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Abstract. We consider the description of a nonlinear 
stochastic transduction in terms of its input/output 
distribution. We construct a sequence of approximat- 
ing maximum-entropy estimates from a finite set of 
input/output observations. This procedure extends the 
Wiener theory to the analysis of nonlinear stochastic 
transducers and to the analysis of transducers with 
multiple outputs but an inaccessible input. 

Introduction 

The Wiener orthogonal functional series (Wiener 1958) 
provides a canonical way to characterize a nonlinear 
operator. The application of the Wiener procedure to 
biological transducers has enabled a detailed, quanti- 
tative analysis of some nonlinear neural transductions 
(Marmarelis and Naka 1972; Naka et al. 1975; Saku- 
ranaga and Naka 1985a-c). The success of the orthog- 
onal series approach has motivated two kinds of 
generalizations: generalizations of the test (input) 
signal to signals other than Gaussian white noise 
(Krausz 1975; Marmarelis 1977; Victor and Knight 
1979; Yasui 1979) and generalizations to transducers 
with multiple inputs (Yasui et al. 1979). 

Here we are concerned with two other avenues of 
generalization: applications in which the variability of 
the system's response, as well as its average or most 
likely response, is of interest, and applications in which 
there is no clearly-defined or accessible input, but only 
multiple outputs that may be observed simultaneously. 
Both of these extensions are important for the analysis 
of interactions in the central nervous system, in which 
variability is a prominent feature and the physiological 
input may be inaccessible or only partially under the 
experimenter's control. We approach these problems 
by reformulating the Wiener series in a way which 
lends itself to these extensions. The reformulation rests 
on a maximum-entropy interpretation of the Wiener 
series. 

The investigator studying an unknown transducer 
aims to use a set of input-output observations to form a 
description of the transducer. An exhaustive list of all 
input-output pairs, along with their relative proba- 
bilities, is a complete (although perhaps awkward) 
description of the input-output behavior of the system. 
It is highly impractical if not impossible to determine 
this distribution experimentally. However, one might 
hope to develop a canonical sequence of approxi- 
mations to this distribution, in which the first few 
members of the sequence can be determined experi- 
mentally. Measurement of the first few members of the 
sequence may serve to distinguish among models of 
the transducer under study. Even if the later members 
of the sequence are not practical to measure, the 
existence of the sequence might prove useful in theoret- 
ical investigations. For a deterministic transducer, this 
is the role played by the Wiener series and related 
orthogonal functional series. 

In the Wiener approach, each member of the 
approximating sequence is a transducer of a given 
finite order of nonlinearity whose output most closely 
approximates the output of the transducer under 
study. The criterion of approximation is the mean- 
squared difference between the output of the approx- 
imating transducer and the transducer under study, 
when the test signal is a Gaussian white noise. Each 
approximating transducer is deterministic, and the 
transducer under study is assumed to be deterministic. 

In the present approach, we construct a sequence of 
stochastic transducers. The input/output distributions 
of the approximating transducers are maximum- 
entropy distributions, subject to the constraint that 
particular functionals of the input/output distribution 
match exactly those of the transducer under study. 
Later members of the approximating sequence are 
constrained by more functionals than earlier members, 
and thus give a more accurate picture of the input/out- 
put distribution of the transducer under study. 
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The sequence of constraining functionals deter- 
mines the nature of the approximating sequence of 
distributions. (For an inappropriate choice of func- 
tionals, the approximating sequence may not even be 
defined.) One natural choice of functionals is the set of 
moments and cross-correlations of the input and 
output. We will see that for a particular choice of 
moments and cross-correlations, this approach re- 
duces to the Wiener approach if the transducer under 
study is deterministic. 

Real transducers have noise. An application of the 
Wiener procedure to a stochastic transducer amounts 
to assuming that the noise is additive and uncorrelated 
with the input. The Wiener series converges to a 
deterministic transducer whose output to a given input 
is the average output of the stochastic transducer to 
that input. The difference between the mean-squared 
output of the stochastic transducer and the mean- 
squared output of the complete Wiener model is a 
measure of the variability of the response. More 
generally, cross-correlations that are of second- and 
higher-order in the output provide additional in- 
formation about the stochastic features of the 
transducer which is not present in the Wiener kernels. 

We first discuss a rationale for a maximum-entropy 
approach. Next, we construct constrained maximum- 
entropy multivariate distributions by the method of 
Lagrange multipliers. We provide conditions sufficient 
for the existence of a sequence of maximum-entropy 
distributions and discuss the sense in which this 
sequence converges. This analysis provides guidelines 
for using this approach for the analysis of stochastic 
nonlinear transducers. Then, we will show how the 
Wiener theory may be viewed as an instance of this 
method for deterministic transducers with a particular 
choice of constraints. Finally, we present two 
examples: one showing how one may distinguish 
between additive and more complex sources of vari- 
ability in the output of a transducer, and a second 
example illustrating the analysis of a simple nonlinear 
stochastic system with two observable outputs but an 
inaccessible input. 

Maximum-Entropy Distributions 

We consider a stationary nonlinear transducer T. We 
assume that T is causal and of finite memory. Time is 
discretized into intervals At. An input to the trans- 
ducer is denoted by a vector x; and output of the 
transducer is denoted by a vector y. The components 
xi of x and Yi of y denote, respectively, the size of the 
input and output at the time iA t. 

In an experiment, one makes a series of observa- 
tions of the output signal y while manipulating the 
input signal x. The hypotheses of stationarity and finite 

memory imply that this experiment is equivalent to 
making a sequence of observations of the output Yo at 
time 0 to independent examples of the input signal. 
This view will be most convenient for our analysis. 

The hypothesis of causality implies that the output 
yoat time 0 depends only on the input signal at previous 
times, xj for j_=0. Therefore, each input-output 
observation may be thought of as a vector 

z=~xo,  x _ l , x _  2 .. . . .  Y0,Y-I,Y-2, ..-) (1) 

in an input-output space. For a deterministic trans- 
ducer T, the x-components of z determine the 
y-components uniquely. For a stochastic transducer, 
the x-components determine a probability distribution 
for the y-components. In either case, the characteriza- 
tion of the transducer is equivalent to characterizing 
the joint distribution of the x-components and the 
y-components. We denote the measure corresponding 
to this distribution by du. 

