

In essence, the method has two components: estimation
of a context tree model from the spike train data, and then
calculation of entropy from the context tree itself (e.g., by a
Wolpert-Wolf estimator: Wolpert and Wolf 1995). However,
rather than choose a single context tree model (cf. Hirata and
Mees 2003), the approach considers many context tree mod-
els. Each model’s contribution is discounted (Willems et al.
1995) by a factor that considers both the complexity of the

model (its “codelength”: Solomonoff 1964) and the extent to
which the model is a poor fit to the data. An advantage of this
approach is that confidence limits on the entropy estimates
can be determined via a Monte Carlo method that explores the
range of estimates that would result from alternative context
tree models (Kennel et al. 2005).

Other Methods
Below we describe several other approaches that may be use-
fully applied to estimation of information in neural data. Our
goal is to emphasize the variety of viewpoints that may be
taken, rather than to present an exhaustive review.

Principal Components The procedures used by Richmond
and Optican (Optican and Richmond 1987; Richmond and
Optican 1987; Chee-Orts and Optican 1993) are based on
principal-components analysis of rate functions estimated
from single-trial neural response. The hypothesis underlying
this approach is that information is coded as a firing rate en-
velope, and that individual spike trains serve as estimators of
this envelope. This approach can also be viewed as a kind of
embedding method, in that the rate-coding hypothesis leads to
embedding of all responses in a space of the same dimension,
regardless of the number of spikes. Within this space, informa-
tion is estimated by parceling this space into multidimensional
bins. A regularization procedure based on an additive noise
model and an assumed Gaussian shape of the response cluster
were used to improve performance (Chee-Orts and Optican
1993). To the extent that neural codes indeed conform to the
rate envelope hypothesis, the principal-components approach
will provide a good description of the code, with limited sam-
ple sets of the size achievable in typical experiments (Optican
and Richmond 1987; Richmond and Optican 1987; McClurkin
et al. 1991). However, by design, it will overlook any other
forms of coding. Additionally, the Gaussian regularization for
estimation of entropy, rather than the nearest-neighbor estima-
tor used in the embedding method, is tantamount to adding an
assumption about the manner in which responses vary across
trials.

Reconstruction Method The reconstruction method of
Bialek and coworkers (Bialek et al. 1991) was the first
information-theoretic approach successfully applied to decod-
ing dynamic neural activity. It provides another way of avoid-
ing the difficulties associated with estimating a large number
of probabilities, as is required by the direct method. The ba-
sic strategy is to identify a transformation of the observed
neural response that best reproduces the known stimulus se-
quence. The transmitted information in the neural response is
then known to be at least as high as the mutual information
between the actual stimulus and the stimulus reproduced by
this transformation rule. In some settings, a priori calculations

310 Biological Theory 1(3) 2006



Jonathan D. Victor

allow for an independently calculated upper bound on the
amount of information in the neural response, based on the
theoretical limits of a sensory system (Bialek et al. 1991).
When the upper bound provided by these considerations is
close to the lower bound provided by a reconstruction, this
approach is particularly powerful and elegant.

To seek a transformation between the neural response and
the stimulus, a functional form must be chosen. This functional
form is typically linear, though nonlinear extensions via the
Volterra formalism (Marmarelis and Marmarelis 1978) can be
used. The kernels that describe the transformation can then be
interpreted as a recipe for “reading” the neural code (Bialek
et al. 1991). The approach is typically applied to the spiking
activity of single neurons (Théunissen et al. 1996), but the con-
cept readily extends to multiple channels and/or continuously
varying data. One limitation of the approach is that the stimu-
lus must be represented as a time series, rather than as discrete
elements of a space. More fundamentally, the approach may
be impractical for highly nonlinear transformations, such as
are likely to be present within the mammalian central nervous
system, since the fitting of second order (or higher) terms in a
Volterra series will not be robust.

Power Series Method Panzeri and Schultz (Panzeri and
Schultz 2001; Schultz and Panzeri 2001) introduced another
strategy for overcoming many of the shortcomings of the di-
rect method by exploiting the continuity of time. Here, the
basic assumption is that information is an analytic function of
the length of the analysis interval L. Under this assumption,
information can be expanded as a power series in L. Very short
intervals are likely to contain at most one spike. The proba-
bility that a pair of spikes occurs within the analysis interval
increases with the square of the length of the interval. Thus,
an advantage of this approach is that the terms of the Taylor
series expansion separate the contributions of firing rate, pair-
wise correlation between spikes, and higher order correlations.
This parsing of temporal information, which is explicitly order-
by-order, is intrinsically limited to spike trains. However, it is
distinct from (and more detailed than) the kind of parsing pro-
vided by the metric space method. Additionally, this approach
bypasses the construction of a response space, so there is no
attempt to determine whether stimuli are “represented” by the
temporal patterns of activity.

