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SUMMARY

1. The dynamics of the subunit mechanism of individual cat Y retinal ganglion
cells are investigated. In order to isolate the response of the non-linear subunit
mechanism, the visual stimuli were sine gratings of a spatial frequency sufficiently
high so that contrast reversal of the grating elicited no fundamental response in any
spatial phase. For study of the non-linear subunit mechanism, the contrast of the
spatial sine grating was varied in time by a temporal modulation signal, consisting
of either a square wave or a sum of sinusoids.

2. The responses of twenty-three Y ganglion cells (sixteen on-centre, seven off-
centre) to these two stimulus types were measured at a range of contrasts. Responses
to the sum-of-sinusoids signal were characterized by the second-order frequency
kernel. The overall size of the second-order frequency kernel was approximately
proportional to contrast. The deviation from proportionality suggested a power-law
scaling, with a power in the range 0-8-0-9.

3. Square-wave responses, as characterized by the post-stimulus histogram,
demonstrated identical responses at both reversals of the grating. A similar contrast
dependence was observed in the overall size of the square-wave responses.

4. In order to attempt to predict the square-wave responses from the sum-of-
sinusoids responses, the second-order frequency kernel measured at each contrast
level was fitted with a lumped linear-static non-linear-linear model. In eighteen of
twenty-three cells (eleven on-centre, seven off-centre), this model provided an
adequate description of the response to the sum-of-sinusoids stimulus. In these cells,
the linear—static non-linear-linear model accurately reproduced the square-wave
response.

5. In the remaining five ganglion cells (all on-centre), the second-order frequency
kernel could not be fitted by a linear—static non-linear-linear model. This diversity
of dynamical properties among Y cells was not apparent from the responses of these
Y cells to the square-wave temporal stimulus.

6. In the eighteen Y ganglion cells that were fitted well with the linear—static non-
linear-linear model, substantial variation of the dynamical parameters was found.
However, there were systematic differences between the dynamics of the typical on-
centre and off-centre ganglion cells. These differences relate to both linear stages of
the model, and are not merely consequences of the lower firing rate of the off-centre
cells.
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7. In these ganglion cells, the dynamics of the first linear filter were similar to the
linear dynamics of the X cell centre. There was a tendency for greater transience in
the first linear filter of the Y cell compared with that of the X cell. However, most
of the greater transience of the Y cell response originates in the second linear filter.
The non-linearity per se does not contribute to the transience of the Y cell.

INTRODUCTION

The retinal ganglion cells, the output neurones of the retina, provide an early
window onto the organization of visual information into parallel pathways (Lennie,
1980). In the cat, two major categories of ganglion cells may be distinguished on the
basis of their receptive-field organization: X cells, with qualitatively linear spatial
summation, and Y cells, with dramatically non-linear spatial summation (Enroth-
Cugell & Robson, 1966).

Along with the linear/non-linear distinction, other physiological features separate
these cell populations: X cell responses are sustained while Y cells are transient
(Cleland, Dubin & Levick, 1971). X cell receptive-field centres are much smaller
than Y cell receptive-field centres at corresponding retinal locations; this correlates
with morphologic differences between dendritic trees of X(8) and Y (a) cells (Boycott
& Wissle, 1974). One aim of this paper is to determine the relationship between two
of these characteristic physiological features of the Y cell: non-linearity and
transience.

Another salient feature of the organization of the cat retina is that X and Y cells
share input from the same bipolar cells (McGuire, Stevens & Sterling, 1984). Thus,
although the X /Y distinction is present at the ganglion cell level, it appears to lack
a morphological or physiological correlate at the bipolar cell level.

Qualitative features of the Y cell non-linear response imply that it is generated by
a network of subunits, each of which sums light linearly before applying a non-linear
transduction (Hochstein & Shapley, 19765; Victor & Shapley, 1979). These studies
suggested that the bipolar cell is the anatomical correlate of the Y cell subunit, as
well as the main input along the linear pathway to the X cell. This motivates the
second aim of this paper: a comparison of Y cell subunit dynamics with those of the
X cell.

The overall experimental strategy of this study is to isolate the non-linear subunit
contribution to the Y cell response, and to use two different temporal modulation
signals to probe its dynamics. The non-linear response may be isolated by stimulation
with a spatial grating of high spatial frequency (Hochstein & Shapley, 1976a). As
probes of subunit dynamics, we use temporal modulation signals consisting of either
a sum of sinusoids or a square wave. The sum of sinusoids is a broad-band, complex
signal. It has mathematical properties that make it an efficient tool for collecting
data suitable for constructing a dynamical model. The square-wave signal provides
a means to test the dynamical model and facilitates comparison with more
traditional studies of ganglion cell properties.

With a concise dynamical model in hand, we can mathematically dissect the Y cell
non-linear pathway, and compare its properties with those of the X cell centre
(Victor, 1987). This comparison indicates that the more transient nature of the Y cell
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response is due primarily to a second stage of linear processing following the non-
linearity, and not to the non-linearity itself. Furthermore, the dynamics of the non-
linear pathway of on-centre and off-centre Y cells are distinct; this is in contrast to
the similarity of the linear pathways of on- and off-centre X cells.

METHODS

Physiological methods

Recordings of single retinal ganglion cell activity were made in fourteen adult male and female
cats, including six cats used in the companion study of X cells (Victor, 1987). The physiological
preparation was identical to that of the X cell study, and will only be summarized here.

Anaesthesia was induced with ketamine (10 mg/kg 1.M.) and maintained during surgery with
sodium thiamylal administered 1.v. as needed. During recording, anaesthesia was maintained with
urethane (02 g/kg 1.v., loading; 0-1 g kg™! 24 h™! 1.v., maintenance) and paralysis was induced with
gallamine triethiodide (5 mg kg™ h™ 1.v.). During paralysis, depth of anaesthesia was monitored
by blood pressure, heart rate, EEG, and salivation. Blood pressure was maintained above 90
mmHg with fluids if needed; end-expiratory CO, was maintained in the range 3:0-3-5%, and
temperature was maintained at 38-39 °C. Glucose and oxygen were administered periodically. The
corneas, protected with contact lenses with a 3 mm diameter artificial pupil, were lavaged
periodically with saline.

Ringer solution-filled pipette microelectrodes (typical resistance, 10-30 MQ) were used to record
single-unit activity of retinal ganglion cells, either as axon spikes in the optic tract, or as unitary
S-potential activity in the dorsal lateral geniculate nucleus (Kaplan & Shapley, 1984). The
receptive field of the unit was mapped on a tangent screen, and the unit was classified as X or Y
by its response to a high spatial frequency grating (Hochstein & Shapley, 1976a). Refraction was
corrected by trial lenses chosen to optimize the unit’s response to fine patterns. We determined two
quantities — the centre spatial frequency resolution and the subunit spatial frequency resolution
— by listening to the response of the unit to gratings at a contrast of 0-5. The centre spatial
frequency resolution was defined as the spatial frequency of the finest grating which elicited a
detectable linear (bar-for-bar) response to a drifting grating, moving at a velocity of 2 bars/s. The
subunit spatial frequency resolution was defined as the spatial frequency of the finest grating which
elicited a frequency-doubled response to square-wave contrast reversal at 2 Hz. For quantitative
study, a discriminator circuit was set to send pulses to the computer at each occurrence of an action
potential of the isolated unit. The number of impulses during each frame of the display (3-699 ms)
was recorded on-line by a PDP 11/23 computer for subsequent analysis. Off-line analysis (plotting,
kernel computation, and modelling) was performed on a PDP 11/73 computer.

Stimulus description

Visual stimuli were realized on a Tektronix 608 display oscilloscope with a fast white (P4)
phosphor. The X (horizontal), Y (vertical) and Z (intensity) voltages were generated by specialized
electronics (Milkman, Schick, Rossetto, Ratliff, Shapley & Victor, 1980) interfaced to the PDP 11/
23 computer which recorded impulse arrivals. This apparatus provided for control of a 256 x 256
pixel raster display at a frame rate of 270-3 Hz. The raster has a mean luminance of 100 c¢d/m?2, with
the Z input of the oscilloscope modified so that luminance is linear as a function of voltage for
variattons around the mean of up to 50 %.

Each visual stimulus consisted of a stationary pattern whose contrast varied in time. In most of
the experiments, the pattern was a spatial sine grating whose spatial frequency was chosen to be
half of the subunit spatial frequency resolution of the cell under study. In some Y cells, the centre
spatial frequency resolution was sufficiently high so that this grating elicited a linear response as
well; in these units, a higher spatial frequency (typically 75% of the subunit spatial frequency
resolution) was used.

Data collection was segmented into a sequence of 35 s episodes. The first 5 s of the response to
each stimulus pattern were discarded ; the remaining 30-3 s (8192 frames) comprise the data saved
for later study. Episodes were of two types: ‘analysis’ and ‘synthesis’. The analysis episodes
provided data from which model parameters were determined ; the synthesis episodes provided
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measurements of responses to unrelated temporal patterns and provided for testing of the
model.

