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Victor, Jonathan D., Ferenc Mechler, Michael A. Repucci, Keith P.
Purpura, and Tatyana Sharpee. Responses of V1 neurons to two-
dimensional Hermite functions. J Neurophysiol 95: 379–400, 2006. First
published September 7, 2005; doi:10.1152/jn.00498.2005. Neurons in
primary visual cortex are widely considered to be oriented filters or
energy detectors that perform one-dimensional feature analysis. The
main deviations from this picture are generally thought to include gain
controls and modulatory influences. Here we investigate receptive
field (RF) properties of single neurons with localized two-dimensional
stimuli, the two-dimensional Hermite functions (TDHs). TDHs can be
grouped into distinct complete orthonormal bases that are matched in
contrast energy, spatial extent, and spatial frequency content but differ
in two-dimensional form, and thus can be used to probe spatially
specific nonlinearities. Here we use two such bases: Cartesian TDHs,
which resemble vignetted gratings and checkerboards, and polar
TDHs, which resemble vignetted annuli and dartboards. Of 63 iso-
lated units, 51 responded to TDH stimuli. In 37/51 units, we found
significant differences in overall response size (21/51) or apparent RF
shape (28/51) that depended on which basis set was used. Because of
the properties of the TDH stimuli, these findings are inconsistent with
simple feedforward nonlinearities and with many variants of energy
models. Rather, they imply the presence of nonlinearities that are not
local in either space or spatial frequency. Units showing these differ-
ences were present to a similar degree in cat and monkey, in simple
and complex cells, and in supragranular, infragranular, and granular
layers. We thus find a widely distributed neurophysiological substrate
for two-dimensional spatial analysis at the earliest stages of cortical
processing. Moreover, the population pattern of tuning to TDH
functions suggests that V1 neurons sample not only orientations, but
a larger space of two-dimensional form, in an even-handed manner.

I N T R O D U C T I O N

It is remarkable that a predictively accurate account of the
responses of primary visual cortex (V1) neurons remains elu-
sive, despite several decades of quantitative study (Olshausen
and Field 2004). These studies used a multitude of simple
stimuli, including bars (Hubel and Wiesel 1959, 1968; Kagan
et al. 2002; Movshon et al. 1978a,b; Sun and Bonds 1994;
gratings (Anderson et al 2001; Bonds 1989; De Valois et al.
1979; Jagadeesh et al. 1997; Kagan et al. 2002a; Movshon et
al. 1978a,b; Ringach et al. 1997a), annuli (Jones et al. 2001),
Gabor functions (Bauer and Heinze 2002), random or pseudo-
random noise, both dense and sparse (Chen et al. 1993; Hirsch
et al. 1998; Jones and Palmer 1987; Palmer and Davis 1981;
Reid et al. 1997), other geometric stimuli (Conway and Liv-
ingstone 2003; De Valois et al. 1979; Hammond and MacKay
1975; Mechler et al. 2002; Pollen et al. 1988; Purpura et al.
1994; Skottun et al. 1991a; Smith et al. 2002 and natural scenes

(David et al. 2004; Ringach et al. 2002; Smyth et al. 2003;
Vinje and Gallant 2002; Willmore and Smyth 2003). It is
generally thought that response properties of at least some V1
cells can be accounted for by a linear filter, perhaps followed
by a static nonlinearity such as a firing threshold, as reviewed
by Simoncelli et al. (2004). However, such a linear–nonlinear
(LN) model is recognized to be incomplete even for classic
simple cells. The LN model’s failure to predict responses to
stimuli outside the set used to specify the model is usually
attributed to modulatory influences such as gain controls and
other influences from the nonclassical receptive field (Freeman
et al. 2001; Heeger 1992a; Ohzawa et al. 1982; Sceniak et al.
1999, 2002; Smyth et al. 2003). For complex cells, energy
models (Adelson and Bergen 1985) and their variants (David et
al. 2004; Rust et al. 2003, 2005; Touryan et al. 2005) have been
proposed to account for the relative lack of phase dependency
of responses and for their ON–OFF character.

Deviations between responses predicted from simple geo-
metric stimuli and measured responses can be particularly
prominent for natural scenes (David et al. 2004; Smyth et al.
2003). However, it is unclear whether these prediction failures
are specific to natural scenes or, rather, reflect a more general
failing of LN and energy models derived from simple stimuli.
The latter might become apparent if neurons were examined
with stimuli outside the usual analytic stimuli used to specify
models. The usual analytic stimuli fall into three classes:
uniform in space but localized in spatial frequency (e.g.,
gratings), localized in space but broadband (e.g., spots, bars,
and edges), or uniform in space and broadband (e.g., spatio-
temporal white noise). Additionally, standard analytic stimuli
are typically unstructured in space (e.g., white noise) or struc-
tured along a single dimension, with a single dominant orien-
tation (e.g., bars and gratings). In contrast, “features” are
typically localized both in space and in spatial frequency
(Morrone and Burr 1988). Moreover, some aspects of natural
visual scenes, such as T-junctions, have two-dimensional struc-
ture and multiple orientations.

With these considerations in mind, we studied the responses
of V1 neurons to another set of analytic visual stimuli, the
two-dimensional Hermite functions (TDHs), shown in Fig. 1.
These functions are localized in space and spatial frequency, in
a manner that is precisely intermediate between the extremes of
points (localized in space, uniform in spatial frequency) and
gratings (uniform in space, localized in spatial frequency). The
formal sense in which these functions achieve joint localization
in space and spatial frequency (Victor and Knight 2003) is
distinct from the sense of joint localization that leads to Gabor
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Note
There is a published erratum. As a result of a normalization error, the values of the filters L (but not E) plotted in Figures 3, 5, and 6 are twice as large as they should be. Consequently, cells described as “under-rectified” (Figure 3A, 3B, 5A, 5B, 6A) should have been described as “half-wave rectifying”, consistent with the illustrated post-stimulus histograms. Correction of this error shifts values of the index Isym (quoted in the text and plotted on the abscissa of Figure 11) towards 1, i.e., the “complex” end of the simple vs. complex spectrum. The correct value of the index and the published value are related byIcorrected=(3+5Ipublished)/(5+3Ipublished).Correction of this error also alters the values of Ic-p by decreasing the weighting of contributions from the L-component, but these changes are slight (Figure 9).The error does not affect the index Ishape, which quantifies the difference between the responses to Cartesian and polar stimuli, and thus does not alter any of the conclusions of the paper.



functions (Daugman 1985; Gabor 1946; Marcelja 1980), and
does not require consideration of complex-valued profiles
(Klein and Beutter 1992; Stork and Wilson 1990). Gabor
functions optimize localization in space and spatial frequency
in the sense that they minimize the product of the variances of
the distribution of spatial sensitivity profile and its Fourier
transform. TDH functions optimize localization in space and
spatial frequency in the sense that their spatial profile is
minimally altered by truncation of its power spectrum and
windowing in space.