In contrast to the reconstruction method, it is not assumed
that the relationship between a spike train and what it repre-
sents has a low-order power series expansion. Rather, a power
series is used to represent the information content of a spike
train as a function of the duration of the interval (i.e., order-
by-order in the number of spikes). Thus, the power series
method will have no trouble with highly nonlinear transfor-
mations such as thresholds and saturations that might lead to
difficulties with the reconstruction method.

The power series approach is readily extended to multi-
ple spike trains, but at any fixed order of approximation, the
number of cross-terms grows as a polynomial in the number
of neurons. The second-order terms can be further separated
into auto- and cross-correlation terms, providing insight into
how information is coded across a population of neurons. On
the other hand, when the spike trains have structure such as
regularity or bursts, there is no guarantee that the power se-
ries converges rapidly, or even at all. This may prevent suc-
cessful application to such spike trains, or to large analysis
intervals.

This approach has been used successfully to study so-
matosensory encoding in rat barrel cortex. Temporal analysis
of single spike trains demonstrated an important role for tim-
ing of the first spike (Panzeri et al. 2001), with a smaller role
for subsequent multispike patterns. Analysis of multichannel
data demonstrated the practicality of the approach for studying
coding by correlated activity across neurons, initially with a
limited temporal analysis (Panzeri et al. 1999) and later with
a full temporal analysis (Petersen et al. 2001).

Compression Method The entropy of a spike train can be
measured by how susceptible it is to lossless data compression,
via the Lempel-Ziv algorithm (Wyner and Ziv 1989; Farach et
al. 1995; Kontoyiannis et al. 1998; Amigo et al. 2004). As in
the direct approach, spike trains are segmented and discretized
into a sequence of symbols, and no assumptions are made as
to the nature of the code, or the statistical structure of spike
trains.

In essence, the Lempel-Ziv algorithm seeks to compress
a sequence of symbols by rewriting the sequence in terms of
a hierarchy of repeating substrings. The substrings that oc-
cur frequently thus provide a characterization of the statistical
structure of the neural activity. Additionally, the behavior of
the compression algorithm as a function of bin width could
be used to characterize the temporal precision of the code.
One anticipates that this approach should be highly adept at
dealing with high-order statistical patterns of spikes, such as
bursts (or even runs of bursts), because the compression algo-
rithm intrinsically seeks recursive layers of structure. Another
consequence of the avoidance of an explicit estimate of spike
train probabilities is that multineuronal data per se should not
be an obstacle.

While in principle this approach is exact, convergence of
the entropy estimates is difficult to bound and appears sensitive
to the details of the compression algorithm, such as the choice
of the initial dictionary of strings. Nevertheless, it can result
in efficient, meaningful entropy estimates when applied to
neural data (Amigo et al. 2004). Determination of algorithmic
complexity (Rapp et al. 1994) is a related approach, as are the
context tree methods described above.
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Spectrotemporal Methods Spectrotemporal (or time–
frequency) analysis is a general exploratory method that is
particularly suitable for neural data, both spiking and contin-
uous (Mitra and Pesaran 1999). It is not typically considered
an information-theoretic tool, but we mention it here because
it also can be used to identify meaningful statistical structure
in spike trains.

Spectrotemporal analysis is a natural extension of spectral
analysis. Spectral analysis formally requires that the signals to
be analyzed be “stationary” (i.e., have statistical properties that
do not change in time). Neural signals, especially those influ-
enced by external stimuli, do not have this property; rather, this
evolution in time may be specifically of interest. The straight-
forward way to deal with this problem is simply to segment
the data into periods that are sufficiently brief so that within
each period, the signals can be assumed stationary. Standard
spectral analysis applied to each segment can then reveal how
the frequency characteristics of a signal evolve over time. As
is well known, the length of the analysis segment and the
achievable frequency resolution limit are reciprocally related.
Sophisticated spectrotemporal techniques based on multita-
per estimates (Thomson 1982; Mitra and Pesaran 1999) and
wavelets (Schiff et al. 1994; Quiroga et al. 2001), while of
course unable to circumvent limits on simultaneous resolution
in time and frequency, represent a principled way to approach
them.

