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ABSTRACT. Let hk(n,r) be the number of ways that r objects out

of a limitless supply of objects, distinguishable only by their =n
colors, can be distributed onte k points of a circle, given that
objects of each color occur on at most one point, and counting only
once arrangements that differ only by cyelic permutation of the points.
The numbers hz(n,r) arise naturally in the study of the response

of a nonlinear transducer to a sum of incommensurate sinuscids.

For the general hk(n,r), a recurrence relation, a generating function,

and explicit expressions are determined.

Introduction.

In this note, we state and solve a counting problem that arises
in the theory of nonlinear systems analysis. The recurrence relation
that generates the solutions to the counting problem is the "square"
functional equation of Stanton and Cowan [4], but has different initial
conditions. The specific counting problem of interest has a natural
generalization, which is treated with no additional difficulties.

The counting problem arises when one considers the response
of a nonlinear transducer to a signal that is a superposition of n
sinusoids of incommensurate frequencies {aj}. Such a procedure forms
the core of a practical method for the analysis of nonlinear neural
transducers [5]. A nonlinear transducer's response to a sum of sinusoids
may be represented as a trigonometric sum involving not only the n
input frequencies, but also their sums and differences [1]. It is natural
to inquire how many distinct (positive) frequencies of order r may occur
in this expansion. That is, how many positive numbers may be written in

the form

E:e.c o., where the {e,} are integers, €, = *1 , and
i B i

3

Yoo s
‘j‘]

The number of such expressions is equal to the number of ways of choosing

r numbers (possibly with repetition) out of the set of n numbers {aj},

)
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and assigning a signature Sj to each of the a,'s that are chosen at



least once. Each pair of arrangements related by inversion of all
signatures is counted only once, for in only one instance will the sum

be positive.

Abstractly, one is asked to choose r samples out of a supply
of n distinguishable kinds of objects, and to sort them into two
piles, such that each kind of object appears in at most one pile, and
arrangements that differ only by cyclic permutation of the piles are
considered identical. The number of such arrangements is just as
easy to determine for k piles as it is for two, and will be denoted

hk(n,r). This constitutes the counting problem explered below.

The enumeration hk(n,r) can be accomplished by a direct
argument that leads to equation (12) below. However, the argument
presented below, which is based on a recurrence relation and the use of
a generating function, shows the relationship of the numbers hk(n,r)
to a tableau of Stanton and Cowan [4], and generalizes a well-known argu-

ment of Feller [3].

A Counting Problem.

We seek hk(n,r), the number of ways that r objects out of
a limitless supply of objects distinguishable only by their n colors
may be distributed on k equally spaced points of a circle, such
that objects of each color occur on at most one point. Arrangements that
differ only by rotation of the circle are considered identical. Note

that hl(n,r) is the number of terms in the multinomial expansion

ntr-1
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pointed out above, the number hz(n,r) arises in the theory of the

t y
of an n-term expression raised to the r i power, and is As

response of a nonlinear system to a sum of incommensurate sinusoids [11]:
2 th 2 : ; X
it is the number of possible r order combination frequencies in the

transducer's response to an input sum of n incommensurate sinusoids.

To evaluate hk(n,r), we first prove a recurrence relation:

(1 hk(n,r) = hk(n—l,r) ik hk(n,r—l) + (k-1) hk(n—l,r—l)

for n,r = 2. The relation (1) is a generalization of the "square"

recurrence relation [4]

g(n,r) = g(n-1,r) + g(n,r-1) + g(n-1,r-1)
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The latter relation has been generalized in a different manner by

Carlitz [2]:

A(n,t) = p A(n-1,r) + p"A(n,r-1) + A(n-1,r-1)

The relationship of Carlitz's recurrence formula and equation (1)

is demonstrated by taking p = k-1 and B(n,r) = pnrhk(n,r):

nt

B(n,r) = p B(n-1,r) + p"B(n,r-1) + p" 'B(n-1,r-1)

To prove the present recurrence relation (1), we use a
generalization of a well-known argument [3] that was originally applied
in the case of k = 1. To each solution of the counting problem, we
associate a string of the symbols dagger (1), slash (/),and asterisk (*)

with the following interpretation.