One consequence of the difference between the defining
characteristics of Gabor functions and TDHs is that the latter
[and their one-dimensional analogs, used previously in psycho-
physical (Yang and Reeves 2001) and VEP (Yang and Reeves
1995) studies] are readily organized into discrete orthogonal
basis sets. Although a continuum of basis sets exist, we focus
on basis sets that have Cartesian or polar symmetry. Gabor
functions do not form basis sets in any natural way.

The two-dimensional structure of the TDHs depends on the
choice of the basis set, but all basis sets are equated in contrast,
spatial spread, and power spectra. Thus, the TDHs share with
standard stimulus sets the ability to reconstruct linear receptive
fields (because they form basis sets), but also can distinguish
between the effects of two-dimensional structure and the ef-
fects of context-dependent modulation because they are
equated for contrast, spatial spread, and power spectrum, yet
differ in two-dimensional structure.

We find that the linear-static nonlinear picture fails to
account for responses to TDH functions in the majority of V1
neurons. Rather, the apparent shape and strength of the recon-
structed receptive field depends on the choice of TDH basis set.
As described below, these failures are often striking and
qualitative and are present in all cortical laminae. The analytic
properties of the TDH functions also allow our data to exclude
a wide class of generalized energy models as the source of
these discrepancies. Moreover, because of these analytic prop-
erties, it is difficult to account for these discrepancies on the
basis of modulatory influences. Rather, the findings suggest
that our current picture of V1 receptive fields may be limited
by the relatively simple kinds of stimuli typically used to
investigate them. Secondarily, the parameterization of visual
form provided by the TDH functions provides a new insight
into the diversity of spatial selectivities of V1 neurons: the

uniform coverage of orientation space (Blasdel 1992; Dragoi et
al. 2000; Sirovich and Uglesich 2004) may be part of a more
general coverage of a larger space of local form. Portions of
this material were presented at the annual meetings of the
Vision Sciences Society (2004) and Society for Neuroscience
(Victor et al. 2004a,b).

M E T H O D S

Our methods for animal preparation, visual stimulation, and record-
ing have been previously described in detail (Aronov 2003; Mechler
et al. 2002); we summarize them here. All animal procedures were
performed in accordance with NIH and local IACUC standards.

Physiologic preparation

Recordings were made after initial atropine [0.04 mg, administered
intramuscularly (im)], anesthesia with ketamine 10 mg/kg im (cats) or
telazol 2–4 mg/kg im (macaques), and placement of an endotracheal
tube and catheters in both femoral veins, one femoral artery, and the
urethra. During recording, anesthesia was maintained with propofol
and sufentanil (mixture containing 10 mg/ml of propofol and 0.25
�g/ml sufentanil, initially at 2 mg � kg�1 � h�1 propofol then titrated)
and neuromuscular blockade was provided by vecuronium 0.25 mg/kg
intravenous (iv) bolus, 0.25 mg � kg�1 � h�1 iv. Heart rate and rhythm,
arterial blood pressure, body temperature, end-expiratory pCO2, arte-
rial oxygen saturation, urine output, and EEG were monitored during
the course of the experiment. Animal maintenance included intrave-
nous fluids (lactated Ringer solution with 5% glucose, 2–3 cm3 �
kg�1 � h�1), administration of supplemental O2 every 6 h, antibiotics
(procaine penicillin G 75,000 U/kg im prophyllactically, gentamicin 5
mg/kg im daily if evidence of infection), application of 0.5% bupiv-
icaine to wounds, and ocular instillation of atropine 1% and flurbi-
profen 2.5% (and, for cats, Neosynephrine eyedrops 10% to retract the
nictitating membranes), dexamethasone (1 mg/kg im daily), and
periodic cleaning of the contact lenses. With these measures, the
preparation remained physiologically stable for 2 or 3 days (cats) and
4 or 5 days (macaques).

RECORDING. After a craniotomy near P3, L1 (cats) or P15, L14
(macaques), a tetrode (Thomas Recording, Giessen, Germany), coated
with DiI (Molecular Probes, Eugene, OR) to aid subsequent localiza-
tion of the track, is inserted through a small durotomy. Once spiking
activity from one or more units is encountered, the region of the
receptive field(s) is hand-mapped and then centered on the display of
a Sony GDM-F500 19-in. monitor (displaying a 1,024 � 768 raster at
100 Hz, 35 cd/m2), typically at a distance of 114 cm, directly or by a
mirror. Real-time spike-sorting software (Datawave Technologies) is

FIG. 1. Two-dimensional Hermite (TDH) functions used in
these experiments. Each family (Cartesian, left; polar, right)
forms an orthonormal basis for 2-dimensional patterns and
increases gradually in spatial extent and bandwidth as rank
(row) increases. For the Cartesian functions, the indices j and k
specify the number of zero-crossings along the x- and y-
coordinates. Each index is constant along a set of parallel lines,
as indicated by the arrows. Rank of a Cartesian function is
equal to j � k. For the polar functions, the index � specifies the
number of zero-crossings along each radius and is constant
along the inverted “vees” that begin at the bottom right, peak
along the middle of the array, and then continue to the bottom
left. Index � specifies the number of zero-crossings along
concentric circles and is constant along vertical lines as indi-
cated by the down-pointing arrows. Rank of a polar function is
equal to � � 2v; the “cosine” and “sine” halves of the array
contain the functions whose dependency on polar angle � is
given by cos (��) and sin (��), respectively, where � is
measured clockwise from the horizontal (x-) axis. Midline of
the polar array contains the functions that are independent of �.
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engaged to provide TTL pulses corresponding to the time of spikes of
tentatively identified single units. Rapid, qualitative characterization
of these units’ ocularity and grating responses is accomplished by
keyboard or mouse control of the visual stimulator.

