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The mathematical framework for studies of texture perception is discussed. Textures correspond to statistical
ensembles, whereas images are spatially finite samples of a texture. The main ideas underlying the use
of visual textures in experimental and theoretical analyses of preattentive vision are summarized, with an
emphasis on the distinction between texture ensembles and images. The Julesz conjecture [Perception 2,
391 (1973)] is that preattentive discrimination of textures is possible only for textures that have different
second-order correlation statistics. Recently Yellot [J. Opt. Soc. Am. A 10, 777 (1993)] claimed that the triple
correlation uniqueness (TCU) theorem, a mathematical result that every monochromatic image of finite size is
uniquely determined (up to translation) by its third-order statistics, makes higher-order variants of the Julesz

conjecture trivial. However, the TCU theorem applies to individual images, and not to texture ensembles,
and thus is of limited relevance to the study of texture perception.
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In a recent paper Yellott! presents some mathematical
results concerning correlation statistics and discusses the
relevance of these results for the Julesz® conjecture and
related matters. The Julesz conjecture states that pre-
attentive discrimination of textures is possible only for
textures that have different second-order correlation sta-
tistics. Many counterexamples to this conjecture have
subsequently been discovered (principally by Julesz and
co-workers), but the Julesz conjecture retains its value as
a starting point for theories of texture perception.

Yellott makes two claims in his paper: (1) that the
triple correlation uniqueness (TCU) theorem, a math-
ematical result that every monochromatic image of fi-
nite size is uniquely determined (up to translation) by
its third-order statistics, makes higher-order variants of
the Julesz conjecture trivial and (2) that previous coun-
terexamples to the Julesz conjecture are flawed by
statistical irregularities that are overcome by a new
construction, presented by Yellott. This Communication
disputes both claims.

1. IMAGE STATISTICS, IMAGES, AND
TEXTURES

The TCU result discussed by Yellott applies to finite im-
ages. Clearly, if it were not possible to make distinct
textures with identical third-order statistics, then higher-
order variants of the Julesz conjecture would indeed be
trivial: discrimination of textures with identical third-
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(or higher-) order textures could not be tested, because
distinct textures could not be produced. But this conclu-
sion is justified only if we consider visual textures and
visual images to be equivalent mathematical objects.

Julesz never provided a formal mathematical definition
of a visual texture. However, it is implicit in his work,
as well as in that of subsequent researchers in the field,
that a visual texture is not a specific image but rather an
ensemble of images that share certain statistics. For ex-
ample, textures may be constructed by placement of ele-
ments at random locations or in random orientations?-3
or by independent and random assignment of gray levels
from a particular histogram to each pixel® or by Markov-
like processes.”® Thus an adequate theoretical treat-
ment of visual textures must begin by recognition of the
distinction between a texture ensemble (a set of textures,
each infinite in spatial extent, with an assigned proba-
bility structure) and images (individual finite samples of
examples drawn from the ensemble).

It is straightforward to construct distinct texture en-
sembles that have identical statistics up to order n, but
not at order n + 1, for arbitrary n.® At first glance this
would seem to be inconsistent with the TCU theorem for
n > 2, which states that third-order statistics uniquely
specify images. However, these constructions are fully
consistent with the TCU theorem, because the TCU
theorem applies to individual images, not to texture
ensembles.

In an attempt to relate the TCU theorem, which ap-
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plies to images, to the Julesz conjecture, which applies
to textures, Yellott argues that mathematical results con-
cerning images reduce questions concerning texture en-
sembles to matters that can be settled in a trivial way
by pure thought. Here it is argued that the concept of
a texture ensemble, as distinct from that of an image,
makes good sense, both mathematically and biologically.
The TCU theorem does not apply to texture ensembles
and therefore does not trivialize the Julesz conjecture.
Rather, texture ensembles (as distinct from images) con-
stitute an important tool for the experimental analysis of
biological vision.

Studies of texture perception aim to determine how
the visual system discriminates, segregates, and classifies
textures. The underlying view is that visual information
is encoded not in a pixel-by-pixel fashion but rather by
neural computations that extract certain pieces of infor-
mation from the image and discard others. For example,
the overall amount of contrast is a visually salient fea-
ture, but the precise position of each texture element
does not appear to be encoded. How can the nature of
these neural computations be determined? It does not
suffice to observe the response to a single image, because
distinct computational mechanisms may produce itdenti-
cal results for certain images. Thus a hypothesis for a
neural computation is best tested by examination of re-
sponses to multiple images, that is, an ensemble.