Spectrotemporal analysis can identify stimulus-dependent
changes in neural activity that would escape ordinary aver-
aging techniques, such as event-related synchronization and
desynchronization (Pfurtscheller and Andrew 1999). Spectral
analysis has a natural extension to the multichannel context:
calculation of coherences (or cross-spectra) between channels
that characterize their correlations within each frequency band.
Spectrotemporal analysis has a directly analogous extension,
which provides a description of how the coherence between
signals evolves over time. The phase relationships between
activities in different channels (e.g., different neurons or field
potentials in different brain regions) provide another way to
identify the direction of information transfer. The frequency
bands at which coherence is present can suggest how infor-
mation is transferred. For example (Schiff et al. 2000, 2001),
coherence between activities in distant cortical areas and be-
tween cortex and thalamus is present at particular frequency
bands at specific times during a behavioral task, and is corre-
lated with behavioral performance.

Another contact with information-theoretic approaches is
that regions of the time–frequency spectrum can be used as
classifiers of the neural response (Jarvis and Mitra 2001).
Under fairly general assumptions, the logs of the power in
nonoverlapping regions of a time–frequency spectrum are
approximately independently-distributed Gaussian variables.
Thus, reduction of a set of responses into measures of power

in multiple time–frequency regions can serve as a first step in
calculation of transmitted information. The amount of infor-
mation, as well as the time–frequency regions that are critical
in transmitting it, can thus be readily determined. Note that
this approach to estimating information not only exploits the
continuity of time, but also the intuition that neural coding is
smooth in the frequency domain.

Wavelet methods (Schiff et al. 1994; Tallon et al. 1995;
Quiroga et al. 2001) and multitaper methods, in essence, are
complementary strategies for parceling the spectrotemporal
domain into rectangular tiles. In multitaper methods, the tiles
are uniform, and thus optimized for detecting features of a
given temporal duration or frequency bandwidth. In contrast,
wavelets tile the spectrotemporal domain with regions whose
dimensions are reciprocally related, and thus optimized for
detecting features whose durations and bandwidths have a
given ratio.

Surrogate Datasets Since many hypotheses concerning neu-
ral coding can be phrased in terms of comparisons between
the observed data and surrogate datasets, procedures for surro-
gate data generation are important adjuncts to the procedures
described above. The use of surrogate datasets for testing hy-
potheses concerning the dynamics of continuous neurophysi-
ologic data is widely appreciated (Theiler et al. 1991; Schiff
et al. 1996; Theiler and Rapp 1996). The approach is at least
as relevant to testing and refining hypotheses concerning in-
formation transmission in spike trains.

Shuffling
Perhaps the simplest hypothesis that one might want to test
is whether the amount of information in an experimental
dataset is nonzero. As mentioned above, analytic estimates
of the bias in information estimates are available. However,
these estimates may not be applicable for at least two reasons:
the asymptotic regime may not be reached because the dataset
size is too small, or, the analysis method (e.g., the metric space
approach) does not treat each response independently. But even
in these circumstances, use of shuffled datasets can determine
whether the estimated amount of information, viewed as a non-
parametric measure of correlation between input and output,
is greater than chance (Victor and Purpura 1996b).

For multichannel datasets, additional simple surrogate
datasets are useful. To determine whether correlations between
responses can be explained on the basis of common driving by
a stimulus, rather than neuronal interconnections, the “shift-
predictor,” or more generally the “shuffle-correction” (Perkel
et al. 1967), can be used. Here, the individual channels of
the responses to a particular stimulus are regrouped to form
surrogate responses to that stimulus.
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Maximum-Entropy Methods: Single Neurons
For continuous signals, it is often of interest to determine
whether observed dynamical features of a neural signal are
fully explained by its second-order correlation properties. If so,
then the signals are consistent with a (perhaps multichannel)
Gaussian white noise that has been linearly filtered. If not,
nonlinear dynamics must be present. This kind of question can
be addressed by reanalyzing surrogate data that are constrained
to have the same second-order correlation structure as the
original data, and have higher order correlations determined
by the maximizing the entropy under these constraints. Such
surrogate data are conveniently created by randomizing phases
but preserving amplitudes (Theiler et al. 1991; Schiff et al.
1996; Theiler and Rapp 1996).

The maximum-entropy idea is readily extended to spike
trains, providing natural “coordinates” for response distribu-
tions in an elegant formal framework (Amari 2001; Nakahara
and Amari 2002).

