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We present a new derivation of the asymptotic correction for bias in the
estimate of information from a �nite sample. The new derivation reveals a
relationship between information estimates and a sequence of polynomi-
als with combinatorial signi�cance, the exponential (Bell) polynomials,
and helps to provide an understanding of the form and behavior of the
asymptotic correction for bias.

1 Introduction

In its most basic form, application of the tools of information theory to
laboratory data relies on the estimation of the information in a process
consisting of independent occurrences of K kinds of mutually exclusive
events, each of which occurs with a probability qj .j D 1; : : : ; K/ (Rieke,
Warland, de Ruyter van Steveninck, & Bialek, 1997). The quantity

H D ¡ 1
ln 2

KX

jD1

qj ln qj (1.1)

is the information (in bits) associated with a single observation. Typically,
the probabilities qj are not known and must be estimated from a �nite set of
observations. It iswell known that the naive estimate forH, based onreplace-
ment of the exact probabilities qj by their empirical probabilities observed
from N observations, downwardly biases the estimate of equation 1.1. Es-
sentially this is because equation 1.1 is a concave-downward function, so
an average estimate for H derived from a range of estimates of the true
probabilities qj is less than the value of H given by equation 1.1 at the center
of this range.

Several authors (Carlton, 1969; Miller, 1955) have derived asymptotic
estimates for this bias in the limit of large N. The leading term in the asymp-
totic estimate of the bias depends on K, the number of kinds of events, and
N, the number of observations but, remarkably, is independent of the prob-
abilities qj of the events. These calculations are readily extended to estimates
of mutual information (Miller, 1955; Treves & Panzeri, 1995), since mutual
information in a table is the sum of the information in the distributions of
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the marginal probabilities, minus the information in the distribution of ta-
ble entries. Because the number of rows (say, KR) and columns (say, KC) of
a nontrivial table is fewer than the number of entries in the table .KRKC/,
the downward bias in simple estimates of information (see equation 1.1)
translates into an upward bias in estimates of mutual information.

This article presents a new and concise derivation of the bias estimate.
The new derivation clari�es the basis for the lack of dependence of the
bias on the probabilities qj, and reveals a relationship between information
estimates and the exponential (Bell) polynomials (Bell, 1934b), a sequence
of integer polynomials with a well-known combinatorial interpretation.

2 Results

We consider an estimate of information from a set of N events, each of which
can independently have one of K possible mutually exclusive outcomes. The
probability of the jth outcome is denoted qj, and

PK
jD1 qj D 1.

We de�ne

U.N; s/ D

*
KX

jD1

ps
j

+

N

: (2.1)

The quantities pj are estimates of the probabilities qj , which are considered
to be de�nite but unknown. That is, pj D nj=N is the empirical probability of
outcome j, as estimated from a set of N observations in which this outcome
occurred nj times. h iN denotes an average over all sets of N observations
drawn from this universe. The expected value hHiN for the estimate of the
information from N observations is thus

hHiN D ¡ 1
ln 2

@

@s
U.N; s/ |sD1: (2.2)

We form the generating function

QU.z; s/ D
1X

ND0

NszN

N!
U.N; s/: (2.3)

To evaluate the expectation implicit in equations 2.1 and 2.3, we assign to
each possible set of observations (say, nj occurrences of each outcome j, with
N D

PK
jD1 nj) its corresponding multinomial probability,

N!
QK

jD1 nj!

KY

jD1

.qj/
nj :

In this expression, the factorial terms count the number of ways of ordering
nj occurrences of each outcome j into a sequence of N observations, and
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the terms involving qj specify the probability of any one such sequence
of observations. Inclusion of the multinomial probability in equation 2.1
converts it to
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5 ; (2.4)

and equation 2.3 to
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where the outer sum is over all sets of nonnegative integers nj, satisfyingPK
jD1 nj D N in equation 2.4, but unrestricted in equation 2.5. Term-by-term

consideration of the J sum in equation 2.5 and rearrangement lead to
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where we have de�ned

b.z; s/ D e¡z
1X

nD0

ns zn

n!
; (2.7)

and made use of
PK

JD1 qJ D 1.
For nonnegative integer values of s, b.z; s/ are polynomials and have the

generating function

1X

sD0

b.z; s/
us

s!
D ez.eu¡1/: (2.8)