In all episodes, the average luminance over both space and time was a constant value
Ly = 100 cd/m®. The fractional deviation from this mean luminance (the signed Weber fraction)
was equal to a product of a fixed spatial function (a sine grating, denoted ¢(X, Y)) and a temporal
modulation signal s(¢). Thus, the luminance L(X, Y, t) of the stimulus at a point (X, Y) and time

tis given by L(X,Y,t) = L[1+s(t) g(X Y)]. )

The temporal modulation signal s(t) is either an analysis signal s, (¢) or a synthesis signal s, (¢), as
described below. The maximum excursion of the spatial function ¢(X, Y) was equal to 1, and was
always over the receptive-field centre (by convention at (X, Y) = (0, 0)). That is, a grating of
spatial frequency k was specified by the spatial function ¢(X, Y) = cos (27kX).

The models which will be developed below have the (signed) Weber fraction as their input. For
all stimuli used in these studies, the (spatial) average of the spatial function ¢(X, Y) was zero, as
was the (temporal) average of the modulation signal s(t). Thus, the signed Weber fraction at the
receptive-field centre is always equal to the temporal modulation signal s(t).

The temporal modulation signal for the analysis episodes was a sum of sinusoids at eight nearly
incommensurate frequencies f,. For each modulation depth m,,,, eight sum-of-sinusoids signals
were constructed with distinct relative phases of the component sinusoids. These eight distinct
analysis signals are denoted s,,, ,(f) (p = 1,2, ...,8). They are defined by

8
Sana, plt) = My, T cos (2afit+ @, ). (2)

j=1
In this equation, m,,, is the modulation depth produced by each sinusoidal component. The eight
frequencies f; are approximately equally spaced logarithmically: 0-231, 0-495, 1-023, 2-079, 4191,
8415, 16863 and 33-758 Hz. These frequencies are exact integer multiples (7, 15, 31. 63, 127, 255,
511, 1023) of the common fundamental frequency 0:032999 Hz. The phases ¢, , are all +7/2 or
—m/2, as determined by the elements of an eight-by-eight Hadamard matrix (Table A1l of Victor
& Shapley, 1980). The analysis signal was presented with modulation depths per sinusoid m,,, of
00156, 00312, 0-0625 and 0-125. The root-mean-squared modulation depth of the sum-of-sinusoids
signal is 2m,,,; the maximum modulation depth, which is achieved only once in 65536 bins, is

Smana'

In the synthesis episodes, the temporal modulation signal s, (¢) consisted of a symmetrical
square-wave signal, of temporal frequency f,, = 1:05 Hz, with equal excursion above and below

Zero: Soyn(t) = Mgy, 89(foynt), (3)

where m,(t) is the modulation depth of the synthesis episode and sg(u) is a symmetrical square
wave function defined by

+1,ifn<u<n+i for some integer n
sq(u) = { S : & )

—1,ifn+3<u<n+1 for some integer =.

The square-wave synthesis episodes were run at a range of modulation depths m,, (typically 0-125,
025 and 0-5).

Analysis and synthesis episodes were alternated, with 10 s between episodes during which the
display was a uniform field at the mean luminance. Modulation depths were increased by a factor
of two after each analysis—synthesis pair. A block consisted of one episode of each condition at each
modulation depth. This block was repeated eight times; the phase (¢, , of eqn (2)) of the input
sinusoid for frequency j on repetition p was chosen as described above. This procedure provides for
accurate measurement of the first- and second-order frequency kernels, without interference from
higher-order combination frequencies below order eight (Victor & Shapley, 1980).

Analytical methods

Responses to the square-wave stimuli s, ,(t) were described by the standard post-stimulus time
histogram. Each histogram was derived from eight records of 30-3 s, each of which contained 32
cycles of the 1-05 Hz square wave. The bin width for the histograms was one frame of the display,
of 3:699 ms.
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Responses to the sum-of-sines stimuli s,,, ,(f) were used to calculate the frequency kernels

(Victor & Shapley, 1980). The frequency kernels generalize the notion of a transfer function to non-
linear transducers. The frequency kernels are obtained from the Fourier components of the
transducer’s response. The first-order frequency kernel at frequency f; and modulation depth m

ana’

denoted K,(f;;m,,,), is proportional to the Fourier component of the response at the input
frequency f,. The second-order frequency kernel K,(%f,,f,:m,,,) at a pair of input frequencies
(£, f:) is proportional to the Fourier component of the response at the combination frequency
i Pl

For the analysis of impulse trains, the unit’s response ,,, ,(¢) to the stimulus s,,, ,(¢) is taken to

be a train of d-functions, one at the time of occurrence of each impulse. The first-order frequency

kernel is defined by
K (f;: Mana) = 2y (t) exp[— (27t + 6, )] ®)
The second-order kernel is defined by
Eo(fy S Mana) = 2 {Pana,p(0) eXp[—u2nfyt 4 2, 46, , 46, )] G+ ),
Ko(—f fes Mana) = 2{ T 30a, »(t) €XP [—d—2aft+2nf t—¢, ,+¢, ) (+k),

and Ko(ff;3 Mana) = 4 {Tona, ,(t) €Xp[—e(47f; 1+ 26, )]> . (6)

In eqns (5) and (6), { ) denotes an average over time ¢ and phase set p, and ¢ = 4/ —1. The explicit
inclusion of phase terms in the averages of eqns (5) and (6) prevents cancellation of responses as

they are averaged across distinct phase sets. Because the response r,,, ,(¢) is considered to be a sum

of -functions, this average reduces to a trigonometric sum, with one term for each nerve impulse.
Note that the frequency kernels have dimensions of impulses/s, and are not normalized for input
modulation depth. The frequency kernels, and their relationship to the Wiener kernels, are
described more fully elsewhere (Victor & Knight, 1979).

For a non-linear transducer, the first-order frequency kernel is the set of values of the transfer
function of the closest-approximating linear transducer at each of the input frequencies, scaled by
the modulation depth m,,,. The second-order frequency kernel describes the deviation from
linearity as measured by interactions of pairs of input sinusoids. The second-order frequency kernel
does not furnish a complete description of a non-linear transduction (which would in general
require knowledge of kernels of all orders), but does provide a convenient starting point for such
a description.

RESULTS

The first step in the present analysis of the Y cell subunit dynamics is the
construction of a model. The construction of a model is necessary for two reasons.
First, although the second-order frequency kernel (eqn (6)) expresses deviations from
linearity, it is not an exhaustive description of such deviations. Without additional
information or suppositions as formalized in a model, the second-order frequency
kernel is an incomplete description of the subunit dynamics. The second reason for
constructing a model is to reduce the amount of data contained in the second-order
frequency kernel to a smaller number of parameters. In formulating the model, the
sixty-four amplitudes and phases of the second-order frequency kernel (eqn (6)) will
be reduced to a much smaller number of dynamical parameters (such as time
constants and feed-back strengths) which have a more intuitive physiological
meaning.

After the model is constructed, we will check its validity by using the model to
predict responses to the square-wave (synthesis) test input (eqn (3)). Then, the model
parameters will serve as a basis for the comparison of the dynamics of on- and off-
centre cells, and of X and Y cells.
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Construction of a dynamical model

As reported in previous studies (Victor & Shapley, 1979), the response of a Y cell
to sum-of-sines modulation of a high spatial frequency grating is described by a first-
order frequency kernel which is not significantly different from zero (Fig. 1), and a
large second-order frequency kernel (Fig. 2.4). This implies the presence of an even-
order non-linearity. Under the conditions of the present study, all Y cells showed the
near-absence of the first-order frequency kernel; for this reason, the first-order
frequency kernel will be discussed no further.

32
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Fig. 1. Amplitudes of the first-order frequency kernel (eqn (5)) of the response of an on-
centre Y cell to a 2:0 cycle/deg grating modulated by a sum-of-sinusoids signal with a
modulation depth per sinusoid m,, = 0-125. First-order kernel amplitudes (@) are
typically smaller than the uncertainty of measurement, as quantified by the standard
deviation of the estimates of the kernel from eight successive episodes (O). Unit 7/6.

Fig. 2. 4, second-order frequency kernel (eqn (6)) of the response of an on-centre Y cell
to a grating modulated by a sum-of-sinusoids signal. These data are derived from the
same experiment as Fig. 1. B, values of model second-order frequency kernel, derived
from eqn (10). Parameters: M, = 464, A,b,(a) = 1201, N, , =8, N ,T} , = 56:9 ms,
Hg , =0757, T, , = 0:071 s,NLW—S NLWTLW—36ms, Hg, =0985 T, , =0032s,
D =2 ms. C, difference between measured (4) and model (B) second-order frequency
kernels. In all panels, the quantity plotted (the frequency kernel or the difference of two
frequency kernels) is a complex-valued function of two frequencies. Amplitudes of this
function are plotted as a contour map, on a scale of one contour line for 1 impulse/s. The
tickmarks point downhill. Phases of this quantity are represented as colour, with green
indicating a phase of zero, red indicating a phase shift of one-half a cycle, blue a phase lag
of one-quarter cycle, and yellow a phase lead of one-quarter cycle. Thus, real-valued
quantities appear with a colour along the red—green line, and imaginary-valued quantities
appear with a colour along the blue—yellow line. The surface is interpolated by a cubic
spline across the lattice of points (+f),f,) on which its value was determined by eqn (6).
The upper half of each plot shows values at the sum frequencies K,(F,, F,); the lower half
of each plot shows values at the difference frequencies K,(—F,, F,). In each half of the
contour map, frequency axes are logarithmically transformed between the lowest test
frequency (0-231 Hz) and the highest test frequency (33758 Hz).



