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Evaluation of Poor Performance and Asymmetry in
the Farnsworth-Munsell 100-Hue Test

Jonathan D. Victor

A statistical method for the analysis of errors on the Farnsworth-Munsell 100-hue test is introduced.
The extent of asymmetry of errors are summarized by two indices, I, and L, derived from Fourier
analysis of the error scores for the individual caps. The second index, I,, describes the (bipolar) color
axis; the first index, I,, describes (monopolar) asymmetry of performance. The present analysis differs
from previous approaches based on Fourier analysis of the errors in two ways: (1) a procedure is
introduced which corrects the indices I, and I, for the biases that result from the segmentation of the
test into four boxes; (2) statistics for the significance of I, and I, are derived by a Monte Carlo

procedure, which properly handles the complex interdependence of individual error scores for each
cap. Invest Ophthalmeol Vis Sci 29:476-481, 1988

The Farnsworth-Munsell 100-hue test (FM-100)! is
a widespread and important means for the evaluation
of color vision and its disorders. It is sufficiently sen-
sitive to serve as a means to characterize both supe-
rior performance? and clinical defects, both of periph-
eral>® and central® color processing.

The FM-100 test consists of four trays of colored
caps. Each tray contains 21 or 22 colored caps, whose
hues vary gradually throughout one quadrant of color
space. The subject is asked to arrange each set of caps
in order of hue. The test is graded by assigning an
error score to each cap which expresses the degree of
mismatch between the cap and its neighbors.

While normal performance on the FM-100 test is
straightforward to define,' quantitative characteriza-
tion of abnormal performance is more elusive. A va-
riety of automatic procedures for the analysis of de-
fective performance have been proposed.®'® These
methods rest on Fourier analysis of the pattern of
individual error scores for each cap as a means to
quantitate asymmetry of performance.

However, the segmentation of the test into four
boxes means that an uneven distribution of scores is
expected from random performance;'! this in turn
introduces biases into axis determination. Further-
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more, the complex interdependence of the individual
error scores for each cap makes analysis of the statis-
tical significance of the Fourier components difficult.

In this report, we refine the analysis of the FM-100
test in order to handle these difficulties. The main
features of the analysis are: (1) correction of individ-
ual cap error scores for the biases introduced by the
segmentation of the test into boxes; and (2) a rigorous
computational approach to the evaluation of the sig-
nificance of Fourier components derived from the
individual cap error scores. We focus primarily on the
evaluation of test results with a large number of
errors; however, the method is not limited to this
regime.

Materials and Methods

The raw error scores obtained from the FM-100
test constitute an irregular, cyclic sequence of in-
tegers. The information in the error scores is con-
tained in their overall size and distribution, and not
in the individual error score obtained for any single
cap. Fourier analysis provides a natural means for
summarizing this information:® the overall level of
errors is given by the zeroth Fourier component, and
the sizes (amplitudes) and phases (directions) of the
first few Fourier components describe the overall
asymmetry. In particular, the second Fourier compo-
nent describes the axis of asymmetries, which is key
to distinguishing varieties of color vision distur-
bances.*

Definition of the Indices

The first step in scoring the FM-100 test is the
determination of the error scores for each cap. As is
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customary,! the error score for a cap is two less than
the sum of the absolute values of the differences be-
tween the cap number and the numbers of its two
nearest neighbors, We will denote the error score for
the jth cap by E;. The sum of the errors for each cap
(the total error score T) measures the overall level of
performance:
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The design of the FM-100 test is such that random
performance will lead to quite different expected
values of error scores at the various caps.!' To com-
pensate for this, we introduce a relative error score for
each cap, which is the quotient of the raw error score
E; and the error score expected from chance perfor-
mance E¥. The relative error score R; for each cap is
given by

.
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Use of the relative error score R; compensates for the
uneven distribution of error scores due to chance
alone, which is a consequence of the finite length of
each box. The calculation of expected error scores Eff
under the assumption of random ordering is outlined
in the Appendix.

