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Abstract. The early stages of visual processing provide excellent models for the study of how
information is represented in, and processed by, the activity of neurons. The fact that the retina
contains both non-spiking and spiking neurons leads us to frame questions about neural coding in
a general fashion, rather than in a manner specific either to point processes or continuous signals.
In particular, we ask about the role of the statistical structure of the response, the extent to which
the neural representation is ‘literal’, and how information content can be estimated from laboratory
data. The broad theme that emerges from a review of experimental data is that each stage of visual
processing is accompanied by new features, including adaptive filtering, feedback, rectification
and spike generation. These dynamical elements allow an increasingly rich set of strategies for the
representation and processing of visual information at retinal and thalamic levels.

Time is that great gift of nature which keeps everything from happening at once.
C J Overbeck [283].

1. Introduction and scope

Informally speaking, ‘temporal coding’ refers to the notion that the detailed temporal structure
of a spike train, and not simply the mean firing rate, contributes to the information that it
carries. Especially in recent years, there has been an accumulation of experimental evidence
that the temporal patterns of activity of neurons and neural populations are indeed important
for signalling and processing information—in a range of sensory systems ([65] and references
therein) as well as in motor systems [297, 313]. The idea that neural systems make use of
temporal structure is also attractive on theoretical grounds, since it would allow an impulse train
to carry much more information than if only its average firing rate were significant. Temporal
coding is of particular interest in mammalian vision, given the large processing demands of
visual tasks such as scene analysis and object identification. On the other hand, the role of
temporal factors in visual processing is often ignored, perhaps in view of the progress that has
resulted from analysis of the spatial structure of receptive fields of individual neurons, and the
spatial maps that characterize the organization of neural populations.

In section 2 of this review, we attempt to be rigorous about what constitutes temporal
coding and how temporal coding may be characterized. In section 3, we discuss some technical
matters concerning the analysis of neural responses and their information content, with the
aim of describing the conceptual issues, rather than providing a tutorial.
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In the second half of this review, section 4, we discuss experimental results related to
temporal coding in the retina and thalamus. Considering the recent interest in temporal patterns
of activity in visual cortex, the emphasis on retinal and thalamic neurons might seem out of
place. But there are several reasons for this choice. Firstly, when we attempt to frame a rigorous
definition for temporal coding, we find that it necessarily encompasses transformations that
occur at the precortical level. Secondly, to describe the kinds of processes that might contribute
to temporal coding, we find that we must consider not only aspects of temporal coding that
rely on the discrete nature of spike trains, but also issues that are relevant to continuously
varying signals as well. In general, there is no guarantee that these two aspects of temporal
coding can be considered independently. However, the retina is conveniently organized into
a first stage of processing in which only slow potentials are present, and a second stage in
which spike trains emerge. Thirdly, many precortical processes are relatively accessible to a
detailed understanding, in that a correspondence between anatomy, cellular biophysics, and
receptive field dynamics of retinal neurons is often available. This gives the study of precortical
sites a critical role in the understanding of temporal aspects of neural coding. Moreover, an
understanding of precortical processing is required to appreciate the quantitative and qualitative
changes in signal processing at later neural stages.

1.1. Why is temporal coding important?

The challenge facing neuroscience is not just to understand function at the most elementary
scales of the nervous system (e.g., channels), but to provide an understanding of how function
at larger scales of organization (e.g., neurons, neural circuits and neural systems) is derived
from the properties of its constituents [72]. Even if feasible, an immense computational model
would not, in and of itself, represent a satisfying account of these relationships, because it
would lack insight into the critical features of the constituents. In a sense, the situation is
analogous to the relationship between the properties of individual particles of an ideal gas, and
that of a macroscopic sample of the gas. In principle, the behaviour of a gas could be deduced
from a computational simulation of a large number of particles. But far greater insight is
provided by statistical thermodynamics—which indicates that knowledge of only a few state
variables suffices to predict behaviour.

There have been some attempts to apply this kind of approach to neural ensembles
[359, 435]. The barriers are formidable and obvious: a neuron has far more ‘state variables’
than a particle of an ideal gas, and neural connectivity plays a fundamental role. Equally
important, however, is that it is unclear what are appropriate candidates for the state variables
that represent neural activity—an obvious choice is overall firing rate, but details of firing
patterns and higher-order statistics may be equally important [57]. That is, the investigation
of the role of temporal structure, in broadest terms, is the delineation of the state space for
neural activity (e.g., [181, 224]), and is thus a fundamental step in the development of a theory
of brain function.

Temporal properties of individual neurons and neural populations have been postulated
to underlie key visual processes, including binding of parts of an object into a whole
[98, 421], recurrent and feedback interactions among visual sensory areas [56], visuomotor
transactions [294], disambiguation of the many attributes that influence a neuron’s response
[121, 414], and efficient coding of retinal information [252]. Additionally, under pathological
conditions, disturbances of normal firing patterns have been postulated to be associated with
derangements of visual processing and perception, including loss of visual awareness [294],
dyslexia [222], and amblyopia [317]. While these ideas cannot be considered to be proven,
they must be taken very seriously: neurons and their components indeed have complex



Temporal aspects of neural coding R3

dynamics, and measurements of overall firing rate will not necessarily suffice to describe
their behaviour [340, 387].

1.2. Other reviews

Several related reviews deserve the reader’s attention. Cariani’s review [65] considers temporal
coding in sensory physiology without restriction to vision, and provides an interesting scheme
for a taxonomy of neural codes encompassing both temporal and spatial considerations. The
recent book by Rieke, Bialek and co-workers [312] is an excellent introduction to the concepts
of information theory and how they can be applied to neurophysiology, with particular emphasis
on sensory processing in insect sensory systems and the ‘stimulus reconstruction’ method. The
reviews of Hertz [156], Richmond and Optican [311] and Gawne [120] provide an in-depth
review of temporal coding at several levels of the primate’s visual system, as revealed through
a different set of analytical tools. Meister and Berry’s review [251] considers retinal coding
in detail, with particular emphasis on what has been learned from multichannel recordings.
Funke and Ẅorgötter’s review [118] focuses on temporal coding in the lateral geniculate
nucleus. Reid and Alonso [304] review coding in visual cortex from the traditional viewpoint
of receptive field structure and its relation to properties of individual cortical neurons. Eckhorn
[97] and Singer and Gray [357] review the role of temporal patterns in visual cortex, with an
emphasis on the role of synchronization and oscillations. Usrey and Reid [404] review the role
of synchrony at retinal, thalamic, and cortical levels, across a range of mammalian species.
Finally, for the reader with an interest in a more general introduction to visual neurophysiology
and psychophysics, the recent textbook by Wandell [422] is highly recommended.

2. What is temporal coding?

Neural circuits use sequences of action potentials (‘spikes’) to extract, represent, and process
visual information. Spikes are stereotyped all-or-none electrical events triggered by the
interplay of inputs from other neurons in the form of graded synaptic potentials. Generally,
‘temporal coding’ is the notion that the temporal structure of spike trains—the arrangement
of spikes in time—plays a significant role in these processes. It is often placed in contrast to
‘spike count coding’, the notion that the only aspect of a neural response that is significant is
the number of spikes it contains. Yet one immediately recognizes that this contrast is more
quantitative than qualitative. On the one hand, characterization of a response by the number
of spikes it contains necessitates a temporal window in which the spikes are counted—a crude
but essential dependence on temporal arrangement. On the other hand, any ensemble of neural
responses can be characterized by the statistics of spike counts within a set of ‘bins’ (or adjacent
temporal windows), provided that one is free to consider not only statistics within individual
windows, but also correlations across windows. Consequently, any ‘temporal code’ can be re-
interpreted as a sequence of spike count codes, at a sufficiently high degree of resolution. Thus,
our goal is not to review the evidence for one or the other kind of coding strategy—attempts
at rigorous definition will necessarily blur the distinction.

The retina is unusual in that the neurons involved in the earliest stages of retinal processing
(photoreceptors, horizontal cells, and bipolar cells) do not generate action potentials but
communicate solely through graded signals. This requires us to take a broader view of temporal
coding, and in particular to ask whether the event-like nature of spike trains plays a fundamental
role. Spike trains and the slow potentials that drive them are intrinsically temporal structures,
and our focus is on what aspects of these structures (i.e., what kinds of statistics, and what
scales of temporal resolution) convey visual information.
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We recognize at the outset that identification and analysis of temporal coding is dependent
on experimental methods for reliable recording of single neurons’ responses, and on analytical
methods for the characterization of these responses. While the analytical methods have
attracted much active research, they cannot be regarded as settled. As we shall see from
our discussion of these methods below, there is no universal strategy that is most appropriate
to all kinds of data. Assumptions that are overly specific prevent identification of unexpected
aspects of neural coding, while assumptions that are overly broad may make it impossible to
obtain reliable characterizations of spike train statistics or reliable estimates of information
from finite data. Rather, in a practical sense, progress is likely to be made by approaches that
test a series of interrelated hypotheses concerning what aspects of a stimulus are likely to be
represented in the neural response, and what aspects of the neural response are likely to carry
information.

2.1. Qualitative characterizations of coding and representation

It is helpful to consider two qualitative axes along which neural representation and coding
might be characterized. For simplicity, we consider only the response of a single neuron to
each member of a finite set of stimuli with a definite time of onset (see below). We furthermore
assume that we have at our disposal a limitless supply of trials for each member of the stimulus
set, and we ignore real-world complications such as habituation, learning, and memory which
might result in non-stationarities.

Are the statistics of individual responses important?In the above idealized setting, we can
ask whether the responses to individual trials of a stimulus contain temporal structure that is
not anticipated from the overall response to that stimulus (i.e., the average response across all
trials). This leads to an important relationship between the statistics of a set of spike trains, and
whether these spike trains have the potential to represent something other than a continuous
graded signal. The average response of a spiking neuron to multiple repeats of the same
stimulus is characterized by the peri- or post-stimulus time histogram (PSTH), the probability
that a spike will occur at each time following stimulus onset. With the luxury of a limitless
supply of trials, we can construct this PSTH with arbitrarily narrow time bins, and determine
the probability of firing in each of these bins with arbitrarily high accuracy. That is, the PSTH
can be considered to be a firing rate functionR(t), whereR(t)1t indicates the probability
that, on any single trial, a spike occurs within a window of width1t around the timet . The
hypothesis that the PSTH (and thereforeR(t)) fully characterizes the responses to a stimulus
places very strong constraints on the statistics of the individual responses. It requires that the
probability of a spike’s occurrence at any given time within a trial does not depend on the
occurrence of any other spikes in that trial. It follows that the distribution of the number of
spikes in any time bin conform to Poisson statistics, with a mean determined by the area under
the corresponding interval of the PSTH. That is, the response to a particular stimulusj is
represented by a Poisson process whose mean rate is given by a time (and stimulus)-dependent
quantityRj(t). Under the assumption that a set of neural responses has this property, then the
analysis of representation and coding is greatly simplified: the PSTHs serve as estimates of the
time-dependent rate functionsRj(t), and all aspects of coding and representation can be derived
from these functions, either analytically, or via simulated spike trains whose Poisson firing
statistics are determined byRj(t). The rate functionRj(t) fully characterizes the statistics
of the responses, and the PSTH is the best estimator of this rate function. If the Poisson
hypothesis holds, then the analysis of temporal coding in spike trains reduces to the analysis of
the underlying continuous rate functionsRj(t). That is, validation of the Poisson hypothesis



Temporal aspects of neural coding R5

allows us to ignore the dynamics of spike generation. Characterization of temporal coding
is then reduced to understanding the origin and timescales of the continuously varying rate
functionsRj(t).

However, the reduction of the analysis of temporal coding of spike trains to a study of rate
functions may overlook important kinds of behaviour if there is any statistical aspect of the
individual responses that deviates in a systematic way from time-varying Poisson processes of
matching rate functions. Such deviations from a Poisson process can take many forms, and
may have their origin in the intrinsic properties of neurons or in the properties of the network
in which they are embedded. Real neurons have an absolute refractory period following a
spike, during which a second spike cannot occur. Consequently, firing probabilities within a
single trial cannot be independent at the timescale of milliseconds. The presence of a relative
refractory period might lead to more subtle deviations from Poisson statistics over a wider
timescale. In retinal ganglion cells recordedin vivo, firing patterns are much more regular than
would be expected from a Poisson process [107, 398], and can be modelled by an integrate-
and-fire [187, 301, 302] or a random walk [125] process; under other experimental conditions,
retinal ganglion cells fire in a strikingly bursty fashion [32]. At the cortical level, there are
several independent pieces of evidence that spike train statistics deviate substantially from
Poisson statistics, including bursts [211, 363] and oscillations [97]. The PSTH is insufficient
to demonstrate any of these behaviours, since any PSTH can be generated by a Poisson process
with a time-varying firing probability. A PSTH with sharp or periodic peaks might suggest the
presence of bursts or oscillations, but only if these features are phase-locked to the stimulus
cycle.

Figures 1(A)–(C) show examples of different response statistics that are consistent with
the same PSTH. In these examples, the scatter in the number of spikes per trial is less than
Poisson (A), equal to Poisson (B), and greater than Poisson (C). As this figure suggests,
the statistics of the number of spikes per trial is an important index of deviation from
Poisson statistics; this is also true in real recordings in the retina [301] and visual cortex
[88, 124, 389, 414, 416]—the former typically characterized by less-than-Poisson variance,
while the latter is typically characterized by greater-than-Poisson variance. One can determine
whether this is the only deviation from Poisson statistics by the exchange resampling procedure
[414], in which surrogate datasets are generated by randomly exchanging pairs of spikes among
trials. Surrogate datasets generated in this fashion match the original dataset both in terms of
the number of spikes in each trial and in the overall PSTH, but have temporal features that are
readily distinguishable from those of the original data, as has been shown in the retina [301],
lateral geniculate [301], and visual cortex [414].

Identification of deviations from Poisson statistics is logically distinct from demonstration
that these deviations play a role in coding. Indeed, to the extent that these deviations represent
intrinsic properties of how a neuron transforms a slowly varying membrane potential into
a spike train at the point of spike generation, they would result in firing statistics that are
more complex, but no more informative, than a Poisson process. However, if departures from
Poisson statistics reflect intrinsic membrane behaviour that is selectively activated by particular
patterns of synaptic input, then such departures may play an important role in neural coding.

These considerations apply to the analysis of the spatial aspects of coding, as well as to
its temporal aspects. In the temporal domain, conformance to Poisson statistics formalizes the
notion that it does not matter which examples of a sequence of trials contain which spikes.
The same concept can be applied to the analysis of activity within a population of putatively
equivalent neurons on a single trial. If firing statistics conformed to Poisson expectations across
neurons as well as across trials, then correlations between individual neurons’ responses (which
might include phenomena such as concerted signalling [250] and neural synchronization
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Figure 1. The PSTH does not determine the temporal structure of spike trains. Each set of
rasters diagrams a collection of hypothetical neural responses to repeated presentations of the same
stimulus. (A) The rasters are generated by a neuron that fires exactly once per trial, in a relatively
narrow time window. (B) The rasters are generated by a Poisson process whose event probability
varies in time during each trial, and has an average of one spike per trial. (C) The rasters are
generated by a neuron that has a ‘bursty’ firing pattern, but also with an average firing rate of one
spike per trial. The PSTHs in all three examples are identical.

[97, 357, 404]) are no different than would be expected from the average activity of the
population. Conversely, deviations from Poisson statistics allows neural processing to depend
on the specific distribution of spikes across neurons and trials, and requires the investigator
to determine whether such dependence is important. From a practical point of view, in order
to completely characterize a neuron’s responses, the investigator is compelled to examine the
statistics of individual trials (and not merely the PSTH), unless there is assurance that the firing
patterns obey Poisson statistics.

In summary, the extent to which statistics of individual trials is determined by the PSTH
is a conceptual axis that corresponds in a loose sense to a partitioning of temporal coding
into the role of an underlying continuous rate function and the role of the dynamics of spike
generation. In the retina, this partitioning is made vivid by the presence of an initial processing
stage in which neural processing relies solely on manipulation of continuous signals, and a
later stage in which neurons turn these signals into spike trains. Neural responses characterized



Temporal aspects of neural coding R7

by Poisson statistics are one extreme: the statistics of spikes on individual trials are completely
predictable from the PSTH, and thus, from the rate function; there is no additional information
in the details of how spikes are distributed among trials. At the other extreme are response
sets that contain structures such as bursts or oscillations occurring at random times. Here, the
PSTH is flat and gives no clue to the presence of temporal structure. Intermediate between
these extremes are deviations from Poisson behaviour that are time-locked to the stimulus.
This category includes bursts time-locked to the stimulus or the response of an integrate-and-
fire neuron. For such neurons, the PSTH does reflect the input signal, but decoding schemes
beyond simple PSTH estimation provide more efficient ways to recover the input [51].

Is the coding literal? Temporal coding may also be characterized according to whether or
not the spike train is a ‘literal’ representation of the input—a criterion that has been used
to distinguish ‘encoding’ from ‘coding’ [385]. Conceptually, this is a distinction between
situations in which the temporal structure in the response is a direct consequence of temporal
structure in the input, and situations in which temporal structure in the response is generated
by an interaction of the input signal with the dynamics of individual neurons or the network.

In the most extreme form of a literal code, the temporal structure of a neuron’s response
replicates the temporal structure present in the input. For example, a neuron which has a
maintained discharge might provide a direct literal representation of the time-varying intensity
I (t) of a spot in the centre of the receptive field, provided that the timescale of fluctuation
of the spot’s intensity is substantially slower than the typical firing rate. In this pure form of
a literal code, the average firing rateR(t) (determined by a smoothing procedure applied to
individual responses or by averaging across many replicate trials) is proportional toI (t). A
stage of linear filtering interposed betweenI (t) andR(t) is in keeping with the notion of a
literal code, in that the temporal structure of the response remains a direct consequence of the
temporal structure in the input. The essence of the notion of a literal code is preserved even
when the intervening transformation is nonlinear or not invertible, even though in the latter
case,I (t) cannot always be recovered fromR(t).

In non-literal coding, the relationship of the temporal structure of the response to the
stimulus is an abstract, and in principle more arbitrary, one. That is, response dynamics is
determined primarily by the dynamics of the neural hardware, rather than the stimulus itself. A
clear-cut (but hypothetical) example of non-literal coding would be a neuron whose response to
a red spot is a tonic elevation of its mean rate, and whose response to a green spot is oscillatory
activity.

It would appear that this distinction is straightforward, albeit perhaps difficult to
formalize—literal coding is in some sense ‘trivial’, while non-literal coding is ‘interesting’.
However, further consideration indicates that this is not the case. As formulated above, the
distinction between literal and non-literal coding is just as applicable to non-spiking neurons
as it is to spiking neurons, and thus must be applicable to situations in which the spike
response contains no information beyond that available in a stimulus-dependent rate function.
We consider the response of a generic and grossly oversimplified retinal neuron to transient
presentation of a spot of light. Following observations in many types of neurons and across
many species, we caricature the neuron’s behaviour as a linear combination of an excitatory
centre and an inhibitory surround, each with their separate timecourses ([298] and below) . For
non-spiking neurons, this combination produces a continuously varying membrane potential
R(t) that constitutes the neuron’s output; for spiking neurons,R(t) is then transformed into
a firing rate according to Poisson statistics. In either case, the timecourse ofR(t) depends
on the size of the spot, since larger spots will be associated with a greater contribution of the
surround dynamics. This coding cannot be classified as literal, because the temporal structure
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of the input (its transient onset) is the same in both cases. In sum, a highly simplified classical
model demonstrates non-literal temporal coding of spot size. (A recent, far more elaborate,
analysis of this kind has been carried out for model lateral geniculate nucleus neurons [132],
with the same overall conclusion.) Note that we cannot avoid this problem by insisting that
non-literal coding can only be sought with stimuli without an ‘onset’. Had we imposed such
a requirement, experimental tests for such coding would be nearly impossible, since it would
be necessary for stimuli to be present for an indefinitely long period of time.