In this Communication the term image is used to mean
a specific, usually finite, pattern of light and dark. The
term texture ensemble is used to mean a collection of
spatially infinite patterns of light and dark, together with
an assignment of probabilities to each element of the
collection. The term texture is used to mean the rule
that determines the texture ensemble. As discussed in
Section 3 below, texture ensembles that are useful for the
study of vision have a key property: any average over
the entire spatially infinite ensemble may be replaced
either by an infinite spatial average over a single typical
member of the ensemble or by a finite spatial average over
all members of the ensemble. In view of this property,
one may think of textures in several ways: as an infinite
collection of finite images, as a single infinite image, or as
an infinite collection of infinite images.

Use of the term texture has led to confusion in the past,
as it is often applied to a particular image drawn from a
texture ensemble. The present formalization is intended
to clear up this confusion: use of the term texture in
relation to a single image has always implied membership
of that image in a collection of similar images with which
it shares certain statistical properties. Here, the term
texture sample is used to denote an image drawn from a
texture ensemble.

2. AN ILL-POSED PROBLEM?

Although the point of view presented here provides a
theoretical argument for the role of ensembles in the
analysis of texture perception, it might be argued (as
Yellott does in his discussions of hypotheses H2-H6)
that it is not possible to reduce this idea to practice in
a biologically meaningful way. The main problem is
that since a particular texture example may belong to
many different ensembles, it would appear that a judg-
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ment that requires an assignment of a texture example
to an ensemble is an ill-defined or impossible task. How-
ever, whether the task is indeed ill-defined is an em-
pirical issue, not a theoretical one. Consider a task in
which a subject is asked to segregate or sort multiple
images and is not given any information on what cri-
teria are to be used. One might find that different
subjects segregated the samples in different ways and
that there was no consistency in the subjects’ perfor-
mances. This would indeed be consistent with the task’s
being ill defined. Alternatively, one might find strong
consistency between subjects. This would indicate that,
for the particular samples used, some built-in neural
computation provided a natural partition. One could
hypothesize what this neural computation was and then
create another set of examples to test this hypothesis.

There are two fundamental ideas here: (1) that the
computational machinery that a subject uses to perform
a psychophysical task reflects biology and not just for-
mal mathematical considerations and (2) that the ex-
perimenter can test computational hypotheses only by
examination of responses to multiple images. Neither
of these ideas is specific to texture segregation; rather,
both are deeply rooted in psychophysics. Consider, for
example, the space—time image of a moving sine grating.
As is well known, this image is consistent with a range
of velocity vectors, provided that the components of the
velocity vectors perpendicular to the grating’s bars are
identical. This phenomenon is known as the aperture
problem.? Despite the mathematical ambiguity, subjects
do not see a full-field grating stimulus as an ambiguous
one. Rather, they report a consistent, unique velocity
percept: the perpendicular velocity. In order to be sure
that the subject is judging velocity, not spatial phase, dis-
tance of motion, temporal frequency, or other confound-
ing factors, one must repeat such judgments with stimuli
that differ in initial phase, duration, spatial frequency,
etc. Thus, reliable judgments are made despite the fact
that the stimulus is formally consistent with a continuum
of velocities, and examination of responses to a set (en-
semble) of stimuli rules out the possibility that some other
computation on the stimulus is being performed. More
generally,® biological vision consists of a cluster of ill-
posed problems, such as shape from shading, structure
from motion, figure from ground, etc. The visual sys-
tem necessarily makes inferences from partial informa-
tion, and the discovery of how these inferences are made,
for example, by Bayesian inference, is what the study of
biological vision is all about.

3. ROLE OF ERGODICITY

It is easy to construct a stimulus set for which texture
segregation is performed in a rapid and consistent manner
across subjects: for example, a stimulus set consisting
of several examples drawn from the even texture paired
with examples drawn from the random texture, or, of
samples drawn from many pairs of textures that differ in
their second-order statistics. As discussed above, since
reproducible texture segregation can be achieved for some
texture ensembles, the task is not in principle ill defined
or impossible. In kis discussion of hypotheses H2-HS,
Yellott proposes several examples of the texture-
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segregation task in which performance is guaranteed to
be variable across subjects. His examples do not negate
the usefulness of a texture-segregation paradigm as
applied to ensembles; they merely show that it is possible
to take an informative paradigm and find a stimulus set
for which the results will be uninterpretable.

This is where the proviso of ergodicity is relevant. In
formal terms, ergodicity means that averages performed
over the ensemble of textures can be replaced by spatial
averages over a single (spatially infinite) example drawn
from the ensemble. Informally, ergodicity means that
each texture sample, if considered over its entire (infinite)
extent, will typify the entire ensemble. Two-dimensional
Markov textures (including the even and odd textures®),
independent identically distributed (IID) textures,® and
textures consisting of randomly placed, randomly oriented
tokens are ergodic.