The next step is to describe the asymmetries of the
relative error scores R; by Fourier analysis, as has
previously been done for the analysis of the raw error
scores E;.”®'® The kth Fourier component is denoted
by a complex number A, whose amplitude indicates
the amount of asymmetry and whose phase indicates
the direction of the asymmetry. (The real and imagi-
nary parts of A, are the coeflicients of the cosine- and
sine-terms of the Fourier series.)
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The zeroth Fourier component A, is the average
relative error at each cap. The second Fourier compo-
nent A, expresses the strength of the axis of asym-
metry of the relative error scores, That is, a large A;
indicates that caps in one portion of the color circle,
as well as caps of opponent colors, are poorly ordered.
A large A, indicates poor performance on one side of
the color circle which does not correspond to simi-
larly poor performance on opponent colors.

The Fourier components A, and A, describe the
absolute amount of their respective kinds of asym-
metries. For purposes of statistical comparisons, it is
more convenient to focus on the amount of asym-

Ak=

metry relative to the total amount of error. For this
purpose, we define the harmonic indices

I =— 4

The directions of the response asymmetries are speci-
fied by the phases of the complex numbers I, and I;;
the sizes of the asymmetries are determined by the
absolute values |1, and |1,].

Calculation of Expected Distribution
of Harmonic Indices

To evaluate the statistical significance of an ob-
served value of a harmonic index {1, it is necessary to
determine the probability that as large (or larger)
value of the harmonic index would arise from a cap
arrangement generated by errors randomly distrib-
uted throughout the 85 caps. In the limiting case in
which performance is completely random, such ar-
rangements may be simulated by randomizing the
placement of caps into boxes (as was done by Kita-
hara and Kandatsu'?).

However, the distribution of the amplitude of a
harmonic index depends strongly on the total num-
ber of errors. A harmonic index which is significant in
conjunction with a large total error may be insignifi-
cant in conjunction with a small total error (see for
example Figure 3 of Benzschawel'®). This is because
errors must cluster when the total number of errors is
small.

To quantitate the dependence of the distribution of
harmonic indices on total error, we simulated cap
arrangements that would result from an intermediate
number of errors distributed uniformly (on the aver-
age) across the caps. Intermediate levels of error were
simulated by assuming that nearest-neighbor swaps
occurred at a particular frequency f per tray. Each
successive nearest-neighbor swap operated on the ar-
rangement of caps prior to the swap, and not on the
numerical order of the caps. As average number of
swaps per tray increased, the degree of disorder of the
cap arrangements gradually approached that of com-
pletely random performance.

This procedure was followed for selected values of
the swap-per-tray rate f, ranging from 1 to 1500. In
each simulation, the exact number of swaps for a
particular tray was determined from a Poisson distri-
bution of mean f, to simulate the variability with
which errors must occur, even given a constant error
rate. (A Poisson distribution was used to model the
assumption that each swap was an independent
event.) For each value of f, 10,000 independent ar-
rangements of the caps were constructed. From each
such arrangement, the total error and the values of
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Fig. 1. Average random performance on the FM-100 test. The
average error scores for each cap are calculated as described in the
text; plotting is according to the original Farnsworth! method.

the harmonic indices were calculated, as described
above.

Results
The Expected Error Score For Each Cap

The distribution of expected error scores E* antici-
pated under the assumption of completely random
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performance is plotted in Figure 1. The distribution is
highly nonuniform. The main deviation from non-
uniformity is a near doubling of the expected error
score near the ends of each tray. The differences in
tray size (three trays of 21, one of 22) cause differ-
ences from quadrant to quadrant of less than 5%.

The Distribution of Total Error Scores

As the average number of swaps per tray f in-
creases, the total error score increases from nearly
perfect performance at f = 1 to nearly random perfor-
mance at £ = 1500 (Table 1). The calculated mean
value of the total error score for an infinite number of
swaps per tray (ie, completely random arrangements)
agrees well with the exact value of 1202, obtained by
summing the individual expected error scores E¥.

For all values of the average number of swaps per
tray, the critical values for probabilities near 1 (high
mean error) are displaced further from the median
than are the critical values for corresponding proba-
bilities near 0 (low mean error). That is, for any fixed
level of performance f, the distribution of total error
scores is skewed towards higher values. This is more
prominent for values of f resulting in a mean total
error score in the 50-300 range.