Fa

Fa

Fa

RETINAL Y CELL SUBUNIT DYNAMICS 295

34.0 =

97 =

28

F1

0-80 =

0-23

0-23 =

0-80 4
—F, 28+



296 J.D.VICTOR

TaBLE 1. The dynamical model
Time domain (non-linear) Frequency domain (linearized)

o First linear filter (U)
U) ut) = f s(t—YUW)dt ii(w) = U(w) §(w)

o
Ny, N,
where D)= (——| " (1-—Tae )™
1+wT, 1+wTy

Static non-linearity (N)
N) 2@t =[P
o Second linear filter (W)
(W) w(t) = f w(t—t)WE')de W(w) = W(0) ¥ (0)

°
-~ N 3 N 'y
where W(w) = (——1—) - 1——H‘°’-'W— oY
1+ Ty 1+wTy
Impulse generation (/)

(I) r(t) = max{d,w(t—D)+M,, 0} flw) = Age™Pid(w)+ M, (w)

Summary of a non-linear model for the dynamics of the Y cell subunit. The model is a sandwich
of a static non-linearity between two linear filters. The input to the model is s(t), the signed Weber
contrast at the centre. The first linear filter, U, consists of a low-pass filter comprised of N, , stages
of time constant 7, ;, and a subtractive high-pass filter of strength H; , and time constant T} y. Its
operation is represented in the frequency domain by multiplication by its transfer function U(w),
and in the time domain by convolution with its impulse response U(t). U(¢) is the inverse Fourier
transform of U(w). The output of the first linear filter, u(t), is the input to a static non-linearity N.
This non-linearity is a rectifier with input and output related by a power-law transformation of
exponent . The output of the rectifier, ’(t), is the input to a second linear filter, W. The second
linear filter, W, contains a low-pass filter comprised of N, ,, stages of time constant T} ,,, and a
subtractive high-pass filter of strength Hj ,, and time constant Ty, . Its operation is represented in
the frequency domain by multiplication by its transfer function W(w), and in the time domain by
convolution with its impulse response W(t). W(t) is the inverse Fourier transform of W(w). The
firing rate (t) is equal to the output of the second linear stage, w(t), scaled by an overall gain 4,,
and added to the firing rate in the absence of stimulation, M. It is delayed by a conduction delay
D and must be non-negative. The Fourier transforms of r(t), s(¢), u(t), ’(t), and w(t) are denoted
by #(w), 8(w) #(w), ¥'(w), and W(w). Note that the static non-linearity is not readily represented in
the frequency domain, and the frequency domain representation also neglects the truncation at
zero impulses/s.

The qualitative features of the second-order frequency kernel imply a minimal
framework for a dynamical model, consisting of a linear filter, followed by a static
(instantaneous) non-linearity, followed by a second linear filter. The first linear filter
corresponds to processing within an individual subunit; the second linear filter
corresponds to pooling of subunit outputs (Table 1 and Fig. 3).

Perhaps the simplest way to embed this concept into a non-linear model is to
assume that the non-linearity is quadratic. This is equivalent to the assumption that
the higher-order frequency kernels (and the higher-order Wiener kernels) are zero.
However, a quadratic non-linearity would imply that overall response size should
scale quadratically with contrast, which stands in contradiction to the observed
proportional scaling (Hochstein & Shapley, 1976b). Not surprisingly (see below), the
quadratic assumption will lead to a very poor prediction of the square-wave
response.

The approximate proportionality of the response size and contrast suggests that
a rectifier is the generator of the non-linearity. Such non-linearities will generate non-
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Fig. 3. A diagram of the basic linear—non-linear-linear sandwich model. Components of
the model are described in detail in the text and in Table 1.

zero frequency kernels of higher even order. The second-order frequency kernel,
together with the assumption that the only non-linearity is rectification, does not
suffice to determine these higher-order kernels, or the non-linear model, completely.
This is because any network of linear filters and rectifiers combined in series,
parallel, and feed-back loops will result in a transducer whose output is proportional
to its input ; these networks may not be readily distinguishable by their second-order
kernels. However, among all such combinations, the linear-non-linear-linear cascade
is the simplest.

The linear—non-linear-linear cascade model is diagrammed in Fig. 3. The initial
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stage of the model has as its input the stimulus luminance L(X, Y, ¢) (eqn (1)). A
Weber’s-law mechanism extracts the signed Weber fraction s(¢) from the luminance.
(For stimuli used in the present study, the signed Weber fraction s(t) is related to the
local luminance fluctuation by a proportionality L, (eqn (1).) The rationale for
explicitly postulating a Weber’s-law mechanism is based on physiological evidence
for such a mechanism at the level of the photoreceptor (Baylor & Hodgkin, 1974),
and is discussed more fully elsewhere (Victor, 1987). The signed Weber fraction s(t)
is operated on by the first linear transducer of the sandwich, denoted U, producing
an intermediate signal u(¢). In the frequency domain, the intermediate signal (t) and
the signed Weber fraction s(t) are related by multiplication by the transfer function
U(w) of U: 5

i(w) = U(w) §(w). (7)

(Here, %(w) and §(w) denote the Fourier transforms of u(t) and s(t), respectively.) In
physiological terms, u(¢) represents the retinal signal just prior to the non-linearity
of the subunit, and U(w) represents the dynamics of the transduction that produces
this signal.

The intermediate signal u(f) is the input to a non-linearity N, and the output of the
non-linearity is the signal «’(¢). Since this non-linearity is assumed to be ‘memoryless’
or instantaneous, it may be described by

w'(t) = N(u(t)). (8)

The output of the non-linearity, u'(t), is operated on by the second linear transducer
of the sandwich, denoted W. The output of W, denoted w(t), and its input «’(f) are
related by multiplication by the transfer function W(w) of W:

B(w) = W ()@ (). 9)

In physiological terms, w(t) represents the pooled output of the subunit network, and
W (w) represents the temporal integration that corresponds to this pooling.

Finally, impulse generation is represented by a process of gain A4, (with units of
impulses/unit contrast), and impulse propagation is represented by a conduction
delay D. Other than the addition of a firing rate in the absence of stimulation,
denoted M,, and truncation at 0 impulses/s, the impulse-generation process is
assumed to be linear. It is therefore grouped with the filter W, as a linear process
which follows the non-linearity.

The formula for the second-order frequency kernel (eqn (6)) for this linear—non-
linear-linear sandwich follows from the formula for the Wiener kernel of this
transduction (Korenberg, 1973), and the near-identity of the second-order frequency
kernel with the Fourier transform of the second-order Wiener kernel (Victor &
Knight, 1979). For the linear-non-linear-linear sandwich of Fig. 3, the expected
second-order frequency kernel is then approximated by

Kz(Fl’F2;mana) =
Agby(N) m2,, exp[—2muF,+F,)D) U@2nF,) U@2nF,) W2n(F,+F,)). (10)

In this equation, by(N) is the coefficient of the second Hermite polynomial in the
orthogonal expansion of the defining eqn (8) of the static non-linearity N. This
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orthogonal expansion must be performed with respect to a Gaussian of variance
equal to the power of u(t). This power, to be denoted Py, is proportional to the square
of the modulation depth m,,:

Py =1m2, T |U@2nf) (11)
j=1

As shown in the Appendix, for the power-law rectifier
| N(u) = fu|*, (12)
the coefficient b, of eqn (10) is given by
by(@) = am™® (2P,)*2 1 ['((a+1)/2) b(a > 0). (13)

We are initially concerned with the quadratic (a = 2) and linear rectifier (« = 1)
cases. For these special cages,
by(2) =1 (14)

and b,(1) = (27P,)%. (15)

Note that for the quadratic non-linearity (a = 2), b, (eqn (14)) is independent of
the analysis modulation depth m,,,, so that the second-order frequency kernel
K,(F,,F,;m,,,) will be proportional to m2,, (eqn (10)). However, for a linear rectifier
(¢ =1), b, is inversely proportional to m,,, (as seen by substituting eqn (11) into
eqn (15)), and thus the second-order frequency kernel will be proportional to
Mina (eqn (10)).

In order to apply the model eqn (10) to experimental data, we chose to postulate
simple functional forms for the transfer functions U(w) and W(w). This approach
avoids the need for interpolation between measured values of the second-order
frequency kernel, and allows direct comparison with X cell dynamics (Victor, 1987).
The forms chosen are:

- 1 Nyvu Hg Ns,u
Ulw) = (1 +wTy, u) (l 1+ Ty, U) (16)
and
~ _ 1 Niw Hg y \Vsw
W) = (l +“1’TL, w) (1 1+WTS, W) {17

Each functional form is thus a product of a series of identical low-pass stages and a
series of identical subtractive high-pass stages. In each equation (* =U or W), Ty, .
is the time constant of each of the N, . low-pass stages; Hy . is the strength and
Tg,« is the time constant of each of the N . subtractive high-pass stages.