We have posed the problem in a context which is 
inspired by the Wiener identification procedure: the 
input is assumed to be controllable by the experiment- 
er, and the output is assumed to be related in a causal 
fashion to the input. The present formulation in terms 
of a joint distribution of the two signals x and y 
remains well-defined when the input and output can 
only be observed. In this circumstance, there is no 
formal distinction between input and output; we may 
think of the transducer under study as a system with 
two ports, x and y. In such a system, causality is no 
longer assured unless one has prior knowledge of the 
internal structure of the system (since there is no a 
priori notion of input). The only role that causality 
plays in the approximation theory to be developed 
below is to stipulate that certain cross-correlations 
vanish. Thus, the only modification that is needed to 
treat the no-input, multi-output problem is to allow 
these cross-correlations to be experimental obser- 
vations. The basic approximation procedure remains 
unchanged. 

Why Maximum Entropy? Maximum entropy formal- 
isms have been invoked in a variety of settings to select 
a specific probability distribution out of an ensemble of 
possible distributions (Jaynes 1979, 1982). We present 
an intuitive justification for this approach in the setting 
in which the distribution sought is the input-output 
relationship of a stochastic transducer. 

A stochastic transducer is completely described by 
knowledge of the probabilities of every possible input/ 
output vector z. Although the exact distribution is 
required to specify the transducer exhaustively, usually 
one is more interested in particular functionals of the 
distribution, such as the mean, the variance, higher 
moments, and cross-correlations. 
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It is impossible to calculate or even estimate the 
distribution of input/output vectors z from a finite set 
of observations without making explicit assumptions. 
In part the appropriate assumptions are motivated by 
characteristics of the particular transduction under 
study and the ultimate goal of the investigation. On the 
other hand, the use of a maximum entropy estimate has 
the advantage that it formalizes an assumption of 
ignorance about aspects of the distribution other than 
the functionals explicitly used as constraints. 

One naive approach to estimating the input/output 
distribution is to assume that the observed values of z 
are an unbiased and universal sampling of the true 
distribution. An estimate of any functional of the true 
distribution can be obtained by applying the func- 
tional to the finite sampling. This is equivalent to the 
assumption that independent additional samples of 
the true distribution may be obtained by resampling 
the finite sample. Although this estimate for the true 
distribution is unbiased, it is not an intuitively reas- 
onable estimate: it will be very ragged because of the 
sampling error inherent in a finite set of observed 
values. 

Typically, one does not place much reliance on the 
particular values of single observations but rather on 
the values of functionals of the distribution as a whole 
(such as mean, variance, etc.). Let us select certain such 
functionals of the empirical distribution as significant, 
and measure these functionals on the empirical 
(finitely-sampled) distribution. We use this finite set of 
descriptors to generate an estimate of the true 
distribution. 

In general, there will be many distributions for 
which the values of the functionals will agree with the 
values of the functionals on the empirical distribution. 
Although the values of the functionals of interest are 
identical on all of these candidate distributions, the 
values of functionals that have not been measured 
(such as higher moments) will vary. 

Consider a large but finite sampling of N obser- 
vations derived from one of these candidate distri- 
butions p. We discretize the samplings into narrow 
bins z i of width Az. Thus, the expected number of 
observations in the bin z i is Np(zi)Az. The number of 
ways that the N observations can be distributed into 
the bins in this fashion is given by a multinomial 
expression whose numerator is N! and whose denomi- 
nator is the product of the factorials of the number of 
observations in each bin. This is a kind of partition 
function, of the sort encountered in thermodynamics. 
As N grows without bound, the logarithm of the 
partition function asymptotically grows proportion- 
ally with N. This proportionality constant is akin to a 
thermodynamic entropy, and we may think of it as the 
entropy of the distribution, E[p]. Using Stirling's 

approximation, the entropy is given by 

E[p] = - ~ p(z)lnp(z)dz. (2) 

We seek to maximize the entropy subject to the 
condition that the values of the functionals of interest 
on the distribution p agree with the values of the 
functionals on the observed distribution. Distributions 
that are concentrated in only a few bins have lower 
entropy than a distribution that is dispersed evenly 
among many bins. Maximizing the entropy is thus a 
kind of smoothing of the distribution. Thus, the 
proposed procedure embodies the assumption that 
distributions in which the populations of the bins are 
uneven are a priori less likely than those in which the 
populations of the bins are more uniform. 

This maximization procedure also has a thermody- 
namic interpretation. One can think of each observa- 
tion of a distribution as a particle, and one can think 
of the bins as corresponding to states of the particles. 
We assume that the energy associated with each state is 
equal, or, equivalently, that the temperature of the 
system is infinitely high so that only combinatorial 
factors will influence state occupancy. The initial finite 
set of observations, when replicated a large number of 
times, corresponds to a system in which all of the 
particles are concentrated in a few states. Imagine that 
the particles interact according to a dynamical law 
which allows many-body interactions and requires 
only that the functionals are conserved quantities. The 
initial distribution will typically be unstable under this 
dynamical law; the maximum-entropy distribution, if 
it exists, will be stable under this dynamical law. In 
other words, the maximum-entropy distribution is the 
most evenly-populated distribution consistent with the 
experimentally-measured functionals. 

It might appear that the maximum-entropy con- 
straint could be expressed simply in terms of cumulants. 
If the constraints consist of means, variances, and 
simple (first-order) cross-correlations, the maximum- 
entropy distribution is the unique multivariate Gaus- 
sian distribution with matching statistics. The higher 
cumulants of the Gaussian are zero. However, for 
constraints that include statistics of higher order, the 
maximum-entropy constraint is not equivalent to 
assuming that higher cumulants are zero. 