This example shows that our initial definition of non-literal coding (designed to distinguish
‘interesting’ from ‘trivial’ coding) encompasses a phenomenon as simple as centre–surround
organization. If the spatiotemporal aspects of centre–surround organization were not a well
known phenomenon [298], then the discovery that the timecourse of a response can signal the
size of the stimulus would be likely to attract considerable interest and attention. Once the
mechanism is known (and in this case the mechanism was known long before the current surge
of interest in temporal coding), the phenomenon becomes less interesting. Non-literal coding
of stimulus size is merely literal coding of an internal signal (the combined response of centre
and surround). This distinction fades further once we recognize that the continuous functions,
and not just spike trains, may serve as neural outputs.

It should not be surprising if many examples of non-literal temporal coding turn out to be
literal coding of an internal signal, once the underlying mechanism(s) are understood. From
a theoretical point of view, a more fundamental distinction than that of ‘literal’ versus ‘non-
literal’ coding is whether or not the coding manifest in a spike train relies in an intrinsic manner
on the dynamics of spike generation. That is, does the presence of spikesper serepresent a
new dynamical feature or, alternatively, is it safe to restrict consideration to firing rate? We
have already cited the integrate-and-fire model of spike generation [187] as a simple example
of dynamics introduced by spike generation; a more elaborate example is that of ‘chattering’
cortical neurons [133], whose burst rate can be modulated by a slowly varying input signal.
These processes produce non-literal coding, in that they introduce dynamical features not
present in their input, whether we consider the ‘input’ to be the sensory signal itself or an
internally generated one. Finally, it is far from clear that an encoding process can always be
factored into a signal-processing stage consisting of simple functional elements that act on the
input to produce an internal (temporal) signal, followed by a spike-generating stage (which
may or may not be a literal encoder). Indeed, it may well be that the most important distinction
along the lines of ‘interesting’ versus ‘less interesting’ temporal coding is whether the coding
process can be factored in this fashion or, alternatively, whether network properties that rely
on the repeated interconversion of spike trains and continuous signals play an essential role.

The two characterizations we have considered—the importance of individual trials, and
the literal versus non-literal distinction—are fully independent. As discussed above, non-literal
coding may be present in a manner that is fully manifest in the PSTH (i.e., if an internally
generated temporal signal drives a Poisson neuron) or in a manner that requires inspection
of individual responses. The same is true of literal coding. A Poisson neuron driven by
a replica of a temporal signal present in the input is an example of literal coding in which
individual trials provide no information beyond that of the PSTH. If the same temporal signal
drives an integrate-and-fire neuron (or the effective rate of any renewal process [187]), then
coding remains literal but the PSTH no longer predicts the statistics of the individual responses,
and decoding schemes beyond simple PSTH estimation may provide a more efficient way of
recovering the original input [51].

Precise timing need not imply temporal coding.One aspect of the complexity of the
relationship between the precision of individual spike times and the notion of temporal coding
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is illustrated by the results obtained in two invertebrate visual systems. Bialek and co-workers
[33, 34, 312] examined spike train output of H1, a motion-sensitive neuron in the fly’s visual
system. A literal code was assumed: namely, that the velocity signal was ‘decoded’ from H1’s
output by convolution with a linear kernel (in essence, an effective impulse response), and the
form of the kernel was optimized to provide the closest match to the timecourse of the stimulus
velocity. Addition of nonlinear terms did not improve the representation [34]. Importantly, it
was shown that this ‘stimulus reconstruction’ approach did not miss a substantial amount of
the information present in the response [312], in that it was reasonably close to the theoretical
limits imposed by noise at the receptor—thus providing strong empirical evidence that the
assumed coding strategy was correct. The width of the optimal temporal kernel was narrow
in comparison with the timecourse of velocity fluctuations and the mean interspike interval.
Correspondingly, the spike train was irregular, and the precise timing of individual spikes (up
to the ca 30 ms width of the kernel) conveyed considerable information.

An interesting contrast is presented by the recent studies of the lateral eye of the horseshoe
crabLimulus, carried out by Passagliaet al [286]. Here, the response of the population of
optic nerve fibres was determined by a combination of neurophysiological and computational
techniques, based on an accurate linear model of theLimuluslateral eye [51, 52]. As originally
noted by Hartline and Graham [150], spike discharges occurred at a rate of 5–40 impulses per
second and were highly regular. But rather than being driven by the input, the timing of a spike
was determined primarily by the time of the previous spike and the dynamics of the spike-
generating mechanism [187]. Thus [286], stimulus-specific information was present only in
the average firing rate over prolonged periods (250–500 ms), in keeping with the temporal
integration properties of central neurons that receive the inputs from the optic nerve.

In both sets of experiments, stimulus information is encoded in a literal (and linear)
manner, and spike times are highly precise (with variability demonstrably non-Poisson in the
case ofLimulus)—but the fly H1 neuron manifests temporal coding, while theLimuluslateral
eye provides a clear-cut example of rate coding. Conversely, the absence of precise timing
does not rule out the possibility of a temporal code. Oscillations or bursts that are induced by
specific stimuli are prime examples of temporal codes, even if their frequency is sufficiently
low such that spike timing is imprecise or if they are not phase-locked to the onset of the
stimulus. These phenomena have been reported in spiking [9] and non-spiking neurons of the
retina [108, 323], as reviewed in [275].

3. Technical matters

Our notion of temporal coding relies on relating the temporal structure of a response to the
information that it carries. To identify and characterize temporal coding, it follows that we must
have tools for the characterization of temporal structure and the quantification of information.
We now discuss these two issues. Our aim is not to provide a set of tutorials, but rather to
highlight the relationships between the various approaches that have been used, and to consider
some of their advantages and potential pitfalls.

3.1. Characterization of temporal structure

Methods applicable to continuous signals and to spike trains.Many methods for the
characterization of temporal structure of spike trains apply equally well to (or were originally
developed for) the characterization of continuous signals. The average response to a stimulus
may be characterized in the time domain by the post-stimulus histogram, or, equivalently,
in the frequency domain by Fourier analysis. Both of these characterizations are ‘first-order
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statistics’ and are thus linear in the data. The usual method used to characterize the spontaneous
(background) activity consists of calculation of second-order statistics—in the time domain, the
autocorrelation function [287], or in the frequency domain, the power spectrum [48]. Second-
order statistics provide a complete description of filtered Gaussian processes but cannot reveal
deviations from Gaussian statistics. Higher-order statistics, such as the bispectrum [58], a
third-order statistic, can reveal and characterize such deviations, but reliable calculation of
these statistics often requires more data than are typically available from a neurophysiologic
experiment, and is typically applied to field potentials and rather than spike trains. Gaussian
(and non-Gaussian) statistics of low order are consistent both with abona fidestochastic process
and also with deterministic chaos. This distinction cannot readily be made with an order-by-
order analysis, but can, in principle, be made via calculation of the topological dimension
of a time series [14]. A low dimension implies deterministic chaos, while a high dimension
implies a stochastic process. However, while such non-parametric methods are theoretically
attractive, they suffer from the need for large quantities of experimental data and other practical
difficulties [384].

As discussed above, it is important to examine not only the average response to a
stimulus, but also how individual responses differ from this average. One possibility is
that the variation among individual responses merely represents the additive superposition
of stimulus-independent background activity. However, the simple hypothesis that a stimulus-
locked ‘driven’ response and a constant background ‘noise’ add without interacting is often
falsified [57, 240, 382, 383]. For example, one portion of a response may be more variable than
another. Or, a stimulus may result in the appearance of oscillations with a relatively constant
envelope but a phase that varies from presentation to presentation [383].

An extension of spectral analysis provides a systematic approach to characterize these
(and other) kinds of response variability (or interaction of driven activity and noise). For a
periodic stimulus, this leads to the phase-locked spectral analysis (PLSA) procedure [331],
in which variability is characterized by a sequence of spectraPn(ω). This is a carrier (ω)
and envelope (n) decomposition, in whichPn(ω) indicates the strength of a component of
response variability at the frequencyω which waxes and wanes with thenth harmonic of the
stimulus cycle. If signal and noise did not interact, thenP0(ω) would be the power spectrum
of the background, andPn(ω) (n 6= 0) would be zero. For transient stimuli, it is convenient
to transform the envelope variable (n) into the time domain. This leads to a characterization
of responses in terms of power at a frequencyω that tends to be present at specific times after
stimulus onset [154, 383].

The carrier may also be analysed in the time domain, which results in a description of
response variability in terms of autocorrelation functions computed locally in time. Whether
calculations are performed in the time or frequency domains, the key feature of this family
of analytical methods is that response measures are squared before they are averaged, so that
response segments that are more variable produce reinforcing contributions, independent of
the direction of their variation.

To apply any of the above methods to spike data, it is necessary to transform a spike train
(a sequence of events) into a function of time. The usual approach is to ‘bin’ the data. That
is, the sequence of spike times is replaced by a function of timef (t) which is constant on
intervals (bins) of length1τ , and the value of the functionf (t) on each interval indicates
the number of spikes that have occurred in this interval. In some circumstances [312], it is
convenient to choose the bin length1τ to be short enough so that every bin contains at most
one spike. Thus,f (t) can be considered to represent the spike train, with resolution1τ . A
variation on the theme of binning consists of replacement of spikes by smooth bumps, such as
Gaussians of some particular width [153].
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It may also be useful to replace the spike train by a sequence of delta functions, one at the
time of each spike. This avoids the need to choose an arbitrary finite bin width1τ , provided
that the analytical measure has an interpretable limit as the bin width1τ → 0. For example,
with this convention, a Fourier component of the response becomes a sum of exponentials, and
any filtering related to the smoothing or binning procedure is eliminated.

Replacement of delta-function spikes by smooth bumps is equivalent to application of a
(non-causal) linear filter whose impulse response is the bump shape. Binning spike data is
also a form of linear filtering, but the filter is not time-independent because of the special roles
played by the bin boundaries. The power spectrumP(ω) of binned spike data has a high-
frequency asymptote proportional to 1/ω2, which is achieved for values ofω � 1/1τ , while
the power spectrum of a spike train considered as a sequence of delta functions has a constant
high-frequency asymptote, equal to the mean firing rate. However, for non-parametric response
characterizations, the relationship between analyses of binned, smoothed, and delta-function
representations may be less straightforward (see below).

Binning and smoothing do not require detailed assumptions about spike generation or
postsynaptic processing. When a specific model for spike generation is under consideration, it
is sensible to attempt to use this model to derive a continuous function of time that approximates
some aspect of the continuously varying biophysical state of the neuron. Alternatively,
computational models for synaptic behaviour [341] can be used to derive a functionf (t) that
represents the effect of the spike train on the postsynaptic neuron. These model-dependent
functions, which may well be nonlinear transformations of the delta-function spike train, can
then be subjected to the above strategies of time-series analysis.

An example of the use of a model of spike generation is the analysis of the integrate-and-
fire model neuron [187]. In this model, the transmembrane voltage is assumed to represent
an integral of synaptic inputs. When this voltage reaches a threshold, a spike occurs and
the voltage is reset to a base level. For such a neuron, the derivative of the transmembrane
voltage represents the key model state variablef (t). Although the timecoursef (t) cannot be
inferred from an observed sequence of spike events, one can at least restrict consideration to
timecoursesf (t) that are consistent with the observed sequence. Such timecourses cannot be
derived by binning or smoothing the spike train. However, a natural choice [189] forf (t) is a
piecewise-constant function whose value on the interval between any two spikes is proportional
to the reciprocal of the interspike interval.

Methods based on a spike train as a sequence of events.We now consider strategies for the
characterization of temporal structure that explicitly consider the ‘point process’, or event-
like, nature of the spike train [287]. We consider primarily situations in which no stimulus is
present, or in which the stimulus is constant in time, but many of the methods we discuss can
be extended to situations in which there is a time-varying stimulus.

A key qualitative aspect of a spike train is whether it is a ‘renewal process’. In a renewal
process, by definition, the distribution of possible values for the nth interspike interval In is
independent of the preceding interspike intervalsIn−1, In−2, . . . , and each interspike interval
is identically distributed. Examples of renewal processes include Poisson processes (with or
without refractory period), iterated Poisson processes (everykth event of a hidden Poisson
process corresponds to a spike), random-walk models, and integrate-and-fire models (with or
without forgetting, with or without a stochastic threshold). In a renewal process, all statistical
aspects (including all of the measures described above) are completely determined by the
statistics of the interspike interval distribution.

If lengths of successive intervals are not statistically independent, then a first step
to characterizing this dependence is the calculation of correlation coefficients between
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neighbouring intervalsIn andIn−1, and more generally, between two interspike intervalsIn
andIn−j separated by a fixed number of intervening intervals. These quantities, the ‘serial
correlation coefficients’, are analogous to the autocorrelation function. Indeed, in the limit that
the interspike intervals of a spike train scatter only infinitesimally from their mean valueImean,
thej th serial correlation coefficient is given by the autocorrelation of the smoothed spike train,
evaluated at the timejImean. For spike trains that have large variations in interspike intervals,
this approximation does not hold, for two reasons: the effects of the binning or smoothing
process need to be considered, and there is no longer a close relationship between the number
of intervening interspike intervals and their total duration. In principle, the idea of pairwise
serial correlation can also be extended to examine correlations at higher orders, but, just as
in the calculation of higher-order analogues of the autocorrelation and the power spectrum,
availability of sufficient data is likely to be limiting.

There are approaches to spike train analysis that look beyond pairwise interval statistics,
but not in the framework of an order-by-order approach. One approach is to choose a criterion
for what constitutes a ‘burst’ (a minimum number of spikes within some predefined interval),
and analyse their statistics and stimulus dependence [32, 363]. A more general approach
is to ask whether there are sets of spikes of defined interspike intervals that occur with an
unexpectedly high frequency [86, 87, 213]. Highly efficient methods for this purpose have
been developed [86]. Such sequences of spikes, which need not be contiguous within the
spike train, are known as patterns or motifs, were originally identified in auditory cortex and
have been proposed to be an important aspect of cortical function in general [1].

Additional methods take their inspiration from nonlinear dynamics. Rappet al [297] have
developed a technique for quantifying the ‘algorithmic complexity’ of a sequence of spikes.
Algorithmic complexity and serial correlation structure are independent attributes of spike train
structure, just as the topological dimension and spectral attributes are independent attributes
of continuous-time series. When a periodic stimulus is present, then an additional set of tools,
based on the ‘circle map’, can be used [187] to identify and characterize dynamical features
of the spike train such as phase locking.

Extensions to multichannel data.In general, all of these methods can be extended to the
analysis of datasets that contain simultaneous records of activity in two or more neurons. For
example, spectra and autocorrelations generalize in a natural way to cross-spectra and cross-
correlations [288], and strategies for identification of ‘motifs’ of spike intervals in the activity
of individual neurons are readily extended to the identification of stereotyped patterns across
neurons [2, 313]. Moreover, just as a ‘burst’ can be taken as a unitary event, a coincidence
of activity across neurons can be taken as a unitary event and subjected to further time-series
analysis, as if this coincidence represented the activity of a virtual neuron.

There are some issues unique to multichannel data that deserve special mention. FromN

channels of data, one can compute not onlyN autocorrelation functions, but alsoN(N −1)/2
cross-correlations, cross-spectra and covariances, and, more generally,N !(N − r)!/r! joint
rth-order correlations amongr channels. The challenge is not so much knowing how to do
the computations but, rather, knowing how to interpret mass of statistical information that
emerges.

When a time-varying stimulus is present, it is important to distinguish between correlations
induced by common driving by the stimulus, and ‘intrinsic’ correlations. Here, the usual
approach [126, 127] is to calculate a ‘shift predictor’ or ‘shuffled correlogram’, by cross-
correlating responses on one channel with randomly selected responses on the second channel,
rather than with the simultaneously recorded responses on the second channel. The difference
between the unshuffled cross-correlation and the shuffled cross-correlation is thus a measure of



Temporal aspects of neural coding R13

correlated activity which cannot be accounted for merely by joint activation of the two neurons
by the stimulus. Cross-correlations can be interpreted in terms of functional connectivity
[126, 127, 288], but there are important caveats [53].

The shuffle-corrected cross-correlogram is sensitive to correlations of activity among
neurons that are present throughout the stimulus cycle, but cannot resolve whether or not these
correlations vary with time. The joint PSTH [4, 127] is a refinement of the cross-correlogram,
which is able to resolve dynamically changing cross-correlations. Similar information in the
frequency domain can be provided by extending phase-locked spectral analysis to multichannel
data [331].

3.2. Quantification of information

Shannon’s groundbreaking ideas [344] provide the basis for most approaches to the
quantification of information in the nervous system. We briefly review some of the elements
of information theory, and then consider its application to experimental data.

Consider a set{sa} of abstract symbols (‘stimuli’). For a stimulus set which consists of
2M equally-probable elements, it is necessary to know the answer toM yes–no questions to
determine which item is present. That is,M bits of information are required to change the
state of knowledge about which item is present from thea priori state (2M equally probable
elements) to certainty. Non-integer quantities of information make perfectly good sense,
too. For example, suppose a stimulus set contains ten equally probable items, e.g., the digits
{0, . . . ,9}. Answers to three yes–no questions are only guaranteed to disambiguate one digit
out of eight, while four yes–no questions would occasionally be more than sufficient, so the
information required is between three and four bits. However, now assume that the digits are
presented in a stream, and that stimuli are lumped into triples prior to identification. There
are 103 = 1000 equally likely triples. Since 1000 is between 29 = 512 and 210 = 1024,
the total information required for three judgements is between nine and ten bits. That is, the
information required to specify one decimal digit can be said to lie between9

3 and 10
3 bits. By

extending this kind of argument, one can show that if the items in a stimulus set occur with
probabilityp(sa), then the amount of information required to specify which item is present is
given by

H = −
∑
a

p(sa) log2p(sa), (1)

with the convention that ifp(sa) is zero, then its term is considered to have no contribution
to this sum. For a stimulus set withC elements, the maximal value for the information
(equation (1)) is log2C, which is achieved by equation (1) when the probability assigned to
each of the symbols is equal to 1/C.