To estimate the parameters of the transfer functions (eqns (16) and (17)), the
model second-order frequency kernel (eqn (10)) was fitted to the experimentally
determined second-order frequency kernel. The criterion of goodness-of-fit was the
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sum of the squares of the deviation of the model from the data, at each of the points
of the second-order kernel:

8

R= % IKdata(fj’fk;mana)_Kmodel(fj’fk ; ”na.na.)l2

j=1,k=1
8

+ 2 |Kda.ta(fj’ —fk;mana)_Kmodel(fj’ _fk;mana.)lz' (18)

-1, k=1
1%

In this equation, Kg,,, is the experimentally determined second-order frequency
kernel, and K4, is given by the model eqn (10) with b,(N) set equal to by(a) (eqn
(13)).

The model parameters were determined by minimizing the residuals (eqn (18)).
This minimization formally involves all of the parameters of the filter functions (eqns
(16) and (17)), as well as the overall gain A,, the coefficient b,(x), and the delay D.
The minimization was carried out by an iterative scheme based on the non-linear
least-squares algorithm of Fletcher & Powell (1963).

Since the minimization procedure involved a large number of parameters, several
special features were exploited to make it more tractable. First, the conduction delay
D was not determined by the least-squares procedure, but was calculated from the
retinal location according to the data of Stone & Fukuda (1974). Second, the para-
meters A, and b,(a) were not fitted independently ; rather, their product was fitted,
and then b,(ax) was determined from eqn (13) based on an assumed value of a.

Third, it was observed that fits to some components of the model were
approximately independent. The independence was most apparent with respect to
the low-pass stages and the high-pass stages of the model. That is, the value for the
low-pass time constants T}, ;, and T}, , obtained by minimizing the residuals (eqn (18))
with the high-pass parameters held fixed was relatively insensitive to the particular
value chosen for the high-pass parameters. This is because Ty, , and T} y affect
primarily the rate of roll-off of the frequency kernel at high frequencies, and do not
affect the low-frequency amplitudes or phase shifts. This approximate independence
enabled the fitting procedure to proceed in an iterative fashion: first, a guess was
made for the high-pass parameters, and low-pass time constants were determined by
minimization of the residuals (eqn (18)) with the high-pass parameters held fixed,
and then the low-pass time constants were held fixed and the high-pass parameters
were optimized. In a similar fashion, the high-pass parameters for the first filter
(Hs,y and T ;) were approximately independent of the high-pass parameters for the
second filter (Hg i and Ty y); this permitted an iterative approach to fitting the high-
pass component. The overall scale factor Ayb,(a) interacted strongly with the
dynamical parameters, and the low-pass stages of the filters U and W also interacted
strongly with each other. When an approximate minimum was located by the
iterative procedure outlined above, a final minimization was performed in which all
continuous parameters (4,by(a), Ty v, Hs v, Ts,v» Tr.w» Hs,ws Ts,w) were simul-
taneously allowed to vary.

The above procedure was carried out parametrically for a range of values for the
integer parameters Ny, ;, Ng y, Ny, w, and Ng . Again, the low-pass parameters
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TABLE 2. Population statistics for model parameters

Y cell
Parameter population Minimum Maximum Median Mean s.p. c.v. P
Agby(a) On 632 2206 1305 1444 570 039) o oo
(impulses s7! Ooff 207 1670 493 796 608 076
(unit contrast) 2) All 207 2296 1210 1192 654 055
M (impulses/s) On 413 789 51’5 556 131 0'23} <0001
Off 2:3 40-2 123 152 131 0-86
All 2:3 789 445 39-8 239 060
Ny Ty, (ms) On 34-7 605 494 479 83 017} ...
Off 23-3 546 319 368 115 026
All 23-3 605 436 436 109 025
Hg, On 0637 1424 0964 1007 0302 0'30} > 01
(dimensionless) Off 0694 1-051 0958 0884 0151 017
All 0-637 1-424 0964 0959 0256 027
Ty (8) On 0041 0-359 0056 0088 0091 103 } > 01
Off 0013 0125 0074 0072 0042 058
All 0013 0-359 0068 0082 0074 090
Ny T, w (ms) On 17 156 86 80 38 048 0-006
Off 62 369 226 206 119 058
All 17 369 94 130 99 076
Hg, On 0452 1174 0TI7 0801 0258 032) .o
(dimensionless) Off 0237 0670 0544 0518 0155 030
All 0237 1174 0633 0691 0260 038
Ts,w (8) On 0002 0045 0011 0014 0012 107 0006
Off 0010 0-101 0046 0044 0033 075
All 0-002 0-101 0014 0026 0026 100

Population statistics for the parameters of a non-linear model for the dynamics of the Y cell
subunit. The meaning of the parameters is defined in the text and Table 1. s.p., standard deviation ;
c.v., coefficient of variation (standard deviation/mean). Probability values for the significance of
the difference of means population statistics for on- and off-centre Y cells were calculated by a
bootstrap analysis of variance (Efron, 1980). The conduction delay D of Table 1 was in the range
1:0-3:0 ms for all Y cells.

N, yand Ny, and the high-pass parameters Ng , and Ny ,, were independent. For
all units studied, single-stage high-pass filters (N ;, = 1 and N , = 1) provided the
best fits. The optimum number of low-pass stages was more variable, and ranged
from six to twenty-four. This variability is probably due to problems in accurate
measurement of the parameter, rather than true biological variability. The
parameters N . govern the slopes of their respective transfer functions at high
frequencies. The apparent value of this slope depends on the measured response at
fs» the highest input frequency (33-758 Hz), but responses at this frequency are close
to noise. Although the steep high-frequency attenuation of responses implies that the
Ny, . are large in comparison to 1, this does not determine their values with precision.
For values of N, . > 1 and for frequencies small in comparison to 1/7T}, ., values of -
the transfer functions (eqns (16) and (17)) depend primarily on the integration time
N, .Ty, . Thus, we focus on the low-pass integration times Ny, Ty , and Ny, Ty
rather than on the individual parameters. This situation is analogous to the analysis
of the quasilinear dynamics of the X cell (Shapley & Victor, 1981 ; Victor, 1987).
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To facilitate comparison of the integration time preceding and following the non-
linearity, the total number of low-pass stages, Ny, ,+ Ny y, was arbitrarily fixed at
sixteen, and the individual values of Ny , and N, , were allowed to assume the
values {0, 1, 4, 8, 12, 15, 16}. This procedure provided values for the combinations
Ny yTy yand Ny Ty  that were similar to those obtained (in two Y cells) by the
much more laborious procedure of allowing N, , and Ny,  to vary independently
through the range 0-16. For most units, the optimum fit was obtained at N, , = 8,
Ny w = 8. Four units (two on-centre, two off-centre) were best fitted with N, , = 4,
Ny w = 12; one off-centre unit was best fitted with Ny , = 12, N, ,, = 4.

The modelling procedure detailed above provided close fits to the observed second-
order frequency kernels in eighteen of the twenty-three Y cells studied. In these
ganglion cells, deviations of measured values of the second-order frequency kernel
and fitted values were typically less than 2 impulses/s, which is comparable to the
measurement error. The five ganglion cells that were not well-fitted by the model will
be discussed separately below.

An example of the model second-order frequency kernel is shown in Fig. 2B, and
the difference between the measured and fitted values is shown in Fig. 2C. Note that
amplitude and phases are both used in calculation of the residuals (eqn (18)) and the
difference map of Fig. 2C. It is evident that the major qualitative features of the
measured second-order kernel (the heights and positions of the peaks) are captured.
The typical deviation of experimental and model kernel, which may be quantified by
the square root of the average term in the sum (eqn (18)), was 1-4 impulses/s. The
greatest deviations occur near the diagonals F, = F, and F, = —F,, the regions in
which there is the greatest uncertainty in the experimental determination of the
second-order frequency kernel (Victor & Shapley, 1980).

The dynamical parameters determined from eighteen on-centre Y cells and seven
off-centre Y cells are summarized in Table 2. These data were obtained by the above
fitting procedure applied to responses elicited by a sum-of-sinusoids signal (eqn (2))
producing a modulation depth of 0-125 per sinusoid.

Testing the model

One purpose of the modelling procedure developed above was to summarize the
dynamics of the Y cell non-linear response in a relatively small number of
parameters. However, before we attempt to draw any conclusions from the
parametric model, it is necessary to demonstrate that the model does indeed
summarize the subunit dynamics. This is a stricter requirement than merely that of
correspondence to the second-order kernel: in order to demonstrate that the
agreement with the measured second-order kernel is not just a matter of postulating
enough parameters, we demonstrate that the model has predictive power.

To do this, we use the above dynamical model to predict the response to
modulation signals that are distinct from the sum-of-sinusoids signal used to
construct the model. The main test signal that we use for this purpose is the square
wave (eqn (3)). The ‘transientness’ of the step response is thought to be a
characteristic feature of the Y cell (Cleland, Dubin & Levick, 1971). The square-wave
stimulus is a strong test of the model because it contains many frequencies not
present in the sum-of-sinusoids stimulus, and because the stimulus transient may
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reveal characteristics of the response not readily apparent from an order-by-order
analysis.

The dynamical model is also tested by its ability to predict the response to a second
sum-of-sinusoids signal. This sum-of-sinusoids signal, which is constructed on a
denser frequency mesh, permits an experimental check of the extrapolation and
interpolations implicit in the parametric model.