The Constrained Maximum-Entropy Distribution. We 
will use the method of Lagrange multipliers to maxi- 
mize the entropy E[p] (2) subject to a set of function- 
als. Let us denote the constraining functionals by B k 
(k=0, 1, ...,K). The functionals are assumed to be 
linear in the sense that there is a weighting function 
Bk(Z ) such that the value Bk[p] of B k applied to a 
distribution p is given by 

Bk[p] = ~ p(z)~k(z)dz .  (3) 
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Moments and cross-correlations of all orders are linear 
functionals in this sense; they correspond to a weight- 
ing function Bk(z) equal to a product of appropriate 
components of z. We will denote by bk the value of the 
constraint Bk applied to the empirical data set. For 
convenience, we will take B0= 1 and b0 = 1, so that 
the zeroth constraint is that the distribution p is 
normalized to unity. 

Let pmax(Z) denote a maximum-entropy distri- 
bution subject to the constraints 

Bk[Pmax'] = bk, k = 1,..., K .  (4) 

Distributions in the neighborhood of Pma~(Z) can be 
expressed in the form 

p . . . .  (s, q, z) = Pmax(Z) + sq(z), (5) 

where s is a small real number. We think ofp . . . .  (s, q, z) 
as a path in the space of possible distributions that 
passes through Pm~x(Z) at s = 0. The "direction" of this 
path at s = 0 is determined by q(z). 

According to the method of Lagrange multipliers 
as applied to function spaces (Crowder and McCuskey 
1964, pp. 499-503) a conditidn that Pm~x(Z) is an 
extreme point of the entropy is that at s = 0, 

. . . .  . . . .  

By substituting (2), (3), and (5) into (6), the extremiza- 
tion condition becomes 

S[ - 1-1npmax(z)+ k=0 ~ LkBk(Z)] q(z)dz=O" (7) 

Since the extremization condition (7) must hold for any 
small perturbation q(z), it follows that the integrand 
itself must be identically zero. Therefore, a necessary 
condition that entropy is extremized is 

Pm~x(Z) =exp [ - -1+  k~=oLkBk(Z)l. (8) 

The Lagrange multipliers Lk must be determined 
from (4) and (8). In general, this results in a system of 
K + 1 transcendental equations. However, in the spe- 
cial case that the constraints are only first- and second- 
order moments and first-order cross-correlations, a 
simplification occurs. According to (8), the distribution 
P~ax(Z) is the exponential of a quadratic form in z - a 
correlated multivariate Gaussian distribution. In this 
case, the solution of the Eqs. (4) reduces to the 
diagonalization of a quadratic form. 

Equation (8) only guarantees that the distribution 
Pmax(Z) lies at a critical point, but does not guarantee 
that this critical point is a maximum point. We next 
show that any distribution that satisfies (4) and (8) must 
be a maximum point. We evaluate the second derivative 
of the entropy along any path p . . . .  (s, q, z) through a 

distribution p(z): 

d 2 
d~Zs 2 E[p,e,r(s, q, z)] = - S q2(z)(P(Z))- ldz. (9) 

The right-hand side of this expression is always less 
than zero. In particular, the entropy of distributions on 
any path through a critical distribution Pm.x(Z) must 
have a maximum at Pmax(Z). 

As a consequence, there can be at most one solution 
for the system of (4) and (8). If two solutions were to 
exist, then there would be two local maxima of the 
entropy. To see that this is impossible, consider the 
behavior of the entropy along a straight path between 
two putative solutions. Because the distributions at the 
endpoints of the paths satisfy the constraints (3) and 
because these constraints are linear, any distribution 
along this path also satisfies the constraints. If the 
entropy had a maximum at the two endpoints, then 
there must be a minimum at some intermediate point 
along the path. At such a point, the second derivative of 
the entropy would have to be positive. This contradicts 
(9), and excludes the possibility of more than one 
maximum. Thus, there is at most one solution to (4) 
and (8), and this solution must correspond to a global 
maximum. 

An Existence Result. We have shown that there is at 
most one maximum-entropy distribution correspond- 
ing to a particular set of constraints Bk. The possibility 
remains that the system of(8) and (4) have no solution. 
If we make two additional assumptions, we can 
demonstrate simply that a solution to these equations 
always exists. 

Condition I: The number of components of z is finite, 
and the domain of values for each component zi has 
been discretized. This technical assumption means that 
there are only a finite number of degrees of freedom for 
the probability distributions p(z). 

Condition II: There exists a distribution Pint that 
satisfies the constraints Bk[Pint'l = b  k and for which 
pint(Z) > 0. This assumption will hold, for example, if the 
constraining values b k are obtained from an empirical 
distribution in which no bins are empty. 

These two conditions guarantee the existence of a 
maximizing distribution which is interior, and this 
distribution must (by the theory of Lagrange multi- 
pliers) simultaneously satisfy (4) and (8). 

The first condition implies that the space S of all 
distributions p is a compact space. Only a subset of this 
space satisfies the constraints (4); we call this subset 
S . . . .  r Since the functionals B k are linear, S . . . .  t is 
compact as well. The second condition guarantees that 
the interior of S . . . .  t is not empty, because it contains 
Pint. The entropy is a continuous function on S (and 
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therefore is continuous on its compact subset S . . . .  t). 
Therefore, the entropy must attain its maximum 
somewhere in Sconsr 

To show that this maximizing distribution must be 
in the interior of S . . . .  t, it is necessary to examine the 
behavior of the entropy near the boundary of Soons t. We 
call any distribution in which no bins are empty an 
interior distribution; distributions in which at least one 
bin is empty is called a boundary distribution. The 
entropy of any distribution Pbound on the boundary of 
S . . . .  t is lower than that of any interior distribution 
pbound(Z)+Sq(Z) which is sufficiently close: 

E[pboun a + sq] - E[Pbound] 
= ~ [ - sq(z) ln(Pbouna(z) + sq(z)) 

--Pbo~,d(Z) In (1 + sq(z)/Pbo~,d(Z))]dz. (10) 

Under the assumption of a finite number of bins 
for z, this integral becomes a discrete sum. Since 
Pbound(Z) -t- sq(z) is interior, then sq(z) must be positive at 
all vectors z where Pbo,na(Z)= 0. The boundary terms 
sq(z) lnsq(z) dominate the sum since all other terms are 
bounded by a constant multiple of s. It follows that the 
right-hand side of (10) always becomes positive as s 
approaches zero from above. Thus, no boundary 
distribution Pbou,d(Z) can possibly be a local maximum 
of the entropy. The maximum entropy distribution, 
which must be attained somewhere in S . . . .  t, cannot be 
attained on its boundary and therefore must be 
attained on its interior. 