In order to quantify the information in a spike train, we proceed as follows. Assume that an
ideal observer is attempting to use a neural response to determine which stimulus (from within
the class{sa}) is present. The probabilitiesp(sa), thea priori probabilities of these stimuli,
represent the observer’s state of knowledge prior to the neural response. We further assume
that the observed neural response falls into one of a discrete category of responses,{rb}, and
that the observer knows the conditional probabilitiesp(rb|sa) that a response in categoryb is
elicited by a stimulus in categorya. Thus, once a response (say, in categoryb) is recorded,
the observer will revise the probability estimates for each of the stimulisa from p(sa) to the
a posterioriprobabilitiesp(sa|rb). By Bayes’ theorem, the conditional probabilitiesp(rb|sa)
andp(sa|rb) are related to the joint probabilityp(sa, rb) thatsa andrb occur together by

p(sa)p(rb|sa) = p(rb)p(sa|rb) = p(sa, rb). (2)
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Thus, the amount of information provided by registry of a response in categoryb is difference
in the uncertainty associated with thea priori probability distributionp(sa) and thea posteriori
probability distributionp(sa|rb), each calculated according to equation (1). Across all possible
response categoriesb, the expected information is the sum of the information provided by a
response in each of the categoriesb weighted by the probabilityp(rb) of such a response.
This leads to the following expression for the ‘transinformation’ (in bits) associated with this
neuron and this set of stimuli and response categories:

H = −
∑
a

p(sa) log2p(sa)−
∑
b

p(rb) log2p(rb) +
∑
a,b

p(sa, rb) log2p(sa, rb). (3)

Note that this equation is symmetric under interchange of stimulus and response, even
though stimulus and response sets were not treated equivalently in our derivation. The equation
is a combination of three terms similar to equation (1): the first two terms are the sum of the
informations associated with the stimulus set alone and the response set alone, and the final
term subtracts the information associated with the set of stimulus–response pairs{(sa, rb)}.
With this in mind, it can be shown that the transinformation must be non-negative, and can
only be zero if stimulus and response are independent:p(sa, rb) = p(sa)p(rb). On the
other hand, consider the situation where each stimulusa reliably elicits responses in only
one classb = σ(a). In this case, it follows that the transinformation is maximal, and equal
to the information associated with the stimulus set (because, after a response is registered,
then stimulus uncertainty is reduced to zero). Thus, transinformation quantifies thenon-
independenceof stimulus and response. It is noteworthy that there is no assumption about
the nature of the association between stimuli and responses: in a one-to-one association, the
maximal value of the transinformation is achieved for any permutationσ .

Even under ideal circumstances of a limitless dataset and complete knowledge of the
neural coding scheme, the transinformation depends on the choice of the stimulus set and the
probabilities assigned to individual stimuli. For this reason, it is often useful [312, 320, 434] to
consider the channel capacity of a neuron: the maximum transinformation that can be achieved
for any choice of stimulus set. The channel capacity is the limiting signalling capacity of a
neuron.

Overcoming bias in information estimates.There is a major issue that must be confronted
prior to implementation of the transinformation formalism. The estimate of equation (3)
is a biased estimate of the ‘true’ value of the transinformation that would be obtained
from an infinitely large sample of data. The source of this bias is straightforward—even if
stimuli and responses are uncorrelated, the right-hand-side of equation (3) cannot be negative,
and any deviation (due to finite sample size) of empirically estimated probabilities from
p(sa, rb) = p(sa)p(rb)will lead to a positive value forH . Less formally, since no assumption
concerning the nature of the stimulus–response linkage is made, any apparent deviation from
independence is seen as evidence of a possible linkage.

There are several ways to deal with this bias. One method is to calculate the
transinformation from ‘shuffled’ datasets, in which the stimuli and observed responses are
randomly associated [69, 415]. This leads to a distribution of values for the transinformation
H0 that would be expected merely from the bias of the estimator, given the available sample
size. Values ofH calculated from the unshuffled data that lie outside this range necessarily
indicate a linkage between stimulus and response classes that is more than expected by chance.
It is reasonable to consider the differenceH −H0 as an estimate of the transinformation after
correction for the bias. However, this is not rigorously justified. Indeed, in situations that have
been analysed analytically [285] or computationally [281],H0 is an overly large correction to
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the bias of datasets that contain strong stimulus–response linkages. Another strategy [131, 186]
is to reduce the bias of the estimator of equation (3) by ensuring that the classification scheme
for assignment of responses into categories does not overfit the data. In this approach (typically
employed when a neural network is used to classify responses), the network is trained on one
subset of the data, and then the classification scheme is applied to a non-overlapping dataset.

An elegant way to deal with the estimator-bias problem was recently developed by Treves
and Panzeri [285, 396]. Provided that the rule for categorizing responses acts independently on
each response, the asymptotic estimate for the bias of equation (3) is given by [255, 285, 396]

Hbias = 1

2N loge 2
(CSR − CS − CR + 1). (4)

Here,CS indicates the number of stimulus categories,CR indicates the number of response
categories, andCSR indicates the number of possible pairings of stimulus and response
categories. It is most conservative to takeCSR = CSCR, but other choices may be justified
under circumstances in which it can be argued that certain stimulus–response pairings are
impossible [285]. Higher-order correction terms (i.e., involvingN−2, N−3, . . .) in equation (4)
are not typically useful, in that for smallN they can make the estimate worse, indicating that
there is insufficient data for a sensible calculation, while for largeN they decrease so rapidly
that they are negligible [285]. Equation (4) can be derived from the observation that naive
estimates of the information associated with a single set ofC symbols (equation (1)) are biased
downward by [66]

Hbias = − C − 1

2N loge 2
. (5)

It is also possible to arrive at an upper bound for the transinformation by consideration
of the maximum possible number of distinguishable responses that a neuron can generate
(independent of any particular set of stimuli). It is convenient to bin the spike train into
intervals of width1τ , where1τ is assumed to be the firing precision of the neuron, and
is sufficiently short so that no bin can contain more than one spike. It is further assumed
that each bin’s occupancy is independent. With these assumptions, the upper limit for the
transinformation is given by [225, 312]

Hmax≈ RT 1− logeR1τ

loge 2
, (6)

whereR is the mean firing rate. This bound is the ‘entropy’ of a set of Poisson spike trains
of lengthT , rateR and timing precision1τ . The transinformation can only achieve this
bound in the absence of ‘noise’ (so that each stimulus will elicit only one response), and for
a stimulus set which leads to the Poisson response statistics presupposed in the derivation of
equation (6). Constraints on the statistics of possible responses (e.g., non-independence of bin
occupancies) decrease the entropy of the spike train, and thus decrease this upper bound. This
approach is particularly powerful when combined with ‘stimulus reconstruction’ methods to
provide a lower bound for transmitted information [34, 312]. The approach can also be refined
by replacing equation (6) with empirical estimates of the number of distinguishable responses
based on a vector-space embedding (see below)—an approach known as the ‘direct method’
[321].

Categorization rules. The information-theoretic framework is quite general, and does not
make assumptions about which features of a response are significant. But implicit in this
approach (i.e., direct calculation of information via equation (3)) is the need for a rule to
categorize individual neural responses into response classes. This is ultimately a matter of
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biology, not mathematics, in that the rule for categorization can be viewed as a means to
formalize a hypothesis for what aspects of the spike train are important. If one intends to
interpret the transinformation as the information which isusedby the visual system, then this
categorization rule must somehow be a match for the decoding process.

The transinformation can also be used as a means to characterize the extent to which various
aspects of temporal structure areavailable forsignalling. In this approach, the transinformation
is calculated for each of a set of candidate categorization rules [414, 415]. Each classification
rule formalizes a particular aspect of temporal structure; if a classification rule leads to a large
value of transinformation, then one can conclude that the temporal structure that it embodies has
high stimulus specificity. The lack of any assumptions concerning the nature of the stimulus–
response linkage carries the liability of downwardly biased estimators, but in this context it
has the benefit that a variety of categorization rules can be compared on an equal footing.

Discretization and the structure of the response space.Equation (4) would suggest that bias
is minimized by minimizing the number of stimulus and response categories. But reduction of
the number of stimulus or response categories is a source ofdownwardbias in the estimation
of transinformation. Grouping distinct stimuli together makes systematic dependence of
responses on their distinguishing features appear to be chance variability of responses to stimuli
within the same category, and this lowers the transinformation. An overly coarse response
categorization may cause distinct responses, associated with somewhat differenta posteriori
probabilities, to be treated together. Ignoring the distinction between thesea posteriori
probabilities also lowers the apparent amount of information contained in the responses. In
both cases, the apparent information is reduced as a direct result of the discretization of the
stimulus or response space. This reduction in apparent information due to categorization is
more critical for the estimation of information capacity or transinformation in an absolute
sense, than for comparing categorization rules that each lead to the same number of categories.
Indeed, under circumstances in which the stimuli are under the experimenter’s control, the bias
in estimation of transinformation due to stimulus discretization can be eliminated simply by
choosing an explicitly discrete set of stimuli.

However, the need to categorize the responses cannot be dealt with in this fashion. One
class of approaches is to make assumptions concerning the structure of the response space
itself, and to use these assumptions to compensate in some fashion for the need to discretize.
If one is willing to make substantial assumptions concerning the nature of the relationship
between stimulus and response, then one can make use of powerful analytic tools. For example,
assuming (i) that spike trains can be considered as approximations to continuous signals, (ii)
that the stimulus–response relationship is a linear one, (iii) that noise is Gaussian, additive,
and stimulus-independent, and (iv) that the stimulus set consists of time series drawn from a
Gaussian ensemble, then one can use classical results from the Shannon theory [344] to derive
the exact transinformation [320, 312] for a response of durationT :

H = T

4π loge 2

∫ ∞
−∞

loge[1 +Z(ω)] dω, (7)

whereZ(ω) is the signal-to-noise ratio at the frequencyω.
However, it may not be practical or reasonable to make all of these assumptions.

Representation of spike trains as a sequence of bins naturally leads to consideration of these
responses within a vector space, but does not require an assumption that input and output are
linearly related. For a reasonable discretization (e.g., 5 ms) and response length (e.g., 100 ms),
the number of bins, and thus the dimension of this vector space, is very large. Most of the
vector space is sparsely occupied or unoccupied by data, and thus, an attempt to use volume
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elements that fill the entire vector space to classify responses can lead to intolerably large biases.
Rather than deal with the entire vector space, one can examine projections onto a relatively
small number of principal components [246, 281, 282]. Alternatively, one can perform the
clustering only in heavily occupied regions of the vector space, and ‘regularize’ the data by a
smoothing process [69]. These approaches reduce the effects of discretization, but they require
assumptions concerning the nature of response variability and implicitly assume that responses
can be clustered by a Euclidean metric based on the binned spike trains. Another approach
[434] makes use of a statistical model of the stimulus–response relationship (an empirical
truncated-normal distribution for spike counts), whose mean and variance are estimated from
the data) and then uses this model as the basis for information calculations. These approaches
work well for situations in which most of the temporal structure of a spike train is described
by its envelope; their applicability to the more structured spike trains seen at in the retina and
lateral geniculate are as yet unclear.

When only two stimulus categories are present, it is possible to dispense with assumptions
concerning the nature of response variability through the use of the receiver operating
characteristic (ROC) [134]. A univariate response measure is postulated, and the categorization
rule is essentially a threshold value of this measure for assignment of responses to either of
two classes. The ROC analysis then examines the performance of this categorization rule,
parametric in all values of the threshold. Essentially, this is like having a continuum of
response classes, parametrized by the value of the response measure. This approach has been
used primarily in the study of discrimination of direction of visual motion [16, 276, 342] and
with spike counts (rather than other aspects of temporal structure) as a response measure, but
these are not intrinsic limitations of the approach.

Neural network classifiers [131, 254] and clustering schemes based on metric spaces
[413–415] readily deal with multiple stimulus categories and make the fewest assumptions
concerning the nature of response variability. Neural network classifiers implicitly postulate
some form of response measure, while metric space methods merely postulate a way of judging
the similarity of two responses. Both of these approaches are more general than classification
of responses based on spike counts or spike rates, considered as vectors in a space with a
Euclidean distance. However, the penalty for generality is that these approaches necessarily
suffer from downward biases in the estimation of information due to discretization [414].

4. Temporal aspects of visual signals

4.1. Retina

Anatomical overview. A schematic overview of retinal anatomy is presented in figure 2.
Quanta of light are transformed into graded neurophysiological signals by photoreceptors
[19]. Retinal ganglion cells, which form the output of the vertebrate retina, generate action
potentials [149], the all-or-none spike discharges that propagate along the optic nerve to
the brain. The most direct path from the photoreceptor to the ganglion cell consists of
two synapses: from photoreceptor to bipolar cell, in the outer plexiform layer, and from
bipolar cell to retinal ganglion cell, in the inner plexiform layer. This ‘radial’ pathway is
complemented by networks of lateral interactions at each plexiform layer: horizontal cells at
the outer plexiform layer and amacrine cells at the inner plexiform layer [93]. Many synaptic
connections within the plexiform layers are reciprocal and have a unique synaptic structure
known as a ‘ribbon’, whose function is unknown but the subject of intensive study (e.g.,
[407]). With the exception of some amacrine cells [113, 264, 371, 392], retinal interneurons,
like photoreceptors, do not fire action potentials, but communicate entirely by graded signals
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Figure 2. A schematic overview of retinal anatomy, from H Kolb
(http://insight.med.utah.edu/Webvision/imageswv/schem.jpeg), with permission.

[433]. The major categories of retinal neurons are also subdivided into many subtypes, based
on morphological, physiological, and neurochemical features [43, 44, 103, 119, 238, 425, 427].
Both plexiform layers are subdivided into multiple sublaminae, and connections within these
sublaminae are, in general, subtype specific. These important and interesting details vary
substantially across species. The interested reader is referred to one of the many reviews
[45, 93, 190, 376, 425] of retinal anatomy and functional correlation.

Photoreceptors. The remarkable ability of the retina to operate over at least a 109-fold range
of light intensities [346] is primarily due to the properties of the photoreceptors. In the lower
half of the intensity range, signalling is accomplished primarily by rods, while in the upper
half of the intensity range, signalling is accomplished primarily by cones. However, rather
than forming the initial stages of independent and non-overlapping functional streams, rod
and cone signals intermix, within the cone itself [270], within horizontal cells [270], and
within certain amacrine cells [428]. Rod saturation is gradual. Consequently, at intensities
encountered in the typical daylight environment, both classes of photoreceptors contribute to
signalling. Furthermore, even at light levels for which the foveal response can be considered
to be cone-driven, the overwhelming numerical predominance of rods in the periphery means
that their contributions to non-foveal vision cannot be neglected.

To a first approximation, photoreceptor responses depend in a linear way on their photon
catch [332], see figure 3. The behaviour is very close to linear for dim flashes whose intensity
does not fluctuate over more than a decade (figures 3(A) and (B)). But the gamut of useful
vision (even with the subdivision of photoreceptor labour into two classes) requires that
receptors provide useful signals over a 105-fold range. Over most of the operating range
of the retina, contrast changes of one part in 100 are readily detected. This wide dynamic
range is incompatible with strict linearity. Were this to be accomplished by strictly linear
photoreceptors, their outputs would need to be precise to within one part in 107. Instead,
the sensitivity of rods and cones decrease with increasing illumination, in a manner in which
the size of the response to a fixed change in contrast remains approximately constant [278],
a relationship known as Weber’s law [422]. Adaptation consistent with Weber’s law can



Temporal aspects of neural coding R19

Figure 3. (A) For dim flashes, photoreceptor responses are very nearly proportional to intensity.
Bold traces are measured responses to flashes of four intensities separated approximately by factors
of two; thin traces are the prediction based on exact proportionality. (B) For dim flashes, responses
obey superposition in time. The upper trace compares a measured step response (solid curve)
with prediction based on superposition of responses to a brief flash (open circles); the lower trace
is the measured flash response. (C) With large changes in intensity, the step response changes
dramatically in overall timecourse. (A) and (B) show macaque cone responses, from Schnapfet al
[332]. (C) shows turtle cone responses, from Daly and Normann [82]. All figures are reproduced
with the consent of the original publishers.
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be thought of not only as an efficient signalling strategy, but also as the removal of factors
irrelevant to object identification (mean illumination) while leaving critical factors (relative
contrast) invariant. That is, the disadvantages of nonlinear distortion at the earliest stage of
sensory processing are outweighed by an advantage related to the nature of natural visual
scenes. Ethologically significant objects in the natural world are distinguished and identified
by differences in their reflectance, but they are not self-luminous; thus, it is important to signal
relative intensity (contrast) rather than absolute intensity.

With increasing light intensity, photoreceptor responses show a dramatic change not only
in gain but also in dynamics [21, 22, 82, 267, 277, 332]. In turtle rods [91], a 20-fold increase
in intensity at the low end of the operating range is associated not only with a 5-fold decrease
in sensitivity (i.e. membrane voltage response per photoisomerization), but also with a 2.5-fold
shortening of the latency-to-peak response. Across the range of intensities, the impulse re-
sponse remains monophasic, corresponding to a transfer function that is purely lowpass. A sim-
ilar change in response timescale is seen across the operating range of the turtle cone [82], but
the impulse response becomes diphasic at high intensities, corresponding to a bandpass transfer
function (figure 3(C)). In primate cones, the change in shape of the impulse response is even
more dramatic [332]—from a monophasic waveform to a nearly balanced diphasic waveform.
The nearly balanced diphasic impulse response indicates that at high light levels there is only a
minimal response to DC changes in light intensities, while the response to flicker remains large.

The change in photoreceptor dynamics from lowpass to bandpass, and the shortening of
the integration time with increasing light intensity, cannot be regarded as extraction of a kind
of perceptually useful invariance similar to the light-induced changes in overall sensitivity.
However, these changes do have advantages for signalling economy [290]. At low light
intensities, the quantal nature of light represents an external noise source, which reduces the
informativeness of high-frequency signals. As light intensities increase, reliable photon counts
can be achieved with progressively shorter pooling times. Application of Wiener’s theory of
optimal filters to these intuitive ideas suggests that photoreceptors can be considered to be
adaptive filters that shift their dynamics to optimize coding of scene information in the setting
of photon noise [290]. Similar considerations apply in the spatial domain as well, in that spatial
pooling is useful to limit photon noise under low-intensity conditions, but when photon arrival
is sufficiently rapid, higher spatial resolution is attainable with acceptable signal-to-noise. As
would be predicted from the optimal-filtering viewpoint [290], spatial pooling in the retina also
decreases as illumination increases. However, much of the change in spatial pooling is not
intrinsic to individual photoreceptors but rather is a combination of changes in photoreceptor
coupling and, more prominently, post-receptoral mechanisms.

Under high light levels, many primates (including man) have trichromatic colour vision:
the appearance of any given light can be matched by linear combinations of three arbitrarily
chosen ‘primaries’ [46, 422, 441]. It is well established that the differential wavelength
sensitivities of the cones form the basis of this trichromacy and account for performance on
colour-matching and colour-discrimination tasks [23, 332, 333, 362]. However, photoreceptor
properties alone do not account for the major temporal features of chromatic vision. Luminance
flicker can be discriminated from steady illumination up to frequencies of approximately 60 Hz
[182], but purely chromatic flicker becomes indistinguishable from steady illumination in
the 20–30 Hz range [184]. Chromatic signals requiring the short-wavelength (‘blue’) cone
are processed with still lower temporal resolution [49]. These psychophysical differences
in the processing of luminance and chromatic signals are parallelled by electrophysiologic
differences, as measured in individual retinal ganglion cells in the monkey [207], and in
visual evoked potentials [262, 295, 299] and magnetic fields [300] in man. However, the
dynamics of individual cones from each of the three classes are strikingly similar [332], and
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appropriate psychophysical studies [377] indeed reveal that even the short-wavelength cone
has rapid intrinsic dynamics. Thus, the difference in temporal sensitivity to luminance and
colour changes must be due to differences in post-receptoral processing [184, 328], rather than
intrinsic differences in the photoreceptor dynamics [377].