QUANTITATIVE CHARACTERIZATION. Among the multiple spikes
simultaneously recorded by the tetrode, one well-isolated spike (sig-
nal-to-noise �2:1 and usually �3:1, distinctive shape by on-line spike
sorting) is selected as the “target” neuron. Beginning with the param-
eters determined by the qualitative characterization, computer-con-
trolled stimulation paradigms are used to characterize the target
neuron quantitatively with sine gratings. Orientation tuning is deter-
mined by the mean response (F0) and the fundamental modulated
response (F1) to drifting gratings at orientations spaced in steps of
22.5 deg (or, for narrowly tuned units, 11.25 deg), presented at a
contrast c � (Lmax � Lmin)/(Lmax � Lmin) of 0.5 or 1.0, with spatial
and temporal frequency determined by the initial assessment. Next,
spatial frequency tuning is determined by responses to drifting grat-
ings at an eight- to 16-fold range of spatial frequencies straddling the
value determined by the auditory assessment, a contrast 0.5 or 1.0, an
orientation determined by the orientation tuning run, and a temporal
frequency determined by the auditory assessment. Temporal tuning is
then assessed by responses to 1-, 2-, 4-, 8-, and 16-Hz drifting gratings
at the optimal orientation and spatial frequency. Finally, a contrast
response function is determined by responses to drifting gratings at
contrasts of 0, 0.0625, 0.125, 0.25, 0.5, and 1.0, with orientation,
spatial frequency, and temporal frequency determined by the previous
quantitative runs. The position of the receptive field (RF) of the target
neuron is then assessed from online-generated poststimulus time
histograms (PSTHs) of the response to either a bright or dark bar,
moving slowly (�1 deg/s) and symmetrically about the origin in both
directions along the preferred axis. To center the RF along the
preferred axis, the stimulus coordinate system origin is digitally
adjusted so that the mean of the times of the peak responses (to stimuli
swept in each direction) occurs when the bar traverses the origin of the
coordinate system. To center the RF in the orthogonal direction, the
origin is digitally adjusted so that it lies halfway between the upper
and lower edges of the RF, as determined by the appearance of a
response to slowly swept patches along multiple trajectories parallel
to the preferred axis.

Once centered, the size of the classical RF is determined from
responses to a drifting grating (all parameters optimized) presented in
discs of increasing diameter and in a series of annuli with fixed outer
radius and decreasing inner radii. In each case, stimuli and blanks are
presented for 3-s runs, and four to eight randomized repeats are
obtained for adequate statistics on the Fourier components of the
responses. The effective diameter D of the RF of the target neuron
(used below to determine the size of the TDH patterns) was taken to
be the smallest inner diameter of an annulus that did not produce a
measurable response, as assessed by t-statistics for F0 or Tcirc

2 statistics
(Victor and Mast 1991) for F1 (as diagrammed in Fig. 2A, unit 1). The
set of annuli were chosen so that D was determined to within 1⁄2 deg
or, for smaller receptive fields, 1⁄4 deg.

The ratio of the Fourier component at the modulation frequency to
the mean, F1/F0, was calculated from the response to a drifting
grating, and units were classified as “simple” if F1/F0 � 1 and
“complex” if F1/F0 �1 (Skottun et al. 1991b). A direction selectivity
index DSI � (Rpref � Ranti)/(Rpref � Ranti) was calculated from
grating responses F1 or F0, depending on which component domi-
nated the response.

Usually, there are two to four simultaneously recorded neurons
whose spikes are well isolated by the above criteria, and whose spike
shapes across the tetrode are reliably discriminated. At some record-
ing sites, some of these neurons differed substantially from the target
neuron in RF position, spatial frequency, and/or orientation tuning. At
approximately one third of recording sites, we repeated the quantita-
tive characterizations above for one of these additional neurons, so

that they could also serve as the “target.” Discriminated event pulses
corresponding to the tentatively identified single units are logged by
the PC that controls the visual stimulus (AS1b board on the VSG
system, NI PCI-6602 on the OpenGL system) for on-line analysis.
Timing pulses from the PC that controls the visual stimulus are also
led to a PC that hosts the Datawave spike-sorting system and records
event waveforms (32 samples at 0.04-ms resolution) for later analysis.
Off-line spike sorting is performed with an in-house Matlab imple-
mentation (Reich 2000) of the methods of Fee (1996) and Sahani
(1998). All the data below are derived from these off-line spike sorts.
Because the stimulus lineup was performed on the basis of on-line
discriminations and the definitive analysis was defined from an
independent analysis of stored waveforms, the identification of the
“target” neuron in the off-line analysis is only presumptive and plays
no role in the quantitative analysis. Moreover, as will be shown, our
main findings were present both for neurons in which the receptive
field maps were well centered (a set that includes the presumptive
target neurons and likely others) and also for neurons whose receptive
field maps were off-center but still within the common envelope of the
TDH functions.

STIMULATION WITH TWO-DIMENSIONAL HERMITE FUNCTIONS. After
characterization and alignment of one or more target neurons, we
recorded responses to patches whose spatial contrast was determined
by a two-dimensional Hermite function (TDH) (see Fig. 1 and detailed
description in the APPENDIX). Each TDH is a polynomial in the
coordinates (x, y), multiplied by a Gaussian envelope. Stimuli were
rotated so that the x-axis was along the target neuron’s preferred
orientation and the positive y-axis was the preferred direction for drift-
ing gratings, if any. We set the spatial scale parameter � of
the Gaussian envelope (see APPENDIX Eqs. A1, A2, A4, and A5) at
� � D/10, where D is the diameter of the classical RF of the target
neuron as determined by responses to disks and annuli containing the
optimal drifting grating.