Without ergodicity, there is no basis for estimation of
ensemble statistics from a single image, even if the im-
age is large. For nonergodic textures, estimates of en-
semble statistics from image statistics are guaranteed to
be misleading. Consequently, subjects will fail to per-
form reliably on texture-segregation tasks based on non-
ergodic ensembles (such as those considered by Yellott!
in hypotheses H2 and H3 or the heterogeneous ensemble
proposed above), but this failure will be uninformative.
Conversely, ergodicity gives the subject the chance to suc-
ceed, so that success or failure provides information about
the capabilities of the visual system.

In his discussion of hypotheses H4—H8, Yellott! trivial-
izes the mathematical concept of ergodicity to the notion
that the statistics of a single, spatially finite, image must
be equal to those of the ensemble. Were this the case,
then indeed there would be no distinction between the sta-
tistics of finite images and ergodic ensembles. But this
is not what ergodicity means; ergodicity specifies replace-
ment of an ensemble average by an average over a single,
spatially infinite, example. :

Since a subject can see only a finite number of spatially
restricted views of texture examples, the subject cannot
determine whether an ensemble is ergodic. But this does
not render the concept useless or vacuous. Mathematical
objects and concepts are almost never rigorously realized
in the laboratory. The lines and points of real visual
images have nonzero spread and are therefore not the
lines and points of Euclid; the sinusoids and Gaussian
envelopes of visual images have finite extent and there-
fore do not rigorously have the properties of mathematical
sinusoids or Gaussians; white noises used in systems-
analysis methods'! are not spectrally flat. Similarly, the
notion of ergodicity must be considered in an analogous
fashion: it motivates the design of stimuli, but it cannot
be rigorously achieved in the laboratory.

4. ISSUE OF NONUNIQUENESS

Yellott! argues (in his discussion of hypothesis H2) that
one difficulty with viewing texture-segregation tasks as
applying to ensembles is that a single texture example
may belong to many ensembles. For example, at least
occasionally a finite image drawn from the random en-
semble would also be an even texture, just by chance
alone. This would lead to subjects classifying as even
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a texture sample that the experimenter obtained from
the random ensemble. However, the chance of this oc-
curring is very slim: for a 32 X 32 sample of the random
texture, the chance that it will be consistent with hav-
ing been selected from the even ensemble is 1 in 2%!, or
approximately 107%*°, Not surprisingly, subjects sponta-
neously reject this interpretation. Somewhat more likely
is the possibility that an atypical sample such as an all-
white image or a checkerboard happened to be included
in the even stimulus set. This might cause subjects’ per-
formance to be more variable and difficult to interpret.
For a 32 X 32 sample of the textures, the chance of this
occurring is 1 in 2%, or approximately 107!%. One is not
likely to be led astray by such occurrences, and if one
were concerned that performance depended on the choice
of specific texture examples, it would be a simple matter
to make another stimulus set from the same ensembles.
Indeed, experimental studies concerning the even, odd,
and random textures explicitly included exploration of the
texture ensembles.!?-15

5. VALIDITY OF THE EVEN, ODD,
AND RANDOM TEXTURES AS
COUNTEREXAMPLES

In Section 4 of his paper, Yellott! calculates second- and
third-order statistics for some images that are examples
of the even, odd, and random (coin-toss) textures. The
motivation for these calculations is to illustrate the fact
that although these statistics are matched across the en-
semble, they are not matched for specific examples. This
point had already been made by Gagalowitz!® and by
Victor.'* Yellott claims that these imbalances invalidate
the even, odd, and random textures as counterexamples to
the Julesz conjecture. But one can accept this claim only
if one neglects the crucial distinction between images and
ensembles. (As we will see below, this distinction is nec-
essary even for the purportedly cleaner counterexamples
proposed by Yellott!).

Variances and covariances of sample estimates of
second-order statistics rigorously correspond to ensemble
fourth-order statistics, and variances and covariances of
sample estimates of third-order statistics rigorously cor-
respond to ensemble sixth-order statistics. [This may be
seen as follows: a variance V, of a sample estimate of
an nth-order statistic £, will be an average of the form
V., ={(E, — (E,))?). Since E, is nth order, V, is a statis-
tic of order 2n. The argument for covariances is similar.]
Consequently, ensembles that differ in their fourth-order
(and higher even-order) statistics will necessarily differ in
the variances or covariances in estimates of second- and
third-order statistics from individual images. Thus the
findings that for the even texture, estimates of second-
and third-order statistics converge more slowly to their
sample mean and that estimates of distinct second- and
third-order statistics are highly correlated is a necessary
consequence of the higher even-order correlations. In
his Fig. 8, Yellott' constructs matched examples of even
and odd textures in which three fourths of the pixels
are of the same luminance and the remaining one fourth
are of opposite luminance. These texture samples have
more nearly equal third-order statistics than unmatched
texture samples but remain readily discriminable—an
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Fig. 1. Demonstration of segregation of two regions with iden-
tical statistics.

approach that was taken early in the study of these tex-
tures (see Fig. 2 of Ref. 12). Discriminability of such
matched texture samples provides empirical evidence
that the deviations of sample estimates of third-order
statistics from their ensemble means are not crucial for
texture discrimination.

