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bstract

Cost-based metrics formalize notions of distance, or dissimilarity, between two spike trains, and are applicable to single- and multineuronal
esponses. As such, these metrics have been used to characterize neural variability and neural coding. By examining the structure of an efficient
lgorithm [Aronov D, 2003. Fast algorithm for the metric-space analysis of simultaneous responses of multiple single neurons. J Neurosci Methods

24(2), 175–79] implementing a metric for multineuronal responses, we determine criteria for its generalization, and identify additional efficiencies
hat are applicable when related dissimilarity measures are computed in parallel. The generalized algorithm provides the means to test a wide range
f coding hypotheses.
 2006 Elsevier B.V. All rights reserved.
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. Introduction

Spike train metrics (Victor and Purpura, 1996, 1997) are used
o characterize neural variability and neural coding in a range
f neurophysiologic contexts, especially sensory systems; see
ecent review by Victor (2005). Metric approaches formalize
pike train neural activity as a sequence of events (Segundo and
erkel, 1969). This viewpoint contrasts with two ways to repre-
ent neural activity in a vector space: as a rate (i.e., a continuous
unction of time) or as a function of discretely sampled time
Rieke et al., 1997). The choice of viewpoint has implications
or the overall approach to data analysis. Vector spaces (includ-
ng spaces of time series) have a natural means of defining a
uclidean “distance”, based on their inner (scalar) product. In
ontrast, distances that naturally arise from sequence compar-
sons are typically non-Euclidean (Aronov and Victor, 2004).
on-Euclidean distances are necessary to account for some
spects of neural coding (Hopfield, 1995; Wuerger et al., 1995).
However, non-Euclidean distances determined by spike train

etrics are more difficult to compute than distances in a vector
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pace. For sequences of activity of a single neuron, the algorith-
ic problem for a simple spike train metric, Dspike[q], where
is the cost per unit time for moving a spike, is closely analo-

ous to that of biological sequence comparison (Needleman and
unsch, 1970; Sellers, 1974), and a very similar dynamic pro-

ramming algorithm is applicable (Victor and Purpura, 1996,
997). Computational complexity is M2, where M is the typical
umber of spikes in the responses to be compared. Multineu-
onal activity, recordings of which are becoming more and more
idely available (Gray et al., 1995; Kralik et al., 2001; Nicolelis

t al., 2003), can be considered as a sequence of labeled events
in which the label indicates the neuron of origin). The metric-
pace method readily extends to this context (Aronov et al.,
003; Samonds and Bonds, 2004). A straightforward extension
f the algorithm for the single-neuron metric Dspike[q] leads to
n algorithm for a simple multineuronal metric, Dspike[q, k]. This
lgorithm has a computational complexity of M2L, where L is
he number of distinct neurons. Recently, Aronov (2003) dra-

atically improved this to ML+1, via a dynamic-programming
lgorithm that treats the compared spike trains asymmetrically.
Generically, spike train metrics have parameters that indicate
he extent to which the metric is sensitive to various features
f the spike train (e.g., sensitivity to timing in Dspike[q] and
spike[q, k] is determined by q, and sensitivity to neuron of ori-
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Fig. 1. (A) A candidate alignment of two multineuronal spike trains. The neuron
of origin (the “label”) of each spike is indicated by shading, and an alignment
consists of links between pairs of individual spikes. An alignment may link
spikes from different neurons, and all spikes need not be linked. The alignment
shown is not necessarily an “efficient” alignment, but is typical of one considered
by the dynamic programming algorithm (Aronov, 2003) for Dspike[k, q]. (B) A
necessary, but not sufficient, condition for an efficient alignment. The subtrains
of spike train B are separated into individual parallel lines. This defines a unique
plane for each label w, containing the subtrain B[w] and the full train A. In each
plane (i.e., the plane of links in which the second member of each pairing comes
f
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in in Dspike[q, k] is determined by k). In this paper, we extend
his algorithm to a wide range of single- and multineuronal spike
rain metrics. We also show how the algorithm can be modified
o calculate spike train metrics for many values of the param-
ters in an efficient manner. As part of an ongoing effort to
rovide information-theoretic tools to the neuroscience commu-
ity, implementations of algorithms for Dspike[q] and Dspike[q,
] described below are available in the Spike Train Analysis
oolkit (Goldberg et al., 2005) and can be obtained from the
ebsite http://neuroanalysis.org.
After some preliminary definitions, we review the notion of a

ost-based metric, and then consider a partially distinct approach
o define dissimilarities of event sequences, based on “align-

ents.” We observe that the intersection of cost-based metrics
nd alignments includes the basic multineuronal cost-based
pike time metric Dspike[q, k]. As we then show, the efficient
ynamic programming algorithm (Aronov, 2003) for Dspike

q, k], when viewed as an algorithm to identify alignments,
s capable of substantial generalization. We then comment on

atters of implementation and provide examples.