The reasoning behind this choice is as follows. The choice of �
simultaneously sets the spatial extent of the two-dimensional Gauss-
ian envelope common to all TDH functions {exp[(x2 � y2)/4�2]}, and
the range of spatial frequencies explored at each rank. As illustrated

FIG. 2. Relationship of scaling of the TDH stimuli to the classical receptive
field (RF) size. Left: diameter D of the classical RF for the target unit
(diagrammed as unit 1) is taken to be the smallest inner diameter of an annulus
that did not produce a measurable response (bottom left); other units (dia-
grammed as unit 2) might lead to a somewhat different choice of D and units
might show increasing responses to patches of diameter �D (top). See
METHODS for additional details. Parameter � that defines the spatial spread of
the TDH stimuli (see Eqs. A1, A2, A4, and A5) is then chosen as � � D/10,
which produces spatial profiles that are confined to a disk of radius D for low
ranks, but extend beyond it for high ranks (right). h0 indicates the radial
dependency of the TDH stimulus of rank 0 (common to Cartesian and polar
separations); h7 indicates the dependency of the rank-7 Cartesian TDH C0,7

along its long axis.
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in Fig. 2, choosing � � D/10 provides for stimuli that have one, two,
or three oscillations within a region of space that covers the receptive
field, well-matched to sample (in the Nyquist sense) the typical
sensitivity profiles of cortical neurons (Ringach 2002), which have
two or three lobes. Had we chosen a substantially larger value of �,
most of the stimuli have would be relatively uniform over the
receptive field, and thus not examined the spatial frequencies to which
the neuron was likely to be tuned. Had we chosen a substantially
smaller value of �, most of the stimuli would have been confined only
to a subregion of the receptive field.

This choice is also supported by the sense in which linear combi-
nations of TDH functions represent receptive fields. Linear combina-
tion of TDH functions converges to a target spatial profile in a
least-squares sense as weighted by the square of the common enve-
lope {i.e., exp[(x2 � y2)/2�2]}. That is, if � is large, the approxima-
tion will be inefficient in that it will be weighted by areas far removed
from the receptive field. Conversely if � is small, the convergence will
not be valid across the entire receptive field until an unreasonably
large number of terms have been added. A choice of � for which TDH
profiles have an envelope that is similar to that of the receptive fields
to be approximated avoids these difficulties. The fact that sensitivity
profiles have relatively stereotyped shapes (Ringach 2002) allows a
common universal choice to be made.

We carried out pilot experiments in one cat (two sites, seven units)
and one monkey (three sites, nine units) in which we used the standard
choice of � and one or two values that differed from the standard
choice. For values that differed from the standard choice by a factor
of 1.5 or 1.66, corresponding features of the derived “L” and “E”-filter
profiles (see below) could be identified within the common range of
convergence. For values that differed from the standard choice by a
factor of 2 or 3, only the coarsest commonalities of the maps could be
seen, consistent with the above theoretical considerations.

Finally, we also note (as illustrated in Fig. 2) that with this choice
of � � D/10, the contrast profiles of the lowest-rank stimuli lie within
the classical RF, although the contrast profiles of the higher-rank
stimuli (by design) extend beyond the classical receptive field.

The TDH patterns each have the same total power, and contrast was
scaled by setting K � ��2� (see APPENDIX Eqs. A1, A2, A4, and A5),
so that the maximum contrast was 1.

Each pattern was presented with the polarity shown in Fig. 1, and
in inverted contrast polarity. Up to rank 7, this amounted to 144
stimuli (36 Cartesian stimuli, 36 polar stimuli, and their contrast-
inverses). Rank 0 and 1 Cartesian and polar stimuli (i.e., the first three
stimuli of each set) were identical. These three stimuli and their
contrast-inverted counterparts were not duplicated in the stimulus
sequence, reducing the number of stimuli to 138 � 144 � (3 � 2).
(There is also a single rank 2 duplication, C1,1,� � A2, 0,�

sin , but both
stimuli were presented.) In addition, four stimulus periods of the
“blank” stimulus, in which the contrast was held at zero, were added
to the sequence. These 142 stimuli were each presented for 250 ms,
each followed by 250 ms of a blank, in randomized order, for eight to
16 blocks.

Visual stimulus generation

Control signals for the CRT display are provided by a PC-hosted
VSG2/5 (8 Mb) for grating stimuli and by a separate PC-hosted
system optimized for OpenGL (NVidia GeForce3 chipset) for the bar
and TDH stimuli, both programmed in Delphi. For presentation, TDH,
stimuli were discretized as limited by the display resolution. This
typically meant at least 64 � 64 display pixels across the stimulus,
with each display pixel subtending approximately 1 min. At the edge
of each patch, stimulus contrast was reduced to less than 1⁄256-th of its
peak value.

Intensity linearization is separately performed for each display
controller by VSG software or in-house software of comparable
function.

Histology

At three locations along the electrode track bracketing the recording
sites, lesions are made by current passage (typically 3 �A � 3 s,
electrode negative). After all recordings, the animal was killed and
perfused (4% paraformaldehyde) in phosphate-buffered saline. Digital
microphotographs are first taken of histologically unstained 40-�m
cryostatic sections under the fluorescence microscope to capture the
DiI trace of the track. Digital microphotographs of the same sections
are retaken under light microscopy after Nissl staining (Hevner and
Wong-Riley 1990), to highlight laminar organization perpendicular to
the track as well as the location of lesions. Laminar location of the
recording sites is recovered by digital overlay of the image pairs
corresponding to a section. Typically two to six consecutive sections
fully contain a single track.

R E S U L T S

Waveform classification of the tetrode recordings yielded 45
units from 12 sites in three cats and 18 units from five sites in
two macaques, whose spiking activity could be driven by
drifting gratings or bars. All recordings were within 5 deg of
the area centralis (cats) or fovea (macaques); 34/45 of the cat
units and 17/18 of the macaque units had responses to TDH
stimuli that were clearly distinguishable from their baseline
activity. We restrict our further analysis to these 51 units.