In summary, photoreceptors may be characterized as adaptive filters, whose gain decreases
and response speed accelerates with increasing average illumination. Compared with rods,
cones have a lower absolute sensitivity, a shorter response latency, and more bandpass
behaviour, but response dynamics across cone classes are similar.

Horizontal cells. Horizontal cells constitute the first neural stage of lateral interaction within
the retina. Two broad anatomical classes of horizontal cells have been recognized [119]:
the ‘inner’ horizontal cell typical of primate retinae, which has a well-defined dendritic tree
with cone inputs and a well-defined axonal arbor that provides outputs to rods [191], and the
‘outer’ horizontal cell typical of fish retinae, that lacks a well-defined axon but rather forms a
syncytium [322]. Horizontal cells also receive indirect inputs from both photoreceptor classes,
by virtue of gap junctions between the photoreceptors and feedback to photoreceptors from
other horizontal cells [270, 289].

Physiologically, horizontal cells are classified as ‘L-type’ (luminance) if they
hyperpolarize in response to light of all wavelengths, or ‘C-type’ (chromatic) if they
hyperpolarize in response to some wavelengths but depolarize in response to other wavelengths.
In the cat [274, 374] and monkey [81, 426], it appears that only L-type horizontal cells are
present. Catfish retina, which contains only one cone type [67], also contains only L-type
horizontal cells. C-type horizontal cells are prominent in other fish [60, 324, 442] and amphibia
[380]. Primate retinae appear to have a subtype (‘HIII’) of horizontal cell which receives input
from only the two long-wavelength (L and M) cones; HI and HII horizontal cells differ in their
dendritic morphology but contact all cone classes [192, 195].

For a relatively wide range of contrasts (up to ca 0.6), turtle [393] and cat [258] horizontal
cells can be regarded as linear. Based on their transfer properties, either measured with
sinusoidal [108] or white-noise [234] modulation [258] of large fields, cat horizontal cells can
be classified into three groups based on their frequency cutoffs and latencies:Hn (‘narrow’)-
type, with a latency of 45–55 ms and a frequency cutoff of 25–40 Hz,Hm (‘medium’)-type,
with a latency of 20–30 ms and a frequency cutoff of 55–70 Hz, andHw (‘wide’)-type, with
a frequency cutoff of 95–110 Hz (figure 4). The frequency-response curves of the two faster
subtypes contain peaks or prominent shoulders at high temporal frequencies [108], consistent
with observed oscillatory responses and suggesting a model of parallel bandpass inputs from
the photoreceptors [108, 135]. For small stimuli (1.5 deg or less), responses are restricted to
a lower frequency range, and the narrow peaks at high temporal frequencies are lost [109].
This suggests that these resonances reflect a network property of the outer plexiform layer,
rather than intrinsic characteristics of transmission from photoreceptors. For contrasts in the
0.7–0.9 range [109], response nonlinearities become apparent. Distortion is more prominent
for stimuli that produced a large response (i.e., low temporal frequencies and large area),
suggesting the presence of a compressive nonlinearity following linear temporal filtering. For
L-type horizontal cells in the turtle [68, 394], high-frequency resonances are not present, and
there is less dependence of response dynamics on the spatial characteristics of the stimulus. In
catfish, the entire horizontal cell layer is well described by a syncytium of cells (the ‘S-space’),
both anatomically and physiologically [146, 235, 265, 322, 436]. The shift of the horizontal
cell response to higher temporal frequencies with increased stimulus area [67, 236] is well
described by a linear model [200] incorporating linear, passive spread within the S-space and
subtractive feedback to the photoreceptors [20, 325].
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Figure 4. Transfer functions of the three kinds of horizontal cells in the cat (two examples of Hw
cells are shown). Symbols are measurements based on sinusoidally varying luminance stimuli;
continuous curves are model predictions based on parallel and serial combination of simple filter
elements. From Foersteret al [108]. Figure reproduced with the consent of the original publishers.

For lights that modulate only a single cone class, C-type horizontal cells respond in an
approximately linear manner [324, 380]. However, the dynamics of the response depends
strongly on which cone class is stimulated [442], even at frequencies as low as 5 Hz [380].
Moreover, for stimuli that drive two cone classes, the combination of the cone signals is
typically non-additive [60, 442]. Since these phenomena are not present in L-type horizontal
cells of the same retina which also receive cone input, they probably reflect properties of the
C-type horizontal cells and/or the cone-to-horizontal cell transmission process, rather than the
cones themselves.

Detailed dynamical measurements in the turtle [395] suggest a feedback model of light
adaptation, in order to account simultaneously for Weber law behaviour at low temporal
frequencies and a common asymptote at high temporal frequencies. The phenomenological
feedback reflects, in part, the intrinsic properties of the phototransduction mechanism [21, 22],
but the spatial properties of light adaptation indicate that the horizontal cell itself plays an
important role [203].



Temporal aspects of neural coding R23

In summary, distinct classes of horizontal cells have different dynamics, and some have
high-frequency resonances. Like photoreceptors, they are approximately linear for small to
moderate signals. The dynamics of signal transfer between photoreceptor and horizontal cell
depend on photoreceptor type, and inputs from different photoreceptor types may interact
nonlinearly. Horizontal cells participate in the dynamics of light adaptation, both via their
intrinsic properties and feedback to the photoreceptors.

Bipolar cells: overview. Bipolar cells receive light signals from photoreceptors at the outer
plexiform layer, and contact the retinal output, the ganglion cells, at the inner plexiform
layer. They represent the first neural processing stage in which antagonistic centre–surround
organization is apparent [93], the initial subdivision of retinal information into ON and OFF
pathways [334], and, in the primate, the initial subdivision of retinal information into chromatic
and achromatic pathways.

The centre–surround organization of the bipolar cell receptive field [93, 146] is generated
by combining the direct input from photoreceptor signals from a small region of space with
antagonistic signals pooled over a wider region of space by the horizontal cell. In the
tiger salamander, pharmacologic dissection [146] of this combination demonstrates that it
is approximately linear. The extent of surround inhibition increases with increasing light
intensity, and under dark-adapted conditions, it may be entirely absent [37].

Bipolar cells: origin of the ON and OFF dichotomy.As reviewed by Ẅassleet al [427],
multiple morphological subtypes of bipolar cells have been recognized in primates, each with
presumptive functional correlates. Some bipolar cells, known as ‘diffuse’ bipolars [44, 291],
appear to contact all cones within their dendritic field and, thus, they are unlikely to carry
chromatic signals. Other bipolar cells, known as ‘midget’ bipolars, contact only a single cone
pedicle [291]. Midget bipolar cells make two kinds of synaptic contacts with cone pedicles,
‘flat’ and ‘invaginating’ [191, 193], and terminate respectively in the outer and inner portions
of the inner plexiform layer. These two kinds of midget bipolars generate opposite responses
to light in the receptive field centre and represent the initial division of retinal signals into
an OFF pathway (flat bipolars) and an ON pathway (invaginating bipolars) [103, 274]. The
microcircuitry of the midget bipolar pathway is strikingly precise: contacting every foveal
cone pedicle are two bipolar cells [61], presumably one ON and one OFF. The bipolar cells
that contact the ‘blue’ (short-wavelength) cones are morphologically distinct [198, 232]. In
contrast to midget bipolar cells serving the medium- and long-wavelength cones, it appears
that only invaginating (ON) S-cone bipolars are present [80, 427], although there is one report
of candidate OFF S-cone bipolars [195]. Finally, there is a separate class of bipolar cells that
contact the rods. Anatomy, immunoreactivity [137], and physiology [85, 429] of these rod
bipolars provide converging evidence that they all depolarize in response to light. That is, in
the rod system, the separation of ON and OFF pathways is deferred to the inner plexiform
layer.

Quantitative analysis of ON and OFF neurons reveals significant departures from the
symmetrical ‘push–pull’ behaviour that their name might suggest, beginning with the bipolar
cell. In order for ON and OFF signals to be generated in the outer plexiform layer,
the same neurotransmitter, glutamate, must depolarize OFF-centre bipolar cells, and must
hyperpolarize ON-centre bipolar cells [353]. ON- and OFF-centre bipolar cells have distinct
immunocytochemical characteristics [427]. Since photoreceptors hyperpolarize in response
to light, synaptic transmission to OFF bipolar cells must be sign-preserving (i.e. excitatory),
as it is in the overwhelming majority of glutamatergic synapses elsewhere in the nervous
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system. In contrast, glutamatergic synaptic transmission to ON bipolar cells is sign-inverting
(i.e. inhibitory) and appears to rely on a second-messenger system. This arrangement incurs an
extra delay, estimated at 10 ms by Shiells and Falk [353]. The distinctive signal transduction
pathway in ON bipolar cells underlies its selective dysfunction in muscular dystrophy [106]
and perhaps other disease states [447].

The difference in transmission mechanism appears to be the source of substantial
differences in the dynamics of ON and OFF pathways [75]. In snapping turtle [10],
hyperpolarizing bipolar cells show a decrease in membrane voltage noise with light (consistent
with closing of channels), and the noise spectrum is consistent with synaptic events of halfwidth
15 ms, while depolarizing bipolar cells show an increase in membrane voltage noise with
light, and have a noise spectrum consistent with synaptic events of halfwidth 49 ms. Spatial
asymmetries between ON and OFF pathways have been demonstrated, including a twofold
difference in receptive field sizes in tiger salamander (ON bipolar receptive fields smaller)
[146] and psychophysical [400] and electrophysiological [447] differences in man.

Generation of ON and OFF signals may be somewhat different in the catfish. There are no
clear differences in dynamics between ON and OFF catfish bipolar cells [322], and all bipolar
cells are of the invaginating type [322]. ON and OFF catfish bipolar cells of each class have
a linear antagonistic centre–surround organization [325], with the surround response delayed
by approximately 10–20 ms, consistent with a transport delay in the S-space [67].

There is indirect physiological evidence for an asymmetry of dynamics of ON and OFF
pathways at the bipolar cell level in the cat. The nonlinear pathway of the Y ganglion cell
(see below) can be modelled as an array of initial linear elements identified with the bipolar
cells, followed by rectification, followed by a stage of spatial pooling [410]. The implicit
time within the initial linear stage is approximately 9 ms longer for ON Y cells than for OFF
Y cells. This difference is in good agreement with the estimate of the added delay due to
the second-messenger pathway required by the on bipolar cell’s sign-inverting response to
glutamate [353]. This dynamical asymmetry is not seen in X ganglion cells [409], suggesting
that bipolar-to-ganglion cell transmission is associated with a greater delay in OFF cells than
in ON cells, thus providing for a similar total transmission delay (photoreceptor to bipolar to
ganglion cell) in the ON and OFF pathways.

In mammals, ON and OFF signals are not recombined until the primary visual cortex
[334]. The evolutionary advantages of dual transmission of ON and OFF signals are not
entirely clear [38, 354]. One possibility is that the dual pathways could enable efficient and
linear transmission of luminance information by push–pull combination of neurons, each
of which can only signal unidirectional quantities effectively because of a low maintained
discharge. After pharmacologic blockade of retinal ON pathways with the glutamate analogue
2-amino-4-phosphonobutyrate [337, 334], there is a selective deficit in detection of luminance
increments and contrast sensitivity, but colour, motion, and shape perception are relatively
unimpaired. On the other hand, ON and OFF pathways can be isolated psychophysically, via
adaptation to sawtooth waveforms [199] and masking paradigms [38]. The distinct spatial and
temporal characteristics of the isolated pathways [39, 40, 447] suggest that their role is more
subtle than that of simple push–pull combination—that is, not limited to working in concert to
form a single luminance signal. One possibility recently proposed by Bowen [38] is that the
distinct properties of the ON and OFF pathways can disambiguate the effects of contrast and
contrast adaptation.

Nonlinearities at the bipolar cell stage. Although intrinsic processes within the
photoreceptors account for much of light adaptation, additional adaptive processes must
take place at later stages. Bipolar cells’ membrane potentials do not vary by more than
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Figure 5. (A) Comparison of operating ranges in bipolar cells and horizontal cells. Simultaneous
intracellular recordings were made as light intensity was swept from low to high. The horizontal
cell (b) shows a much broader response range than the bipolar cell response (a), but the bipolar
cell continued to respond to luminance steps beyond the point at which its steady-state response
saturated (oscillations on the right end of curve a), from Werblin [430]. (B) Dependence of dynamics
of isolated bipolar cells of the tiger salamander on mean current inputs. Impulses responses are
measured under current-clamp conditions by cross-correlating the voltage response with a white
noise input currents. For a mean current input near zero, the impulse response is approximately a
descending exponential. With depolarizing mean currents, the response quickens and an undershoot
develops. From Maoet al [230]. All figures are reproduced with the consent of the original
publishers.

approximately 30 mV [205, 433]. Near their resting potential, with current considered as
input, isolated bipolar cells [230] have a very high gain, equivalent to an input resistance of
approximately 5× 109 �. As a consequence, an input current of only a few pA, perhaps the
result of opening of only 45 synaptic channels [388], would result in saturation of the bipolar
cell’s voltage response. Thus, bipolar cells are faced with the same problem as cones—the need
to retain high sensitivity, yet also to signal responses over a wide dynamic range. Moreover, as
was shown by Werblin [430], bipolar cells have a steeper intensity-response curve, and thus,
at any given adaptation level, a narrower operating range, than do photoreceptors or horizontal
cells (figure 5(A)).

Transmission from photoreceptors to bipolar cells indeed is marked by a response
saturation, or ‘clipping’ [13, 24, 440]. While some of this clipping is likely to be due to
processes intrinsic to the photoreceptors [13, 15, 267], postsynaptic mechanisms must play a
role, since the bipolar cell voltage response shows saturation at light intensities 1–2 orders of
magnitude lower than light intensities which saturate the synaptic input, as gauged from the
current response [204]. Studies in the isolated bipolar cell of the tiger salamander have provided
evidence of adaptive filtering [230]. With depolarization, bipolar cell characteristics change
from high gain and lowpass behaviour, to low gain and bandpass behaviour (figure 5(B)).
Transfer functions at all levels of depolarization share a common high-frequency asymptote,
similar to the adaptive behaviour observed in the horizontal cell [395]. The ionic mechanism
underlying this behaviour appears to be the activation of a tetraethylammonium (TEA)-sensitive
potassium channel [229], which corresponds to the observation that clipping of photoreceptor
signals is also blocked by TEA [204]. As in photoreceptors, this adaptive behaviour, though
strongly dependent on the mean level of the input, allows for approximate linear behaviour
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for small signals that fluctuate around this mean. In the intact retina, mutual coupling of
bipolar cells under dark-adapted conditions [37] is an independent source of adaptive changes
in spatiotemporal properties. Overall, the changes in rod to bipolar transfer dynamics with
dark adaptation [33] can be understood to implement a kind of optimal filtering in the face of
photon noise [290].

In summary, the centre–surround receptive field of bipolar cells represent the initial site
of high-pass spatial filtering of visual information, and the many morphologically distinct
classes of bipolar cells represent the subdivision of visual signals along ON versus OFF, and
chromatic versus achromatic pathways. Little is known about intrinsic bipolar cell dynamics
in mammals because of the technical difficulties associated with recording from these tiny
neurons. However, evidence from fish and amphibia, as well as indirect evidence in mammals,
indicates that bipolar cells behave as adaptive quasilinear filters, with significant changes in
response gain and dynamics for relatively small changes in input signal size. ON bipolar
responses are likely to be delayed by approximately 10 ms with respect to OFF bipolar
responses, and surround responses are delayed compared with centre responses.

Amacrine cells: overview. Amacrine cells occupy the inner plexiform layer and provide
the anatomical pathway for interactions among bipolar cell outputs and modulation of
transmission between bipolar cells and ganglion cells. Anatomically, the inner plexiform
layer is subdivided into an outer sublamina (‘a’), consisting of two substrata, which is the
site of termination of OFF bipolar cells, and an inner sublamina (‘b’), consisting of three
substrata, which is the termination site of ON bipolar cells [103, 272] There are over 25
morphologically distinct subtypes of amacrine cells [119, 195, 233, 238], and they make use
of at least eight neurotransmitters [376]. High-resolution histochemical methods demonstrate
that within each substratum, only specific subtypes of bipolar, amacrine, and ganglion cells
form synapses [47, 253]. Reciprocal [136, 448] and serial [71, 138, 448] synapses among all
cellular components of the inner plexiform layer are commonplace. This anatomy brings with
it the expectation of a correspondingly complex and intricate physiology.

Amacrine cells: new dynamical elements.Amacrine cell light responses are generally
more transient than the responses encountered in the more distal retinal neurons
[264, 271, 273, 391, 392, 431, 432, 433, 448]. Most amacrine cells are interconnected via
an extensive serial inhibitory network [71, 138, 448] whose overall output to the ganglion
cells is inhibitory [115, 145]. Additionally, some amacrine cells have qualitatively
nonlinear response properties [113, 172, 173, 264, 326, 327, 391, 392, 433] even for small
inputs, including depolarizing responses to change in illumination, independent of the direction
of this change (the ‘ON–OFF’ response, figure 6(A)).

The increased transience seen in amacrine cells is partly due to their network properties
[115, 145]. In mudpuppy and tiger salamander, amacrine cells provide an inhibitory (GABAC-
ergic) feedback input to bipolar cells, which is in turn inhibited by mutual inhibitory (GABAA-
ergic) synapses among amacrine cells. But response dynamics also depend on the intrinsic
properties of the postsynaptic receptor in isolation. For example, the glycinergic amacrine cell
input to ganglion cells generates both tonic and phasic inhibitory currents, depending on the
subunit composition of the postsynaptic receptor [145].

The origin of the highly nonlinear ON–OFF response has been a matter of great interest.
Since many ganglion cells are relatively linear (see below), the ON–OFF behaviour must
be a property of the amacrine cells themselves, and not the bipolar cell output. Some
amacrine cells [113, 264, 371, 392] fire action potentials, indicating that they have strong
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Figure 6. (A) ON–OFF behaviour recorded intracellularly in three carp amacrine cells. From
Toyodaet al [392]. (B), (C) The nonlinear dynamics of the catfish C-type amacrine cell as revealed
by cross-correlation of the voltage response and a white noise input. (B) The best-fitting linear
filter (‘first-order model’) accounts for almost none of the response; the best-fitting model with a
quadratic nonlinearity (‘second-order model’) accounts for most of the response. (C) The Wiener
kernel associated with the second-order model of (B). From Sakuranaga and Naka [327]. All
figures are reproduced with the consent of the original publishers.

intrinsic nonlinearities. However, spikesper seare not the source of the ON–OFF response
nor the amacrine cells’ transience, since neither of these phenomena are restricted to spiking
amacrine cells. Rather, the spike response appears to represent simple rate encoding of a
graded depolarization that already manifests transience and ON–OFF responses [197].