Stability of the Discretization Process. The discretiza- 
tion required by condition I is likely to be required by 
any numerical implementation of this procedure. The 
following argument provides some insight into 
whether this discretization is likely to introduce 
instability. 

Let us consider probability distributions on two 
discretizations of the domain, one of bin width Az and 
one of finer bin width Az/M. We assume that the 
coarser of the two discretizations is sufficiently fine so 
that the constraining functionals B k are constant on 
each bin. We further assume that each of the larger bins 
is the disjoint union of exactly M of the smaller bins. 

Under these conditions, there are natural corre- 
spondences between probability distributions con- 
structed on the two discretizations. Any probability 
distribution p' on the finer mesh defines a probability 
distribution lump(p') on the coarser mesh, whose 
density on the bin zl is the average of the densities p'(z~) 
over all bins z~ contained in z i. Similarly, any proba- 
bility distribution p on the coarser mesh defines a 
probability distribution split(p) on the finer mesh, 
whose density at the bin z~ is equal to p(zO, where z, is 
the bin which contains z~. Since we have assumed that 
the constraining functionals are constant on each bin, 

it follows that ifp' and p satisfy the constraints (3), then 
so do lump(p') and split(p). 

Elementary properties of the entropy (2) imply that 
E[p']<E[lump(p')], with equality achieved when 
p'=split(lump(p')). That is, the finer distribution p' 
carries at least as much information as the coarser 
distribution lump(p'), and the amount of information 
in the two distributions is equal only ifp'  is the evenly- 
split subdivision of lump(p'). 

Now let Pmax be the constrained maximum-entropy 
distribution on the coarser discretization. It follows 
that split(pro,x) must be the constrained maximum- 
entropy distribution on the finer discretization. This is 
because split(pmax) achieves the maximum entropy of 
all distributions p' with lump(p ' )=p . . . .  and the 
existence of any distribution q' with a greater entropy 
would imply the existence of lump(q'), whose entropy 
would have to exceed that of Pmax" 

This argument has shown that once the discretiza- 
tion of the domain is so fine that the constraining 
functionals are constant on each bin, further refine- 
ment produces no change in the maximum-entropy 
distribution. In a typical application, the constraining 
functionals will never be exactly constant over a bin of 
the discretization. To the extent that the constraining 
functionals can be closely approximated by step func- 
tions, the above argument holds in an approximate 
sense. Note, however, that if the domain of the 
probability distributions are infinite and uniform 
approximation of the constraining functionals by step 
functions cannot be guaranteed, instabilities may 
occur as the range of the numerical integration grows 
without bound. Under these circumstances, stability 
can be recovered by requiring the constraining func- 
tionals B k to be uniformly-approximable by step func- 
tions (see the last two paragraphs of this section). 

A Notion of Convergence. Let us postulate that the 
empirical distribution is an exhaustive sampling of a 
true input/output distribution p(z) of the transducer 
under study. There is a useful sense in which the approx- 
imating distributions converge to p(z). In general, two 
distributions may be thought of as similar if they yield 
similar values when integrated against test functions 
f(z). We will show that if the test function f can be 
approximated by the weighting functions Bk(z), then 
the sequence of approximating distributions will ap- 
proach p(z) as tested by f .  

Assume that a test function f(z) can be uniformly- 
approximated by a sequence of linear combinations of 
the weighting functions Bk(Z ). Then for any arbitrarily- 
small tolerance e, there is a finite linear combination of 
weighting functions which approximates f(z) to 
within e: 

K(~) 

L(z) = E ckBk(z) ; If~(z)--f(z)l < e. (11) 
k=O 
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Consider the approximating distribution pK(~)(z) which 
is formed using all of the constraints that enter into this 
approximating sum. By the triangle inequality, 

]S f(z)p(z)dz- [. f(z)pK~)(z)dz I 
< ]~ f(z)p(z)dz- ~ f~(z)p(z)dzl 

+l~ L(z)p(z)dz- ~ f~(z)pK<~)(z)dz[. (12) 

The first term must be less than e because of the 
approximation (11). The second term must be zero 
because pK~)(Z) is constrained to match p(z) when 
integrated against each of the terms in the approxi- 
mation (11). Thus, PK<~) approximates p to within a 
tolerance ~ when tested by the function f .  

For example, in a finite domain, every piecewise 
continuous function f(z) can be uniformly- 
approximated by a sequence of polynomials. Each 
polynomial is in turn a sum of monomials, and a 
monomial is a weighting function which corresponds 
to a moment or a cross-correlation. Therefore, in a 
finite domain, the moments and cross-correlations 
form a set of constraints which results in a sequence of 
approximating distributions which converge to the 
actual distribution when tested by integration against 
any continuous function. 

Practical Considerations. Conditions I and II above 
are sufficient but not necessary conditions for the 
existence of a unique maximizing distribution. Later 
we will show that for a particular choice of constraints 
[the input/output cross-correlations of Lee and Schet- 
zen (1965)], one may demonstrate that a maximizing 
distribution exists without postulating either Con- 
dition I or Condition II. Additionally, our Example 2 
below demonstrates the existence of maximizing distri- 
butions not derived from the Wiener series when 
Condition II does not hold. 