This approach can be used to formalize questions related
to the important notion of “temporal coding” (Théunissen and
Miller 1995). Informally, “temporal coding” means that the
time course of neural activity, and not just the number of
spikes, carries information. Here, the term “time course” in-
cludes not only the time-dependent firing rate, but also more
subtle features of the firing pattern, such as interval structure or
highly reproducible “triplets” of spikes (Lestienne and Tuck-
well 1997). These aspects of firing pattern can be distinguished
by comparing the information-theoretic analysis of the orig-
inal data with analysis of surrogate datasets that match the
observed responses in terms of the time-dependent firing rate,
but are otherwise unconstrained. Such surrogates are inhomo-
geneous Poisson processes, whose firing rate is determined by
the observed poststimulus histogram, and are thus examples
of constrained maximum-entropy processes.

Surrogate datasets can be further constrained to match
the original data in terms of spike counts on each trial.
Such datasets can easily be created by “exchange resampling”
(Victor and Purpura 1996b). A further refinement constrains
the interspike interval distribution as well (Oram et al. 1999).
These strategies have been used to show that precisely timed
triplets of spikes do not contribute to information transfer
(Oram et al. 1999; Baker and Lemon 2000).

Maximum-Entropy Methods: Multiple Neurons
Application of maximum-entropy principles to analysis of
multineuronal activity can lead to substantial insights. It is im-
possible to determine the stimulus-response distribution em-
pirically for an entire neuronal population, since the dimen-
sionality of this distribution is very large. However, a practical
approach is to measure the individual stimulus-conditioned
response probabilities of each neuron, and to assume that the

full stimulus-conditioned population response distribution is
its maximum-entropy extension. This approach is equivalent to
approximating the stimulus-conditioned population response
distribution as a product of individual stimulus-conditioned
response distributions. In the retina—an important model
system—the error incurred by this approximation appears to
be quite small (Nirenberg et al. 2001; Nirenberg and Latham
2003).

Maximum-entropy methods can provide a compact and
comprehensible representation of the correlation structure of
the spontaneous activity of neuronal populations. In two re-
cent studies (Schneidman et al. 2006; Shlens et al. 2006),
maximum-entropy extension from measured pairwise cor-
relations accounted for the bulk of high-order multineu-
ronal correlations. Combining these strategies (i.e., fash-
ioning maximum-entropy distributions from a combination
of stimulus-conditioned single-neuron distributions and low-
order response correlations) may provide a powerful way to
analyze and understand population coding.

Summary

Understanding how neurons and neural populations represent
information requires a combined experimental and theoretical
approach. Shannon’s information theory provides the appro-
priate theoretical framework. In the Shannon approach, no
assumptions are made concerning the relationships of the cod-
ing elements to each other, or to the objects being represented.
This generality is a fundamental aspect of the strength and el-
egance of the Shannon approach. However, its generality also
engenders challenges to its use in experimental neuroscience,
for two reasons. First, neural activity is characterized by a wide
range of time scales, from the submillisecond range (e.g., the
intrinsic precision of spike generation) to times on the order
of a second (e.g., inhibitory synaptic potentials). Thus, with-
out the imposition of additional hypotheses as to the nature
of the code, the number of codes that need to be explored is
far too great for a direct experimental attack. Second, the rela-
tionship of the neural activity to the objects being represented
is of interest. This relationship is important to understand the
mechanism of coding, and because neural activity must not
only convey information but also manipulate it.

These considerations provide both a (retrospective) ratio-
nale for, and a unified view of, many approaches that have
recently been advanced for the analysis of neural coding. The
approaches described here vary in the assumptions made con-
cerning the neural code, ranging from virtually no assump-
tions, to merely exploiting the continuity of time, to positing
very specific forms for the relationship between coding ele-
ments. Making such assumptions allows analysis to be carried
out on datasets that are typically available from experiments.
By assuming that the codes have structure, these approaches
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also allow for identification of a systematic relationship be-
tween the objects and the code; i.e., a representation. How-
ever, imposition of assumptions necessarily increases the risk
that the relevant neural codes are simply not being considered.
At present, neuroscientists can grapple with this problem by
exploring a variety of approaches, each with its own set of
assumptions, and hoping that the biological conclusions are
relatively independent of the methodology chosen. It remains
to be seen whether a more systematic and fundamentally sat-
isfying theoretical approach can be fashioned.
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Théunissen F, Miller JP (1995) Temporal encoding in nervous systems: A
rigorous definition. Journal of Computational Neuroscience 2: 149–162.
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