The basis of the ON–OFF amacrine’s depolarizing responses following both increases and
decreases of illumination is most directly investigated in the turtle, in which it is feasible to inject
current into a presynaptic bipolar cell while recording an amacrine cell’s response [231]. One
proposed mechanism is that the depolarizing response is generated by incomplete cancellation
of signals from ON and OFF bipolar cells [231, 392] of differing dynamics. Studies in the
turtle [231] do not support this possibility: in response to transiently increasing illumination,
the response of the hyperpolarizing (OFF) bipolars leads the depolarizing response from the
ON bipolars. The sum of these opposing signals has a transient timecourse similar to that of the
amacrine light-on response, but it is of the wrong polarity (since the hyperpolarizing component
has a shorter latency). This difficulty cannot readily be fixed by assuming that the bipolar cells
inhibit the amacrines, since both light-on and light-off depolarization of the amacrine cell is
mediated by excitatory post-synaptic potentials [113, 231]. Furthermore, the amacrine cell’s
depolarizing response to transiently decreasing illumination bears little resemblance to the
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difference in ON and OFF bipolar cells’ response to light off. In cat, bipolar cell connections
to ON–OFF amacrine cells are primarily within a single sublamina (either ON or OFF but not
both) of the inner plexiform layer [113], providing further evidence that direct combination of
ON and OFF bipolar signals by the ON–OFF amacrine cell is unlikely.

Most probably, a full account of each phase of the ON–OFF amacrine’s response requires
a combination of a direct bipolar input with an input whose sign has been inverted via an
inhibitory interneuron. Since the outer retina is qualitatively linear, ON and OFF bipolar signals
need to be rectified prior to this combination. Otherwise, whatever mechanisms account for the
amacrine response to increasing illumination would lead to a response of the wrong polarity to
decreasing illumination. Light-on and light-off responses scale similarly across a wide range
of illumination [231], which implies that the sensitivities and dynamics of these responses
must be tightly matched. Finally, in turtle, amacrine cell ON–OFF responses to central and
peripheral illumination have different reversal potentials, implying distinct neurotransmitters
or receptor systems [231].

In carp [392], cat [113], and monkey [371], ON–OFF amacrine cells have spatially
homogeneous receptive fields. Other amacrine cells in these species have prominent centre–
surround spatial antagonism [392]. In contrast to behaviour in the outer plexiform layer,
combination of centre and surround signals in spatially inhomogeneous amacrine cells deviates
from simple additive combination. That is, it is likely that the intrinsic nonlinearities that are
qualitatively manifest in the ON–OFF amacrine cells are also present in amacrine cells with
centre–surround organization. In ON–OFF amacrine cells, they are responsible for the bulk
of the response, since the linear contributions of spatially coincident ON and OFF signals
effectively cancel. In amacrine cells with centre–surround organization, ON and OFF signals
do not cancel, but their combination is modified by the amacrine cells’ intrinsic nonlinearities.
This may be the basis of the amacrine cells’ ‘antagonistic response to change’ [431].

In the catfish, amacrine cells may be classified into two types, C and N, on the basis of
their dynamics [326, 327]. Both subtypes produce transient on-off responses to light and to
current injection into horizontal cells. Analysis with white noise inputs [234] can be used
to characterize their dynamics in terms of a series of models, consisting of the best-fitting
linear model, the best fitting second-order model, etc. For the type C amacrine cell [327],
the best-fitting linear model accounts for almost none of the cell’s response, while the main
features of the response are captured by the best-fitting second-order model (figure 6(B)).
This second-order model is described by a kernel functionK2(τ1, τ2), essentially the cross-
correlation of the responser(t) with the product of the inputs at timest − τ1 andt − τ2. In
type C amacrine cells, the measured values of this kernel (figure 6(C)) approximate a product
form,K2(τ1, τ2) = L(τ1)L(τ2). This means [234] that the neuron’s behaviour is consistent
with that of a linear filter whose impulse response isL(τ1), followed by a static nonlinearity.
The computed impulse response of the initial linear stage has an initial peak at 30–60 ms, and
then an undershoot which effectively removes the DC component of the response [327]. The
nonlinearity is often assumed [266, 327] to be a squaring operation, but it is more appropriate
to consider it to be a sharp, symmetric rectification: a quadratic model leads to substantial
deviation between data and model [266] when a wide range of input intensities are considered.

N-type amacrine cells are distinguished both by a sustained component of the response
to light delivered while dark-adapted [266], and by high-frequency membrane fluctuations
which follow, but far outlast, transient increases and decreases in illumination [326]. These
membrane fluctuations occur in the frequency range of 15–25 Hz. To a first approximation,
the even-order dynamics of the N-type cell can be accounted for by bandpass filtering the
C-type response, consistent with known inner plexiform layer connectivity [266]. However,
this does not account for their oscillatory transients. Models based on Wiener kernels beyond
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second order provide only a modest improvement [326]. This suggests that the rapid membrane
transients are best regarded as a manifestation of spontaneous oscillatory activity [161] that is
entrained by the stimulus, rather than as the output of a gently nonlinear filter.

Amacrine cells and rod signals.Since there is only one kind of rod bipolar, the ON–OFF
dichotomy awaits the inner plexiform layer under scotopic conditions. The AII cell, a narrow-
field amacrine cell, plays a crucial role in this regard [271, 273, 428]. It depolarizes to light,
and its major input is via glutamatergic synapses from rod bipolars [271, 428]. The AII cell
provides rod input to the ON system via gap junctions with ON cone bipolars [256]. In macaque,
AII amacrine cells form reciprocal chemical synapses with midget OFF bipolars [136, 139].
The AII synapses are glycinergic [139], presumably inhibitory, and thus enable rod-origin ON
signals from the AII cell to drive OFF-pathway cone bipolars. Thus, under scotopic conditions,
ON signals likely lead OFF signals, since the former are relayed at the inner plexiform layer
by gap junctions, while the latter require a sign-inverting chemical synapse.

The AII amacrines form an extensive network of gap junctions with each other and with
bipolar cells. The permeabilities of these two sets of gap junctions are independently regulated
[256], with nitric oxide and cGMP reducing amacrine-to-bipolar coupling and dopamine and
cyclic AMP agonists reducing AII–AII coupling. Modulation of this coupling may underlie
the transition between rod-dominated and cone-dominated responses [256]. Coupling within
the AII network increases the effective summing area of subsequent retinal receptive fields,
with the joint effects of improving signal-to-noise ratio at the expense of spatial resolution, and
increasing correlated activity among ganglion cells [406]. Because of the divergent pattern of
connectivity from outer to inner retina, the quantal signal from one rod appears in at least five
neighbouring AII amacrine cells. It has been postulated that the active membrane properties
of AII cells, along with appropriate gap-junction conductances, leads to selective detection of
the synchronous occurrence of such signals in the face of membrane noise [360].

Amacrine cells and direction selectivity.Computation of a directionally selective motion
signal is an important part of visual processing [268]. Neurons with directionally selective
motion responses are found in invertebrates [33, 34, 303, 312] and vertebrates, both in the
central nervous system [16, 276, 342] and in the retina [7, 315] of many species, including rat
[47], rabbit [238, 239], and cat [315, 379]. A common denominator of computational schemes
of motion extraction [3, 152, 268, 303, 405] is an interaction between inputs that are offset both
in time and in space. Because of the relative ease of access, retinal circuitry provides a good
model system to study basic mechanisms of directional selectivity.

Anatomical and neurochemical evidence indicate that amacrine cells play a crucial role in
the genesis of directional selectivity in the retina. The morphologically distinctive ‘starburst’
cholinergic amacrine cells form overlapping arrays of dendritic fields within the inner plexiform
layer and provide inputs to directionally selective ganglion cells [8, 47, 238, 239]. These
amacrine cells express a GABAA receptor whose unusual subunit composition (α2, β1, β2/β3,
γ2, andδ) [47] is likely to be associated with a slow conductance response [424], by virtue of
the δ subunit. Additionally, these cholinergic amacrine cells receive direct (and presumably
more rapid) glutamatergic bipolar cell input [47]. Thus, the inputs to cholinergic amacrine cells
have the necessary spatiotemporal characteristics for generation of a motion signal. However,
selective laser ablation of the starburst amacrine cells markedly reduces responses to moving
stimuli, but direction selectivity is intact [151]. This suggests that starburst cells nonspecifically
enhance responses to moving stimuli, but do not confer direction selectivity. An alternative
possibility for the origin of the spatiotemporal offsets necessary for direction selectivity [424]
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is dynamical differences among the GABA receptors on different amacrine cells: GABAA

receptors that lack theδ subunit (and haveα1 or α3 subunits rather thanα2) are also present in
the inner plexiform layer, but are specifically absent in the cholinergic amacrine cells [424].

Directional selectivity is highly precise [141]. Given the large dendritic spread of amacrine
and ganglion cells, it appears necessary to postulate that the spatiotemporal interactions
are local processes within the dendritic tree [239]. However, the mode of interaction of
the spatiotemporally offset inputs remains unclear. Both shunting inhibition [6, 390] and
linear combination followed by a threshold [142] could provide for the necessary nonlinear
interaction, but it is unclear [140, 142] how (or whether) either of these processes produce an
interaction that is the computational equivalent of multiplication [3, 303, 405].

Ganglion cells: overview. Retinal ganglion cells are the output neurons of the retina, and
their axons form the optic nerve. In intraretinal processing, graded voltage signals play a
primary role. But because of the long distance between the ganglion cell body and their
central targets, the target neurons have access only to the sequence of actively propagated
spike trains. Additionally, ganglion cells represent an information bottleneck between eye
and brain. Thus, they provide crucial insights into strategies for the efficient transmission of
information, and the ways in which sensory information is transformed into spike trains.

In most physiological investigations of ganglion cells, their output is considered to be their
‘firing rate’ as a function of time, i.e. the average number of spikes in a sequence of relatively
narrow time bins, as estimated from multiple trials of the same stimulus. (Other approaches
have been taken recently, and these will be discussed below.) In the absence of a patterned or
time-varying visual stimulation, retinal ganglion cells generally have maintained firing rates.
Thus, despite the point-process nature of their output, the analysis of ganglion cells’ receptive
field properties can be considered as an attempt to define a relationship between a continuous
spatiotemporal input and a continuous temporal output. The formal input is spatiotemporal
contrast, the pattern of fluctuations of light above and below its mean; the formal output is the
variation of the firing rate above and below its mean.

Ganglion cells dynamics: quasilinear aspects.Enroth-Cugell and Robson’s landmark study
of cat retinal ganglion cells [100] showed that they can be grouped into two classes (X
and Y) based on qualitative features of spatial summation: the qualitatively linear X cells,
and the qualitatively nonlinear Y cells. In particular, X cells yield opposite responses to
introduction and withdrawal of a grating, while Y cells produce an increased firing rate
both with introduction and withdrawal of the grating. This linear/nonlinear distinction is
independent of the ON versus OFF dichotomy: ON and OFF are present among both X and
Y cells. Subsequently, Boycott and Wässle [43] recognized two clearcut classes of dendritic
morphologies (α andβ). At any given retinal eccentricity, dendritic fields of theα cells are
several times larger than those of theβ cells. (With increasing retinal eccentricity, all dendritic
fields grow, so that a peripheralβ cell is larger than a centralα cell.) These differences
in dendritic field size corresponded well to differences in the physiological receptive fields
of X and Y cells. Later anatomical studies demonstrated that retinal inputs to theβ cells
were bipolar-dominated, while the retinal inputs to theα cells were amacrine-dominated
[425]. These lines of evidence indicated that the X andβ classes corresponded, as did Y
andα, and that the amacrine input is the source of the distinctive Y cell nonlinearity. X
and Y cells differ in their central destinations—X cells project only to the lateral geniculate
nucleus of the thalamus, while Y cells project both to the lateral geniculate nucleus and to
the superior colliculus. X and Y cells also differ in axon diameter and hence conduction
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velocity (Y faster than X), although this distinction only amounts to a few ms [379], and
accounts for only a portion of the dispersion in retinal signals that arrive at visual cortex
[56, 339].

This tidy picture, while providing reassuring suggestions at multiple levels that structure
and function are intimately related, is oversimplified in at least two ways. Within the cat
retina, there is a heterogeneous population of retinal ganglion cells (perhaps as many as 50%
of the total) that are morphologically neitherα nor β [43], and have a range of distinctive
physiological properties, including direction-selective cells and cells that have highly regular
firing patterns [314, 319, 379]. These ‘W cells’ [379] differ from X and Y cells in their central
destinations, generally have a slower conduction velocity [379], and presumably include cells
homologous to the direction-selective neurons prominent in other species, such as rabbit [7].
Secondly, there is much debate as to whether (or how) the X and Y classes seen in cat correspond
to ganglion cells classifications in other species, especially the primate [315, 335, 336, 348].
Nevertheless, because a wide range of species studied, including goldfish [35], mudpuppy
[399], eel [347] and mouse [378], have ganglion cells that are qualitatively linear and also
those that are qualitatively nonlinear, much attention has been focused on the receptive field
structure of cat X and Y cells.

To a first approximation, the firing rate of X cells (considered as a change from their mean
firing rate) is a linear transformation of the spatiotemporal pattern of contrast (considered
as the fractional change in illumination about the mean illumination). Because of this
approximate linearity, the approximate translation invariance of the retina [358] and the
extensive psychophysical data available for comparison [64, 183], this linear transduction
is typically analysed and described in the frequency domain, both temporally and spatially.
Stimulation with a high spatial frequency isolates the centre mechanism more effectively than
the use of a small spot: anatomical considerations indicate that the surround overlaps the
centre spatially, but gratings near the resolution limit of the cell would be resolved only by the
summing mechanism of finest spatial scale (i.e. the centre). Isolated in this manner [114, 409],
centre dynamics of X cells are bandpass. The peak of the temporal transfer function is generally
4–8 Hz, and the slope of the high frequency rolloff is equivalent to 16–20 simple lowpass (RC)
stages [409], substantially steeper than that of photoreceptors.

Stimulation with increasingly lower spatial frequencies recruits progressively larger
contributions from the surround. Under these conditions, the degree of attenuation at low
temporal frequencies increases (by as much as a factor of 100 for diffuse illumination [114]),
and the peak temporal frequency of the transfer function increases. This spatiotemporal
coupling, a shift in responsiveness to higher temporal frequencies with lower spatial frequencies
[101] (see figure 7(A)), is a characteristic feature of early visual processing even in primitive
invertebrate systems such as the horseshoe crabLimulus[52, 298]. InLimulus, this coupling
can be explained in a precise and quantitative fashion by linear summation of a centre and an
antagonistic, but somewhat slower, surround. The surround contribution, which contributes to
the transfer function at low spatial frequencies, is antagonistic to the centre at low temporal
frequencies. But at sufficiently high temporal frequencies, the surround’s delay brings its
contribution into phase with the centre, and thereby reinforces the response. In the vertebrate
retina, surround contributions require lateral transmission (presumably within the horizontal
cell, but possibly with an amacrine contribution) to reach the ganglion cell, and thus are likely to
be delayed in comparison with the centre’s response. However, despite the anatomic substrate
for spatiotemporal coupling via addition of a delayed surround antagonism, this mechanism
fails to account in a quantitative fashion for ganglion cell behaviour in the cat retina [114]: at
low spatial frequencies, temporal tuning peaks at frequencies (e.g., 30–60 Hz) where both the
centre and surround mechanisms’ responses are severely attenuated.
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Figure 7. (A) Dependence of the dynamics of 17 cat ON-centre X-type retinal ganglion cells on
spatial frequency. For each cell, transfer functions are measured from the spike response elicited by
modulated sine gratings at three spatial frequencies: near 0 (left, labelled ‘diffuse’), at the cell’s peak
response (middle), and at a spatial frequency sufficiently high so as to isolate the centre’s response
(right). From Enroth-Cugellet al [101]. (B) The dynamics of the contrast gain control in an ON-
centre X-type ganglion cell of the cat. Irregular curves are histograms of extracellularly recorded
spike responses elicited by abruptly reversing gratings presented at four contrasts; smooth curves
(nearly superimposed) represent predictions of a model with rapid contrast-dependent adjustment
of dynamics. From Victor [409]. (C) Dynamics of M and P ganglion cells in the macaque as
determined from extracellularly recorded spike responses to luminance grating modulated by a sum
of sinusoids at contrasts of 0.02/sinusoid (filled circles), 0.04/sinusoid (open circles), 0.08/sinusoid
(filled squares) and 0.16/sinusoid (open squares). M cells show a greater low-frequency attenuation
and a contrast-dependent change in dynamics. P cells show no change in gain or dynamics as overall
contrast changes. From Benardeteet al[29]. (D) The emergence of phase-locking behaviour at high
contrasts, coexisting with contrast-independent response variability (lowest panel). Extracellular
recordings of a cat ON-centre X ganglion cells. From Reichet al [301]. All figures are reproduced
with the consent of the original publishers.
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Figure 7. (Continued)

A phenomenological account of the spatiotemporal sensitivity of ganglion cells within the
framework of a linear centre–surround model requires that the effective centre and surround
sizes increase with increasing temporal frequency [114]. However, no mechanism has been
proposed to explain this increase, and the model does not lead to a clear prediction of how
ganglion cells would respond to spatially broadband stimuli. Furthermore, annular stimulation
of the X cell reveals both a phase lag and a shift to higher temporal frequencies with increasing
distances from the centre [411]. This is a clue (see below) that the X cell surround is more
than a reflection of spatial antagonism at the bipolar cell level by spatially homogeneous input
from horizontal cells.

Ganglion cells dynamics: nonlinear subunits and adaptive temporal filtering.The
simultaneous presence of qualitatively linear (X) and nonlinear (Y) responses in the retina
implies that the nonlinear dynamics of the Y cell are generated by the retinal circuitry rather
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than at the level of the photoreceptor. The failure of a linear model of centre–surround
interactions even for X cells is an additional clue to the presence of new dynamical elements
and nonlinearities at the level of the retinal ganglion cell.

Many ganglion cells are highly sensitive to contrast (firing rate modulations as high as 3
impulses per second per percent contrast). Maintained firing rates of ON X cells are typically
80 impulses per second or less; maintained firing rates of Y cells are often lower (ca 40 impulses
per second), and OFF X cells may have little or no spontaneous activity. Because of this high
contrast sensitivity, ganglion cells necessarily show nonlinearities in response to high contrast
stimuli—strictly linear behaviour would require a negative firing rate in response to moderate-
contrast stimuli of the polarity that reduces the firing rate. This simple analysis identifies one
benefit of having ON and OFF varieties of ganglion cells—responses to high contrast patterns
can be faithfully conveyed.

This nonlinearity, the impossibility of negative firing rates, cannot account for centre–
surround dynamics or the ON–OFF response, but it does complicate the analysis of the receptive
field structure of ganglion cells. To analyse such nonlinearities, methods that rely on noise-like
inputs [234, 412, 419] have been employed. These approaches have the advantage that they
reduce the confounding effects of output nonlinearities [369]—including not only truncation
of the response at the lower bound of 0 impulses per second, but also response compression
due to an upper limit on firing rates.

We focus on studies based on the sum-of-sinusoids approach [419]. This method, based
on Fourier analysis of responses to stimuli consisting of a spatial pattern whose contrast is
modulated in time by a sum of sinusoids, is in effect an implementation of the Wiener theory
[234] in the frequency domain. A strictly linear system’s responses to such stimuli is confined
to Fourier components present in the input, and these responses are identical to those that would
be recorded in response to individual presentation of the sinusoids. Nonlinear dynamics are
revealed both by the presence of responses at frequencies equal to the sums and differences of
the input frequencies, and by the dependence of the response at one frequency on the presence
or absence of stimulation at another frequency. Stimulus frequencies can be chosen so that
their pairwise sums and differences are distinct. With such a choice, the spectrum of the
response corresponds to direct experimental estimation of a discrete sample of points on the
Fourier transform of the second-order Wiener kernel [412]. For transductions that are smooth
in the frequency domain (as anticipated for biological transductions), this discrete sampling
provides a useful characterization of the second-order dynamics of the system. Moreover,
since the responses are confined to narrow frequencies, this approach preserves much of the
benefits of digital filtering that favour sinusoidal analysis of linear transductions [408].