On the other hand, it is possible to choose con- 
straints in such a way that on an unbounded domain for 
z, no maximizing distribution exists. This pathology 
appears even in the approximation of one-dimensional 
distributions on the real line by maximum-entropy 
distributions based on moments. The maximum- 
entropy distribution, if it exists, is the exponential of a 
polynomial of order equal to the highest moment 
specified (8). But if this polynomial is of odd degree, the 
integrals that appear in the Lagrange multiplier con- 
ditions (4) diverge unless the distribution is restricted 
to a semi-infinite interval. Thus, the highest moment 
specified must be of even order. For example, if only the 
mean but not the variance of a distribution is specified, 
no maximum-entropy distribution will exist on the real 
line: the greater the spread of the distribution, the 
greater the entropy. If the mean and variance are 
specified, the maximum-entropy distribution is a 
Gaussian of matching mean and variance. If mean, 

variance, and skewness are specified, the maximum- 
entropy distribution also does not exist: a nearly- 
Gaussian distribution with a small asymmetry on its 
tail can be constructed with skewness to match the 
constraint. As this asymmetry is decreased in size and 
is moved further and further from the center of 
the distribution, the entropy of the distribution 
approaches but does not attain the entropy of a 
Gaussian. [-For distributions restricted to the non- 
negative reals, this particular pathology does not 
appear. For example, the maximum-entropy distri- 
bution with only the mean constrained is the ex- 
ponential distribution (Montroll and Shlesinger 
1983).] 

If the highest moment specified is of even order and 
the domain of z is finite, we have seen above that a 
maximum-entropy distribution will always exist if any 
interior distribution exists. However, the polynomial 
exponent of this distribution may have a positive 
leading term. While this does not prevent performance 
of the integrations (3) on a finite domain, it does 
prevent extension of this distribution to an infinite 
domain. The simplest example of this pathology is the 
approximation of a symmetric distribution by a 
maximum-entropy distribution of specified variance 
and kurtosis. A positive leading term in the exponent 
will be required if the kurtosis is sufficiently large. In 
this case, no maximum-entropy distribution exists. 

These pathologies cannot occur with real data 
collected on a finite domain if the domain of the 
distribution is restricted to that of the data. Alterna- 
tively, a simple maneuver will allow a distribution 
calculated on a finite domain to be extended to the 
infinite domain. The exponent in (8) must be bounded 
from above for large z. One way to accomplish this is to 
use weighting functions Bk(z) that are zero for suffi- 
ciently large z. For example, if moments are used as 
constraints, moments should be calculated after dis- 
carding outliers. We use this approach in Example 1 
below. If the data do not have extensive "tails," then it 
appears that such caution is not necessary. This is the 
case in Example 2 below. 

Relation to the Wiener Orthogonal Series 

We begin by defining the familiar objects of the Wiener 
white-noise theory (Marmarelis and Marmarelis 1978) 
in a manner suitable for the present analysis. The 
univariate Gaussian weighting of variance V will be 
denoted 

Gau (x, V) = (27c)- 1/2V- 1 e x p ( -  xZ/2v). (13) 

The univariate Hermite polynomial of order n with 
respect to Gau(x, 1) (=Gau(x))  will be denoted by 
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hm(x). We use the normalization 

[. hm(x)hm,(x ) Gau(x)dx  = t O'm!, ram=m,. =t= m', (14) 

It is convenient to use vector indices m, n, etc., with 
the following conventions: All entries mo, ml, m2 . . . .  
must be nonnegative integers. Only a finite number of 
entries may be nonzero (unless otherwise noted). 
The total order of an index m, to be written s(m), is 
the sum of its entries. The symbol m! denotes 
m oI. m 1!- m 2 ! . . . . .  Moments and generalized input/ 
output cross-correlations are parametrized by two 
vector indices m and n and will be denoted Mm; .. We 
define du to be the measure on the input/output space 
that corresponds to the input/output relation of the 
transducer under study. The moments and cross- 
correlations are averages of products of input and 
output weighted by the measure du: 

M m ; n  = ~ x r ~ ~  3P0~ "" �9 du. (15) 

The moments Mm;o are moments of the input 
alone; the moments Mo; ,  are moments of the output 
alone. The mean squared output, to be denoted V, is 
equal to Mo;(2,o,o,... ). The cross-correlations of the 
output at time zero and the inputs at multiple previous 
times play a special role in the Lee and Schetzen (1965) 
method of evaluating Wiener kernels; they will be 
denoted by 

c~=mr,;<l,O,O,...>. (16) 
The integration in (15) is over an infinite- 

dimensional space. Concepts from measure theory in 
infinite-dimensional product spaces (Halmos 1950, pp. 
154-160) are required to give this equation (and other 
sirailar equations to follow) a rigorous interpretation. 
A cylinder set is a direct product of open intervals in 
which a finite number of the intervals are bounded, and 
the rest of the intervals consist of the entire real axis. A 
measure specifies a weighting on cylinder sets. The 
integration in (15) is a limit of weighted sums over 
cylinder sets in which the coordinates corresponding 
to the bounded intervals are the coordinates that 
appear in the integrand. 

If the measure du is smooth (i.e., corresponds to a 
density), then the integral (15) can be recast as an 
ordinary multidimensional integral. Since only a finite 
number of entries in the vector indices m and n are 
nonzero, we may assume that m~ = 0 and ni = 0 for i > I. 

If the measure du has a density p, then the weight of 
an infinitesimally-narrow cylinder set 

(Xo, x o + dxo) . ... �9 (x_ I, x_ I + dx_ I) 

x (Yo, Yo + dyo) ' . . . "  (Y- , ,  Y , + dY-t)  

containing a point z approaches the product 

p(xo . . . .  , x - i ;  Yo . . . . .  Y-f ldxo ... dx - ldyo  ... d Y - i .  

Here, p is the probability density function correspond- 
ing to the measure du. The above expression is the 
probability that the first I + 1 x-components of z and 
the first I +  1 y-components of z all lie within the 
volume element centered at (xo . . . .  ,x_ i ;  Yo,...,Y-I). 
The integral expression (15) for the generalized mo- 
ment now becomes an ordinary integral over 2(I + 1) 
coordinates: 

Mm;,  = ~ x"~~ ... " x~-Sy"o~ ... �9 Y~I 

x p(xo, ..., x - i ;  Yo . . . . .  Y-I) 

x dxo. . ,  dx -xdyo . . ,  d y - i .  (17) 

These concepts enable us to define in a rigorous 
way ensemble averages with respect to Gaussian white 
noise. An ensemble of inputs drawn from a Gaussian 
white noise of unit variance corresponds to a measure 
dW(x) on the space of possible inputs x. This measure 
is the formal product 

dW(x) = Gau(xo) Gau(x_ 1) Gau (x_ 2)... dx. 