Thus, b.z; s/ are a simple example of the exponential (Bell) polynomials in z
(the quantities ´ in Bell, 1934b), and b.1; s/ are the exponential (Bell) num-
bers (Bell, 1934a) (history reviewed in Rota, 1964) . For all (not necessarily
integral) s ¸ 0, b.z; s/ satis�es the recurrence relation

b.z; s C 1/ D z
µ
b.z; s/ C

@

@z
b.z; s/

¶
; (2.9)
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as can be veri�ed from equation 2.7 or 2.8. Also from equation 2.7, b.z; 0/ D 1,
and for integer s > 0, the leading terms of b.z; s/ are

b.z; s/ D zs C
s.s ¡ 1/

2
zs¡1 C

s.s ¡ 1/.s ¡ 2/.3s ¡ 5/

24
zs¡2

C
s.s ¡ 1/.s ¡ 2/2.s ¡ 3/2

48
zs¡3 C ¢ ¢ ¢ : (2.10)

The Bell polynomialshave a combinatorial interpretation (Bell 1934a, 1934b;
Rota, 1964): the coef�cient of zt in b.z; s/ is the number of ways of placing s
distinguishable objects into t indistinguishable containers. In particular, the
coef�cient of zs¡1 is s.s ¡ 1/=2, the number of ways of choosing one pair of
the s objects to share a container.

From equation 2.3,
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where we have used U.N; 1/ D 1 (from equation 2.1) and equation 2.2 in
the �rst step, and equation 2.7 in the second step. Combining this with
equation 2.6 yields
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Equation 2.12 is exact. To derive an asymptotic estimate, we estimate the
partial derivatives in equation 2.12 by assuming that formula 2.10, a �nite
series for integer values of s, is a useful approximation at noninteger values
as well. That is, we use the approximation
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12z2 : : : : (2.13)

The behavior of this approximation is illustrated in Figure 1. Note that as
terms beyond the constant term are added, the improvement in the approx-
imation for large values of z is accompanied by a worsening for values of
z < 1.

Inserting this approximation into equation 2.12 and identifying corre-
sponding coef�cients of zN on its two sides leads directly to
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Figure 1: Behavior of an asymptotic estimate for @

@s b.z; s/|sD 1. (Left) Approxima-
tions provided by one and two terms of equation 2.13. (Right) Approximations
provided by three and four terms of equation 2.13.

The �rst correction term corresponds to the previous results of several au-
thors (Carlton, 1969; Miller, 1955; Treves & Panzeri, 1995). The fact that it is
independent of the probabilities qJ re�ects the constant value .1=2/ of the
�rst correction term in equation 2.13.

The mth correction term derived from our approach has a denominator
N.N C 1/ : : : .N C m ¡1/. This is different from the asymptotic series derived
by Treves and Panzeri (1995), which is strictly in inverse powers of N. Nev-
ertheless, the approaches agree. For example, the second correction term in
equation 2.14, whose value depends on the probabilities qJ, differs from the
results of Treves and Panzeri (1995), but the difference is third order (i.e.,
O.N¡3/), and thus is subsumed in the third correction term.

Implementation of this bias correction is not completely straightforward.
In the laboratory, one has access only to estimates of the event probabilities
qJ , the quantities we have denoted pJ . Equation 2.14 states that the naive
estimate of information hHiN , obtained by replacing the qJ in equation 1.1
by pJ, is too low. The �rst correction term in equation 2.14 requires knowing
the number of possible kinds of events, K, but not their probabilities. But
even K may not be known in advance. One can be sure that an event is
possible only if one has observed it, but one does not know that additional
kinds of events are impossible, merely that they have not been observed in a
sampleof size N. Panzeri and Treves (1996) suggest a sophisticated approach
for modifying the count of the observed number of kinds of events. Here
we initially consider the simple strategy of setting K equal to the number of
kinds of events that were actually observed within N trials.