In response to contrast modulation by a sum of sinusoids, ON X ganglion cells’ responses
are generally confined to the stimulation frequencies, consistent with linear behaviour [417].
OFF X ganglion cells’ responses contain Fourier components at the sum and difference
frequencies, but these intermodulation components are accounted for by the low maintained
firing rate of the cell, and the nonlinearity required by the impossibility of a negative firing rate.
Y cells, on the other hand, generate strong responses at frequencies equal to pairwise sums
and differences of the input signals [417, 418]. This is the hallmark of a prominent even-order
nonlinearity and is consistent with the original observations of Enroth-Cugell and Robson
[100] concerning Y cells’ qualitatively nonlinear responses to introduction and withdrawal of
contrast. At spatial frequencies near the resolution limit of the Y cell, this nonlinear behaviour
dominates the response.

However, the nonlinear behaviour, although formally even-order, is not well approximated
by a quadratic function. The size of the nonlinear response scales approximately like a power
law, with an exponent in the range 0.8–0.9 [410, 418]. This power-law nonlinearity provides a
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much better account of Y cell responses than does a Wiener series truncated at order two. The
size of the nonlinear response is insensitive to the spatial phase of the grating [159, 418], which
suggests [159, 410, 418] that the nonlinear response of the Y cell is generated by a spatial array
of subunits. Analysis of the response dynamics indicates [418] that linear temporal filtering
both precedes and follows the nonlinearity, although there are details that require elaboration
on this linear–static-nonlinear–linear cascade. As a function of spatial frequency, the subunit
dynamics show a spatiotemporal coupling analogous to that of the X cell response: a shift to
higher temporal frequencies at lower spatial frequencies. This spatiotemporal coupling occurs
mainly prior to the nonlinear transformation—i.e. within the nonlinear subunit.

These observations lead to the idea that the Y cell subunit and the X cell centre–surround
mechanism both have the bipolar cell as their common substrate. X cells, whose inputs are
bipolar-dominated, have qualitatively linear behaviour. For Y cells, the same bipolar cell signal
is processed via a network of amacrine cells, which are postulated to generate the nonlinear
response and the second stage of temporal filtering. At low spatial frequencies (that presumably
recruit receptive field elements of larger summing areas), the Y cell response contains
contributions from qualitatively linear mechanisms [158, 418]. Although these responses also
show the spatiotemporal coupling characteristic of centre–surround organization, their much
lower resolution indicates that they are not generated by the same neural elements that generate
the X cell centre and surround, and probably have their origin in the inner plexiform layer.
These ideas are reinforced by detailed study of the spatial attributes of X and Y cell responses
[364, 368].

In addition to the distinctive Y cell nonlinearity, there is a dynamic nonlinearity that affects
both X and Y cells—the contrast gain control [349]. For step responses (figure 7(B)), the gain
control is manifest as an increase in the relative prominence of the transient component of the
response as contrast increases. In the frequency domain, the contrast gain control is manifest
as a contrast-dependent change in the effective transfer function. Responses at low frequencies
(<1–2 Hz) grow less than proportionately to contrast, while responses at frequencies greater
than 4 Hz are proportional to contrast, and have increasing phase advances of up to a quarter
of a cycle in the 4–8 Hz range [349]. The gain control is more prominent in Y cells than in X
cells; this, along with the contribution of the subunit nonlinearity, accounts for their generally
more transient behaviour [349, 351].

The adaptive shift in dynamics can be modelled as increasing the gain of a feedback circuit
that results in highpass behaviour. Faithful reproduction of observed responses requires that the
strength of the feedback circuit be controlled by a neural measure of contrast whose memory
is short (ca 100 ms) [351, 409] but whose area of spatial summation is at least as large as the
receptive field [350]. That is, the array of subunits that drives the Y cell nonlinear response
also generates the neural measure of contrast that modulates the quasilinear responses of both
X and Y cells. The dynamics of the contrast gain control allow approximately sinusoidal
responses to single sinusoidal inputs [409] and are consistent with approximately linear spatial
summation under some circumstances [102]. Nevertheless, the contrast gain control is a spatial
nonlinearity that produces a more transient response to low spatial frequencies, than would be
expected from linear centre–surround combination [350]. Its greater prominence in Y cells
than in X cells [349] and its effect on the nonlinear response of the Y cell subunit [410] suggest
that its anatomical basis is in the network of amacrine cells in the inner plexiform layer.

The contrast gain control may be the phenomenon observed by McIlwain as the ‘shift
effect’ [170, 249]. It is also qualitatively similar to the suppressive effect of a windmill stimulus
on low-frequency responses, which in the mudpuppy is known to rely on the amacrine cells
[386, 432]. Direct evidence linking this mechanism to the amacrine cells has also been obtained
from intracellular recordings of amacrine cells in the cat [271].
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This analysis of ganglion cell behaviour indicates that centre–surround antagonism, which
makes its first appearance in bipolar cells, is modified at the inner plexiform layer, both
in its spatial and temporal aspects. Furthermore, there are early, and prominent, dynamic
nonlinearities in visual processing. The contrast gain control could be viewed as playing the
role of an adaptive adjustment in response range and dynamics, to improve the efficiency of
the packaging of retinal information into spike trains—as contrast increases, progressively less
temporal integration may be required to overcome outer-retinal noise, and thus, high temporal
frequency fluctuations may be more likely to represent useful visual information. This role in
the efficient packaging of visual information is analogous to the role played by light adaptation
in the outer retina [290, 395].

The subunit nonlinearity is difficult to understand merely on the basis of signal-to-
noise considerations, since it fundamentally entails an intermixing of ON and OFF signals.
Presumably, rather than contributing to the reconstruction of the visual world, these signals
are used in later processing in contexts in which a temporal changeper se, and not its polarity,
is crucial. Such contexts include motion processing and edge extraction.

Ganglion cell dynamics in the primate.In primates, two major morphological categories of
ganglion cells that project to the lateral geniculate nucleus have been identified: M cells, which
project to the two lowest (magnocellular) layers of the lateral geniculate nucleus, and the P cells,
which project to the upper four (parvocellular) layers of the lateral geniculate nucleus. The
anatomical and physiological characteristics of these classes have been reviewed extensively
[174, 206, 209, 336, 348]; we note only certain major features here. M ganglion cells have
a dendritic field with a ‘parasol’ morphology, consistent with the collection of signals from
multiple bipolar and amacrine cell inputs, while (at least in the fovea and parafovea) the much
more restricted dendritic field of the P cells indicates that they receive input primarily from a
single bipolar cell of the midget variety [194]. One consequence of this wiring difference is
that P cells carry chromatic signals, since (at least near the fovea) their inputs are dominated by
a single bipolar cell, whose input is in turn dominated by a single cone. This is in contrast to M
cells, whose photoreceptor inputs consist of a mixture of cone classes, and thus appear wired
to transmit achromatic signals. The difference in dendritic field size probably accounts for the
much larger receptive field of M cells, in comparison to P cells. A third difference between the
cell classes, which may also have its basis in the number of bipolar cell inputs, is a dramatic
difference in the contrast–response function [179]: M cells have high contrast sensitivity but
their responses begin to saturate at contrasts in the neighbourhood of 0.30; P cells’ contrast
sensitivity is approximately tenfold lower but they have a response that is proportional to
contrast over the entire contrast range. This difference in the contrast–response functions
is enhanced at lower light levels [293], pointing to a greater rod contribution to the M cell
response.

P cells are widely considered to have ‘sustained’or ‘tonic’ responses, compared with the
more ‘transient’ or ‘phasic’ dynamics in M cells [174] (figure 7(C)). However, both kinds of
cells typically have bandpass dynamics, with P cell responses maximal in the neighbourhood
of 4–8 Hz, and M cell responses maximal at 16 Hz or higher. Both classes of retinal ganglion
cells demonstrate a shift to higher temporal frequencies at lower spatial frequencies. As in
the cat, the picture is qualitatively but not quantitatively consistent with linear summation
of homogeneous centre and surround mechanisms [129, 130, 361]. In contrast to the retinal
ganglion cells of the cat, P cells do not adaptively change their dynamics as contrast increases
[29]. M cells do show this adaptive shift [28, 29], and the detailed dynamics of this process
match those seen in cat X and Y cells [351, 409]. For luminance stimuli, the dynamics of P cells’
responses to grating stimuli and to stimuli restricted to centre or surround are approximately
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linear [26, 177], while M cells fall into two categories: a qualitatively linear subset, and a
minority (ca 25%) that manifests the frequency-doubled responses characteristic of the cat Y
cell [177]. These physiological distinctions, as well as supportive anatomical evidence [296]
have led to the notion that X and Y categories of the cat correspond to subcategories MX

and MY of the primate (with which they share high contrast sensitivity, strong rod input, and
analogous central destinations), while the P cells are specific to the primate, with the unique
features of the chromatically selective midget bipolar input, the lack of a contrast gain control,
and a central target (the parvocellular layers of the lateral geniculate nucleus) that does not
have a homologue in the cat [29, 206].

The dynamics of ganglion cell responses depend strongly on the chromatic aspects of their
inputs. The ‘tonic’ description of the P cell response applies to stimuli that vary in luminance;
for stimuli that vary in chromaticity, their dynamics become more phasic, with a rolloff at 20 Hz
or higher [207]. This chromatic-temporal coupling is more prominent for stimuli that cover the
surround. For P cells whose centre mechanism is driven by a long-wavelength (L or M) cone,
the change in dynamics can be explained by additive combination of the centre response with an
antagonistic surround that is driven by a mixture of cones and has somewhat slower dynamics
[207]. These ganglion cells (‘+L−M’, ‘+M −L’) typically respond with opposite polarities at
low temporal frequencies (10 Hz and below) to stimuli whose spectral composition stimulates
the L or M cones in isolation [443]. The approximate additive combination of signals from
each cone class also applies to P cells whose centre receives input from the short-wavelength
cone (‘+S− (M + L)’), but these cells have somewhat different dynamics than P cells whose
centre is driven by L or M cones. For these cells, the response to stimuli that drive the S
cone in isolation response falls off more rapidly above 20 Hz (probably reflecting receptoral
differences), and that L and M cone signals are in phase, rather than antiphase [443].

M ganglion cell responses cannot be explained on the basis of linear summation of cone
signals. In most M cells, there is a frequency-doubled response that is most prominent at high
temporal frequencies and high luminances [208]. The spectral characteristics indicate that it
is driven by the two long-wavelength cone signals [208] that combine to form local nonlinear
subunits [210]. For M cells in which the combination of cone signals within the subunits is
antagonistic [210], the frequency-doubled response is most prominent for chromatic flicker
and might well be absent for luminance flicker (thus, accounting for the behaviour of the MX

subtype). For M cells in which the combination of cone signals within subunits is in-phase
(i.e. non-antagonistic), MY-like behaviour results.

While the P cells appear to have neither the subunit nonlinearity nor the contrast
gain control nonlinearity present in M cells, they have other distinctive nonlinearities [27].
Quantitative analysis of surround responses in isolation reveals the presence of linear–
nonlinear–linear (LNL) dynamics. Moreover, there is a strong adaptive effect of the level of
steady illumination of the surround on the gain and dynamics of the centre. Increased steady
illumination of the surround decreases the centre gain in ON cells, increases the centre gain in
OFF cells, and accelerates centre dynamics in both subtypes. After changes in overall levels of
retinal illumination, responsivity of both M and P cells adapts over a period of approximately
100 ms, but abrupt changes in overall chromaticity induce changes in responsivity that require
several seconds to complete (for both M and P cells). This indicates not only the presence of
post-receptoral sites for adaptation, but also that there are separate post-receptoral sites driven
by sums and differences of cone signals [444].

Anatomical evidence indicates that the centre mechanism of the P cell is driven by a single
cone type, as relayed through a midget bipolar cell [41, 42, 62, 94]. As indicated above, to a
first approximation [89, 212], the chromatic antagonism characteristic of most P ganglion cells
can be accounted for by linear combination of a small centre mechanism whose sensitivity
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is determined by a long- or medium-wavelength cone, and a larger, nonselective surround
mechanism. A chromatically nonselective surround is consistent with the notion that the
receptive field surround is formed by horizontal cells [93, 228, 433], and that primate horizontal
cells connect indiscriminately with cones of all classes [81, 426], or at least with the two long-
wavelength cones [192, 195]. However, other studies indicate that the surround is at least
somewhat chromatically selective [306, 361]. In view of the nonselective anatomical linkages
in the outer plexiform layer, a chromatically selective surround requires a contribution to
the surround from amacrine cells in the inner plexiform layer. These issues have recently
been discussed in greater detail by Lankheetet al [202]. The short-wavelength system
is organized differently, with blue–yellow chromatic opponency generated in a distinctive
bistratified ganglion cell [80], that combines inputs from an ON S-bipolar cell and an OFF
bipolar that contacts both long- and medium-wavelength cones [63, 79]. These cells may form
the retinal origin of a portion of the koniocellular (intercalated) pathway (see below).

Implications for ‘parallel processing’. Physiological features of P and M cells, along with
the patterns of connectivity among central visual areas, have suggested that visual processing
is organized into parallel streams [105, 446]. In broad terms, these streams are considered
to consist of a ventral ‘what’ pathway, that supports object identification and thus makes use
of fine spatial detail and colour, and a dorsal ‘where’ pathway, that supports processing of
motion [402]. In this view, the ‘what’ pathway is supplied by the parvocellular pathway, while
the ‘where’ pathway, which extracts visual motion, is supplied by the magnocellular pathway.
However, there is accumulating evidence that this is an oversimplification [354]. The evidence
for discrete processing streams based on connectivity among cortical areas [157] is not as
clear-cut as was originally thought. Although there is clearly the anatomical substrate for a
predominant parvocellular input to the ventral stream and a predominant magnocellular input
to the dorsal stream [221], there is also anatomical [227] and physiological evidence [269] for
intermixing of these signals [354]. Psychophysical studies of the perception of moving stimuli
with chromatic components implies that both kinds of signals contribute to motion analysis
[78, 104, 123]. The dynamical features of chromatic and luminance adaptation [444] are direct
evidence of interaction of chromatic and luminance signals at the very origin of the M and P
pathways.

Thus, it appears that the intuitively simple strategy of segregated transmission of various
aspects of visual information (i.e. form, colour, and motion) is not the one adopted by the visual
system, and that this intermixing is present at the retinal output. Perhaps, as discussed in more
detail below, this is because the retinal ganglion cell output must serve as an efficient vehicle
for the transfer of biologically relevant visual information. A key aspect of this efficiency is
redundancy removal [11, 12, 83, 92, 96, 318]. Such redundancy removal necessarily entails
entwining spatial, chromatic, and temporal attributes of the visual stimulus [335] and is
thus at odds with independent transmission of these separate visual attributes. Because of
nonlinearities, differences in quasilinear dynamics, and the manner in which these dynamics
are coupled to spatial and chromatic aspects of the stimulus, one cannot regard the partition
of retinal output into the P and M pathways simply as a division between slow and fast
signals, or chromatic and achromatic signals, or even high-resolution and low-resolution signals
[335, 348].

Spike train dynamics. The above discussion considered the retinal ganglion cell output to
be a continuous function of time, and ignored the fact that it is a sequence of discrete unitary
action potentials. The empirical justification for this simplification is that certain aspects
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of the ganglion cell response can be examined without attention to the details of the spike
trains. In general, these aspects are captured by ‘integral measures’ of the response—measures
obtained by considering the spike train to be a sequence of delta functions, and integrating
against a reference function, such as a sinusoid or a pseudorandom input. These integral
measures include mean firing rates, spike counts, Fourier components, Wiener kernels, and
their frequency-domain analogues, as described above. The notion that these measures suffice
to understand the processing performed by retinal ganglion cells derives direct support from
Naka’s white noise analysis [197, 234] of intracellular recordings in the catfish. The dynamics
obtained from the sequence of spikes (regarded essentially as a train of delta functions) were
identical to those obtained from the intracellular slow potentials, with spikes removed.

There are many kinds of transductions for which the integral measures of derived from
spiking responses and corresponding continuous inputs will be identical. By definition, in
a renewal process, the probability distribution of each spike depends only on the time since
the previous spike. Under the hypothesis that this renewal process evolves at a rate that is
proportional to the continuous input [107, 128], the integral measures of the spike response
will, on average, replicate the continuous input. These ‘simply modulated renewal processes’
[302] include not only inhomogeneous Poisson processes, but also gamma processes whose
rate depends on the stimulus, as well as non-leaky integrate-and-fire neurons [187], which
have long been known to enjoy this ‘perfect replica’ property [187]. This observation has
implications for conceptual models of spike generation [125, 187] and for efficient strategies
for processing the resulting spike train [34, 51, 373].

Under steady illumination, the spike trains produced by cat ON- and OFF-centre X and Y
retinal ganglion cells have an interspike interval distribution similar to that of a gamma process
[398] (except for the presence of a refractory period), with a gamma order in the range of 6–10
for ON X cells, and 2–4 for Y cells and OFF X cells. The best-fitting gamma order increases
with increasing mean firing rate for X cells but is independent of rate for Y cells. In the
absence of modulation, spike train statistics can also be modelled by a random-walk process
[125, 217] or an integrate-and-fire process, with leakiness necessary to account for the relative
independence of firing rate and variability [218]. However, the spike train does deviate from a
strict renewal process, in that there is a consistently negative first serial correlation coefficient
in the range of−0.1 to−0.3 in cat [398] and also in invertebrates [345].

The statistics of retinal ganglion cell discharges in the setting of visual stimulation have
primarily been studied for periodic stimuli, such as drifting sinusoidal gratings. To a good
approximation, response variability, as measured by fluctuations in the Fourier components
of the spike train elicited by periodic stimulation, is independent of the stimulus or response
amplitude [77]. However, if response variability is measured by the jitter of the timing of spikes,
there is a marked reduction of variability as stimulus amplitude increases [301]. At low contrast,
the PSTH elicited by drifting gratings is nearly sinusoidal, while at high contrast, the PSTH has
narrow peaks and the firing pattern is characterized by spikes at precise firing times (to within
a few ms). This behaviour is readily accounted for by a leaky (forgetful) integrate-and-fire
model [187]. In essence, the integrate-and-fire transduction process is sufficiently linear (in the
time-averaged sense that is relevant to Fourier components) so that signal and noise add. On
the other hand, for sufficiently strong depths of modulation, the leakiness allows for a resetting
of the spike generating mechanism during the portion of the stimulus cycle in which the input
is small. This leads to a marked decrease in the jitter of the initial spikes that occur during
the rising phase of the stimulus [302]. These contrast-dependent changes in firing pattern are
summarized in figure 7(D). The leaky integrate-and-fire model (with shot noise added to the
input) also accurately accounts for the interspike interval distribution produced by ganglion
cells in the absence of stimulation, similar to a gamma process of order near four [398].
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Recent studies of salamander and rabbit retinal ganglion cells [32] have suggested that the
ganglion cell spike train may be better regarded as a set of isolated firing events, with large gaps
of time in between events, rather than as a continuous stream of spikes. At moderate contrasts,
the inter-event time may be as much as 2 s, but the timing jitter of the firing events (which can
contain up to six spikes) is 10 ms or less. Most of the information in the spike train can be
extracted from the timing of these events, rather than the number of spikes that they contain [32].
This kind of behaviour can be explained by an elaboration on the idea of an inhomogeneous
Poisson process [31], in which it is hypothesized that firing statistics are governed by a
combination of a ‘free firing rate’, the firing probability of an underlying inhomogeneous
Poisson process whose rate is determined solely by the stimulus, and a ‘recovery function’,
which depends only on the time since the previous spike and expresses the refractoriness of the
neuron. This kind of model can reproduce the precisely timed events (with a variable number
of spikes) seen in salamander and rabbit [31]. However, for a reasonable range of parameters,
it cannot account for the coupling between firing precision and signal size to the extent seen
in cat retinal ganglion cells [302].