That is, each input value x_ i is distributed indepen- 
dently with weighting Gau(x_i)dx_i. An integral over 
all input signals reduces to an integral over a finite- 
dimensional multivariate Gaussian distribution pro- 
vided that only a finite number of the input values x_ 
enter into the integrand. If an infinite number of values 
x_~ enter into the integrand, no such reduction is 
possible; a rigorous interpretation of the integral 
requires a limiting process and assumptions such as 
"finite memory" and "finite bandwidth." 

The multivariate Hermite polynomials hm(x) are 
defined in terms of their univariate analogs by 

hm(x) = h~o(Xo)" h,,,(x_ 1)' .-- .  (18) 

Let the input signal x be drawn from an ensemble 
according to a Gaussian white measure dW(x). Thus, 
each input value x~ is independently distributed with 
weight Gau(xi). The multivariate Hermite poly- 
nomials are orthogonal with respect to this input: 

h m ( x ) h m , ( X ) d W ( x )  = ~0, m 4= m' ,  (19) 
( m!, m=m' .  

This equation follows from the basic orthogonality 
relation (14) and the interpretation of the integral (18) 
over the measure dW(x) as a finite-dimensional in- 
tegral over cylinder sets. 

The Wiener Series for a Deterministic Transducer. The 
output of a deterministic transducer T at time 0 in 
response to the input x may be expressed as a sum of 
orthogonal functionals of ascending order: 

Y0 = ~ Y'. gmhm(x). (20) 
r = 0 s(m) = r 
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The coefficients g= can be determined by cross- 
correlation of lagged products of the input and the 
output Yo (Lee and Schetzen 1965). The general 
relationship follows from the orthogonality condition 
(19): 

9= = (1/m l) ~ yoh=(x)du. (21) 

This integral is over the joint distribution of the output 
at time zero, Yo, and all possible input vectors x. For 
deterministic transducers, this reduces to a simpler 
form: given any input vector x, there is only one 
possible output value Y0 = T[x]. Thus, the integral 
over the output values collapses: 

g= = (1/m !) I T[X]hm(X)dW(x). (22) 

If no entry in m is greater than 1, this reduces to 

# , = c , .  (23) 

If m has entries greater than 1, then 9 ,  is equal to 
(1/m!)Cm plus correction terms. The correction terms 
consist of cross-correlations c=, of total order s(m') 
strictly less than the total order s(m). Thus, a complete 
set of cross-correlations of order up to and including a 
particular total order determines the coefficients ell of 
order up to and including that order. Moments of 
order greater than 1 in the output never enter into the 
calculation of the Wiener series. 

A Stochastic View of the Wiener Approximations. Let 
us consider the jth Wiener approximation to a trans- 
ducer T, given by a truncation of the series (20) at order 
j. This truncated series describes the input/output 
relationship of an approximating transducer, which we 
will call Tj. 

Cross-correlations % (which are first order in the 
output) will be identical for the transducer T and its 
approximant Tj, provided that the total order s(m) in 
the input is j or less. However, moments and cross- 
correlations M , , .  that are of total order s(n) greater 
than 1 in the output will (in general) be different for T 
and Tj. In particular, the mean squared output of Tj is 
given by 

V(T/)= [ ~< g=h=(x)]2dW(x) 
Ls(m)=J d 

= Z m!(o=) 2 , (24) 
s(m) =< j 

where the orthogonality relations (19) have been used. 
The mean squared output V(T) of the full transduc- 

tion T in general exceeds that of the approximating 
transducer, V(T~). This difference, often called the mean 
squared error, is often used as an indicator of the 
goodness of fit of the finite approximation Tj. The 
mean squared error of the jth approximating trans- 

ducer is given by 

MSEj = V(T) - V(Tj) 

= • mI (0,,,) 2 . (25) 
s(m) > j 

The deterministic interpretation is that the residual 
mean squared error reflects inaccuracies of the predict- 
ed response to the ensemble of white noise inputs. 
There is also a stochastic interpretation of the mean 
squared error: the transducer's averaoe response to a 
particular sample of white-noise input is given exactly 
by Tj, but there is a Gaussian noise added to the output 
whose variance is equal to the mean squared error 
MSEj. 

These possibilities cannot be distinguished by 
measurements of the cross-correlations c m of total 
order s(m) up to and including j, but can be distin- 
guished by measurements of higher-order cross- 
correlations. For a transducer which in fact is Tj plus 
additive noise, the higher-order cross-correlations will 
be zero and the MSE will not be improved by the 
inclusion of higher-order terms in the Wiener expan- 
sion. On the other hand, if the transducer is determin- 
istic, inclusion of all terms in the Wiener series (20) will 
(in principle) result in a MSE of zero. 

It is unlikely that a biological transducer is either 
purely deterministic or is characterized by purely 
additive Gaussian white noise superimposed on an 
otherwise deterministic transduction. Most likely, 
there is correlation structure in the variability of the 
response, and response variability may well depend in 
a complex manner on the input. This information is 
contained in moments and cross-correlations Mm, n of 
total order s(n) in the output of 2 or more. Such 
statistics, therefore, reflect the internal structure of the 
physiological system. 

These moments are not incorporated into the 
Wiener series, which is an orthogonal series approxima- 
tion of the average output. However, the information 
contained in these moments can be incorporated into a 
description of the transducer by means of the 
maximum-entropy approach. In the next subsection, 
we will show that the maximum-entropy approach 
reduces to the Wiener series when the variance of the 
output is included in the constraints, but all other 
moments of order greater than one in the output are 
neglected. 

The Wiener Approximants are Maximum-Entropy Dis- 
tributions. The stochastic interpretation of Tj can be 
made explicit by displaying its corresponding input/ 
output probability distribution, pi(x, Yo): 

pj(x, yo)dyodx = Gau (Yo - Tj[x], M SEj)dyo d W(x). 
(26) 
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To see that this probability distribution is a stochastic 
interpretation of Tj, it is sufficient to calculate the 
Wiener kernels 9re(P j) of the stochastic transduction it 
describes. A cross-correlation formula (21) is most 
convenient for this purpose: 

gm(Pj) = (1/m l) ~ yoh,.(x)pj(x, yo)dyodx 

: ( 1 /m ' )~ [v+  s~m')=<_jZ g",hm,(x)] 

x h"(x)Gau (v, MSEj)dvdW(x) 

= ~om, s(m) =<j, (27) 
t0 ,  s(m) >j .  