The distribution of total error scores of patient
populations often demonstrates a skewness towards
higher values.>'* One possible contributor to this
skewness is a positively skewed distribution of the
underlying performance of individuals. However, the
calculations summarized in Table |1 demonstrate that
the FM-100 test itself introduces a positive skewness

Table 1. Distribution of total error for intermediate levels of performance

Critical values

Swaps/tray Mean total
f) - error SD cv 0.001 0010 0.025 0.050 0500 0950 0975 0990 0.999
1 15.2 74 0491 0 0 4 4 16 29 33 37 45
2 29.3 10.1  0.346 4 8 12 12 28 49 53 57 65
4 54.0 13.3  0.247 20 24 28 32 52 77 81 89 101
6 75.7 156  0.207 32 40 48 52 76 105 109 117 133
10 112.2 193  0.172 56 68 76 80 112 145 153 161 177
20 181.5 262  0.145 108 124 132 140 180 225 237 245 269
40 271.0 358  0.129 176 196 208 220 276 337 353 369 397
60 348.2 430 0.124 228 256 268 280 348 425 437 457 493
100 454.3 535 0.118 304 340 356 372 452 549 569 589 645
200 633.2 687  0.109 432 484 504 524 632 753 773 805 869
300 749.7 796  0.106 512 576 600 624 748 832 913 945 1013
400 834.6 84.4  0.101 592 644 672 700 832 977 1005 1037 1093
600 952.4 91.3  0.09 696 740 776 804 952 1105 1133 1173 1237
1000 1085.2 931  0.086 792 872 904 936 1084 1241 1269 1305 1373
1500 1151.1 88.9  0.077 876 940 976 1004 1152 1297 1321 1353 1425
inf. 1204.2 847  0.070 948 1004 1036 1060 1208 1341 1369 1397 1465

Parameters of the distribution of total error T (equation (1}) for incom-
pletely randomized arrangements of the Farnsworth-Munsell caps. Cap ar-
rangements are generated by applying pairwise swaps of adjacent caps. The
statistics for each average number of swaps per tray () are calculated from

10000 independent arrangements. The statistics for the last line of the table
(infinite number of swaps per tray) were calculated from 10000 completely
random cap arrangements, SD, standard deviation; CV, coefficient of varia-
tion (SD/mean).
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Table 2. Critical values of harmonic indices error for intermediate levels of performance
Critical values
First harmonic Second harmonic
Mean total Swaps/tray
error (f) 0.500 0.950 0.990 0.999 0.500 0.950 0.990 0.999
Corrected for finite boxes
15.2 1 0.450 0.997 0.997 0.997 0.439 0.987 0.987 0.987
29.3 2 0.304 0.693 0914 0.997 0.300 0.699 0.899 0.987
54.0 4 0.213 0.464 0.590 0.749 0.208 0.460 0.583 0.742
75.7 6 0.177 0.377 0.477 0.624 0.174 0.377 0.484 0.606
112.2 10 0.148 0.311 0.391 0.484 0.143 0.303 0.385 0.485
181.5 20 0.122 0.255 0.3i2 0.380 0.116 0.248 0.317 0.415
2770 40 0.108 0.224 0.270 0.327 0.098 0.215 0.268 0.342
348.2 60 0.101 0.211 0.263 0.322 0.088 0.196 0.251 0.310
454.3 100 0.092 0.194 0.239 0.305 0.078 0.176 0.226 0.281
633.2 200 0.083 0.174 0.214 0.264 0.062 0.146 0.187 0.237
749.7 300 0.076 0.159 0.198 0.238 0.055 0.130 0.170 0.225
834.6 400 0.072 0.154 0.190 0.236 0.050 0.120 0.156 0.198
952.4 600 0.065 0.136 0.172 0.207 0.044 0.109 0.144 0.183
1085.2 1000 0.057 0.121 0.151 0.187 0.042 0.098 0.128 0.162
1151.1 1500 0.052 0.112 0.141 0.171 0.042 0.094 0.121 0.157
1204.2 inf, 0.048 0.101 0.128 0.166 0.045 0.097 0.124 0.152
Uncorrected for finite boxes
15.2 1 0.439 0.997 0.997 0.997 0.435 0.987 0.987 0.987
293 2 0.299 0.685 0913 0.997 0.298 0.680 0.895 0.987
54.0 4 0.208 0.455 0.586 0.740 0.207 0.450 0.566 0.708
75.7 6 0.175 0.374 0.468 0.619 0.174 0.367 0.471 0.590
112.2 10 0.144 0.304 0.385 0.469 0.143 0.297 0.366 0.460
181.5 20 0.120 0.249 0.308 0.370 0.116 0.241 0.300 0.377
2770 40 0.105 0.220 0.268 0.329 0.099 0.207 0.257 0.313
348.2 60 0.099 0.208 0.257 0.306 0.090 0.190 0.233 0.282
454.3 100 0.093 0.192 0.238 0.298 0.080 0.171 0.212 0.265
633.2 200 0.084 0.176 0.215 0.260 0.064 0.140 0.178 0.220
749.7 300 0.078 0.164 0.201 0.243 0.057 0.125 0.157 0.207
834.6 400 0.075 0.157 0.195 0.242 0.052 0.115 0.147 0.182
952.4 600 0.068 0.143 0.178 0.218 0.045 0.104 0.134 0.170
1085.2 1000 0.059 0.126 0.155 0.192 0.041 0.093 0.118 0.151
11511 1500 0.054 0.115 0.147 0.177 0.041 0.090 0.115 0.145
1204.2 inf. 0.049 0.105 0.132 0.164 0.043 0.093 0.116 0.143