Square-wave responses. Figure 4 shows the responses of several Y cells to square-
wave contrast-reversal of a sine grating. Superimposed on these response histograms
are predictions generated by the linear—non-linear-linear sandwich model of Fig. 3.
These model predictions were generated by successively applying the transformations
of Table 1, with parameters extracted from the response to the sum-of-sinusoids
signal as discussed above. The model parameter M, the mean rate in the absence of
stimulation, was the impulse rate elicited by a uniform field of luminance equal to the
mean stimulus luminance. For each response, the predictions of two models are
shown: one assuming a quadratic non-linearity (« = 2), one assuming a rectifying
non-linearity (o = 1).

For all of the eighteen cells whose second-order kernels were well described by the
model eqn (10), the rectifier model provided very good agreement with the measured
square-wave responses. The prediction of the quadratic non-linearity model,
however, usually deviated substantially from the observed square-wave response, in
that it overestimated the size of the transient response. This held both for on-centre
cells (Fig. 44 and B) and off-centre cells (Fig. 4C). Furthermore, in the on-centre
cells, the quadratic non-linearity model predicted a larger undershoot than was
observed experimentally. Although this model has many parameters (N, y, Ty, v,
Hg 4, 15,0 Now, Tu, w» Hs wr Ts, w> Ay, @, My and D), all but & have been determined
without reference to the step responses: D was determined from retinal location,
M, was the unstimulated mean firing rate, and the remaining parameters have been
determined from 128 values (64 amplitudes and phases) of the second-order
frequency kernel. The rectifier fit (x = 1) is obviously not perfect ; however, it is quite
reasonable for a one-parameter fit.

It is worth emphasizing that the rectifier and quadratic models have identical
second-order kernels at the contrast c,,,. The better fit of the rectifier model is
essentially a consequence of the non-zero values of the higher-order kernels implicit
in the rectifier non-linearity.

In comparing square-wave responses with model predictions, we have ignored the
dependence of the Y cell non-linear dynamics on contrast (Shapley & Victor, 1980).
As we will see below, this dependence has a relatively minor influence on the
predicted square-wave response.

Responses to another sum-of-sines signal. A second test of the adequacy of the
sandwich model was prediction of the response to a second sum-of-sines stimulus.
This test was designed to check the interpolations and extrapolations implicit in the
parametric forms (16) and (17), and to verify that the standard frequency set
sampled the two-frequency interactions on a sufficiently dense mesh. The mesh of
eight frequencies used in the sum-of-sinusoids signal (eqn (2)) for this experiment
were: 1:352, 2672, 4454, 7-424, 9338, 12:374, 16:202 and 20-624 Hz. These
frequencies are exact integer multiples (41, 81, 135, 225, 283, 375, 491, 625) of the
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Fig. 5. Comparison of second-order frequency kernels measured with two sets of
frequencies and sandwich model. A4, left panel : kernel measured with standard frequency
set, which was approximately equally spaced logarithmically from 0-231 to 33758 Hz;
right panel: model prediction. B, left panel: kernel measured with denser frequency set,
which was approximately equally spaced logarithmically from 1-352 to 20-624 Hz; right
panel: model prediction, derived from measured kernel of 4. Off-centre unit 28/1; 0-75
cycles/deg grating; m,,, = 0-125. In each case, measured and model kernels typically
agree to within 1 impulse/sec. Model parameters: M, = 102, Ayb,(x) = 1140, N, , = 12,
N, T, ,=546ms, H;, =0958 T, , =0066s, N , =4, N, ,T , =226ms,
Hg, =0612,T; , = 00128, D = 3 ms.
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Fig. 6. Dependence of Y cell responses on contrast. 4, dependence of the overall size of
the second-order frequency kernel (measured as the square root of the sum of the squares
of all the measured values of K,(+f,, f;; m,,,) (eqn (6)) on analysis modulation depth m,,,.
On logarithmic co-ordinates, the slope of the best-fitting line is 0-72, suggesting a power
a = 0-72 for the non-linearity. B, comparison of the sandwich model prediction of the
response to a square-wave stimulus with measured response (m,,, = 0-5). The predicted
response is calculated from parameters measured at a modulation depth of m,,, = 0-125.
Parameters are as in Fig. 2B, with a = 0-72. C, comparison of this sandwich model
prediction with the measured response elicited by a square-wave stimulus at a lower
modulation depth (m,, = 0-25). The dynamical parameters measured at m,,, = 0-125
(B) are used, with & = 0-72. D, comparison of sandwich model prediction to the square-
wave stimulus (m,,, = 0-25), but using high-pass time constants 7T, = 0-131s and
Ty,w = 0:075 s, as measured at a modulation depth m,,, = 0:0625. Unit 7/6.

common fundamental frequency 0-032999 Hz. A phase algorithm analogous to the
one used for the standard frequency set was employed to ensure freedom from
overlaps of even-order components below order 8. As seen in Fig. 5, the
experimentally measured second-order frequency kernel at this denser set of
frequencies corresponded closely with that predicted from the sandwich model (eqn
(10)) and parametric models (eqns (16) and (17)) for the linear filters U and W.
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Dependence on contrast

In X cells, responses at higher contrasts are more transient than responses at lower
contrasts (Shapley & Victor, 1978, 1981). For centre responses, this modulatory
effect of contrast can be understood as a dynamic adjustment of the high-pass time
constant: at higher contrasts, this time constant is shorter, and the response is more
transient. An analogous modulation of the non-linear response of Y cells has
previously been reported (Shapley & Victor, 1980). The parametric description of the
Y cell non-linear response will allow us to examine the effect of contrast on the Y cell
response in more detail, and to compare the effect of contrast on subunit dynamics
with the effect of contrast on X cell centres.

If Y cell dynamics were independent of contrast, then eqn (10) (along with eqn
(13)) would imply that the overall size of the second-order kernel is proportional to
(Mmyna)*, and that its shape is independent of contrast. Since dynamics do in fact
depend on modulation depth, there is a gentle change in shape of the second-order
kernel with contrast. However, the overall size of the second-order kernel can still be
used to approximate o. Then, the dependence of the shape of the second-order
frequency kernel on contrast can be interpreted in terms of dependence of the
dynamical parameters on contrast. This approach is analogous to the approach taken
previously (Victor, 1987) for the analysis of the dependence of the first-order
frequency kernels of X cells on contrast. Its application to non-linear transductions
relies on the separation of linear and non-linear components of the cascade into
independent factors in the sandwich model (eqn 10)).

The dependence of overall kernel size of one on-centre Y cell on input modulation
depth m,,, is shown in Fig. 6 4. Overall second-order kernel size grows proportionally
to (m,p,)°*"%. This suggests that a = 0-72 is a more realistic characterization of the
non-linearity (eqn (12)) than & = 1. Similar analyses in the other Y cells yielded an
average value of 0-87 for « (range, 0-71-1-01).

The dependence of the shape of the second-order frequency kernel on contrast may
be summarized by the change in the values of the dynamical parameters measured
at each contrast. In on-centre cells, reliable values for the dynamical parameters
could be determined at the two or three highest modulation depths (m,,, = 0:03125,
0-0625 and 0-125 per sinusoid). Because off-centre responses were smaller, comparably
reliable measurements could not be obtained at lower contrasts for these units.

The main systematic changes occurred in the high-pass time constants Ty ;, and
Ts, w- The high-pass time constant of the first linear filter T , typically fell by a
factor of 1-85 (geometric mean; range, 1:26-6-75) over the measureable range. The
high-pass time constant of the second linear filter T ,, fell by a factor of 1-44
(geometric mean; range, 0-71-9-10) over this range. Changes in the low-pass time
constants (Ty, y, Ty, w) were on the order of 20 % ; changes in the high-pass strengths
(Hg,y, Hg, w) were on the order of 10 %. These latter changes were inconsistent across
units, and not analysed further.

As we have seen in Fig. 4, a large error in the exponent « of the non-linearity (i.e.
a =2 instead of a = 1) leads to large alterations in the predicted step response.
However, smaller changes in the exponent have little effect on the predicted step
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response. Step responses for an on-centre Y cell predicted from « = 1 (Fig. 44)) fit
about as well as step responses predicted from the value a = 0-72 (Fig. 6 B) deduced
from the contrast dependence of the overall kernel size. This is because the main
effect of the exponent a is to adjust the overall scaling of the response across
contrasts. At any single contrast, changes in apparent gain 4, can compensate for
small errors in the value of a (see Appendix).

The effect of contrast-dependent adjustment in dynamics on the step response is
shown in Fig. 6C and D. Here, the step response measured at mg,, = 0-25 is compared
with predictions made from two sandwich models. In Fig. 6C, the sandwich
dynamics are derived from the kernel measured at m,,, = 0-125; in Fig. 6 D, the

100 impulses/s

l;' i

' 500 ms '

Fig. 7. Irregular curve: response to a square-wave stimulus of an on-centre Y cell which
is not well fitted by the sandwich model. The stimulus was a 2:5 cycles/deg grating at
a modulation depth m,, = 0-25. Smooth curve: prediction of the sandwich model.
Parameters: M, =407, A,b,(a)=2128, N, , =8, N, ,T} , =331 ms, Hy, = 0575,
T,y =00728, N, , =8, N, , T, , =167Tms, Hy , = 1149, T , =0009s, D =2 ms.
Unit 28/8.

dynamics are derived from the kernel measured at m,,, = 0-0625. There is a twofold
difference in the first filter’s high-pass time constant Ty ,;, and more than a fourfold
difference in the second filter’s high-pass time constant T ,, at these two contrast
levels. These differences lead to a difference in the predicted step responses, but the
difference is primarily a change in the overall response size. Thus, although the
intensive characteristics of the non-linearity N and the dependence of the dynamical
parameters on contrast may be extracted from the frequency-kernel data, this
information is not apparent from the step responses.