. Results

.1. Preliminaries

A spike train (a neural response) is considered to be a
equence of events, each occurring at a specific time and associ-
ted with a discrete label (the neuron of origin). More formally,
spike train A is a sequence of M(A) spike times A1, A2, . . .,
M(A), each with an associated label, a1, a2, . . ., aM(A). The spike

imes Ak are non-decreasing real numbers, and may coincide.
he labels are drawn from a set {1, . . ., L} of abstract tags. We
se A[w] to denote the subsequence of A that includes just the
pikes associated with a label w. Thus, M(A[w]) is the number
f spikes in A with the label w. We also use �M(A) to denote
vector whose wth element is M(A[w]). A spike train is the

isjoint union of its subtrains A[w], i.e.,

L⋃
=1

A[w] = {A1, . . . , AM(A)}, and
L∑

w=1

M(A[w]) = M(A).

.2. Metrics, alignments, and strains

We will consider two ways to measure dissimilarity between
wo spike trains A and B. The first, “cost-based metrics” (Victor,
005; Victor and Purpura, 1996, 1997) is based on a set of ele-
entary transformations between spike trains. Each elementary

ransformation (e.g., deleting a spike, inserting a spike, shifting a
pike in time, or changing the label of a spike) is associated with a
ost. In a cost-based metric, the distance (dissimilarity) between
wo spike trains is the minimum total cost of any sequence of
lementary steps that transforms A into B.
The second way of measuring dissimilarity is based on the
otion of an alignment between two spike trains, X(A, B) (or
imply X). An alignment (Fig. 1A) indicates a correspondence
etween the components of spike train A and those of spike train

a
t
e
i

rom the same subtrain B[w]) links cannot intersect. For further details, see text.
dapted from Aronov (2003) with permission.

, via a set of links between pairs of spikes. As shown in Fig. 1A,
n alignment may leave some spikes unlinked in one or both of
he two trains. We will assign a strain to each alignment, and
he measure of dissimilarity between A and B will be taken to
e the smallest strain of all possible alignments X(A, B).

We will restrict consideration to strains that depend only
n the number of unlinked spikes and on the time differences
etween the spikes connected by the links. We will further
estrict consideration to strains in which these components com-
ine additively. More formally, we will consider strains of the
orm

(X(A, B)) =
L∑

w=1

I1,w(U1,w) +
L∑

w=1

I2,w(U2,w)

+
L∑

w1=1

L∑
w2=1

∑
j

Jw1,w2

(∣∣Tw1,w2,j

∣∣) . (1)

n this equation, U1,w and U2,w are the number of unlinked
pikes of label w in each train, and T is a table of lists Tw1,w2,j

f the time differences between linked spikes of label w1 in A

nd label w2 in B. I1,w and I2,w are non-decreasing functions
hat determine the contribution to the strain of unpaired spikes of
ach label (w) in each train (1 for A, 2 for B). Similarly, Jw1,w2 (t)
s a non-decreasing function that determines the contribution to

http://neuroanalysis.org/
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he strain of a link of length t between a spike with label w1 in
rain A, and a spike with label w2 in train B.

Note that the form (1) allows for the dependence of S on
nlinked spikes to depend on the label, and to be different for
he first and second trains in the alignment. The dependence of
on time differences may also depend on the labels associated
ith each pair of linked spikes.
An alignment that achieves the minimum strain is called

n “efficient” alignment. Thus, calculation of the least strain
etween two spike trains can be reduced to finding an efficient
lignment.

.3. Relationship between metrics and alignments

The cost-based metric Dspike[q] and its multineuronal
xtension Dspike[q, k] have been found useful in several neuro-
hysiologic contexts (Aronov et al., 2003; Samonds and Bonds,
004; Victor, 2005). As we now show, these metrics can also be
onsidered to be the strain of an efficient alignment. Dspike[q, k]
s defined by the following allowed elementary transformations
nd costs: inserting or deleting a spike has a cost of 1; moving
spike by an amount �t has a cost q�t, and changing the label
f a spike has a cost k. In a sequence of elementary steps that
chieves minimal total cost, no spike need be moved in more than
ne direction, and spikes that are inserted or deleted need not
e moved. Thus, a minimal-cost transformation can always be
roken down into the following components: (1) spikes deleted
rom A or inserted into B; (2) spikes in A that are moved into
osition of spikes of the same label of B, and (3) spikes in A that
re moved into the position of spikes of a different label in B,
nd then change their label.

Together the deleted and inserted spikes constitute the
nlinked spikes of an alignment, and the moved spikes con-
titute the links of an alignment. Conversely, any alignment can
e reinterpreted as a sequence of the elementary steps allowed
y Dspike[q, k].