The second equality is a consequence of the substi- 
tution ofv for the deviation ofyo from its average value 
given the input x: 

v = Yo -- Tj[x] = Yo - Z 9m,h",(x) �9 
s(" ' )  =< j 

The final equality in (27) follows from the orthogo- 
nality relations (19). 

Thus, the Wiener kernels of pj are equal to those of 
T/kernels of orderj or less are identical to the kernels 
of T; kernels of order greater thanj are zero. However, 
the mean squared output V(Pi) of this stochastic 
transduction is greater than that of T~; a Gaussian of 
variance MSEj has been superimposed. This is exactly 
what is required to make the mean squared output 
V(pj) of the stochastic transducer equal to V(T) rather 
than to V(Tj): 

V(pj) = ~ (yo)2pj(x, yo)dyodx 

:~[v-l-s(m~)<jOmhm(x)12Gau(v, MSEj)dvdW(x) 

= ~ v 2Gau(v,MSEj)dvdW(x)+ Z m[ (9,.) 2 
s(m) =<_ j 

=MSEj+ V(Tj) 
= V(T). (28) 

Now consider a maximum-entropy estimate for T, 
constrained to match the cross-correlations cm(T) of 
order j or less and to match the variance V(T). Since 
the input is known to be Gaussian white noise, 
moments of all orders in the input MI,  o are also 
constrained to conform to the statistics of Gaussian 
white noise. The weighting functions Bk(X, Yo) for these 
constraints fall into three groups: (i) monomials of all 
orders involving components of x alone, correspond- 
ing to the known statistics of the input, (ii) monomials 
of total order no more thanj in x and first order in Yo, 
corresponding to the cross-correlations, and (iii) yo 2, 
corresponding to the mean squared output. 

Equations (27) and (28) demonstrate that the 
distribution p~(x, Yo) matches the transducer T when 
tested with the required functionals. Furthermore, the 
form of the distribution is manifestly of the form (8) 

demanded by the Lagrange multiplier theory. It fol- 
lows from the results in the previous section that 
pj(x, Yo) is the unique maximum-entropy distribution 
whose input/output statistics [(i), (ii), and (iii)] match 
those of the transducer T. 

This argument extends without difficulty to a 
distribution pj(x, y) defined on the past history of the 
output as well as its present value. The maximum- 
entropy distribution corresponds to the solution of the 
above Lagrange multiplier problem, to which ad- 
ditional constraints have been added. The additional 
weighting functions and their corresponding con- 
straints are: (ii') monomials of total order no more than 
j in x and first order in y, corresponding to cross- 
correlations first-order the input at previous times, and 
(iii') y~, corresponding to mean squared output at 
previous times. Because of the hypothesis of stationar- 
ity, these moments and cross-correlations have values 
identical to their values at time zero. The formal 
expression for the density of the maximum-entropy 
distribution is 

pj(x, y)dydx 

= f i  Gau(y i -  Tj[Si[x]], MSEj)dydW(x), (29) 
i = 0  

where Si[-x ] denotes a shift of x backwards in time by 
an amount iA t: 

Si[x] : <x-i,x-i- l,X-i- 2,...>. 

Integrations with respect to this measure are carried 
out using the notion of cylinder sets, as described in 
connection with (17). 

Examples 

We present two examples that illustrate many of the 
ideas discussed above. The first example focuses on the 
how one can distinguish additive noise from other 
kinds of sources of variability. The second example 
shows how maximum-entropy estimates can be used to 
characterize a system in which there is no accessible 
input, but in which there are two stochastically- 
coupled outputs that are observed simultaneously. In 
both cases, the important points are evident without 
having to consider dynamics. Therefore, in these 
examples, we will restrict our attention to static 
(memoryless) stochastic systems. 

Example 1: A Linear System with Noise 

In the first example, we show how the maximum- 
entropy estimates distinguish between purely additive 
noise and more complex sources of variability. Con- 
sider a transducer whose output y equals its instanta- 
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neous input x to which a Gaussian white noise w scaled 
by a factor a has been added: 

y = x + aw.  (30) 

We assume that the Gaussian white noise w is uncorre- 
lated with the input. Let us test this transducer with an 
input x drawn from a Gaussian white noise of unit 
variance. Under this circumstance, the input/output 
probability distribution is given exactly by 

Padd(X, y) = Gau (x) G a u ( y -  x, a2). (31) 

This distribution is shown in Fig. la  for a = 1. 
Consider a second transducer in which the noise is 

multiplicative: 

y = x(1 + aw).  (32) 

When tested with an input x drawn from a Gaussian 
white noise of unit variance, the input/output proba- 
bility distribution of this transducer is given exactly by 

prnult(X, y) = Gau (x) Gau ( y -  x, aZx2), (33) 

which is shown in Fig. lb  for a = l .  There is a 
singularity at the origin; pmult(0, y)=Gau(0)6(y) .  

Clearly the two transducers are quite different in 
character. However, for both transducers, the average 
output is equal to the input. Thus, the Wiener series for 
both transducers are identical, and terminate after the 
first term: y = x. Both transducers also have the same 
output variance, 1 + a 2. Thus, the MSE of the first (and 
higher-order) Wiener approximations will all be a z. 

The transducers a re  readily distinguished by 
examining statistics whose total order in input and 
output is four or more and whose order in the output 
alone is two or more. (Cross-correlations whose total 
order is odd must be zero, and cross-correlations 
which are at most first-order in the output are the same 
for both transducers.) For  the transducer (30) with 
additive noise, the fourth-order cross-correlations and 
moments are: 

Mo, 4[Paaa ] = 3 + 6a 2 + 3a 4 , 

M1, 3 [P, a J  = 3 + 3a 2 , 

M2, 2 [Pada] = 3 + a 2 , (34) 

M3,1 [P,dd] = 3, 

M4, o [-Padd] = 3. 