Units not fitted well by the linear—non-linear—linear sandwich

For five of the twenty-three ganglion cells studied, it was not possible to determine
model parameters which provided a reasonable fit to the observed second-order
frequency kernel. The square-wave response of one such on-centre Y cell is shown in
Fig. 7. This response appears similar to that of other Y cells which were well fitted
by the procedures described above. The second-order frequency kernel of this unit is
shown in Fig. 84. One salient feature of this plot is the presence of a zero in the
frequency kernel, located at approximate co-ordinates (F;, = —2 Hz, F, = 8 Hz). In
the neighbourhood of this point, the phase makes a complete circle about zero, as seen
by the colouring of contour lines that circle this point. Phase is a continuous function
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Fig. 8. A, second-order frequency kernel of a Y cell which was poorly fitted by the
sandwich model (eqn (10)). The circle centred at co-ordinates (F, = —2 Hz, F, = 8 Hz)
encloses a zero of the second-order kernel. B, best-fit parametric sandwich model to the
measured second-order frequency kernel of 4. Data is displayed as in Fig. 2. Unit 28/8.

of the value of the second-order frequency kernel except when the kernel has a value
of zero (in which case, phase is indeterminate). Thus, these contour lines must enclose
a point at which the second-order kernel has a value of zero.

This feature, the presence of an isolated zero, is inconsistent with the sandwich
model for any choice of filter functions U and W. To see this, observe that the second-
order kernel of a linear-non-linear-linear sandwich (eqn (10)) is a product of three
frequency-dependent terms. If the second-order kernel has a value of zero, then at
least one of these terms [(U (27F,), U (27 F,) or W(21r(F1+F2))] must be zero. This in
turn would imply that the second-order frequency kernel was zero along a line of
constant F,, constant F,, or constant F, + F,; this is inconsistent with the isolated zero
implied by the data.

Thus, even the best-fitting sandwich model (Fig. 8 B) provides a poor description
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of the measured second-order frequency kernel, and leads to a poor prediction (Fig.
7) of the square-wave response. Alternative possibilities include additional serial
non-linear stages of the cascade model, additional linear—non-linear-linear cascades
in parallel, and dynamic contrast-dependent adjustment of the ‘linear’ stages of a
single linear—non-linear-linear cascade. The analysis of the dependence on contrast
suggests that dynamic contrast-dependent adjustment of the ‘linear’ stages does in
fact occur (see above and Discussion); this is the simplest explanation for the
observed isolated zeroes. Numerical simulations indicate that additional serial non-
linear stages would not generate isolated zeroes robustly, but the possible role of
additional parallel cascades cannot be excluded.

DISCUSSION
Summary of the model

The proposed dynamical model (Table 1 and Fig. 3) is a formalization of the
linear-non-linear—linear sandwich previously introduced (Victor & Shapley, 1979), to
which specific functional forms for the linear transductions of the model have been
added.

The first stage of the model (‘U’ in Fig. 3) has as its input retinal luminance
L(X, Y, ¢t). A preliminary transformation extracts the signed Weber fraction s(f)
from the input luminance. The output of the first linear stage, (t), is a linear
transformation of luminance fluctuation, s(t). The transformation from s(t) to u(¢),
given by eqns (7) and (16), represents linear processing within the subunit.

The non-linearity of the subunit is represented by a power-law transformation
(eqn (12)), with exponent a approximately 0-87. This transformation produces the
subunit output signal, ’(¢). The spatial combination of subunit outputs u’(f) to
produce a pooled signal w(t) is represented by a linear transformation W, and is
defined by eqns (9) and (17). The process of impulse generation is assumed to be
linear, except for the addition of an undriven mean rate M, and the requirement for
a non-negative firing rate. A brief conduction delay D, calculated from the Y cell’s
retinal location from the data of Stone & Fukuda (1974), is included in order to allow
direct comparison with experimental data.

The analysis of the Y cell non-linear response in terms of an initial stage of linear
processing, followed by a static non-linearity, followed by a second linear stage,
provides a mathematical dissection of the Y cell response. To illustrate the dissection
of the ‘typical’ on- and off-centre Y cells, we have displayed the results of each stage
of the transduction in Fig. 9. The main features of this dissection are the effects of
the non-linearity and the second linear stage on the shape of the subunit response.

Integration into a spatiotemporal model. Although this model is presented as a
temporal model, it may be integrated readily into a spatiotemporal model. Previous
studies (Hochstein & Shapley, 1976a,b; Victor & Shapley, 1979) showed that the Y
cell non-linear response to a sine grating is highly independent of the spatial phase
of the grating. This implies that there are on the order of 100 non-linear subunits at
random spatial positions. The outputs of these subunits combine to form one
component of the Y cell response. At lower spatial frequencies, classical centre and
surround mechanisms contribute as well.
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Within each subunit, spatiotemporal coupling occurs: the subunit transduction
(here denoted U) is shifted to higher temporal frequencies at lower spatial frequencies
(p. 684 of Victor & Shapley, 1979). Further details of a spatiotemporal model, such
as the spatial distribution of the subunits, cannot be specified on the basis of these
studies.

A separate consideration is that the contrast-reversing gratings of high spatial
frequency not only eliminate centre and surround contributions, but also eliminate
any odd-order components that might be generated by the subunit itself. Thus, this
analysis cannot distinguish between a full-wave rectifier N(u) = |u|* and the
corresponding half-wave rectifier whose output is zero for negative values of u. Half-
wave rectification is the more plausible alternative physiologically (Toyoda,
Hashimoto & Ohtsu, 1973; Naka, Marmarelis & Chan, 1975). However, the non-
linear Y cell response cannot simply be a rectified centre response, because of its
distinctive spatial characteristics.

Limitations of the model

The sandwich model implies that the dynamical parameters are independent of
contrast. This is approximately true for the low-pass time constants (T}, ;, Ty, ) and
the high-pass strengths (Hg ,, Hg ). However, there is a systematic shortening of
the values of the high-pass time constants T ;, and T y, with increasing contrast. We
interpret this dependence as a tuning of retinal dynamics driven by local contrast,
which is analogous to the action of the contrast gain control on dynamics of X and
Y cell centre responses (Shapley & Victor, 1979, 1980). In X cells, it was possible to
determine the rate at which changes in the neural measure of contrast altered
dynamics (Victor, 1987); in Y cells, greater uncertainty in determination of the
dynamical parameters themselves precludes this determination.

Five of the twenty-three cells studied were not well fitted by the sandwich model
(Figs 7 and 8). This failure cannot be a consequence of the particular functional forms
(eqns (16) and (17)) postulated for the linear dynamics. The observed second-order
frequency kernels of these five units had evidence of an isolated zero (Fig. 8), which
would not be produced by any linear—non-linear-linear sandwich model.

Although the ‘isolated zero’ effectively rules out the linear-non-linear-linear
model, it is unhelpful in suggesting an alternative. This is because a zero that occurs
in a ‘typical’ second-order frequency kernel will, generically, be isolated. To see this,
decompose the second-order kernel K,(f,g) into its real and imaginary parts:

Kz(f’g) = Kreal(f’ g)+LKimag(fv g) (19)

Assume that K,(f,,g,) = 0. Near this point, real and imaginary parts of eqn (19) may
be expanded as a Taylor series in the quantities Af = f—f, and Ag = g—g,:

oK,
Kreal(fa g) = ajal

Kinaglf,0) = 258y ot g

Af+ a-If)rea.l Ag,
’ (20)
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If the zero at (f,, g,) is not isolated, it must be possible to choose small increments Af
and Ag for which both real and imaginary parts of eqn (20) are equal to zero. This
is only possible if the determinant,

= 0K real a‘Kim_a,g__aK real aKimag
of o o9 o

is equal to zero. Since this determinant is composed of four independent real
quantities, the generic situation is that it is non-zero, and the zero at (f,g,) is
isolated. '

The approximation given by eqn (20) reveals that phase changes by a full cycle as
an isolated zero is encircled. The direction of phase change is determined by the
signature of the determinant (21).

Isolated zeroes such as those seen in Fig. 8 are thus found in a wide variety of non-
linear systems, including parallel combinations of distinct linear-non-linear-linear
sandwiches, multilayer sandwiches, and systems with non-linear feed-back.

There is much cell-to-cell variation in the strength of the contrast gain control, and
it is likely that this phenomenon, rather than a distinctive qualitative feature of
receptive-field structure, is responsible for the occasional failure of the sandwich
model. The sandwich model is admittedly an approximation. The action of the
contrast gain control on the filters U and W is modelled in a steady-state fashion: at
each level of contrast, the basic sandwich eqn (10) is used, but the particular values
of two time constants, T ,, and T , depend parametrically on contrast. The effects
of dynamic adjustment of the filters U and W, due to changing levels of the neural
contrast signal, are ignored in the present treatment. In X cells, the effects of the
dynamic contrast gain control can be measured directly (Victor, 1985, 1987); the
contrast gain control adjusts retinal dynamics rapidly (i.e. within 50 ms).
Presumably, similarly rapid dynamics are present in the Y cell pathway as well,
although direct confirmation of this is not possible with the present data. Rapid
dynamic adjustment of the linear filters U and W introduces small corrections into
the predicted second-order frequency kernel (eqn (10)), which are sufficient to
produce the isolated zeroes for some values of the dynamical parameters.