Critical values of the distribution of the amplitude of the first and second
harmonic indices |I;] and I3} (equation (4)). The statistics for each degree of
randomization are calculated from 10,000 independent arrangements, as in

to the total error scores, even when the underlying
performance is normally distributed.

Distribution of Harmonic Indicés

The critical values of the distribution of absolute
values of harmonic indices |I,| and |I,| are shown in
Table 2. The distribution of the two indices are nearly
identical. As expected from the lack of independence
of error scores when the error rate is low, the critical
values for harmonic indices are substantially higher
when the total error score is low. For example, con-
sider the 5% significance level (critical value of 0.95)
for |I,|. This is approximately 0.1 for fully random
performance, but is 0.2 when the total error score is
400, and 0.3 when the total error score is 100.

Since common practice has been to calculate the
harmonic indices based on raw error scores, the criti-
cal values of [1,] and [I,| were also calculated without
the correction for the nonuniform distribution of

Table 1. Harmonic indices are measured with or without the correction (2)
for finite box sizes.

random performance (equation (2)). These results are
presented in the second half of Table 2. The correc-
tion (2) makes very little difference in the critical
values of |I,] and [I,]. This is because the indices are
ratios of raw Fourier components to the total error
score, and not the raw Fourier components them-
selves, (However, since the distribution of expected
error scores has an approximate periodicity of four
around the color circle, the correction has a very large
effect on the amplitude of the fourth index |14).

The correction (2) is rigorously justified only in the
limit of a total error score approaching 1200. It re-
mains appropriate when the caps are arranged ac-
cording to a nonrandom but systematic scheme (for
example, scotopic brightness), provided that devia-
tion from Munsell hue order produces a high total
error score. For lower total error scores, the rigorously
appropriate correction is the expected error score at
each cap for that particular level of performance. This



480 INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE / March 1988

correction would be intermediate between the correc-
tion (2) and no correction at all. But the similarity in
the critical values of |I;| and |I,| calculated with and
without correction (Table 2) shows that for most
purposes, this secondary refinement is unnecessary.

Discussion

The present approach uses computer simulation to
handle some of the statistical complexities that stem
from the design of the FM-100. By simulating perfor-
mance with errors of various frequencies distributed
uniformly across the caps, we obtained statistics for
the distribution of total error scores (Table 1) and of
harmonic indices (Table 2). The statistics of Table 1
define the variability of test scores given a fixed level
of underlying error; this table can be used to deter-
mine whether the overall level of performance in two
sets of test results is significantly different. The statis-
tics of Table 2 define the distribution of the sizes of
the harmonic indices [I;| and |I,), under the hypoth-
esis that error is uniformly distributed across the caps.
The critical values of these distributions allow testing
the hypothesis that an observed harmonic index rep-
resents random fluctuation without an underlying
asymmetry of performance. In particular, a signifi-
cant color axis must have a value of |I,] which exceeds
the P = 0.95—critical value for the measured level of
total error.

The Correction For Finite Box Size

The present approach for the determination of
color axis shares a reliance on Fourier analysis with
the approaches previously proposed by other au-
thors.”%!9 The refinement proposed here is that
Fourier coefficients are calculated for the relative
error R;, rather than the actual error score E;. The
relative error R; is related to the actual error score E;
by division by the expected error score at each
cap Ef.