,11 
Fig. 1. a The input/output probability distribution P.oo (31) of a 
transduction with additive noise, la The input/output probability 
distribution Pmult (33) ofa  transduction with multiplicative noise. 
There is a singularity at the origin, e The maximum entropy 
estimate for PmuU using moments and cross-correlations up to 
order four. In all contour maps, each contour line represents a 
probability density of 0.05 
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For the transducer (32) with multiplicative noise, the 
fourth-order cross-correlations and moments are: 

Mo,4[Pmul t ]  = 3 + 18a z + 9a 4 , 

M1,3[Pmult] = 3 + 9a a , 

ME, z[Pm~lt] = 3 + 3a z , 

m3,1 [Pmult] = 3, 

M 4 ,  o [-Pmult] = 3. 

(35) 

In the case of additive noise, the maximum-entropy 
estimate constructed from moments and cross- 
correlations of total order 2 is exactly the true distri- 
bution (31), and hence further constraints from higher- 
order cross-correlations do not alter the estimate. In 
contrast, the maximum-entropy estimate for the 
multiplicative-noise distribution Pmult is identical to 
that for Paad when only second-order statistics are 
considered, but is different when fourth-order statistics 
are considered. 

To demonstrate this, a maximum-entropy estimate 
for Pmult was calculated by solving (numerically) (4) and 
(8) using the cross-correlations of (35). In this calcu- 
lation, it is necessary to limit the range of input and 
output values in order to obtain a solution, because the 
tails of the distribution (33) are larger than those of a 
Gaussian of equivalent variance; for this reason, only 
data within four standard deviations of the mean were 
retained. The resulting approximating distribution, 
illustrated in Fig. lc, shows some of the features of the 
actual distribution Pmult, in that its dispersion in the 
y-direction is smaller than that of the Gaussian 
(Fig. la) near x=0,  and larger than that of the 
Gaussian for large x. However, the exact distribution 
PmuJt has a singularity near the origin, which is not 
suggested by the approximate distribution of Fig. lc. 

Thus, the maximum-entropy estimate based on 
cross-correlations and moments of total order two 
succeeds in distinguishing additive from multiplicative 
noise, but gives a relatively poor estimate of the true 
distribution. This is most evident at the origin, where 
the true distribution has a singularity but any 
maximum-entropy estimate based on cross- 
correlations must be smooth [cf. (8)]. The way in which 
the maximum-entropy estimates err suggests that the 
procedure may be made more efficient by basing it on 
functionals other than cross-correlations which have a 
more rapid variation in their weights near the origin. In 
particular, the exact expression (33) for Pmult is of the 
maximum-entropy form for a set of constraints con- 
sisting of moments of all orders in the input (which are 
known, since the input is Gaussian white noise) and 
functionals with weights y/x and (y/x) 2, rather than 
cross-correlations. 

This observation suggests a general approach to 
tailoring the maximum-entropy approach to the sys- 
tem under study: the first step might consist of using 
cross-correlations and moments of total order two or 
less; this will provide an estimate which is a Gaussian. 
Subsequent functionals might be chosen to have large 
variations in their weights in the regions in which the 
empiric distribution deviates from this best-fitting 
Gaussian. In this regard, logarithmic functions have 
been proposed as being generally useful constraints for 
a maximum-entropy formalism in which the distri- 
butions are highly skewed (Montroll and Shlesinger 
1983). 

Example 2: 
Two Nonlinearly-Coupled Stochastic Processes 

We illustrate the application of the maximum-entropy 
method to a system in which there are two outputs x 
and y that can be observed, but no accessible input. We 
will examine the maximum-entropy estimates for two 
related model systems. 

In the first system, x and y are random variables 
subject to the constraint x 2 + y2 = R 2. We may think of 
x and y as the scaled cosine and sine of an unobservable 
angle distributed randomly around the circle. For 
R=21/2, x and y have unit variance. The joint distri- 
bution of x and y is most conveniently expressed in 
terms of r 2 =- x 2 + y2: 

Prim(X, y) = O(r 2 - -  2 ) / g .  (36) 

In the second system, x and y are random variables 
constrained to lie within a given circle: xZ+ y2< R,2. 
For R '=  2, x and y have unit variance. 

1/4re, r < 2, 
pdisk(x, y) = (37) 

0, r > 2 .  

The two distributions Prim and Pdisk both have 
circular symmetry. Therefore cross-correlations of odd 
order either in x or in y will be zero. In particular, the 
cross-correlation Ma, 1 is zero for both distributions. 
We have scaled the distributions so that x and y have 
unit variance in both cases. Thus, the second-order 
statistics of both distributions agree with that of a 
product of two Gaussians of unit variance, which 
therefore must be the second-order maximum-entropy 
estimate. 

As in Example 1, statistics of higher order serve to 
discriminate between Prim and Pdisk" The maximum- 
entropy estimates for these two distributions were 
calculated using constraints consisting of all moments 
and cross-correlations of total order not exceeding 
two, four, six, and eight. The radial profiles of these 
distributions are shown in Fig. 2. Although the 
maximum-entropy estimates of order two are identical 
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Fig. 2. a The radial dependence of a sequence of maximum 
entropy estimates for Prim (36) of tWO random variables con- 
strained to lie on the rim of a circle of radius 21/2. b The radial 
dependence of a sequence of maximum entropy estimates for Pdisk 
(37) of tWO random variables constrained to lie within a circle of 
radius 2. In both parts, the maximum entropy estimates are 
generated using moments and cross-correlations up to orders 
two, four, six, and eight. The maximum entropy estimates of 
order two are identical in the two cases 

for bo th  d is t r ibut ions ,  the  o rder - four  es t imates  are  
very different and  give ra the r  g o o d  qua l i ta t ive  pic tures  
of  the  ac tua l  d is t r ibut ions .  H i g h e r - o r d e r  es t imates  
i m p r o v e  the a p p r o x i m a t i o n  further,  bu t  the  larges t  
i m p r o v e m e n t  is f rom o rde r  two to o rde r  four. 
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