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Nonlinear systems analysis: Comparison of white noise and
sum of sinusoids in a biological system

(Wiener analysis/frequency kernels/orthogonal expansions/vision)
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Communicated by Floyd Ratliff, December 5, 1978

ABSTRACT The Gaussian white noise and the sum-of-sin-
usoids methods of systems analysis provide equivalent de-
scriptions of nearly linear and strongly nonlinear transductions
in the cat retina. Smoothness in the frequency domain is a
common characteristic of biological transductions. This permits
a substantial improvement in the signal-to-noise ratio by using
the sum-of-sinusoids method, as is demonstrated for the trans-
ductions of the cat retina.

The application of Wiener’s theory of nonlinear systems analysis
(1) to biological transductions has become increasingly popular
in recent years (2-9). The Wiener procedure (1) generates a
sequence of orthogonal functionals that describes the response
to a Gaussian white noise input of the transducer under study.
Because an indefinitely long sample of a white noise signal
contains pieces that are arbitrarily close to any signal of finite
duration, a complete characterization of the response to a
Gaussian white noise input, in principle, allows for a complete
description of the dynamics of the unknown transducer.

The Wiener kernels describe the nonlinear dynamics of a
transducer in a form in which simple nonlinear transducers
have simple analytic expressions. This important property al-
lows the kernels to be used as a tool for the evaluation of models
for the transducer under study. However, laboratory mea-
surement of Wiener kernels by the white noise input and
crosscorrelation technique of Lee and Schetzen (10) is fraught
with difficulties (11, 12). Such difficulties include computa-
tional labor and the length of time required to extract reliable
higher-order Wiener kernels from a transducer with intrinsic
noise. This note demonstrates that another analytic technique,
based on an input signal consisting of a sum of sinusoids (7),
offers a solution to these practical problems.

The frequency kernels obtained by the sum-of-sinusoids
technique are Fourier components of the transducer’s response,
at harmonics and combination frequencies of the sinusoids in
the input signal. As a result, all kernels are calculated by a single
discrete Fourier transform, which, from a practical viewpoint,
may be regarded as the output of an array of digital filters.
Because the driven response is contained in only a small fraction
of the filters (the filters corresponding to small-integer com-
binations of the input frequencies), there is a great improve-
ment in the output signal-to-noise ratio. In addition, the fre-
quency kernels have the useful property that they approach the
Fourier transforms of the Wiener kernels as the number of
input sinusoids grows.

In addition to transducer noise, another source of error in the
white noise technique of kernel measurement is a deviation of
the input signal’s statistical properties from those of the ideal
ensemble from which it is drawn (13). This drawback is shared
by other recently proposed stochastic techniques to determine
an orthogonal series of functionals (11, 14), but is avoided in
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the sum-of-sinusoids method, because there the correlation
properties of the input signal are known exactly.

The potential advantages of the sum-of-sinusoids technique
are accompanied by a potential limitation. To apply this
technique it must be assumed that the response of the trans-
ducer is “‘smooth in frequency space.” Transfer characteristics
of transducers typically have this property because they are
often analytic functions of frequency. In this regard, it is im-
portant to realize that improvements on the white noise method
are made by imposing restrictions on its extreme generality.
Whether particular restrictions are appropriate is usually an
empirical question.

In this paper, experimental results obtained with the white
noise method and the sum-of-sinusoids method are compared
for specific neural transductions, namely the responses of cat
retinal ganglion cells to modulated patterns of light. Two
questions are addressed: (i) Do the major qualitative features
of the results obtained with the two methods agree? (i) Is there
a substantial difference in efficiency between the two methods,
as indicated by the signal-to-noise ratios? The cat retina provides
an excellent opportunity for the comparison of the two mea-
surement techniques, because it contains some units that re-
spond to fine patterns in an essentially linear way (X cells) and
others that respond in a highly nonlinear way, similar to a
rectifier (Y cells) (15, 16).

METHODS

The present techniques of visual stimulation and electrical re-
cording in the optic tract of the cat have been described in detail
elsewhere (16). A PDP 11/20 computer accumulated the times
of occurrence of pulses triggered by an extracellularly recorded
action potential of a single optic tract fiber. A spatial sine
grating, generated on a cathode ray tube by specialized hard-
ware (17), was centered in the receptive field of the unit. The
unit was then classified as X or Y by a modified version of the
null test (16). The contrast of the grating [(Iinax = Imin)/(Imax
+ Imin)] was controlled by a digital-to-analog converter. The
mean luminance of the grating was constant at 20 c¢d/m?
throughout the experiment.

For each unit, frequency kernels and Wiener kernels were
estimated over a range of root-mean-square contrasts and spatial
frequencies of the grating stimulus. To determine the frequency
kernels, the contrast of the grating was modulated in time by
a signal consisting of a sum of eight sinusoids of equal ampli-
tude, whose frequencies were spaced approximately equally
on a logarithmic scale from 0.21 to 31.2 Hz. There were eight
episodes of data collection, each 32.768 sec long; initial phases
of the sinusoids were varied as described (7, 13). At the input
frequencies and their second-order combinations, the first- and
second-order frequency kernels K; and K3 were determined
from the Fourier transform of the impulse train. At interme-
diate frequencies, the values of the frequency kernels were
interpolated by a cubic spline (7).
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FiG. 1. First-order kernels of an on-center X cell. The stimulus was a 1.0 cycle/degree grating, and the input signals produced a root-mean-
square contrast of 0.1. (A) First-order Wiener kernel H; derived from Gaussian white noise; (B) Fourier transform of first-order frequency kernel
derived from sum of sinusoids; (C) amplitudes of first-order frequency kernel K;. Second-order responses were negligible in this stimulus con-

figuration.