Consequently, the cost-based metric Dspike[q, k] between two
pike trains can be recast as the minimum strain of an alignment,
here the strain is of the form (1), with

1,w(U1,w) = U1,w, I2,w(U2,w) = U2,w, and Jw1,w2 (Tw1,w2 )

= k(1 − δ(w1, w2)) + q
∑

j

∣∣Tw1,w2,j

∣∣ . (2)

owever, cost-based metrics and alignments are not equiv-
lent in general. Cost-based metrics such as Dinterval[q], in
hich elementary steps (Victor and Purpura, 1996, 1997)

nclude changing the length of an interspike interval, can-
ot readily be considered as alignments of individual spikes.
onversely, strains of a form similar to Eq. (1), in which

erms are combined following application of a power law, can-
ot readily be construed as the sum of costs of elementary
teps.
Cost-based metrics must satisfy the triangle inequality: the
ength of the shortest path between two points cannot be more
han the length of a path between those two points that is con-
trained to pass through a third point. Cost-based metrics must

(
u
o
u
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lso be symmetric in their arguments. Measures of dissimilarity
hat arise from strains (Eq. (1)) need not have either property,
nd thus, may not be “metrics”. Such notions of dissimilarity are
mportant in neuroscience applications. Asymmetry may arise if
he spike trains being compared play distinct roles, for example,
he first spike train may represent a standard by which the second
pike train is to be classified. Non-metric measures of dissimi-
arity also arise naturally in studies of perception (Maloney and
ang, 2003; Tversky, 1977; Tversky and Gati, 1982) and infor-
ation theory, e.g., the Kullbach–Leibler divergence (Cover and
homas, 1991; Kullbach and Leibler, 1951).

.4. Generalizing the algorithm for cost-based metrics

We next review the dynamic programming algorithm
Aronov, 2003) for Dspike[q, k]. By casting the algorithm as a
ethod to minimize the strain of an alignment, and focusing on

he properties of a strain required for the algorithm’s validity, we
ill extend the applicability of the algorithm to a much wider
otion of dissimilarities between spike trains, including, but not
imited to, other cost-based distances.

As in the algorithm for genetic sequence comparison
Needleman and Wunsch, 1970; Sellers, 1974), each stage
f the algorithm determines a distance Dspike[q, k](A(α), B(�β))
etween subtrains A(α) and B(�β) (defined below), from pre-
iously calculated distances. At the last stage, A(α) = A and
(�β) = B, so the calculation is complete. The two spike trains
re treated asymmetrically. For the first spike train, A(α) denotes
he subtrain consisting of the first α spikes of A, independent of
abel. For the second spike train, �β is a vector index with one
ntry for each of the L labels, and B(�β) consists of the first βw

pikes of each subtrain B[w]. This asymmetry is key to limiting
he computational complexity to ML+1.

The algorithm’s strategy is based on the fact that only a small
umber of subtrains need to be considered to find an efficient
lignment X(A(α), B(�β)). This fact follows from a geometric
rgument made by Aronov (2003) for the strain corresponding
o Dspike[q, k]. Any alignment, efficient or not, can be displayed
s a set of line segments that link subsets of spikes between the
wo trains, each considered as identified points on parallel lines
Fig. 1A). The spikes of the subtrains B[w] can be separated
nto parallel lines, one for each subtrain, while keeping all of
he spikes of train A on a single line (Fig. 1B). When this is
one, a necessary (but not sufficient) condition that the strain is
fficient is that the line segments that correspond to links do not
ntersect (Fig. 1B). The non-crossing rule allows us to reduce the
roblem of finding an efficient alignment of the original trains
o one of finding an efficient alignment of a restricted number
f smaller trains. Below we will identify properties of a strain
hat are sufficient to guarantee that this non-crossing rule holds.

In any alignment X(A, B), at least one of the following three
ossibilities must hold: (i) the terminal spike in A is unlinked,

ii) the terminal spike in at least one of the subtrains B[w] is
nlinked, or, (iii) the terminal spike in A is linked, as are all
f the terminal spikes of the subtrains B[w]. We want to set
p conditions under which each of these possibilities leads to a
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Condition 4, which implies non-crossing of any efficient
alignment, is somewhat subtler. As shown in Fig. 2, an align-
ment with intersecting links between A and B[w] can always be
untangled by a sequence of uncrossings: by uncrossing, at each

Fig. 2. A configuration of links between a multineuronal spike train A and a
subtrain B[w]. The intersections can be eliminated one by one, by uncrossing a
54 J.D. Victor et al. / Journal of Neuro

imple way to reduce an efficient alignment X(A(α), B(�β)) to an
fficient alignment of smaller trains.

In case (i), the terminal spike in A(α) is unlinked. We would
ike to be able to remove this spike, and be assured that the

esulting alignment, X(A(α−1), B( �β)), is also efficient. It suffices
o assert Condition 1: Consider any two alignments Y(A, B) and
(A, B) of spike trains A and B. Add a spike to A to form a new
pike train A′, and form new alignments Y′(A′, B) and Z′(A′, B)
rom Y(A, B) and Z(A, B) by keeping the new spike unlinked.
hen the rank order of the strains of Y(A, B) and Z(A, B) is the
ame as the rank order of the strains of Y′(A′, B) and Z′(A′, B)
i.e., if Y > Z then Y′ > Z′, and conversely).

In case (ii), the terminal spike in one of the subtrains B[w]
s unlinked. Here, we would like to remove this spike and be
ssured that the resulting alignment is efficient. In a manner
ompletely analogous to Condition 1, this can be guaranteed
f we assert Condition 2: augmenting alignments by adding an
nlinked spike to any one of the subtrains B[w] does not change
he rank order of their strains.