The left panels of Figure 2 demonstrate the effects of this strategy for an
experiment in which there are two kinds of events. The initial correction
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Figure 2: Comparison of strategies for the adjustment of empirical estimates
of information in a simulation with two kinds of events .K/ and 4, 16, or 64
trials .N/. Exact value (see equation 1.1), naive estimate hHiN , and corrections
of the naive estimate for bias. Abscissa: Probability q of the �rst kind of event
.q1 D q; q2 D 1 ¡ q/. Ordinate: Information H. (Left panels) Number of kinds
of events K and their probabilities estimated from the data. The two curves for
the corrected estimates are virtually indistinguishable. (Right panels) Number
of kinds of events K and their probabilities known in advance. On the right,
the two-term correction leads to higher estimates of information (as labeled in
the upper panel). All functions are symmetric about q D 0:5, but are plotted for
q in [0:0001; 0:9] on a logarithmic scale to emphasize the behavior for extreme
values of q.

closes most of the gap between the naive estimate hHiN and the true value
H, provided that the number of trials is suf�ciently large so that each kind
of event has a reasonable chance of occurring .Nq À 1/. When the number
of trials is so small that one of the events will probably not be observed
.Nq ¿ 1/, the correction is ineffective—as would be expected, since there is
no empirical evidence for more than one kind of event. The second-order
correction is very small in both regimes (nearly superimposed on the initial
correction).
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One might expect that the estimate of information could be improved if
there were a better way to estimate either K or the event probabilities qJ.
For illustrative purposes, the right panels of Figure 2 consider the extreme
situation: that both are known exactly (but only the empiric values pJ are
used to estimate information). The �rst correction is not as helpful. In the
regime in which it is signi�cant .Nq ¿ 1/, it amounts to an overcorrec-
tion, because the “correct” value K D 2 is always used, even though two
kinds of events were not typically observed. Surprisingly, the second-order
correction is even worse, resulting in large overestimates, because of the
terms involving reciprocals of small probabilities qJ . In the �rst strategy
considered, since the qJ are taken from empirical estimates, 1=qJ is limited
by N, thus bounding the second-order correction. But there is no such limit
here, since even smaller values of qJ, based on a priori knowledge, may oc-
cur. A hybrid strategy (using a priori knowledge of K, but not of the event
probabilities qJ) results in performance that is worse than either of the two
considered above (not shown).

This pattern of behavior was also seen in numerical experiments involv-
ing several kinds of events and a wide range of event probabililties. In sum,
the most straightforward application of equation 2.14, making use of only
what was observed, appears to be both conservative and effective. It fails
under appropriate circumstances: when observation is so limited that possi-
ble modes of behavior have not been observed. Under these circumstances,
higher-order corrections are not helpful.

3 Discussion

We derived an exact expression, equation 2.12, for the expected information
estimate from an N-trial data set in terms of the partial derivative of the
Bell polynomials with respect to their order, @

@sb.z; s/ |sD1. The asymptotic
expansion for this derivative, equation 2.13, corresponds in a term-by-term
fashion to an asymptotic expansion, equation 2.14, of the expected infor-
mation estimate. The leading term in the expansion of @

@sb.z; s/ |sD1, namely
z ln z, corresponds to the (unbiased) estimate of information from an unlim-
ited sample. The second term in the expansion of @

@sb.z; s/ |sD1, namely, 1
2 ,

corresponds to the initial correction due to �nite sample size (the estimate
of the bias), as derived by previous authors (Carlton, 1969; Miller, 1955;
Treves & Panzeri, 1995). Since this term is a constant, the initial term in the
asymptotic form for the bias depends on only the number of terms in the
sum on the right-hand side of equation 2.12: the number of possible kinds
of events K, and not on their probabilities qJ .

This analysis helps to explain why the high-order correction terms of
equation 2.14 are not useful in practice. The higher-order correction terms
re�ect the successive approximations to the Taylor expansion of @

@sb.z; s/|sD1
for small z. As is seen in Figure 1, the asymptotic series, equation 2.13,
converges rapidly for large z, but diverges in the neighborhood of z D 0.
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Thus, in the regime in which the higher-order correction terms might matter
(low N and estimates of q below 1=N), they worsen the estimate of bias (see
the upper two right panels of Figure 2). When N is large, the second-order
corrections do indeed improve the estimate of bias for some values of q, but
the size of the correction is minuscule (see the lower panels of Figure 2).
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