Begin at some particular point on the cirecle, with some
particular color. Each occurrence of the "4'" means to place one object
of the current color at the current vertex. Each occurrence of the "/"
means to change to the next color. Each occurrence of the "#" means
to move clockwise to the next point. Thus, to obtain a unique
correspondence of strings of symbols to the counting problem, the

following rules must be obeyed:

(i) there must be exactly n T's;

(i) there must be exactly r-1 /['s;

(iidi) *#'s can occur only in clumps of k-1 or less;

(iv) clumps of *'s must occur immediately following a +, and

immediately preceding a [;

(v) there must be a T following the final *.

Now we reduce any string corresponding to hk(n,r) by removing
initial characters as follows. The initial character must be a + or /[,
by rule (iv). If it is a /, remove it and obtain a valid string
corresponding to hk(n,r—l). If the initial character is a *,
remove it unless it is followed immediately by a * (this would cause the
shortened string to break rule (iv)), and obtain a valid string
corresponding to hk(n—l,r). If the initial character is a + followed
by a clump of #%'s, remove the symbol +, the clump of *'s, and

the following /. This results in a walid string corresponding to
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hk(n-l,r—l). It is easy to verify that this procedure yields each of
the hk(n,r—l)—strings exactly once, each of the hk(n—l,r)—strings
exactly once, and each of the hk(n—l.r—l)—strings exactly k-1 times
(by rule (iii)). This yields the required decomposition (1) of
hk(n,r).

An expression for the generating function

m

Hk(x,y) 2: Xnyrhk(n,r) can easily be deduced from the recurrence
n,r=1
relation (1). The requisite initial values hk(l,r) =1 and

hk(n,l) = n are easily verified from the original counting problem. Thus

@ AR e

In order to cobtain explicit expressions for hk(n,r), we
introduce a new tableau gk(n,r) having the same recurrence relation
(1) as hk(n,r) but initial values gk(O,r) = gk(n,o) = 1. The special
case k =1 yields the binomial coefficients, and the case k = 2 has
been studied previously [4]. The generating function for the g-tableaux

follows from a calculation similar to that of equation (2):

o

2z n T _ d:
(3 Gk(x’y) = Z:_O gk(n;l’)x » 88 1-x-y-(k-1) xy
n,r=
| | Relations among gk(n,r) and hk(n,r) may be derived from the

generating functions. For example,

(4) gk(n,r) - hk(n+1,r+l) - hk(n,r+l) for™ T =t

(5) by (o+1,T+1) = A (k-)g (n,0) + g (n,c+D)] for m,r=1,
L 1

(6) é;% hk(n,p) = E{gk(n,r)—l] s and

(7) r hk(n,r) =n hk(r,n)

These identities follow from equating terms in
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(I-X)Hk(x,y) xy Gk(x,y) s

x X
Hk(x,y) + = T E{(k—l)y+l]Gk(X,Y) s

1 1
1:§-Hk(x’y) = E{Gk(x,y)—co(x,y)] , and
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Explieit Expressions.
The generating function GK(X,Y) may be expanded to obtain
explicit expressions for gk(n,r). For example,

" ab-. m-a-b m!
G (%¥) mza e [Ge-1)xy] alb! (m-a-b) "
» 3

Taking m=r + a2, b =m- n, shows that

r+a
n

©) g () =T (=1 QY

a
Equation (8) genmeralizes the (k = 2)-result of Stanton and
Cowan [4]. An alternate form of (8) may be cobtained by standard
manipulations:
n

» n-a 1 - | i T, ., b
(9 (e = I DT Q) 2 (L) =2 Gk

Equation (9) generalizes Lemma 3 of [41.

Several equivalent expressions for hk(n,r) may now be derived
by elementary combinatorial manipulations beginning with relations

(8) or (9) and using (4), (5), or (6).

e i _.ya n, ntr-a-1
(10) hk(n,r) = 2 (k-1) (a)( n-1 )
-1, ntr-a-1
(11) h, (n,1) = i(k-l)a(ra T T ey
(12) B Ca,x) = £ K3 PE)ED
e i atlos g &
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