Det

(21)

On-centre and off-centre cells

We have shown (Figs 2-5) that for most Y cells, the parametrized sandwich model
provides a reasonable description of subunit dynamics. We now use the model to
examine the properties of on- and off-centre Y cells (Table 2), and to compare Y cell
dynamics with X cell dynamics.

Although there is considerable variability of dynamical parameters across the
sample studied (Table 2), some consistent differences between the on-centre and off-
centre cells emerge. The total low-pass integration time of the initial linear filter,
Ny yTy y, is relatively constant within either the on-centre or off-centre cells, and is
significantly longer in on-centre cells than in off-centre cells (47-9 ms vs. 36-8 ms,
P < 0-05). Conversely, the total low-pass integration time of the second linear filter,
Ny wTL w, is, on average, significantly shorter in on-centre cells than in off-
centre cells (3-8 ms vs. 11-9 ms, P < 0-01). The total low-pass integration time in on-
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N\ u(t)

lu(t)l

r(t)

100 impulses/s

: 500 ms !

Fig. 9. Model responses, and theoretical curves for internal model variables, for ‘typical’
on-centre (continuous) and off-centre (dashed) Y cells stimulated by a square-wave
reversing grating at a modulation depth of m,,, = 0-5. Stimulus contrast reversal occurs
at the beginning and mid-point of each graph, as indicated by the tickmarks. In the final
panel, the off-centre unit’s response r(t) is plotted twice: once with the low mean rate
observed in off-centre units, and once displaced upward to facilitate comparison with the
on-centre unit’s response. Parameters are the median values given in Table 2, with
undriven firing rates M, = 427 for the on-centre unit, and M, = 2-0 for the off-centre
unit.

and off-centre cells, Ny, ;T y+Ny Ty w, is almost identical in both centre types
(51-7 ms in on-centre cells, 487 ms in off-centre cells).

Although the low-pass components of on- and off-centre Y cells differ significantly,
the high-pass parameters of the first linear filter are similar (P > 0-1 for the high-pass
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strength Hg ;, and the high-pass time constant 7§ ;). There is considerable dispersion
in the values of the high-pass time constants T ,, (coefficient of variation 0-9), so it
is possible that a minor difference between the values in on- and off-cells would not
be detected. However, despite a similar dispersion of values, there are clear
differences between the dynamics of subunit pooling in on- and off-centre cells, as
reflected in the parameters of the second high-pass stage. In on-centre Y cells, the

3 10-0 1 —-10
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L 1 1 1 — ) | — 1 1 I J
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Fig. 10. A comparison of the transfer function of the ‘typical’ on-centre X cell centre with
the model transfer functions of the ‘typical’ on-centre Y cell subunit. Long-dashed curve:
effective transfer function of on-centre X cell; short-dashed curves: the model transfer
functions U (2nf) and W (2nf); continuous curve: (2nf) W(2nf). The X cell data are from
Victor (1987) with c,,, = 0125; the Y cell data are from Table 2 with gains assigned as
described in the text.

high-pass strength Hy y is typically 50 % stronger than in off-centre cells, and the
time constant Ty ,, of this process is three or four times shorter.

The off-centre cells typically have an overall gain which is less than half that of the
on-centre cells. However, the high-pass time constant Ty y, is typically much longer
in off-centre cells than in on-centre cells. At low temporal frequencies, these two
differences have opposite effects: in comparison with on-centre cells, off-centre cells
have a smaller attenuation due to the second linear filter W, but also have a smaller
overall gain. The net effect is that the typical off-centre response transient is similar
to the typical on-centre response transient (Fig. 9), even though the underlying
dynamics are rather different.

For X cells, the smaller apparent gain and minor differences in dynamical
parameters exhibited by the off-centre cells are, in large part, consequences of their
lower firing rate (Victor, 1987). How much of the measured differences in gain and
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dynamics between on- and off-centre Y cells might be due to the lower maintained
firing rate of off-centre cells ? For approximately linear transductions such as that of
the X cell centre, this analysis was relatively straightforward: a spike-generating
non-linearity, idealized as a transducer that truncates abruptly at zero impulses/s,
had easily predictable effects on the first-order frequency kernel of an otherwise
linear transduction. For the non-linearity of the Y cell subunit pathway, no such
simplifying analytic results are available. Nevertheless, the effect of a lower firing
rate on the apparent values of the dynamical parameters can be analysed empirically.

TaBLE 3. The effect of firing rate on dynamical parameters

Y on Y on Y off
measured  .....ccccceeennne synthesized  ...........cccocceeee. measured
M,=427 M,=5 My=0 M,=—5M,=-10
Parameter
Ayby(e) 1305 1306 1275 1016 785 590 493

(impulses s™*
(unit contrast)~2)

M (impulses/s) 5156 51-5 143 101 68 43 12-3
N, T,y (ms) 494 497 490 46-3 438 415 319
Hg , (dimensionless) 0964 0963 0962 0961 0-961 0962 0-958
Ts.v (8) 0056 0-054 0050 0-048 0047 0046 0074
Ny wT, w (ms) 86 78 80 89 100 11-2 226
Hg ,, (dimensionless) 0717 0-681 0619 0513 0412 0-337 0-554
Ty w (8) 0011 0014 0013 0-015 0018 0018 0-046

Calculation of the effect of truncation on measured dynamical parameters. Column 1 contains the
median on-centre Y cell parameters determined from thirteen units. The resulting model was then
used to synthesize theoretical responses to the sum-of-sinusoids signal (eqn (2)), with the
modulation depth per sinusoid m,,, = 0-125. Truncation due to impulse generation was simulated
by considering in sequence a range of postulated undriven firing rates M, (eqn (I) of Table 1); the
firing rate was truncated to zero when the sum of the model response and M was zero or less. These
truncated impulse trains elicited by the sum-of-sinusoids signal were then used to extract model
parameters, as described in the text. The second high-pass parameter Hy , was quite sensitive to
this truncation ; other parameters were insensitive to truncation. Truncation does not explain the
difference in measured dynamics of the on-centre (column 1) and off-centre (column 7) units.

The strategy employed is to generate responses to the sum-of-sinusoids test signal
from the typical dynamical parameters of on-centre cells, and then to truncate this
response by assuming a range of hypothetical undriven firing rates M, (Table 1). The
resulting truncated responses are then analysed by the above-described procedures
for extraction of parameter values. Parameter values determined for artificial data
generated from on-centre dynamical parameters but with M, near zero thus indicate
the consequences of the truncation non-linearity alone.

The results of these calculations are shown in Table 3, for a test sum-of-sinusoids
input with m,,, = 0-125. An undriven firing rate M, of 42-7 impulses/s in the absence
of stimulation produces a mean firing rate of 51-5 impulses/s with this standard
input; this is the median firing rate of all on-centre Y cells. Parameters extracted
from this resynthesized response (column 2 of Table 3) are essentially identical to the
parameters used to generate the response (column 1). This is a check on the analytical
procedure and the goodness of the approximation of eqn (10). In subsequent
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calculations (columns 3—6 of Table 3), the undriven firing rate M is lowered to a
range which results in a stimulated mean firing rate typical of off-centre cells. An
undriven firing rate M, of 0—5 impulses/s produces stimulated mean firing rates of in
the range observed for off-centre cells (columns 3 and 4). But, this degree of
truncation produces only a small decrement (less than 30%) in the apparent gain
A, by(a), and not the two- or threefold difference observed (Table 2). Similarly, with
the exception of the high-pass strength of the second linear filter Hy ,,, the values of
the other model parameters are affected only to a minor extent by this degree of
truncation. The high-pass strength of the second linear filter Hg , is the one
parameter whose apparent value is influenced by truncation. The size of the effect
accounts for the apparently lower value of Hg y, in off-centre cells. Thus, our analysis
has shown that the lower gain, shorter Ny, T, v, longer Ny T} y, and longer T
observed in off-centre Y cells as compared with on-centre Y cells all reflect intrinsic
differences in the dynamics, and are not consequences of a lower maintained firing
rate.

In sum, although the step responses of on- and off-centre Y cells are similar
(Fig. 9), there is evidence that the subunit pathways have distinct internal dynamics.
In off-centre Y cells, there is less temporal integration prior to rectification, and more
integration following rectification, than in on-centre Y cells. It is now well
established that the on- and off- channels of the centre pathway are anatomically
separate at the level of the bipolar-to-ganglion cell connection (Nelson, Famiglietti
& Kolb, 1978). Despite this anatomical on/off separation, no corresponding
physiological difference appears to exist between the centre dynamics of on- and off-
X cells (Victor, 1987). The present data indicate a physiological difference between
subunits of on- and off-centre Y cells. Thus, the origin of the physiological difference
between subunits of on- and off-centre Y cells probably resides in the inner plexiform
layer.