To determine Wiener kernels, the contrast modulation signal
was a band-limited (0-50 Hz) pseudorandom Gaussian white
noise. Every 10 msec, a new normally distributed value was
generated by summing 12 auxiliary pseudorandom integers
produced by a 31-bit shift register algorithm. Each of four in-
dependent signals 32.77 sec long was used twice for each
stimulus condition. The procedure of Lee and Schetzen (10) was
used to estimate the Wiener kernels H; and Hy from the
cross-correlation of the impulse train and the input signal. This
white noise procedure was modeled after commonly used
protocols of other workers (2, 5, 6, 8). Experimental determi-
nations of frequency kernels and Wiener kernels were matched
for duration (262 sec), root-mean-square stimulus contrast, and
approximate bandwidth (0.21-31.2 Hz as compared with 0-50
Hz). Data were analyzed off-line on a PDP 11/45 computer.

RESULTS

The Wiener kernels and frequency kernels were determined
for several spatial patterns for three X cells (two on-center, one
off-center) and four Y cells (three on-center, one off-center).
In all cases, the first- and second-order Wiener kernels were
large when and only when the corresponding frequency kernels
were large. In correspondence with previous results (7), X cells
responded to sum of sinusoids or white noise modulation of fine
grating patterns with a primarily first-order response. The re-
sponses of Y cells to these stimuli contained negligible first-order
components but substantial second-order components.

The Wiener kernels were compared directly with the fre-
quency kernels by Fourier transformation of the latter into the
time domain. This correspondence is shown for an X cell (Fig.
1) and a Y cell (Fig. 2). It is evident that the major peaks and
valleys of the Wiener kernels are similar in height, width, and
position to those of the Fourier transforms of the frequency
kernels. This excellent agreement demonstrates that the mesh
of eight frequencies in the sum-of-sinusoids signal is fine enough
to characterize the response dynamics.* The sum-of-sinusoids
method yields an improved signal-to-noise ratio because the
input power is concentrated on a mesh generated by only eight
frequencies. Thus, the sum-of-sinusoids procedure yields results
that agree well with those of the Wiener procedure, and at the
same time shows a considerable improvement in efficiency.

* On general principles, exact correspondence of the Wiener kernels
with the Fourier transforms of the frequency kernels should not be
expected, because the power spectrum of the sum-of-sinusoids is
approximately that of 1/f noise, not white noise.

DISCUSSION

The results presented above demonstrate that the sum-of-sin-
usoids and the white noise methods provide equivalent de-
scriptions of the biological transductions exhibited by the X and
Y retinal ganglion cells. Moreover, the frequency mesh used
to construct the sum-of-sinusoids signal is fine enough to de-
scribe accurately the responses of ganglion cells to modulated
patterns of light. The parameter-free prediction of the sec-
ond-order Wiener kernel of the Y cell demonstrates that another
theoretical attribute of the sum-of-sinusoids technique (13)
holds in practice: the second-order frequency kernel is very
nearly the Fourier transform of the second-order Wiener ker-
nel, even for a highly nonlinear transducer whose responses
contain significant fourth-order nonlinearities.

It is widely appreciated (for example, refs. 9-11) that any
laboratory implementation of the original Wiener technique
must involve compromises, and that practical advantages may
be gained by tailoring these compromises to known or suspected
attributes of the transducer under study. For example, Gaussian
white noise must be band limited if it is to be created in the
laboratory. By shaping the spectrum of the input noise signal
to match the frequency characteristics of the transducer, a
stochastic identification procedure may be optimized.

Nevertheless, the sum-of -sinusoids signal has an important
advantage over a corresponding Gaussian noise whose power
spectrum is concentrated near a finite number of discrete
frequencies: any finite sample of a stochastic signal (such as
filtered Gaussian noise) has actual correlation properties that
deviate from the theoretical statistics of the ensemble from
which it is drawn. In general, kernel estimation techniques (10,
11, 14) assume that the correlation statistics of the ensemble are
shared by the finite sample used. The assumption of ideal sta-
tistics is particuarly critical in the testing of highly nonlinear
transducers, because high-order correlation statistics approach
their ensemble mean very slowly. This problem reveals itself
as inaccuracies in the second-order Wiener kernels measured
with a stochastic input. The use of a deterministic signal such
as a sum of sinusoids whose exact correlation properties are
known avoids this difficulty.

The sum-of-sinusoids signal has another advantage over
continuous-band stochastic signals, because its power spectrum
is concentrated at a finite number of discrete frequencies. The
driven response of a transducer to the sum of sinusoids must
occur at these frequencies or their harmonics. Therefore all
power at other frequencies may be filtered out as undriven
responses. This narrow-band filtering, which may be accom-
plished by Fourier transformation, substantially enhances the
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Second-order kernels of an on-center Y cell. The stimulus was a 1.0 cycle/degree grating, and the input signals produced a root-

mean-square contrast of 0.2. (A) Second-order Wiener kernel Hs derived from Gaussian white noise; (B) Fourier transform of second-order
frequency kernel derived from sum of sinusoids; (C) amplitudes of second-order frequency kernel Ks. First-order responses were negligible

in this stimulus configuration.

signal-to-noise ratio. However, a characterization at a discrete
mesh of frequencies is useful if the transducer’s characteristics
are smooth in the frequency domain (18). Because transfer
functions and their nonlinear analogs are analytic functions,
it is not surprising that one may choose a relatively sparse mesh
of frequencies that nevertheless provides an accurate descrip-
tion of the response.

In conclusion, it is suggested that the application of the
sum-of-sinusoids technique may be extended to a wide variety
of biological systems, because smoothness in the frequency
domain is a common characteristic of biological transductions
(4-9, 18).
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