Inhomogeneous Poisson processes with refractory period, the ‘free firing rate’ model [31],
and the leaky integrate-and-fire neurons [187, 302] contain a time constant that is stimulus-
independent (i.e., the refractory period or the leak constant), as well as a firing rate distribution
that is driven by the stimulus. These kinds of spike-generation dynamics thus do not produce
firing probabilities that replicate the input and therefore place their own signature on spike
trains. For periodic stimuli, the most striking such signature is phase locking to periodic
high-amplitude inputs [112, 180, 188, 301, 302].

Although computational models are capable of capturing many of the dynamical features
of a ganglion cell’s discharge, it is not straightforward to construct a detailed and biophysically
realistic model for this process. In salamander, a single-compartment model with five
conductances suffices to account for the steady firing behaviour in a qualitative fashion [110].
However, an accurate model of dynamics consistent with voltage-clamp data requires inclusion
of five active conductances (Na+, Ca++, A-type K+, delayed-rectifier K+, calcium-gated K+)
and a leakage conductance [111], which are distributed inhomogeneously (dendrites versus
soma) in a multicomparment model [112]. The multicompartmental nature of the model is
critical, with currents between the dendritic and somatic compartments playing a key role in
determining the interspike intervals [112].

Ganglion cells as an information bottleneck.There are far fewer ganglion cells than
photoreceptors (in man: approximately 106 ganglion cells but 108 photoreceptors [422]). The
all-or-none nature of ganglion cell spike trains that allows for rapid and long-range propagation
of their output is an additional restriction on information capacity. For these reasons, ganglion
cells are a model to study neural strategies for the efficient transmission of information.
Several themes have emerged. Perhaps the most universal is that of redundancy removal:
ganglion cell receptive fields may be considered to be filters that remove the correlation
structure intrinsic to ‘natural’ scenes. To the extent that ganglion cells are quasilinear
filters, this view accounts for the spatial and temporal characteristics of their receptive fields
[11, 12, 18, 83, 92, 96, 290, 370]. This reasoning also extends to the domain of colour: the
chromatic characteristics of primate retinal ganglion cells [12, 96, 318] can also be viewed
as an optimal set of filters to represent the chromatic signals present in natural scenes. The
notion of redundancy removal does not immediately account for the prominent nonlinearities
in some classes of retinal ganglion cells, but one can still speculate that the statistics of the
visual world is the evolutionary force that drives the development of adaptive filtering and
multiple parallel pathways.
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Another strategy that may be used for the efficient representation of information in the
retinal output is that of spatial coding via temporally coincident firing [250, 404]. Coincident
firing and decorrelation via redundancy removal need not be mutually exclusive, in that the
former exploits the fine structure of the individual responses, and the latter may be restricted
to integral measures. In the setting of visual stimulation with pseudorandom patterns, high-
precision coincidences between firings of neighbouring retinal ganglion cells occur much more
often than would be expected by chance alone [252]. Direct coupling between ganglion cells
contributes to these coincidences [241], but the fact that these coincidences are correlated with
visual input in the overlap of the receptive fields [252] suggests that common input (i.e. a
shared interneuron) is the source of the concerted activity. Indeed, cross-correlations between
neighbouring ganglion cells in the salamander have three timescales: a brief timescale (<1 ms)
that reflects electrical junctions between ganglion cells, an intermediate timescale (10–50 ms)
that reflects common input from amacrine cells, mediated by gap junctions, and a broad
timescale (40–100 ms) that reflects common input from photoreceptors, transmitted to the
ganglion cell layer via chemical synapses [50].

The concerted-firing strategy [250] is thus a combinatorial code that allows a population
of retinal neurons to provide a spatial resolution limited not by the size of the ganglion cell
receptive fields but by the size of their pairwise, and perhaps higher-order, overlaps. It is a
temporal strategy that exploits the sparse, spiking nature of the ganglion cell output to improve
the efficiency of spatial coding. In order for the strategy to work, the correlation structure
of the visual input must be sufficiently sluggish, so that high-precision coincidences would
not often be due to independent activity in the neighbouring ganglion cells [250]. Thus, the
concerted-firing strategy is most effective when firing rates are low, so that coincidences due
to chance are relatively infrequent. This condition holds in rabbit and salamander ganglion
cells, but also may be relevant in many ganglion cells in cat and monkey. Since high-precision
correlations (<1 ms) reflect primarily direct coupling between retinal ganglion cells [50], only
the correlation structure at a coarser resolution (10 ms or more) has the potential to provide
greater spatial resolution. There appears to be little evidence to support a combinatorial code
for temporal information [423]. The use of concerted signalling to pass only one type of
information (spatial but not temporal) limits the potential ambiguities of this coding strategy.

A third strategy for mitigating the effects of the optic-nerve bottleneck is that of regional
specialization of the retina. While quantitative differences in receptive field size are typical
across species (increasing size from the centre of the retina to the periphery), this regional
specialization is best studied and perhaps most highly developed in primates. In the primate
fovea (in man, the central five degrees of the retina [422]) there are more ganglion cells than
photoreceptors (3:1), in contrast to the marked excess of receptors in the periphery (1:125).
Other anatomical specializations of the fovea, such as morphological alterations of cones, a
lack of rods, and a lack of preretinal blood vessels, also facilitate higher acuity. The high ratio of
ganglion cells to photoreceptors in the fovea eliminates the need for a spatiotemporal resolution
tradeoff (see above paragraph), but it also requires dedicating a disproportionate amount of
the optic nerve to the central few degrees of vision.Foveal specialization is continued at the
cortical level, with enlargement of the fovea’s cortical representation out of proportion to the
number of retinal inputs [95, 216]. This arrangement is manifest by enhanced performance on
tasks crucial to pattern vision, including vernier acuity [216] and relative phase discrimination
[30, 310]. However, effective use of this foveal specialization requires frequent fixational eye
movements [420]. These fixational eye movements, that occur up to several times per second,
result in a contrast transient that probably functions as a resetting for central pattern processing.
Moreover, informative targets for the next eye movement must be chosen rapidly (within a few
hundred ms), without conscious attention, and based on information available to non-foveal
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vision. Thus, the retinal specialization that provides for high-performance spatial vision has a
sweeping consequence for the overall dynamics of primate vision: a cycle of eye movement,
contrast transient, pattern analysis, and subsequent target selection [294].

4.2. Lateral geniculate nucleus

The lateral geniculate nucleus (LGN) is a prototypical thalamic ‘relay’ nucleus, containing a
population of neurons that receive sensory input and project to the input laminae of a sensory
cortex. The main target of the relay neurons is the input lamina of primary visual cortex
(usually designated area 17 in cat, area V1 in macaque, and by either name in man).

Anatomic overview and receptive field properties.Relay neurons of the LGN receive a
dominant input from a single retinal ganglion cell [73, 243] and fire only when that retinal
ganglion cell produces a synaptic potential, known in this context as an S-potential [178]
(figure 8(A)). Thus, the basic spatial and temporal architecture of geniculate relay neurons
are similar to those of their retinal inputs—including centre–surround antagonism [73], and
spatiotemporal coupling [175, 397], the presence of qualitatively linear and nonlinear cell types
[177, 364], and a contrast gain control [280, 338]. On the other hand, most synapses in the
LGN (even the synapses onto relay cells) do not come from the retina, but rather from other
sources: feedback pathways from visual cortex, ascending inputs from non-visual areas of
the brainstem and intrinsic connections, and reciprocal connections with the perigeniculate
nucleus [171, 401]. Although the details are far from clear, it is generally considered that
the combined effects of the non-retinal inputs and the intrinsic membrane properties provide
mechanisms by which the lateral geniculate nucleus can ‘gate’ retinal signals, as determined
by arousal, attention, or behavioural set [356]. Often, both the dominant retinal input (the
S-potential) and the relay neuron’s spike response can be recorded with a single extracellular
electrode. This arrangement allows for a detailed comparison of the LGN response and its
retinal input, and makes the relay neuron of the LGN an important model system for the study
of regulation of sensory transmission from the periphery to the cortex.

In the cat, the A and A1 laminae of the lateral geniculate nucleus (the ‘dorsal LGN’) are
sites of the terminations of X and Y ganglion cell afferents, with the dorsal-most A lamina
receiving input from the contralateral eye, and the more ventral A lamina receiving input from
the ipsilateral eye. The typical X LGN cell provides synaptic input to area 17 only, but Y cells
project both to areas 17 and 18 [164]. Ventral to the A lamina is the C lamina, which contains
terminations of both Y cells and W cells [372] and projects to extrastriate visual areas 18 and
19 [214].

In the primate, the LGN is traditionally considered to have six laminae (but see below),
numerically designated from ventral to dorsal. Each of the laminae is driven by ganglion
cells from one eye only. Laminae 1, 4, and 6 are driven by the contralateral eye; laminae
2, 3, and 5 by the ipsilateral eye. The two ventral laminae (1 and 2) comprise the
magnocellular (M) component of the LGN, with inputs dominated by the M ganglion cells.
As anticipated from their retinal inputs, the magnocellular laminae includes neurons with both
X-like (approximately 75%) and Y-like (approximately 25%) spatial [177] and temporal [129]
properties. Thus, in both lamination and physiology, the two magnocellular laminae of the
macaque LGN appear homologous to the dorsal LGN of the cat. The four dorsal laminae
of the primate LGN form the parvocellular (P) component, and nearly all of the neurons
demonstrate qualitatively linear behaviour for luminance stimuli [177]. Ventral to each of the
laminae (in multiple species, including tree shrew [160],Galago[167, 279] and the macaque
[155]) lies an ‘intercalated’ lamina of the LGN, containing koniocellular neurons (K cells).
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LGN K cells appear to have temporal properties similar to LGN P cells [366]. M and P
cells project to primary visual cortex (V1) in a laminar-specific manner [223, 445], although
the synaptic anatomy indicates a substrate for an intermingling of M and P cell pathways
[445]. Additionally, there are some direct LGN projections to extrastriate cortex, including
area V4 [76].

In all primate species examined, receptive field properties vary across the laminae, but
there are major differences in the pattern of variation from species to species. In ferret [381] and
mink [215], ON and OFF cells occupy distinct sublaminae within the six major laminations.
In tree shrew, each lamina contains cells of only one polarity (and one eye of origin): laminae
1 and 2 contain ON cells, laminae 4 and 5 contain OFF cells, lamina 3 contains W-like ON and
OFF cells, and lamina 6 contains W-like ON–OFF cells [160]. In primates, the intercalated
laminae play a role in carrying chromatic signals, especially those involving S-cone activity.
Evidence for this includes a distinctive projection from the intercalated cells associated with
lamina 3 to cortical ‘puffs’ (blobs) [90] associated with chromatic processing; the presence of
cone-opponent blue-on cells in the intercalated laminae in marmoset [237]; and the fact that
intercalated neurons associated with laminae 3 and 4 (but not those associated with laminae 1,
2, 5, or 6) carry both blue-on and blue-off signals and are driven by bistratified retinal ganglion
cells [305]. But the anatomical picture of three kinds of laminae (M, P, and K) is also present
in Galago [167], a nocturnal animal with no behaviourally demonstrated colour vision.

Temporal-chromatic interactions.As described above, the receptive-field structure of retinal
ganglion cells leads to an interaction of their temporal and chromatic sensitivities. The
dependence of response dynamics on chromatic properties of the input, which begins in the
retina, has been studied in great detail at the level of the lateral geniculate nucleus [89, 201, 202].
The chromatic tuning of P cells is relatively independent of temporal frequency below 4 Hz,
but above 15 Hz much of chromatic opponency is lost. To a first approximation [202], this kind
of behaviour can be accounted for by linear combination of antagonistic signals from centre
and surround mechanisms with slightly different dynamics, provided that these receptive-field
mechanisms have different complements of cone inputs as well. At low temporal frequencies,
centre and surround signals are in counterphase. At high temporal frequencies, the effects of
the differing dynamics become important, and reduce the centre–surround antagonism or even
result in reinforcement. Best-fitting model parameters [202] have effective delays for centre
and surround which differ by 3–12 ms. The dynamical modelling [202] is equally successful
for hypothetical surround mechanisms consisting of a single cone type, or a mixture, and thus
fails to settle the controversy concerning the chromatic composition of the surround. Dynamics
have very little dependence on whether the centre is driven by L or M cones but, across cone
types, OFF cell centre mechanisms have a delay of approximately 17 ms greater than that of
ON cells [201]. This delay cannot be explained by the differences in dynamics between OFF
and ON pathways at the bipolar level: for Y-like ganglion cells, the difference is in the wrong
direction [410], and for X-like ganglion cells, no ON versus OFF difference is observed [409].

Although the linear model provides a reasonable account of chromatic sensitivity, it fails
as a general framework for the P cell receptive field. For uniform fields modulated sinusoidally
in time, the spike response is far from sinusoidal, with typical amounts of harmonic distortion
(expressed as the ratio of the amplitude of the higher harmonic to the fundamental) of 0.36
(second harmonic), 0.21 (third harmonic) and 0.13 (fourth harmonic) [202]. This cannot be
remedied simply by postulating that signals are combined in a fundamentally additive fashion
and that there is a nonlinearity at the point of spike generation. In many P cells, even though re-
sponses to stimuli that drive individual cone classes in isolation are very nearly linear, responses
to the superpositions of such stimuli show qualitative deviations from linearity [25, 27].
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At the retinal output and the lateral geniculate, the distinct dynamics of P cell centre
and surround, combined with their different cone inputs, implies a dependence of chromatic
tuning on temporal aspects of the stimulus. That is, these receptive field features require
that the temporal aspects of the response depend on their chromatic properties. However, it
is unclear from the available data whether this might result in a robust temporal coding of
chromatic information, in that the studies which have explored chromatic tuning in detail have
used response measures, such as single Fourier amplitudes, that might overlook dynamical
differences.

Transience, the transfer ratio, and the contrast gain control.LGN relay neurons have
responses that are more transient than their retinal inputs [219, 356, 365]. One contributing
factor to this increased transience is that the surround mechanism of the LGN appears to be
stronger than that of its retinal inputs [162].A priori, the stronger surround might have been
generated by retinal inputs, following sign inversion by an inhibitory interneuron intrinsic
to the LGN. However, dark adaptation, which markedly reduces the strength of the retinal
surround, has a comparable effect in the LGN. Thus, most (but not all) of the LGN surround
antagonism is a reflection of the surround of its retinal input [74, 175].

In situations in which the S-potential and the relay neuron’s response are recorded
simultaneously, the ‘transfer ratio’, the ratio of LGN spikes to S-potential spikes, is a useful
index of how the retinal input is modified before being relayed to cortex. A typical value for
the transfer ratio is 0.5 [70], but this is affected by many factors. At low contrasts (<0.1),
increasing stimulus contrast reduces the transfer ratio. This is in line with the observation that
LGN neurons demonstrate a contrast gain control that is more prominent than that of their
retinal inputs [176, 280, 338]. However, at higher contrasts, the transfer ratio may stabilize or
increase [70, 176]. Transfer ratio is also greater at higher temporal frequencies than at lower
temporal frequencies [176]. These observations are also likely related by the effects of the
contrast gain control: as contrast increases into midrange and beyond, the retinal response
becomes more transient (as a consequence of its contrast gain control [29, 351]), and this shift
to high temporal frequencies results in responses that are less attenuated by the contrast gain
control of the relay neuron.

The transfer ratio is also influenced by the spatial structure of the stimulus. Most neurons
show reduced transfer ratios at lower spatial frequencies [70]. Since responses to low spatial
frequency stimuli are more transient than responses to high spatial frequencies, the dynamics of
retinogeniculate transmission alone cannot account for this change. Rather, it implies a role for
intrageniculate circuitry in regulating the transfer ratio. Level of arousal influences the transfer
ratio [439], in that the sustained portion of a relay neuron’s response to a transient stimulus is
suppressed during drowsiness (as determined by the criterion of EEG synchronization). This
alteration in the spatiotemporal properties of LGN neurons necessarily alters the spatiotemporal
receptive fields of their cortical targets. The state effect on the LGN activity is believed to
be mediated by the perigeniculate nucleus [439], but feedback from visual cortex may also
play a role [438]. A direct effect of brainstem inputs on retinogeniculate transmission can
also be demonstrated by stimulation of the peribrachial region. This leads to steepening of the
contrast–response function of the relay neuron, a higher maximal firing rate, and an increased
transfer ratio [148]. Moreover, brainstem inputs also shift the relay neuron between ‘burst’
and ‘tonic’ modes (see below)—a change in dynamics that is independent of the transfer ratio.

A class of cells with distinctive firing-rate dynamics.In the lateral geniculate nucleus of the
cat, there is a subset of neurons have dynamics that are notably distinct from their retinal inputs,
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known as ‘lagged’ neurons [165, 242, 243]. Lagged neurons are present in both ON and OFF
varieties and represent approximately one-third of X-like neurons [165] and approximately
5% of Y-like neurons [244]. In comparison with the response of a corresponding nonlagged
cell, the response of a lagged neuron to periodic stimulation has a phase that is delayed by a
quarter of a cycle at low temporal frequencies (<4 Hz), and by the equivalent of 40–100 ms
at higher temporal frequencies [329] (figure 8(B)). The peak of the temporal frequency tuning
curve for a lagged cell is about a factor of two lower than the temporal tuning peak typical
of a corresponding nonlagged cell [329]. However, with broadband temporal stimulation, the
lagged versus nonlagged distinction appears to represent a continuum of properties, rather than
a discrete bimodal classification [437].

The spatial properties of the lagged cells are similar to those of their nonlagged counterparts
[165]. Lagged neurons receive direct inputs from the retina, but this input typically produces
at most a small transient response, followed by a cessation in firing and then a resumption of
activity after 40–80 ms [165, 242]—a timecourse consistent with a GABAB-type IPSP [284]
that inhibits firing during the silent period. This, along with a cross-correlation analysis
of ganglion cell and lagged cell activity [243], suggests that the ‘lag’ is due to retinal
activation of an intrinsic inhibitory interneuron within the LGN. Indeed, morphologically
appropriate intrinsic LGN neurons, whose dynamics are nonlagged, have been identified [166].
Remarkably, lagged neurons can be made to behave in a largely unlagged fashion by stimulation
of a brainstem input, the peribrachial region of the pontine reticular formation [163]. Thus,
the lagged versus nonlagged distinction is not a hardwired one, but one that can be modulated,
presumably via inputs to the inhibitory interneuron described above, or interactions at the level
of the lagged neuron itself.