Comparison with X cells

Previously, we have hypothesized that the bipolar cell, in addition to serving as
the major linear input to the X cell, also corresponds to the Y cell subunit (Hochstein
& Shapley, 1976b; Victor & Shapley, 1979). This hypothesis was based on the overall
similarity of the spatial extent of Y cell subunits and X cell centres, and the
qualitative similarity of X cell centre dynamics and Y cell non-linear subunit
dynamics. More recently, Soodak, Shapley & Kaplan (1987) have demonstrated
differences in the detailed spatial structure of X and Y cell centre mechanisms, which
suggest differences in the spatial combination of bipolar signals between these two
cell types. Their approach did not reveal a difference between X cell centres and Y
cell non-linear subunits, perhaps because the multiplicity of Y cell subunits masked
any signs of spatial fine structure. These considerations, in addition to the long-
standing question of the relationship between the characteristics of transience and
non-linearity, prompted a detailed comparison of X cell centre dynamics with those
of the Y cell non-linear subunit dynamics.

The overall integration time in the Y cell non-linear pathway, N Ty ,+
Ny w7y w, averages 56:6 ms. This overall integration time is substantially longer
than the integration time in the X cell linear pathway, which averages 32-8 ms
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(Victor, 1987); no X cell in that sample had an integration time greater than 49-2 ms.
While the subunit pathway of Y cells has a longer integration time than the centre
pathway of X cells, the centre pathways of these two cell types have a 51mllar
integration time (Shapley & Victor, 1981).

The additional integration time in the Y cell non-linear pathway is probably
due in part to additional synaptic delays involving the amacrine cells. Some, but not
all, of this additional temporal integration may be ascribed to the linear filter W of
the Y cell subunit pathway which follows the non-linearity; its integration time
N, wTyL, w averages 13:0 ms. The integration time of the first linear filter alone, Ny,
Ty y, averages 43-6 ms in Y cells (47-9 ms in on-centre units, 36:8 ms in off-centre
units). This exceeds the X cell average of 32:8 ms; the difference must reflect
additional integration time in the Y cell pathway prior to rectification.

In the present Y cell population, the average high-pass strength of the first linear
filter Hg  is 096. This is higher than the average high-pass strength Hg of 0-70 in X
cells, and no X cell had a high-pass strength greater than 0-80. The initial high-pass
time constant 75 , has an average value of 0:082s in Y cells, as measured at a
modulation depth of 0-125 per sinusoid. In X cells, the average value of the high-pass
time constant under these conditions is 0-201 s, as calculated from the data of Victor
(1987). Thus, one contributor to the greater transience of the Y cell is a greater high-
pass strength and a more rapid high-pass time constant within the subunit. If indeed
X and Y cells share the same bipolar cell population but have distinct amacrine cell
inputs (McGuire et al. 1984), there must be some additional high-pass transduction
at the bipolar-amacrine synapse. In this regard, it is notable that H. Sakai & K. Naka
(personal communication) have recently demonstrated differentiation, as well as
rectification, in the transmission from bipolar cells to C-type amacrine cells in the
catfish retina.

The dynamics of the X cell centre and the initial filter of the Y cell subunit both
show a decrease in the high-pass time constant as contrast increases. Over the
contrast range 0:03125-0-125 per sinusoid, Ty , falls by a factor of approximately
1-85; for typical X cell centres, Ty falls by a factor of 2:05 over this range (Victor,
1987). Thus, in comparison with the centre pathway of X cells, the initial filter of the
Y cell subunit pathway has an integration time which is approximately 10 ms longer,
is somewhat more differentiating, and has a contrast gain control of similar
magnitude.

Although differences between the dynamics of X cell centres and the first filter of
Y cell subunits are statistically significant, it must be emphasized that there is
considerable overlap. Some Y cells, such as those of Fig. 44, have initial high-pass
parameters that fall within the range encountered in the X cell population. For this
reason, we look to the remainder of the Y cell pathway for additional contributions
to the transient nature of the response. An accelerating non-linearity, such as a
square-law transduction, in principle could produce additional transience. However,
the non-linearity is not accelerating: to a first approximation, it is a simple rectifier,
and to a finer level of approximation, it is a compressive power law non-linearity (eqn
(12)), with a approximately 0-87. Rectification per se does not produce increased
transience (compare signal u(¢) with |«(t)] in Fig. 9); compressive non-linearities
decrease transience.
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The comparison of the transfer functions of ‘typical’ on-centre X cells and Y cells
at high spatial frequencies is presented graphically in Fig. 10. For the X cell data, the
transfer function plotted corresponds to the median parameters of the on-centre X
cells, as assayed with a sum-of-sinusoids signal whose contrast per sinusoid c,,, was
0-125 (Victor, 1987). For the Y cell data, we have used the median parameters of the
transfer functions U (eqn (16)) and W (eqn (17)), as measured at a contrast per
sinusoid ¢,,, of 0:125. The product UW is the first-order response of the sandwich
model to a modulated patch of light. Its gain is therefore determined by the shape
of the non-linearity; we postulate (see above) that the non-linearity is a half-wave
rectifier. Gains cannot be unambiguously assigned to the individual filters J or W ;
we have therefore arbitrarily plotted I so that its peak amplitude coincides with that
of the X cell transduction, and adjusted W accordingly. The delay D has been
incorporated into the second transduction W; its only effect is a small additional
phase lag.

The X cell transduction is similar to that of the filter U, which represents
processing within the subunit, although U has somewhat greater attenuation at low
temporal frequencies. This is in keeping with previous observations that the
transduction within the subunit and the transduction of the X cell centre are similar
(Victor & Shapley, 1979).

The second transduction (‘W of Figs 3 and 10) represents the dynamics of pooling
of subunit signals, and is without analogy in X cells. In on-centre cells, this stage is
almost a pure differentiator in the range 3—20 Hz. (In off-centre cells, as pointed out
above, the apparent values of the parameters are affected by non-linearities of the
spike-generating mechanism). Because of this second transduction, the product UW
(Fig. 10) has a greater low-frequency attenuation than U alone, and is tuned to
higher frequencies. Thus, the final stage of the Y cell subunit pathway, the pooling
across subunits, plays a major role in generating the characteristic transient nature
of the response. This pooling probably takes place in the amacrine cell layer, but is
distinct from the non-linearity per se.

APPENDIX
Calculation of the Hermite expansion of a symmetric power-law rectifier

This appendix carries out the evaluation of the expansion of a power-law rectifier
(eqn (12)) as an orthogonal sum of Hermite polynomials. The multiplier b, in the
expression (10) for the second-order frequency kernel of a linear—static non-linear—
linear sandwich corresponds to the second coefficient in this series. Higher-order
coefficients b, in the orthogonal expansion are the multipliers for the higher-order
Wiener and frequency kernels of this transduction. In calculating the coefficients
b,, the orthogonal expansion must be carried out with respect to a Gaussian of power
(variance) P equal to the power passed by the initial linear filter of the sandwich
(Py, eqn (11)). Further background on this calculation may be found in Victor &
Knight (1979). General properties of the Hermite polynomials required for this
calculation may be found in Abramowitz & Stegun (1964, chapter 22). (Note that the
normalization convention of the Hermite polynomials used here differs from that of
Abramowitz and Stegun, in that here, the leading term of each polynomial is taken
to be unity.)
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In general, the nth coefficient b, in the Hermite expansion of N(u) with respect to
a Gaussian of variance P is given by

N N(u)H ,(u) Gau (u, P)du
by =75 , (22)
f (H,(u))? Gau (u, P)du

where Gau (u, P) represents the Gaussian distribution of zero mean and variance
P: Gau (u, P) = (2mP)t exp (—u2/2P). (23)

With the present convention for the Hermite polynomials, the denominator of eqn
(22) is equal to n!P™. We calculate the numerator integral in eqn (22) for the
n = 2—case; the general term b, may be evaluated by similar means. The second
Hermite polynomial in the convention used in Victor & Knight (1979) (eqn (22) of
that reference) is H,(u, P) = u®— P. Substituting this and the definition of the power-
law non-linearity (eqn (12)) into eqn (22) leads to an expression for the second
coefficient b,(a) in the Hermite expansion of a power-law non-linearity :

‘00
by(a) = Lz |u|]*(w®— P) Gau (u, P)du. (24)
2P% )_ .
Because the non-linearity is symmetric, the value of the integral over the range
(— o0, 00) i8 twice its value over the range (0, c0). This change allows removal of the
absolute-value operation: L (=
by(@) = —p;f u*(u?—P) Gau (u, P)du. (25)
0
Next, replace « by the dimensionless variable v = u/+/P, and use the definition of the
Gaussian (eqn (23)): o
by(a) = (2m)~% p/21 J v*(v®—1) exp (—v?/2)dv. (26)
0

For a > 0, this simplifies after integration by parts, with the grouping (v*—1) exp
(—v%/2)dv = —d[v exp (—v%/2)]:

00
by(a) = a(2m) 7% P21 f »* exp (—v?/2)dv. (27)
0
Finally, we substitute ¢ = v*/2 and dt = vdv to obtain

by(a) = a(27r)‘% P21 9(@-1)/2) f 1112 exp (—¢)dt. (28)

0

The result in the text, eqn (13), follows from the observation that the integral above
defines the I'-function.
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