Example responses to TDH stimuli

We begin by showing some example responses to TDH
stimuli, initially describing them qualitatively, and then intro-
ducing quantitative approaches and illustrating their applica-
tion.

SITE 1: RESPONSE HISTOGRAMS. Figure 3 shows PSTHs of re-
sponses of four simultaneously recorded units in upper layer III
of cat V1. A fifth isolated neuron at this site was not responsive
to TDH stimuli. Response histograms are laid out correspond-
ing to the stimulus arrays of Fig. 1, with responses to Cartesian
stimuli on the left and responses to polar stimuli on the right.
For each stimulus, there is a pair of histograms: in the top
histogram of each pair, the stimulus was presented as shown in
Fig. 1; in the bottom histogram, the stimulus was presented
with reversed polarity. Unit 3003t had a classical RF diameter
of 3 deg; thus the size of the stimuli corresponded to � � 0.3
deg (see METHODS). All units at this site had a similar preferred
orientation (45 deg) and, with the exception of unit 3003s, were
narrowly tuned. Stimulus coordinate axes were rotated to
conform to this common orientation preference.

When studied with gratings, unit 3003t was a nondirectional
simple (F1/F0 � 1.8) cell with narrow orientation tuning. The
unit responded only to Cartesian stimuli that had uninterrupted
contrast bands along its orientation preference: the stimuli C0,k.
These are the only stimuli that have uninterrupted contrast
bands along the preferred orientation. The other Cartesian
TDH stimuli Cj,k ( j � 0) have j contrast-inversions along the
preferred axis.

For some Cartesian stimuli C0,k (e.g., C0,3 and C0,4), this unit
responded at stimulus onset, and was quiet at stimulus offset
(top histogram of the pair). When the polarity of these stimuli
was reversed (bottom histogram of the pair), it was quiet at
onset, but produced a burst at stimulus offset. The opposite
pattern was seen for Cartesian stimuli C0,2 and C0,5: response
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at offset for the first polarity, with response at onset for the
opposite polarity. Responses to the polar-separated stimuli
generally had this temporal pattern as well. This kind of
behavior is qualitatively consistent with a linear filter that
accounts for spatial selectivity, followed by temporal high-pass
filtering and half-wave rectification (e.g., a low maintained
firing rate) that accounts for the pattern of responses to a
stimulus and its contrast-inverse. The unit responded robustly
to some polar TDH stimuli and not to others; as we will see
below, this spatial selectivity is fully consistent with that of an
oriented filter-then-rectify (“LN”) model.

Unit 3003s was a simple (F1/F0 � 1.7) cell, more broadly
tuned than unit 3003t, and also not directionally selective. It
had a similar temporal pattern of responses to TDH stimuli of
each polarity pair, both for the Cartesian and polar stimuli. In
contrast to unit 3003t, however, there were also modest re-

sponses to stimuli C1,0, C2,0, and C3,0 (stimuli with contrast
bands orthogonal to the preferred axis) and also to stimuli C1,2

and C1,3. The latter have contrast bands that run along the
preferred axis, but contrast-reverse at the peak of the Gaussian
and thus have no power in the preferred orientation. We will
see below that these responses, and the selectivity for polar
TDH stimuli, are also consistent with an LN model, but one
with a broader orientation tuning associated with the initial
linear stage.

Unit 3003u was a complex cell (F1/F0 � 0.6), and had a very
different pattern of responses to TDH stimuli. Responses to the
Cartesian stimuli were generally independent of stimulus po-
larity. Qualitatively consistent with a model consisting of an
oriented filter followed by a mostly even nonlinearity, the
largest responses in unit 3003u occurred for Cartesian stimuli
C0,k, i.e., the stimuli whose contrast bands were aligned with

FIG. 3. Poststimulus time histograms (PSTHs)
of responses of 4 simultaneously recorded neu-
rons in layer III of cat V1 to TDH functions (left;
Cartesian stimuli; right polar stimuli), each pre-
sented for 250 ms and followed by 250 ms of
mean illumination. In each pair of histograms, the
top histogram is the response to the stimulus
shown in Fig. 1, and the bottom histogram is the
response to the contrast-inverse of that stimulus.
Four pseudocolor maps represent the spatial
filters Lcart, Lpolar, Ecart, and Epolar for the model
of Fig. 4, derived as described by Eqs. 2 and
4. Circle on each color map is of diameter
4�2� � 0.56D (D is the diameter of the circle
in Fig. 2), which marks the point at which the
Gaussian component of each Hermite function
falls to e�2 times its peak value. For each unit, a
common linear pseudocolor scale (color bar as
shown in top right) is used for the 4 filters, with
green representing 0, red representing the highest
positive value, and blue representing the lowest
negative value. For the units of panels A and B,
there is at least a qualitative similarity of the
filters L and E deduced from the 2 basis sets. For
the unit of panel C, the shapes of the filters differ
substantially. For the unit of panel D, there is a
difference in the relative strengths of the linear
and nonlinear components (L � E for the Carte-
sian functions. L comparable to E for the polar
functions). A, B, C, and D: units 3003t, s, u, and
x. PSTH scale bar: 100 impulses/s in all panels.
Range for pseudocolor maps of filters: �10 im-
pulses/s (A), �37 impulses/s (B), �10 impulses/s
(C), and �13 impulses/s (D).
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the preferred orientation. Responses to polar stimuli, when
present, were also independent of stimulus polarity. However,
as we will see below, the pattern of selectivity for polar stimuli
is inconsistent with the oriented filter that is implied by the
selectivity for Cartesian stimuli.

Unit 3003x was also a complex cell (F1/F0 � 0.28), and, like
unit 3003u, had responses to Cartesian stimuli that were
generally independent of stimulus polarity and primarily re-
sponded to Cartesian stimuli C0,k. However, responses to polar
stimuli, such as those in the middle of row 3 (A0,1, rank 2) and
row 5 (A0,2, rank 4) were strongly dependent on stimulus
polarity. Thus although this neuron’s polarity -dependency for
Cartesian stimuli conformed to the expectations of a complex
cell, many responses to polar stimuli were polarity -dependent,
like those of units 3003t and 3003s above.