The usefulness of the calculations of estimates of
second- and third-order statistics is thus not in demon-
strating the flaws in these textures as counterexamples,
but rather in their potential relevance to understanding
the neural computations used in texture discrimination.
Indeed, this approach has already been taken. Victor
and Conte* manipulated long-range fourth-order corre-
lations of the even textures (and consequently the rate
of convergence of estimates of second-order statistics)
by introducing various kinds of decorrelation into the
even texture. Analysis of responses to these textures de-
fined the spatial extent of correlations relevant to texture
discrimination.

6. COUNTEREXAMPLES WITHOUT
ENSEMBLES?

Yellott! argues that the counterexamples that he presents
to the second-order (original) Julesz conjecture are supe-
rior to those previously presented, because they obviate
the need to consider textures as ensembles. There is no
doubt that his construction indeed yields disecriminable
images and textures with identical second-order statistics
and thus is new evidence that statistical outliers are not
responsible for segregation of isodipole textures. Never-
theless, there are two problems.

The first problem is that, in principle, bipartite stimuli
may be segregated by differences in local second-order
statistics at their boundary. For example, Fig. 1 shows
a bipartite field whose halves have identical statistics of
all orders but in which a spatial-phase anomaly at the
border produces a rapid segregation.

Intuitively, it is highly unlikely that such edge effects
are responsible for segregation in the constructions in-
troduced by Yellott.! Nevertheless, if one is to maintain
strict rigor, the possible contribution of such edge effects
must be ruled out empirically. One way to minimize
these edge effects is to replace the segregation task by
a classification task in which texture samples are shown
one at a time, a strategy that my co-workers and I have
adopted.’*'® Another way to rule out the contribution
of these edge effects is to show that segregation does
not depend on the spatial phases of the texture samples.
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That is, discrimination has to be examined for multiple
instances of the textures, which differ in initial spatial
phase (for the discrimination task) or in relative spatial
phases across the border (for the segregation task). How-
ever, any such strategy returns us to the notion that the
counterexample is fundamentally a statement about en-
sembles, not about examples. That is, the concept, as
well as the use, of a texture ensemble is a natural con-
sequence of the need to control for the artifacts that in-
evitably occur in the use of a real stimulus as an example
of a mathematical ideal. It is interesting to note that the
even/odd counterexample of Julesz et al.” provides a strik-
ing example of texture segregation without introducing
second- or third-order anomalies at the texture boundary.
In this case the border is not anomalous, but the texture
samples must be considered to be elements of ensembles.

The second problem with reliance on an exact match of
image statistics (rather than an ensemble match) is more
fundamental: this approach will never allow analysis
of higher-order interactions. The well-documented pres-
ence of nonlinearities at both retinal and cortical levels
implies that visual mechanisms are not restricted to inter-
actions of formal order 3 or less. Yet the TCU theorem!
shows that such mechanisms cannot be probed by individ-
ual images considered in isolation. On the other hand,
textures considered as ensembles lead to a detailed analy-
sis of higher-order mechanisms.!#1%

7. TEXTONS AND GLOBAL STATISTICS

It is proper to put this debate, which originates with a
long-disproved conjecture concerning texture discrimina-
tion, in the context of more-recent thinking on the sub-
ject. Julesz!” sums up his texture studies as follows:
“In essence, we found that texture segmentation is not
governed by global (statistical) rules, but rather depends
on local, nonlinear features (textons), such as color, ori-
entation, flicker, motion,.... Particularly important is
the realization that—contrary to common belief—texture
segmentation cannot be explained by differences in power
spectra” (p. 757). I concur with this view.!®

Even though the neural computations are local, a li-
brary of textures with carefully defined global statisti-
cal properties is a useful tool for their analysis. This
is because many windows on neural activity (e.g., psy-
chophysics, electrical and magnetic evoked potentials,
functional imaging) superimpose a spatial average on
the inherently local computational processes. By dis-
covering what texture statistics survive this averaging
process, one can draw inferences about the underlying
local processes.5:71415

8. SUMMARY

Visual textures are statistical structures, and one must
consider them as such to interpret the Julesz conjecture
and related notions properly. Yellott! presents a result
concerning the statistics of individual images, but this
result is of limited relevance to the study of texture per-
ception because of the distinction between spatially finite
samples of a texture (an image) and the ensemble from
which the sample is drawn. This distinction makes sense
both logically and empirically. The assumptions and
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approximations that are required for linking the mathe-
matical notion of a texture ensemble to laboratory practice

are
the

no more severe or unnatural than those required in
application of other useful mathematical structures to

biology. Interpretation of texture perception in terms of
images rather than of ensembles leads to an impoverished
experimental and theoretical analysis.
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