Because the caps are grouped into finite boxes, the
expected error scores E} are not uniform. The major
effect of this correction is on the direction of the indi-
ces I, and I, and not on their amplitude. Typically,
the correction amounts to 0.5 to 1.0 caps. The effect
of this correction is small if the error pattern is a
sharp, narrow peak; it is larger if the error peak is
wider, and particularly if each pole of the error distri-
bution has a bimodal “swallowtail” shape. Although
small, these corrections are comparable to the narrow
separation of the extremes of the axis distributions of
protans and deutans.'® The correction always shifts
the measured color axis towards the center of the box
that contains it.
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An IHustration

We apply the present technique to the protan and
deutan data in the Farnsworth! manual. For the pro-
tan, the total error score is 136. The amplitude of the
first harmonic index |1, is 0.09. As seen in Table 2,
this is well within the range expected by chance alone
for this level of total error (P = 0.95, critical value
approximately 0.28). The amplitude of the second
harmonic index |I5] is 0.54, which is highly signifi-
cant; it exceeds the P = 0.999 critical value of approx-
imately 0.43. The second harmonic axis points to cap
21.1. Without the correction (2) for finite box size, (1,
is also insignificant (0.07), |I,| remains highly signifi-
cant (0.60), and the second harmonic axis is cap 21.0.
For the deutan, the total error score is 174, |1,] is 0.09,
[I,] is 0.74, and the axis is 15.0. Without the correc-
tion for finite box size, |1;| is 0.08, |I;} is 0.73, and the
axis is 15.9. For both protan and deutan, the calcu-
lated axes agree closely with those given in the Farns-
worth! manual, and the monopolar asymmetry I, is
seen to be insignificant.

Ease of Application

Our calculations have used the original method of
Farnsworth' for basic scoring. However, for practical
purposes, the statistics are equally applicable to scores
obtained by the method of Kinnear,' because these
two scoring methods give virtually identical values
for harmonic indices.'® The calculation of I, and I,
are easily integrated into existing computer analyses
of the FM-100 test'>!”:!® by inclusion of equation (2).
However, since the amplitudes |I,| and |I,| are in-
fluenced only slightly by inclusion of (2), this correc-
tion is unnecessary for the purpose of assessing signif-
icance: the critical values of Table 2 may be applied
to the uncorrected harmonic indices.

FORTRAN source code which includes all the cal-
culations described in the text, as well as more exten-
sive statistical tables, are available from the author.

Key words: color vision, Farnsworth-Munsell test, Fourier
analysis
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Appendix

Here we calculate the average error score Ef* for the jth
cap, under the assumption of completely random perfor-
mance.

Consider a cap numbered j, sitting in a tray of Ny caps
inclusively numbered from Ny, to Ny;. The situations in
which the cap is placed on the interior of a tray versus on
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the end of a tray must be considered separately. If cap j is
placed in the interior of its tray, its two neighbors will be
drawn with equal probability from the set S of remaining
caps: {Ni, ..., ] — 1, j+ 1, ..., Nu}. In this case, the
average error score will be the expected value of the sum of
the differences of the cap number (j) and those of its two
neighbors. This quantity is the expected value of the sum of
two random selections (without replacement) from the set
{INy, = jl, ..., I=1l, [+1}, ..., INw = jl}, ie, twice the
average of this set.

If cap j is placed at the beginning of its tray, one of its two
neighbors will be drawn with equal probability from the set
S (above) of remaining caps in the tray. The other cap will
be drawn with equal probability from the caps in the pre-
vious tray, which contains caps Nj, to Ni;. In this case, the
sum of the differences of the cap number (j) and those of its
two neighbors will be the sum of two components, One
component is the difference of the cap number and that of
its successor (within the tray); this component is the average
of the numbers {|N,, — jl, ..., [=1], [+1l, ..., Nu = jl}.
The second component is the difference of the cap number
and that of its predecessor (from the previous tray); this
component is the average of the numbers {|Ni, — jl, ...,
[Ni; — jl}. A similar calculation holds for the case in which
the cap j is placed at the end of its tray.

In a random arrangement, the probability that any
particular cap will be placed on the interior of its tray is
(Nisy — 2)/Niy, and the probability that the cap will be
placed at each end is 1/Ny. The overall expected sum-of-
differences score for each cap is the sum of the expected
sum-of-differences for each case considered above,
weighted by the probability with which each case occurs.
The expected error score E¥ is two less than this weighted
sum,
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