AN EXTENDED LN MODEL. To make the above qualitative ob-
servations more precise, we introduce a modified filter-then-
rectify model, as shown in Fig. 4. This model is not intended
to correspond to anatomy or a wiring diagram, but rather to
provide a means to compare the spatial selectivities of re-
sponses to Cartesian and polar stimuli. Below (see Energy
models) we will also show that, as a consequence of some
properties of the TDH functions, the measurements used to test
the filter-then-rectify model can also be used to test several
variants of energy models.

Model description. One branch of the model, characterized
by a linear filter L, encompasses “ON” and “OFF” inputs that
behave in a linear fashion. A second branch, consisting of a
linear filter E followed by full-wave rectification, generates
ON–OFF responses. The outputs of these branches are added
together, along with a maintained firing rate Rm, to produce the
neuron’s output. The standard filter-then-rectify model makes
specific predictions about the relationship between L and E,
and conversely, combinations of L and E can be reinterpreted
in terms of ON and OFF inputs (see below).

To determine L and E from our data, we make the simpli-
fying assumption that the neural response to each stimulus can
be characterized by a scalar “response measure.” For this
purpose, we will initially use the total spike count during
stimulus presentation; dynamics will be considered later. With
this initial simplification, the model response R(S) to a stimulus
S is

R�S	 � Rm �� S�x, y	L�x, y	dxdy � �� S�x, y	E�x, y	dxdy� (1)

where L(x, y) represents the spatial weighting of the filter L in
the “linear” branch and E(x, y) represents the spatial weighting
of the filter E that precedes a full-wave rectification.

To determine the filters L and E from the responses to a set
of TDH functions fk and their negatives �fk, we use the fact
that each set of TDH functions (either Cartesian or polar) is an
orthogonal basis. We therefore can express L and E as a sum of
TDH functions

L�x, y	 � �
a

La fa�x, y	

E�x, y	 � �
a

Ea fa�x, y	 (2)

where La and Ea are the scalar coefficients in these two
orthogonal expansions. It follows from the orthonormality of
the functions fk that the response of the model (Eq. 1) to the
inputs fk and �fk are given by

R� fk	 � Rm � Lk � �Ek�

R� 	 fk	 � Rm 	 Lk � �Ek� (3)

From Eq. 3 it follows that

Lk � 
R� fk	 	 R� 	 fk	�/2

�Ek� � 
R� fk	 � R� 	 fk	�/2 	 Rm (4)

This strategy of separating linear and nonlinear components
based on responses to stimuli of opposite parity is similar to an
approach suggested for sparse noise stimulation (Nykamp
2003); here we exploit the fact that the strategy does not
require nonoverlapping stimuli, but merely orthogonal stimuli.
The determination of L by Eq. 4 can be viewed as a variant of
a “subspace reverse-correlation” approach (Ringach et al.
1997b), where we have chosen the subspace to consist of
functions limited in spatial extent and bandwidth. Because we
have two basis sets for the same subspace, one test of the
model (see below) is that the determination of L must be the
same for each basis set (Ringach et al. 1997b).

Equation 4 shows how the responses to either basis set
specify the coordinates Lk and �Ek�. Conversely, as shown by
Eq. 3, the coordinates Lk and �Ek�, along with the maintained
firing rate Rm, fully and exactly specify the responses to each
stimulus within the basis set used. Thus our strategy for testing
the model of Fig. 4 is not to check consistency of filters L and
E as determined with one basis set with the raw responses, but
rather to check consistency of these filters across basis sets.

Relation to notions of linearity, “simple” and “complex.”
The model of Fig. 4 will behave in a linear fashion if, and only
if, E � 0; in this case, the positive and negative lobes of L
correspond to the ON and OFF subfields. Special cases of the
model for E � 0 correspond to idealized “simple” and “com-
plex” cells, as characterized by subfield organization (Hubel
and Wiesel 1959, 1968). [We do not mean to imply that this
distinction is identical to the simple vs. complex distinction
based on the response to drifting gratings (Kagan et al. 2002b;
Skottun et al. 1991b); the relationship of our model to models
that focus on phase dependency is discussed below.] When
L � E the model behavior is that of a linear filter, followed by
half-wave rectification (i.e., negative signals are set to 0,
positive signals are unchanged). This corresponds to an ideal-
ized “simple” cell with nonoverlapping ON and OFF subfields,
and linear combination of these signals before an output
nonlinearity arising from the requisite nonnegativity of the
firing rate. When L � 0 (but E � 0) the model behavior is that

FIG. 4. Filter-then-rectify framework for analyzing responses to Cartesian
and polar TDH stimuli. L and E represent spatial filters; E is followed by
full-wave rectification. This model is used to deduce the filter maps presented
in Figs. 3, 5, and 6. For further details, see text.
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of a linear filter, followed by full rectification (i.e., negative
and positive signals are set to their absolute value). That is, the
model produces ON and OFF responses in coextensive areas of
space, and is thus an idealized “complex” cell. If L and E are
both nonzero but have a similar shape, the model of Fig. 4
simplifies into a one-pathway (LN) model, in which the non-
linearity is partially or asymmetrically rectifying (i.e., interme-
diate between linear and “simple” or between “simple” and
“complex”). Models in which L and E have different shapes,
the general case of Eq. 1, correspond to cells with a mixture of
spatially distinct ON, OFF, and ON–OFF subfields.

Conversely, any feedforward neuron with a single nonlin-
earity consisting of half-wave, full-wave, or intermediate
(asymmetric) rectification can be recast into the form of Eq. 1,
by considering its responses to stimuli and their inverses. Once
this has been done, the shapes and magnitudes of the filters L
and E should be independent of the basis set used in Eqs. 2 and
4. [For L this is the argument of Ringach et al. (1997b); it
extends to E by the symmetry-based separation of Eq. 4].
Because Cartesian and polar stimuli each constitute a basis set,
the above model allows us to ask whether the responses to
Cartesian and polar stimuli are consistent with a large category
of feedforward models and, if not, the manner in which they
deviate.