Lagged and nonlagged geniculate neurons converge onto the same cortical neuron, and
thus may provide the spatiotemporal offsets required for direction selectivity [330]. Consistent
with the properties of lagged cells, cortical direction selectivity is most prominent at 1–2 Hz
and tapers off above 8 Hz. Moreover, the impulse responses typical of lagged and nonlagged
LGN neurons are a good match for the temporal properties of subregions of receptive fields
of directionally selective cortical simple cells, as deduced by detailed modelling of their
responses to grating stimuli [196]. However [263], prediction of direction selectivity from
linear combination of lagged and nonlagged inputs is much more successful for cortical neurons
in the cortical input laminae (especially lamina 4B) than for other cortical neurons (especially
lamina 6), indicating that intrinsic cortical circuitry and nonlinear processes [99, 263, 307, 308]
play a role in direction selectivity. Lagged LGN neurons have a gentler contrast–response
function than the nonlagged cells, suggesting that they may also contribute to signalling contrast
over a broad dynamic range [147]. It has also been suggested that the presence of lagged cells
in the LGN represents a second stage of efficient coding of information via decorrelation [11]:
the spatial structure of retinal and geniculate receptive fields reduces spatial redundancy [83],
while nonlagged and lagged cells represent the principal axes of temporal covariance [92].

Concerted signalling. In the cat LGN, there is experimental support for the notion that
synchronous firing of nearby neurons can enhance the transmission of spatial information
[250]. As shown recently by Danet al [84], high-precision coincident firing accounts for
1–50% of the spikes generated by LGN neurons with overlapping receptive fields. The increase
in information that can be extracted by considering coincident firing to be a distinct kind of
event ranges from 5–30%. The increase in spatial information is positively correlated with
the percentage of synchronized spikes—indicating that the benefit of the combinatorial code
overwhelms the potential loss of information due to redundancy. Of particular interest is that
the precision of correlation in the LGN is extremely high (<0.3 ms). At lower resolutions



R46 J D Victor

Figure 8. (A) Relationship of the retinal input (S-potential) and relay neuron response as recorded
extracellularly in the macaque lateral geniculate nucleus. Some S-potentials fail to elicit a spiking
response (initial event), but all spikes are preceded by an S-potential (shoulder on leading edge of
second event). From Kaplan and Shapley [178]. (B) Dynamics of lagged (upper panel) and
nonlagged (lower panel) X-type relay neurons in the lateral geniculate nucleus of the cat, as
demonstrated by histograms of their extracellularly-recorded responses to sinusoidally modulated
spots at a range of temporal frequencies. From Saul and Humphrey [329]. (C) Burst and tonic
responses of an LGN relay neuron to intracellular current injection. At a holding potential of
−75 mV, the voltage-dependent Ca++ conductance is activated and a burst response is induced. At
a holding potential of−63 mV, the Ca++ conductance is inactivated and the depolarizing current
is subthreshold for the Na+ spike, so there is no response. At a holding potential of−53 mV, the
Ca++ conductance is inactivated but the depolarizing current is sufficient to reach threshold, and
a train of Na+ spikes, commensurate with the duration of the depolarizing current, results. From
McCormick [247]. All figures are reproduced with the consent of the original publishers.

(5–40 ms), the informational benefit of the combinatorial code would fall off, because of
the increase in the number of chance coincidences. The authors suggest that the most likely
origin of the high-precision correlation is shared input from single retinal ganglion cells,
rather than slower correlations across retinal outputs. Simultaneous spikes in LGN neurons
are more effective in activating a shared cortical target neuron than would be expected from
the combined efficacy of each spike in isolation [5]. This superadditive interaction, perhaps
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conferred by a threshold nonlinearity at the cortical level, may be the basis for decoding
a combinatorial temporal representation that enhances the effective spatial resolution of the
LGN output. Since cortical neurons receive input from aligned LGN receptive fields, it has
also been suggested [5] that the combined effects of synchronized firing by ganglion cells and
LGN neurons enhances cortical orientation tuning. This might contribute to the narrowness of
cortical orientation tuning, compared with the linear prediction based on their receptive field
sensitivity profile [367].

Intrinsic properties and spike train dynamics: two modes of firing.Thalamic relay neurons
have intrinsic membrane properties that confer on them distinctive qualitative modes of firing
behaviour [168, 169, 185, 247, 352], called ‘burst’ and ‘tonic’ (figure 8(C)). In burst mode,
depolarization to firing threshold triggers a train of two to seven action potentials in rapid
succession (interspike intervals of 5 ms or less). This burst is due to activation of a slow T-type
Ca++ conductance, which produces a sustained depolarization whose duration is comparable
to that of the burst [168, 169, 375]. In ‘tonic’ mode, the Ca++ conductance is inactive, and the
LGN neuron fires at most one spike in response to a retinal EPSP.

The transition between these two modes of behaviour is governed by the recent history of
the membrane potential of the LGN relay neuron. The Ca++ conductance is inactive near the
relay neuron’s threshold (−52 to−70 mV [53]). Moreover, once inactivated by depolarization,
the Ca++ conductance requires a period of prolonged (e.g. 100 ms) hyperpolarization (−75
to −82 mV [144, 247] or more [53]) for de-inactivation [144]. Typically [144], bursts are
also followed by a long interspike interval, because of inactivation of the Ca++ conductance,
perhaps along with persistence of the slow inhibitory synaptic inputs that provided the
hyperpolarization. This ionic basis confers a distinctive temporal structure on bursts: a long
interspike interval before and after a train of impulses with brief (5 ms or less) interspike
intervals. The ionic basis for bursts also provides a convincing argument that burst activity
does represent a distinct mode: at intermediate membrane potentials (e.g.,−60 to−65 mV
[168, 169]), the LGN neuron’s excitability is at a relative minimum; at more hyperpolarized
potentials, the Ca++ conductance becomes de-inactivated; and at more depolarized potentials,
synaptic inputs are more likely to bring the cell to firing threshold.

Relay neurons can switch back and forth between these distinct modes, not only between
episodically presented stimuli [144] but also within a steady-state response [260]. LGN relay
neurons have a resting potential typically in the range−52 to−74 mV and are electrotonically
compact [36]. This suggests that relatively small, distal synaptic inputs can readily switch
a relay neuron between these modes under physiological circumstances. Consequently, non-
retinal inputs may be able to activate the T-type Ca++ conductance and thereby influence the
relay neuron’s dynamics, even though they are too small to drive the neuron to spike.

Mukherjee and Kaplan [260] measured transfer characteristics of LGN neurons by
simultaneously recording their retinal inputs and their spike outputs under conditions of steady-
state sinusoidal stimulation. Transfer characteristics of relay neurons were either bandpass
(peak between 2 and 8 Hz) or lowpass, and many neurons shifted between bandpass and lowpass
behaviour. This shift was associated with a change in firing pattern between burst (bandpass)
and tonic (lowpass) mode. These characteristics could be reproduced by a biophysical model
reduced from that of McCormick and Huguenard [248], which consists of the T-type Ca++

conductance and a delayed-rectifier K+ conductance along with the standard Hodgkin–Huxley
Na+, K+, and leak conductances. However, the model failed to predict the experimental
finding of a greater fraction of tonic-mode spikes at higher contrasts, and it also underestimated
response variability. These shortcomings were also present in simulations [259] of the full
10-channel McCormick and Huguenard [248] model, and they likely reflect both errors in
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modelling the intrinsic dynamics of LGN neurons as well as the omission of non-retinal inputs.
Analysis of firing patterns elicited by simple periodic stimuli shows that in comparison to

tonic mode, neurons in burst mode respond at a lower contrast, but information content is lower
as well [143]. In qualitative terms, this is because the size of the burst depends more on the
internal state of the neuron than on the size of the input. However, since burst firing represents
a highly nonlinear phenomenon, the reduced information content seen for sinusoidal stimuli
need not necessarily generalize to more complex stimulation patterns. Indeed, analysis of the
information content of relay neurons’ responses to pseudorandom temporal patterns reveals no
substantial difference between tonic mode and burst mode [309]. Spikes fired in tonic mode
carried two to three times the information of spikes fired in bursts (considered on a per-spike
basis), but bursts carried two to three times the information of tonic spikes (considered on
a per-event basis). It is tempting to speculate that the information content of bursts is high
because their greater temporal precision [144] mitigates the relative lack of information in
firing rate. Analysis via stimulus reconstruction approach [34, 312] suggests that this is not
the complete answer, since the filters for an optimal reconstruction of the stimulus from burst
or tonic spikes are very similar [309].

Even though both tonic and burst firing represent visually driven activity, speculations
concerning the possible physiologic roles of these two modes are inspired in part by the
observation that spontaneous bursts are present during deep sleep [247, 375]. These bursts are
associated with slow oscillations of the membrane potential (ca 1 Hz) that are synchronized
with EEG activity and are dependent not only on the intrinsic properties of LGN neurons
but also on their connections with the perigeniculate nucleus [17, 247] and with each other
[185, 247]. Thus, the LGN may undergo global shifts from burst to tonic mode, depending on
the state of arousal.

Spikes fired within bursts have brief interspike intervals that allow them to be more
effective in activating cortical neurons [220, 403], and even make an unreliable synapse behave
in a reliable fashion [220]. Along with the qualitatively all-or-none information transfer
characteristics of relay neurons during burst mode [143, 352], this suggests that burst mode is
more suited for detection, while tonic mode is more suited for discrimination. On the other
hand, the non-retinal inputs to the LGN, particularly the feedback from visual cortex, are
spatially specific [261]. Moreover, the recent studies of Reinagelet al [309] make it difficult
to assign any role to bursts predicated on an impoverished information contentper se. These
considerations are consistent with the speculation [352] that the transition from burst mode to
tonic mode may be the neural correlate of focal attention [292].

Spike train statistics. The spontaneous discharge of LGN relay neurons is more irregular
than that of their retinal inputs. Spontaneous discharges are approximately renewal processes,
with an interspike interval distribution approaching Poisson [122]. But as is the case for retinal
ganglion cells, the statistics of spike trains elicited by visual stimuli cannot be described as
a Poisson process, or even a modulated renewal process [302]. Two tendencies compete to
add a small serial correlation to the spike discharge: the retinal input carries a small negative
serial correlation, while the presence of burst and tonic firing modes tends to induce a small
positive serial correlation. In addition to serial correlation [122], there are two other kinds of
deviations from a renewal process. One deviation is that the initial portion of the response to
a transient stimulus has greater regularity than the sustained portion, even when rate is taken
into account. Its interspike interval distribution is approximated by a gamma process of order
five, while the sustained portion of the response is approximately Poisson [122]. This greater
regularity of the phasic portion of the response is not dependent on the mode (i.e. burst versus
tonic) of the relay neuron.
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The second kind of deviation from the behaviour expected from a modulated renewal
process (and also not accounted for by a leaky integrate-and-fire model [302]) is the presence
of multiple peaks in the interspike interval histogram [118]. The response elicited by the onset
of a transient visual stimulus often consists of a burst, followed by a pause, and then tonic
activity [118]. During tonic firing, relay neurons fire only when the corresponding retinal
afferent fires, but not every retinal afferent spike elicits a spike in the relay neuron [178, 243].
Because firing rates of retinal neurons under steady illumination are reasonably regular [398],
this spike dropout can result in a multimodal interspike interval distribution, with regularly
spaced peaks [117]. The intrageniculate contribution to the surround [74, 162, 175] is one
source of inhibitory signals that can lead to spike dropout, and the strength of this inhibition
is necessarily stronger for spatially extensive than for spatially localized stimuli. Thus, it has
been proposed that, in burst mode, the interspike interval statistics may represent a temporal
code for the spatial structure of the relay neurons [118].

The influence of cortical feedback.The lateral geniculate receives extensive feedback from
visual cortex. In one study of the effects of eliminating this feedback via cortical cooling
[245], it appeared to play the role of a nonspecific modulatory influence rather than as the
source of temporal structure. More recent studies involving both cortical stimulation [438] and
cooling [116] indicate that cortical feedback sharpens the temporal precision of retinogeniculate
transmission.

The anatomical divergence of the cortical feedback pathway [261] could serve as the source
of long-range synchronizations seen during stimulation with spatially extensive stimuli. Sillito
and co-workers [355] used cross-correlation analysis to show that spikes from nearby relay
neurons in LGN become synchronized, on a timescale of 25 ms or more, when they are jointly
stimulated by a moving bar of the appropriate orientation, and that this synchronization was
dependent on feedback from visual cortex. The standard interpretation of these relatively
narrow cross-correlations is that they represent the presence of common synaptic inputs
[4, 288]. Synchronization of relay neuron spike activity through common driving by cortical
feedback could thus be the physiologic substrate of linking of visual features. However, the
intrinsic dynamics of LGN relay neurons complicates the picture [53]. Slow covariations (on
the order of a second) of membrane potential of neighbouring relay neurons, perhaps due to
shared modulatory non-retinal inputs, would induce correlations of their firing modes [54, 55],
and consequently induce firing-time correlations on a timescale comparable to that observed
by Sillito et al [355]. Thus, although there is strong evidence that corticogeniculate feedback
modulates transmission from the retina and influences the dynamics of the resulting spike
trains, its role in feature extraction remains unclear.

5. Conclusions

Each stage of early visual processing is accompanied by the addition of new dynamical features
(see table 1). Photoreceptors may be considered to be quasilinear filters for small inputs, but
demonstrate large changes in gain and dynamics as mean light level increases. Rods and cones
differ in operating range and dynamics, but within each photoreceptor class, dynamics are
quite uniform. The horizontal cells add an additional level of adaptive filtering, but also a
substantial degree of heterogeneity, including subtypes in which chromatically distinct inputs
interact in a nonlinear fashion. Adaptive filtering continues at the bipolar cells, but here the
adaptive filtering is triggered by only modest changes in the size of the input signal, perhaps
because of the high intrinsic gain of the bipolar cell. Bipolar cells first demonstrate two
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Table 1. A summary of the main dynamical features of neurons in the retina and lateral geniculate
nucleus.

Photoreceptors

Two classes (rods and cones) with distinct ranges of sensitivity and dynamics
Quasilinear behaviour for small inputs
Adaptive changes in gain and dynamics across large changes in average light intensity

Horizontal cells

Quasilinear behaviour for small inputs
Adaptive changes in gain and dynamics across large changes in average light intensity
Subtypes with spectral opponency and nonlinear interactions between chromatically distinct inputs

Bipolar cells

Quasilinear combination of antagonistic receptive field regions with distinct dynamics
ON and OFF dichotomy, approximately push–pull but distinct dynamics
Adaptive changes in gain and dynamics across modest changes in input variance (contrast)

Amacrine cells

Increased transience
Subtypes with highly nonlinear (ON–OFF) behaviour even for small inputs
Subtypes with direction selectivity
Subtypes with spiking behaviour

Ganglion cells

Spikes as the sole mode of information transmission
Subtypes with highly nonlinear (ON–OFF) behaviour even for small inputs
Contrast gain control
Coupling of chromatic, spatial, and temporal aspects of responses
Phase-locking behaviour at high contrasts
Concerted firing patterns across cells

Lateral geniculate nucleus (relay cells)

Subtypes with highly nonlinear (ON–OFF) behaviour even for small inputs
Lagged and nonlagged subtypes
Spike deletion
‘Burst’ and ‘tonic’ modes of firing
Modulation by non-visual inputs
Modulation by cortical feedback

features characteristic of later stages of visual processing: centre–surround antagonism, and
the ON–OFF dichotomy. Centre and surround signals typically have different dynamics, so
this simple quasilinear combination of signals couples the spatial structure of the input into
the temporal structure of the response. The two branches of the ON–OFF dichotomy are
only approximately push–pull, owing to the distinct kinds of synaptic mechanisms required to
generate both inhibitory (for the ON bipolar) and excitatory (for the OFF bipolar) responses to
the same neurotransmitter signal. This foreshadows a greater asymmetry at the ganglion cell
stage, due to the difference in firing rates of typical ON and OFF ganglion cells.

In the inner retina, the number of distinguishable neuronal subtypes grows dramatically.
The amacrine cell class as a whole is characterized by transient response properties and both
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serial and recurrent inhibition. Some amacrine cells demonstrate highly nonlinear (ON–OFF)
behaviour even for localized, low-contrast inputs, and thus represent the basic architecture
of the ‘nonlinear subunit’ structure seen more centrally. Amacrine cells also have intrinsic
membrane nonlinearities that accentuate their transience.

Ganglion cells are universally spiking neurons, and represent the ‘information bottleneck’
at the retinal output. The ON–OFF dichotomy set up at the bipolar cell level continues, and,
for both ON and OFF ganglion cells, subtypes that either manifest or do not manifest the
ON–OFF nonlinearity are present—probably due to the presence or absence of a strong input
from the appropriate class of nonlinear amacrine cells. Many ganglion cells manifest a new
kind of adaptive filtering, the contrast gain control, that adjusts dynamics parametric in the
variance (rather than the mean) of the input signal. Two new dynamical features of the ganglion
cell response depend in an intrinsic manner on their spiking behaviour: high-precision phase
locking at high contrasts, and concerted firing patterns across neighbouring cells, probably
related to sharing inputs from a common interneuron.

The relay cells of the lateral geniculate manifest a new dichotomy, the lagged versus
nonlagged distinction, probably laying the groundwork for motion analysis at more central
stages. The intrinsic membrane properties of relay neurons add another dynamical feature: a
distinctive mode of behaviour in which a burst of spikes can be triggered by a single retinal
input, provided that the relay neuron has been hyperpolarized for a sufficiently long period
of time. The relay nucleus is also the target of modulatory inputs from the brainstem, and
for feedback projections from visual cortex, whose role (modulatory versus specific) is as
yet unclear. While these effects on relay neuron dynamics can be described in terms of a
quasilinear influence on firing rate, this is at best a first approximation: firing mode shifts and
feedback influences are intrinsically nonlinear and have marked influences on the statistical
structure of the spike train as well.

This tour of dynamics of precortical visual processing provides an important backdrop for
the recent surge of interest in mechanisms of coding and information processing by neurons
at more central levels [59]. Central neurons are capable of high-precision firing (on the order
of 1 ms [226]). For temporally rich stimuli, this high-precision firing is informative [59], but
for stimuli that do not have a strong intrinsic temporal structure, spike times are informative
to a precision of no better than 10–30 ms [153, 414]. Thus, one key question is the extent to
which the overall firing rate of a neuron (measured perhaps over fairly brief time periods and
an ensemble of similar cells) provides a sufficient basis for understanding neural coding and
computation [343] or, alternatively, whether the detailed statistics of individual neurons’ firing
patterns needs to be considered [414]. A related but broader question can be asked on the pop-
ulation level—does it suffice to consider average responses, or must one come to grips with the
correlation structure, intrinsic oscillations, and non-stationarities [57, 257, 316]? Substantial
challenges, both experimental and theoretical, hinder a direct assault on these questions in the
mammalian brain. This makes it tempting to conclude that central processing can be adequately
described by simple population-average rate measures and quasilinear dynamics. But the pro-
gressive layering of dynamical features from photoreceptor to thalamus suggests otherwise.
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