In case (iii), the terminal spike in A(α) is linked, and the
erminal spikes in all of the subtrains B(�β)[w] are also linked.
eduction of the alignment X now requires removal of linked

pikes. First, we want to be assured that removal of a link results
n an efficient alignment. This can be guaranteed by asserting
ondition 3: augmenting alignments by adding the same linked
air of spikes does not change the rank order of their strains.
owever, Condition 3 does not guarantee that the terminal spike

n A(α) is linked to a terminal spike in one of the subtrains
(�β)[w]—the formal equivalent of the non-crossing rule.

Without this simplification, there would be a combinatorial
xplosion of the number of subtrains of B(�β)[w] whose align-
ents with A(α−1) need to be considered, since there may be

fficient alignments in which all terminal spikes of A and B are
aired, but each are paired with non-terminal spikes in the other
rain. To exclude this possibility, we need a fourth condition, to
nsure that in any efficient alignment, links between A(α) and
(�β)[w] do not cross. Thus, we assert Condition 4: in any align-
ent Y(A, B) with an intersection of two links between spikes in
and a subtrain B[w], then the alignment derived by uncrossing

he links cannot have a larger strain.

.5. Statement of the basic algorithm

Given the above Conditions 1–4, an efficient alignment of
(A, B) may be found as follows.

Initialize: Efficient alignments with the null train Ø (namely,
(A(α), Ø) or X(&Oslash; , B(�β))), trivially have all spikes
npaired.

Extend: An efficient alignment of the subtrains X(A(α), B(�β))
s the alignment that has the least strain among the following
ossibilities:
(i) Add an unlinked terminal spike at time Aα and with label
aα to the alignment X(A(α−1), B(�β)),

(ii) add an unlinked terminal spike at time B[w]βw
and with

label w to the alignment X(A(α), B(�β−�1w)), or

p
p
o
C
t

ce Methods  161 (2007) 351–360

iii) add a link between a terminal spike at time Aα and with
label aα and a terminal spike at time B[w]βw

and with label
w to the alignment X(A(α−1), B(�β−�1w)).

Terminate: when A(α) = A and B(�β) = B, i.e., when α = M(A)
nd �β = �M(B).

.6. Analysis of the conditions

We now identify sufficient conditions for Conditions 1–4 to
old, and hence, for validity of the above algorithm.

Conditions 1–3 state that in the calculation of the strain, the
nlinked spikes in each train and the lengths of the pairings
o not interact—i.e., that one cannot change the rank order of
wo strains by adding unlinked spikes or pairings. Strains of the
orm (1) necessarily satisfy these conditions. These conditions
lso hold for after generalizing the form (1) by applying any
onotonically increasing function to each term.
air of links whose spikes in train A are the closest. The reduction of a general
attern of intersecting links by a sequence of single uncrossings does not depend
n the spike labels, and does not place additional restrictions on the strain.
ondition 4 requires that each single uncrossing does not increase the strain;

his is further analyzed in Fig. 3.
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Fig. 3. The three configurations of intersections between pairs of links. For the
first two configurations, the requirement that uncrossing does not increase the
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train places constraints on Eq. (1). The sequence of transformations indicated
y the gray arrows is used to demonstrate that the third configuration does not
ead to additional constraints.

tage, a pair of links whose spikes in train A are the closest. This
eduction from multiple uncrossings to single uncrossings does
ot place any restrictions on the strain, and does not depend on
he spike labels. Thus, to guarantee Condition 4, it suffices to
uarantee that single uncrossings never increase the strain. We
ow analyze the requirements for this.

Since the strain (Eq. (1)) depends only on the absolute value
f the time differences associated with each link, we need only
onsider the sequences in which the spike in train A occurs first.
he four spikes must occur in one of the following temporal
onfigurations: ABBA, AABB, and ABAB (see Fig. 3).

For the first configuration (ABBA), uncrossing the links
educes the lengths of each link. Thus, Condition 4 will be sat-
sfied if each of the functions Jw1,w2 , is non-decreasing. We
ssume that these functions are differentiable, so we may write

dJw1,w2 (t)

dt
≥ 0. (3)

For the second configuration (AABB), uncrossing the links
educes the length of the longer link and increases the length
f the shorter link, leaving the total link length unchanged. For
onstraints of the form (1), Condition 4 requires that for any t
wi,w(t − τ) + Jwl,w(t + τ) (4)

s a non-decreasing function of τ for τ ∈ [0, t], where wi and
l are the labels of the spikes in train A. Provided that these

m
p
s
p

nce Methods 161 (2007) 351–360 355

unctions are differentiable, the condition that Eq. (4) is non-
ecreasing is equivalent to the condition that its derivative is
on-negative:

dJwi,w(t)

dt
+ dJwl,w(t)

dt
≥ 0 (5)

ince the inequality of Eq. (5) must also hold when the roles
f wi and wl are reversed, we conclude that equality must hold.
hat is, Jwi,w(t) and Jwl,w(t) differ from each other by at most
constant:

wl,w(t) = Jw(t) + c(wl). (6)

ince the expression (4) is non-decreasing, the inequality

wi,w(t − τ) + Jwl,w(t + τ) ≥ Jwi,w(t) + Jwl,w(t) (7)

ust hold for all t and τ ∈ [0, t]. Eq. (7) implies (with t− = t − τ,

+ = t + τ, and Eq. (6)) that

w(t ) + Jw(t+) ≥ 2Jw

(
t− + t+

2

)
, (8)