Some details. The above procedure determines L uniquely
(within the linear span of the fk), but the filter E is ambiguous
because the data determine the magnitude of each coefficient in
its orthogonal expansion, but not its sign (Eq. 4, bottom
portion). Any assignment of signs to the coefficients for E will
result in a filter that will lead to the same responses. For the
purposes of graphical display, we choose the signs of the
coefficient Ek to match that of Lk. This is a conservative choice,
in that it leads to a visual rendition for E that is as similar as
possible (within the constraints of the data) to that of L. Other
strategies for fixing the signs of the coefficients Ek, such as
minimizing the spatial extent of E or making it as sparse as
possible, might also be considered. All of our statistical anal-
yses related to E are based on the absolute values of its
coefficients in the orthogonal expansion (Eq. 4, bottom por-
tion) and are thus unaffected by the method chosen to resolve
the sign ambiguity.

A second detail is that we set Ek � 0 if, on a trial-by-trial
basis, the mean response [R( fk) � R(�fk)]/2 did not deviate
from the response elicited by a blank, at a 95% confidence limit
(by t-test). The implications of this manipulation are discussed
below.

Calculations of the filters L and E were performed on a grid
of 64 � 64 or larger with � set equal to 1⁄16 of the grid. On this
grid, numerical approximations to orthogonality were better
than one part in 105 and the largest values of the functions that
lay beyond the grid were �1⁄300 of the peak. Thus the conse-
quences of discretization, both in the display of the functions
(see Visual stimulus generation) and subsequent analysis, are
negligible. Because the basis functions are smooth, the finite
linear combinations of these functions as specified in Eq. 2 are
smooth as well and no further smoothing was applied.

The number of spikes used to calculate the maps ranged
from 457 to 41,797, with a mean of 6,597 and a median of
4,135. Data sets with relatively few spikes were included only
if the responses appeared reliable (e.g., PSTHs clearly modu-
lated by stimulus appearance and disappearance).

Indices. To determine the extent to which the estimated
filters L and E correspond to certain idealized notions of simple
and complex cells (and to mitigate the difficulties related to the
ambiguity of E), we construct two kinds of indices, Isym and
Ishape. Isym, which is calculated separately for each basis set
(denoted I sym

cart or I sym
polar), compares the strengths of the filters L

and E, but ignores their shapes. Generically

Isym � ��E�2 	 �L�2	/��E�2 � �L�2	 (5)

Here, �L�2 and �E�2 indicate spatial integrals of the squared
response profiles

�L�2 � � �L�x, y	�2dxdy � �
a

�La�2

�E�2 �� 
E�x, y	�2dxdy � �
a

�Ea�2 (6)

where La and Ea are the coefficients determined by Eq. 4 from
the basis set of interest. The second equality on each line is a
consequence of the orthonormality of the basis functions. Note
that this implies that �E�2 is independent of the signs assigned
to each coefficient Ea.

For an idealized complex cell (in the sense of overlapping,
equally strong, ON and OFF subregions), L � 0 and so Isym � 1.
For an idealized simple cell (in the sense of separate ON and OFF

subregions) consisting of a linear filter followed by half-wave
rectification, L � E and so Isym � 0. For a cell that is truly
linear (e.g., has a sufficiently high firing rate to avoid rectifi-
cation), E � 0 and so Isym � �1. Intermediate values of Isym
correspond to asymmetric rectification; overrectification for
1 � Isym � 0 (negative and positive signals both transformed
to signals of the same sign, but with unequal gains) and
underrectification for 0 � Isym � �1 (negative and positive
signals unchanged in sign, but transmitted with unequal gains).

The model of Fig. 4 places no constraints on the shape of L,
but requires that L is independent of basis set (Cartesian vs.
polar). To test this prediction, we use an index Ishape, the spatial
correlation coefficient of the estimates Lcart and Lpolar derived
from the two basis sets. For Lcart and Lpolar expressed as maps

Ishape�L
cart, Lpolar	 �

� Lcart�x, y	Lpolar�x, y	dxdy

��� �Lcart�x, y	�2dxdy��� �Lpolar�x, y	�2�dxdy	�
(7)

Equivalently, expressed in terms of the expansion coefficients
of Eq. 2

Ishape�L
cart, Lpolar	 � �

a,b

ca, bLa
cartLb

polar/��Lcart�2�Lpolar�2 (8)

where ca,b is the dot product of the ath Cartesian function and
the bth polar function

ca, b �� f a
cart�x, y	f b

polar�x, y	dxdy (9)

For filter shape to be independent of basis set, Ishape(L
cart,

Lpolar) � 1.
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The model of Fig. 4 reduces to a single-pathway model
when L and E have the same shape. Analogous indices Ishape
(Lcart, E cart) and Ishape (Lpolar, E polar) express the similarity of
the estimated shapes of these filters, as determined from each
basis set. Because of the sign ambiguity in the determination of
E, we choose the conservative definitions

Ishape�L
cart, E cart	 � �

a

�La
cartE a

cart�/��Lcart�2�E cart�2 (10)

and similarly for Ishape(L
polar, E polar). This definition is con-

servative in that it makes Ishape(L, E) as close to 1 as possible,
consistent with the data.

Estimates of Isym and Ishape quoted below were calculated
from Eqs. 5, 8, and 10 and debiased by a jackknife procedure
(Efron and Tibshirani 1998) based on each block of trials;
quoted SEs of measurement were determined in a similar
fashion.

As described above, before the calculation of the maps and
indices we set Ek � 0 if the raw estimates of Ek did not deviate
significantly from zero. Nearly all the excluded values were
slightly positive. This exclusion avoids the tendency of random
spikes to bias the map of E toward that of L [i.e., removes a
bias of Ishape(L, E) toward the null hypothesis value of 1] and
also reduces random contributions to estimates of the overall
size E (i.e., removes a bias of Isym away from the null hypoth-
esis value of 1). Although such biases would also be removed
(in the asymptotic limit) by the jackknifing procedure, we
considered it more appropriate to remove them at the source.
Moreover, because their responses are small, including or
excluding them has only a small effect on the filter maps and
the resulting statistics, as confirmed by reanalysis of the full
data set from one animal without this exclusion.