.e., that Jw is concave (Rudin, 1976). Provided that Jw has a
econd derivative, Eq. (8) is equivalent to

d2Jw

dt2 ≥ 0, (9)

onversely, it is straightforward to see that Eqs. (6) and (9) are
ufficient to ensure that the expression (4) is non-decreasing.

For the third configuration (ABAB), no further conditions are
ecessary if the conditions implied by the first two configurations
re satisfied. This is because the uncrossing can be accomplished
y a sequence of three steps, each of which is guaranteed not to
ncrease the strain (lower half of Fig. 3). In step 1, the positions
f the middle spikes are interchanged. That is, the first spike in
rain B is moved to the time of the second spike in train A, and the
econd spike in train A is moved to the time of the first spike in
rain B. This does not change the lengths of the links, and there-
ore does not change the strain. Since the spikes are now in the
ABB configuration, the links can be uncrossed (step 2) without

ncreasing the strain. In step 3, the middle spikes are moved back
o their original position. This cannot increase the lengths of the
inks, and therefore (by Eq. (3)), cannot increase the strain.

In sum, we have found that for strains of the form (1), Eqs.
3), (6), and (9) are sufficient for validity of the dynamic pro-
ramming algorithm stated above.

.7. All-parameter calculation

In typical applications of spike metrics to characterize neural
oding (Aronov et al., 2003; Samonds and Bonds, 2004; Victor,
005; Victor and Purpura, 1997), it is necessary to compute mea-
ures of dissimilarity across a range of parameter values. These

easures of dissimilarity are then examined to determine which

arameter values provide the most faithful representation of the
timuli or conditions that elicited the neural responses. These
arameters are then taken as characterizations of the neural code.
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In a typical application, one might want to calculate Dspike

q, k] for several hundred pairs of values of q and k. More gen-
rally, one might want to calculate minimum strains of the form
1) for a variety of choices for the terms I1, I2, and Jw1,w2 . In
hese situations, it may be possible to realize a substantial com-
utational saving over the straightforward strategy of running
he above algorithm once for each value of the parameters.

The basic strategy is as follows. First, we observe that for
ypical strains, it is not necessary to store the most efficient
lignment explicitly at each stage of the above basic algorithm
i.e., for each pair of indices α and �β). Rather, one may be able
o store merely a set of values that allow for calculation of the
train of the most efficient alignment, and of strains of larger
lignments determined at later stages. Thus, for strains that are
ums of contributions from their components (such as those of
he form (1) with linear I1, I2, andJw1,w2 ), it suffices to keep track
f the strain of the most efficient alignment at each stage, rather
han the alignment itself. This substantially decreases the storage
equirements of the algorithm, since now only a scalar, rather
han an alignment, needs to be stored for each pair of indices α

nd �β. As we show below, extending this idea yields a strategy to
eep track of the strain of optimal alignments across all choices
f the metric’s parameters. This in turn leads to an algorithm for
alculating measures of dissimilarity for all parameter values at
nce.

.7.1. Single-neuron spike time metric
As a simple example, consider the single-neuron metric

spike[q] and its dependence on a single parameter q, the cost
er unit time for moving a spike. This metric can be expressed
s the strain of an efficient alignment (Eqs. (1) and (2) with L = 1
nd k = 0): the strain is the sum of the total number of unpaired
pikes and the product of q and the total length of all links. At
ach stage of the algorithm, we keep track of all of the alignments

hat might be efficient for at least one value of q. Even though q
an assume a continuum of values, this is always a discrete set: it
s parameterized by the number of unpaired spikes, and, for each
umber of unpaired spikes, it is the alignment with the minimum
otal link length of all alignments that are constrained to have a

articular number of unpaired spikes, U. Equivalently, this set
an be parameterized by the total number of links, here denoted
, since every spike is either unpaired or part of a link. Moreover,
he alignments themselves need not be stored; it suffices to store

2

c
fi
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for each pair of indices α and β) the minimum total link length
(α, β, r), of all alignments that have a total of r links. (Note that
n the single-neuron case considered here, there is only one kind
f label, and the vector index �β can be replaced by a scalar index
= �β1.)
The above dynamic programming structure works, since

t each stage of the algorithm, l(α, β, r) depends only on
(α − 1, β, r) (add a terminal unpaired spike to A), l(α, β − 1, r)
add a terminal unpaired spike to B), and l(α − 1, β − 1, r − 1)
add a terminal linked pair). Once the final l(M(A), M(B), r) has
een calculated, then

spike[q] = minr(M(A) + M(B) − 2r + ql(M(A), M(B), r)),

(10)

here M(A) + M(B) − 2r is the number of unpaired spikes in an
lignment of A and B with r links. The net result is an algorithm
hat calculates Dspike[q] for all values of q.

.7.2. Implementation
The all-parameter algorithm iteratively determines a mini-

um total link length l(α, β, r) of all alignments between the
rst α spikes of A and the first β spikes of B that have a total
f r links. These values constitute a three-dimensional array.
owever, to apply Eq. (10) to calculate the distance between

he spike trains A and B, we only require l(M(A), M(B), r), the
alues on a single edge of this array. This, coupled with the
act that l(α, β, r) depends only on l(α − 1, β, r), l(α, β − 1, r),
nd l(α − 1, β − 1, r − 1), points the way to a memory-efficient
mplementation that replaces the three-dimensional array
(α, β, r) by two-dimensional arrays lcur(α, β) and lprev(α, β)
ach of size (M(A) + 1) × (M(B) + 1). The outer loop of the iter-
tion is on r, and the start of each iteration on r, the previously
alculated lcur becomes the current lprev. The full calculation
ay be written as follows:

Initializations are accomplished by noting that lcur(α, β) = 0
hen r = 0, and omitting consideration of values of lcur(α, β)
here it is undefined (α = 0 or β = 0) during the inner computa-

ion.
.7.3. Multineuronal metric
For the multineuronal metric Dspike[q, k], a somewhat more

omplicated procedure accomplishes the analogous goals. It suf-
ces (see Eqs. (1) and (2)) to store the total number of unpaired
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pikes, the total length of all links, and the total number of links
etween spikes of different labels. Equivalently, one may store
(α, �β, r, s), the minimum total link length of all alignments
hat have r links between spikes of the same label and s links
etween links of different labels. l(α, �β, r, s) depends only on
(α − 1, �β, r, s), l(α, �β − �1w, r, s), l(α − 1, �β − �1w, r − 1, s),
nd l(α − 1, �β − �1w, r, s − 1) with the latter three possi-
ilities considered for each w ∈ {1, . . . , L}. Once the final
(M(A), �M(B), r, s) has been calculated, then

spike[q, k] = minr,s(M(A) + M(B) − 2r

− 2s + ks + ql(M(A), �M(B), r, s)), (11)

here M(A) + M(B) − 2r − 2s is the number of unpaired spikes
n an alignment of A and B with r matched-label links and s
nmatched-label links. The net result is an all-parameter algo-
ithm that calculates Dspike[q, k] for all values of q and k.
.7.4. Implementation
Computation of the minimum total link lengths requires four

ested loops, indexed by α, the number of matched links r,

g
a
f
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he number of unmatched links s, and �β. �β is a multi-index,
ith one component for each label w ∈ {1, . . . , L}, but it is
ept as a single dimension with values ranging from 0 to
(B) = ∏L

w=1M(B[w]).
The fact that l(α, �β, r, s) depends only on l(α − 1, �β, r, s),

(α − 1, �β − �1w, r − 1, s), l(α − 1, �β − �1w, r, s − 1), and
(α, �β − �1w, r, s) can be used to achieve a memory-
fficient implementation. We require two-dimensional arrays,
αprev, rcur = l(α − 1, •, r, •) and l�prev, rprev = l(α − 1, •, r − 1, •)
ach of size (S + 1) × (M(B) + 1), and one three-dimensional
rray ltemp of size (R + 1) × (S + 1) × (M(B) +1), where R is the
aximum number of matched links, and S is the maximum

umber of unmatched links.
At the start of each α-iteration, the contents of

temp(0, •, •) are copied into lαprev, rcur. At the start of each r-
teration, the contents of lαprev, rcur, are copied into lαprev, rprev,
nd the contents of ltemp(r, •, •) are copied into lαprev, rcur. For a
iven r′, ltemp(r′, •, •) corresponds to l(α − 1, •, r, •) for r < r′
nd to l(α, •, r, •) for r > r′. The computation may be written as
ollows:
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Initializations are accomplished by noting that l(α, �β, 0,
) = 0, and by making exceptions for out-of-range values in the
nner computation.

.7.5. Comparison: basic algorithm versus all-parameter
lgorithm

As described above, the computation of Dspike[q] and
spike[q, k] can be carried out either by the basic algorithm

or each set of values of the metric parameters, or by the
ll-parameter algorithm, in which the minimal link lengths
(M(A), M(B), r) or l(M(A), �M(B), r, s) are calculated and then

spike[q] and Dspike[q, k] are determined via Eqs. (10) or (11).
n the first strategy, the calculation time scales as ML+1, where

is the typical number of spikes of each label, and L is the
umber of labels (here, we are assuming that each label occurs
n approximately the same number of spikes). Thus the length
f the α-loop is LM, and the length of the multi-index �β-loop is
L. At each stage of the iteration, 1 + 2L possibilities need to

e considered (unlinked last spike in train A, unlinked last spike
n one of the L subtrains B[w], or a link between the last spike
rom train A and the last spike of one of the L subtrains B[w]).
he calculation needs to be repeated for each set of values of

he metric parameters. Thus, we anticipate a computational time
basic that scales as

basic ≈ KbasicP(1 + 2L)LML+1 (12)

here P is the number of sets of values of the metric parameters,
nd Kbasic is a proportionality constant that depends on hardware,
mplementation, and the “shape” of the data (e.g., the typical
emporal patterns of spikes in time).

For the all-parameter strategy, we consider Dspike[q] and
spike[q, k] separately. For Dspike[q], the time required to cal-

ulate the link lengths l(M(A), M(B), r) scales as 3M3, since
he length of each of the α-, β-, and r-loops is typically M (we
nclude the factor of 3 to represent the three alternatives con-
idered in the inner loop, for consistency with the analysis of
he multineuronal metric, below). This stage of the calculation
s independent of the number of sets of metric parameters. Fol-
owing calculation of the link lengths, distances are calculated
ia Eq. (10). The time for this calculation is proportional to PM,
ince a maximum over each of the M link lengths must be deter-
ined for each of the P values of q. Thus, the computation time

allparameter is anticipated to scale as

allparameter ≈ 3KlinksM
3 + KdistsPM, (13)

here Klinks and Kdists are proportionality constants analogous
o Kbasic. For Dspike[q, k], the time required to calculate the link
engths l(M(A), �M(B), r, s) scales as (1 + 2L)L2ML+3, using LM as
conservative estimate of the length of the s-loop, the previous
stimates of LM for the length of the �-loop, ML for the �β-
oop, M for the r-loop, and a factor of 1 + 2L to indicate the
ependence of the number of inner-loop comparisons on L. Thus,

he computation time is anticipated to scale as

allparameter ≈ Klinks(1 + 2L)L2ML+3 + KdistsPLML+1.

(14)
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n Eqs. (13) and (14), we anticipate that Klinks � Kdists, since the
istance calculation only requires a multiplication, followed by
nding the minimum of a list. For the same reason, we antici-
ate that Kbasic (Eq. (12)) will be much larger than Kdists. That is,
n comparison to Eq. (12), both Eqs. (13) and (14) have a term
hat is large and independent of the number of parameter pairs
, followed by a term that depends on P but has a much shal-

ower growth. Thus, for sufficiently large P, the all-parameter
lgorithm will be more efficient than the basic algorithm.

We can estimate the asymptotic behavior of the breakeven
oint Pbreakeven as follows. For Dspike[q], set Tbasic = Tallparameter
n Eqs. (12) (with L = 1) and (13), to obtain, for large M,

breakeven ≈ M
Klinks

Kbasic
. (15)

or Dspike[q, k], set Tbasic = Tallparameter in Eqs. (12) and (14) to
btain

breakeven ≈ LM2 Klinks

Kbasic − KdistsL/(1 + 2L)
. (16)

.7.6. Examples
As a test case, we applied both algorithms to responses from

pair of neurons in primary visual cortex of a macaque mon-
ey (recording 410106.st of (Aronov et al., 2003)). Stimuli
ere transient presentations of stationary luminance gratings;
4 responses to each of 16 spatial phases were recorded. Thus,
here were 1024 responses (each containing L = 2 labels) in the
ataset, and approximately 500,000 pairs of distances to calcu-
ate for each set of metric parameters q and k. On average, there
ere M = 12.7 (mean) spikes per neuron, and no response had
ore than 20 spikes.
The algorithm implementations were those used in the open

ource Spike Train Analysis Toolkit (http://neuroanalysis.org).
he algorithms are coded in C and provided with a Matlab inter-

ace. The analysis was performed on a Dell Precision 450 with
GB RAM and a single-core 2.8 GHz Xeon processor.
Runtime measurements for Dspike[q] are depicted in Fig. 4A.

he tradeoff is at P = 2; for larger values of P, the all-parameter
lgorithm is more efficient. For Dspike[q, k] (Fig. 4B), the tradeoff
s at Pbreakeven ≈ 36, a value that is substantially higher because
f the computations required to obtain the link lengths. Never-
heless, this is well within the range of values typically required
or data analyses.

Note that the all-parallel algorithm increases storage require-
ents by a factor of O(M) for the single-neuron metrics

nd by O(M2) for multineuronal metrics. For typical neuro-
cience uses of the algorithm (as in the multineuronal example
bove), this additional storage is readily handled by a desktop
C.

We also ran calculations to illustrate how run time depends
n the number of neurons for L > 2 neurons. We generated pairs
f multineuron responses with spike times randomly distributed

n a uniform fashion over a 0.5 s interval. The calculations were
erformed using the basic algorithm, and they were parameter-
zed by the number of spikes per train with each label, M, and
he number of labels (neurons), L. The run times are depicted

http://neuroanalysis.org/


J.D. Victor et al. / Journal of Neuroscie

Fig. 4. Comparison of computation times for the basic algorithm, estimated by
Eq. (12), and the all-parameter algorithms, estimated by Eq. (13) for Dspike[q]
(panel A) and Eq. (14) for Dspike[q, k] (panel B). The dataset consists of neuronal
responses in primary visual cortex of a macaque monkey elicited by transient
presentations of stationary gratings of varying spatial phase (Aronov et al., 2003).
(A) Unit 410106.s of (Aronov et al., 2003). (B) Unit 410106.s and 410106.t of
(Aronov et al., 2003). The abscissa, P, is the number of values for the parameter
q(panel A) or of (q, k)-pairs (panel B). The “lengths-only” plot is runtime of
the portion of the algorithm that determines l(M(A), �M(B), r, s), corresponding
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o the term in Eqs. (13) and (14) that depends on Klinks. Pbreakeven is breakeven
oint at which the all-parameter algorithm becomes more efficient than the basic
lgorithm.

n a log–log plot in Fig. 5. Once the run times exceed 1 ms, the
redicted O(ML+1) behavior (Eq. (12)) is observed.
Although the asymptotic regime is not reached, the breakeven
oint Pbreakeven at which the all-parameter algorithm becomes
ore efficient than the basic algorithm increases with M and

ig. 5. Dependence of computation times for the basic algorithm on the number
f spikes per neuron, M, train and the number of neurons, L. Spikes are distributed
niformly in time.
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, as expected by Eq. (16): Pbreakeven ≈ 25 for M = 4, L = 3;
breakeven ≈ 300 for M = 10, L = 3; Pbreakeven ≈ 60 for M = 4,
= 4; and Pbreakeven ≈ 450 for M = 10, L = 4.
Thus, the basic algorithm may be more efficient than the all-

arameter algorithm for modest spike trains and/or a relatively
mall number of parameter values P. The breakpoint is likely
o be data-, implementation-, and hardware-dependent, and it

ay be useful to carry out pilot analyses prior to large-scale
alculations to determine which approach is faster.

. Discussion

We have considered notions of dissimilarity that can
e applied to compare multineuronal responses, viewed as
equences of labeled events. Our main result is that the dynamic
rogramming algorithm (Aronov, 2003) for Dspike[q, k] can be
xtended to calculate measures of dissimilarity based on min-
mizing the “strain” of an alignment. The four conditions that
he strain must satisfy are simple and relatively intuitive. The
rst three conditions specify that adding unlinked spikes or a

inked pair of spikes to alignments cannot influence their rank
rder. The fourth condition is that strain is never increased by
ncrossing two links, and also expresses the notion that one
ong link is never better than two short links of the same total
ength. For strains of the form (1), these conditions are expressed
y three requirements (Eqs. (3), (6) and (9)) for the penalty
w1,w2 (t) assigned to a link of length t between spikes of labels
1 and w2. The form (1) not only includes the standard spike

ime metrics Dspike[q] and Dspike[q, k] (Victor, 2005; Victor and
urpura, 1996, 1997), but also variants in which the component
f the strain associated with unpaired spikes (I1,w and I2,w in
q. (1)) depends on the label w, and strains which increase as an
ccelerating function of distance. These latter strains violate the
riangle inequality. They therefore provide notions of spike train
equence comparisons that are more general than those based on
etrics, which may be helpful in understanding neural coding

f non-metric perceptual phenomena (Maloney and Yang, 2003;
versky, 1977; Tversky and Gati, 1982).

.1. Relationship to algorithms for biologic sequence
omparison

The algorithms discussed here are similar to the dynamic
rogramming algorithms for biologic sequence comparison
Needleman and Wunsch, 1970; Sellers, 1974), both in their
oal and structure. However, the continuous nature of spike
imes adds a distinctive flavor. One aspect of this is that for
iologic sequences, an increase in efficiency can be obtained
Arlazarof et al., 1970; Myers, 1992) by breaking down each
pike train into small subsequences, and using a lookup table to
alculate the distances between these subsequences. For spike
rains, this approach (known informally as the “Four Russians”
peedup), is not readily applicable, unless one is willing to calcu-

ate only approximate distances by binning spike times coarsely.
he general “divide and conquer” strategy (e.g., Grice et al.,
997; Tonges et al., 1996) often used to improve the efficiency
f sequence alignments is moot here, since we are not interested
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n identifying the optimal alignment per se, nor in aligning more
han a single pair of spike trains. However, extensions of these
lgorithms to identify the “consensus” sequence among several
pike trains might benefit from such an approach.

Conversely, certain aspects of the sequence comparison for
pike trains may suggest efficiencies that are of use in sequence
omparisons more generally. In particular, for spike train anal-
sis, it is often useful to explore a parametric family of metrics,
o determine which metrics provide the most faithful or reli-
ble separation of neural responses. In phylogenetic analysis,
t can be useful to compare genetic sequences according to a
amily of parametrically related distances, which differ by the
elative costs of the six possible substitutions among the four
ucleotides (Bos and Posada, 2005). By exploiting the manner
n which strain depends on the parameter values, it is possible
o keep track of all efficient alignments for the entire parametric
amily of strains. As we show here, this can achieve a substantial
omputational saving.
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