SITE 1: QUANTITATIVE ANALYSIS. We now use the above model
to analyze the responses at Site 1 (Fig. 3). For unit 3003t (Fig.
3A), the filter L extracted from the Cartesian responses had
several parallel lobes oriented along the preferred orientation,
consistent with a Gabor-like spatial filter. Shapes of the L
filters determined from the Cartesian and polar responses were
similar but statistically distinguishable: Ishape(L

cart, Lpolar) �
0.74 � 0.09. The overall size of the L filter was somewhat
larger than that of the E filter, indicating that the “linear”
responses dominated the “ON–OFF” responses (3003t had F1/
F0 � 1.8). Correspondingly, I sym

cart � �0.63 � 0.22 and I sym
polar �

�0.34 � 0.16, consistent with underrectification. Finally, the
even-order pathway filter (E) and the L filter had similar
shapes, [Ishape(L

cart, E cart) � 0.79 � 0.17, Ishape(L
polar,

E polar) � 0.89 � 0.13], consistent with a reduction of the
model of Fig. 4 to a single-pathway LN model. In sum, the
indices show that, although a single-pathway feedforward
model with an underrectifying nonlinearity might be consid-
ered as a first approximation, a more quantitative analysis
reveals clear deviations from this picture.

Unit 3003s (Fig. 3B, F1/F0 � 1.7, broad orientation tuning)
showed little deviation from a simple LN model, even when
analyzed quantitatively. Consistent with its broader orientation
tuning, the sensitivity profile of the L filter had only two lobes,
and the lobes were less elongated than those of unit 3003t. The
shapes of these filters were similar as determined from either
Cartesian or polar stimuli: Ishape(L

cart, Lpolar) � 0.94 � 0.02.
As with unit 3003t, the “linear” responses dominated the

ON–OFF components: I sym
cart � �0.59 � 0.02 and I sym

polar �
�0.60 � 0.02, consistent with underrectification. The L filters
and E filters were similar in shape [Ishape(L

cart, E cart) � 0.99 �
0.01 and Ishape(L

polar, E polar) � 0.97 � 0.02], consistent with
a reduction to an LN model.

The other two units at this location had very different
behavior. For unit 3003u (Fig. 3C), although both Cartesian
and polar stimuli elicited responses that led to oriented, Gabor-
like maps, the orientation of these maps differed by approxi-
mately 37 deg. Correspondingly, Ishape(L

cart, Lpolar) � 0.37 �
0.15, a substantial deviation from 1. Consistent with its low
F1/F0 ratio of 0.6, the E filter dominated the L filter: I sym

cart �
0.48 � 0.12 and I sym

polar � 0.32 � 0.22. For the Cartesian
stimuli, the shapes of the L and E filters were similar
[Ishape(L

cart, E cart) � 0.86 � 0.15]; there was a moderate
difference for the polar stimuli [Ishape(L

polar, E polar) � 0.57 �
0.16]. Thus if only the responses to Cartesian stimuli, or only
the responses to polar stimuli, are considered, this neuron’s
response is generally consistent with an oriented filter followed
by overrectification (producing an ON–OFF response). However,
the full set of responses is qualitatively inconsistent with this
picture: the apparent orientation of the of the initial filter
depends substantially on the basis set used.

Unit 3003x (Fig. 3D, F1/F0 � 0.28) showed yet another kind
of behavior. The spatial maps of the L and E filters were similar
across basis set [Ishape(L

cart, Lpolar) � 0.97 � 0.14) and similar
to each other [Ishape(L

cart, E cart) � 0.98 � 0.12 and
Ishape(L

polar, E polar) � 1.0 � 0.07]. However, confirming the
impression that responses to Cartesian stimuli were more
symmetrically ON–OFF than responses to polar stimuli, Isym

cart �
0.56 � 0.11 (overrectification) but I sym

polar � 0.13 � 0.18
(half-wave rectification). In sum, although an LN model can
give a reasonable account of the responses to either stimulus
set alone, the apparent degree of nonlinearity for this unit is
substantially higher for Cartesian than for polar stimuli.

SITE 2. Figure 5 shows TDH responses from three neurons in
a cluster located in upper layer VI/lower layer V of cat V1, and
emphasizes the heterogeneity of behavior encountered. Unit
3301s (Fig. 5A) and 3301t (Fig. 5B) had similar orientation
optima for drifting gratings (100 and 90 deg), whereas unit
3301u had an optimum orientation of 200 deg. Unit 3301t was
strongly directionally selective; the other two neurons were
not. The Cartesian responses of units 3301s and t, as charac-
terized by L and E filters, were oriented along their preferred
orientation, and similar in shape: Ishape(L

cart, E cart) � 0.99 �
0.01 for 3301s; Ishape(L

cart, E cart) � 0.94 � 0.03 for 3301t. The
relative sizes of the L and the E filters were also consistent with
the degree of nonlinearity seen in the grating responses. That
is, the relative sizes of the L and the E filters for both units were
in the “underrectification” range: unit 3301t had a larger
contribution from the E filter than unit 3301s (I sym

cart � �0.62 �
0.03 for 3301s, I sym

cart � �0.10 � 0.08 for 3301t), corresponding
to difference in their F1/F0 ratios (F1/F0 � 1 for 3301s, F1/F0
� 0.1 for 3301t). However, both units were nearly unrespon-
sive to polar stimuli. This behavior is qualitatively inconsistent
with an LN picture: a broadly tuned front end could not
account for the absence of responses to the polar stimuli
because they overlap extensively with the Cartesian stimuli in
spatial frequency content, whereas a narrowly tuned front end
could not account for the presence of responses to the Carte-
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sian stimuli across many ranks. In the 15 other neurons re-
corded at four other infragranular recording sites in cat, we
encountered one additional neuron that responded well to
Cartesian stimuli but not to polar stimuli. No such neurons
were encountered in the single infragranular site in macaque
(layer V, four neurons).

Unit 3301u (Fig. 5C) had a somewhat smaller response, but
was approximately equally responsive to Cartesian and polar
stimuli. The maps of the L and E filters were consistent with an
orientation preference nearly perpendicular to that of the other
two units. Notably, this neuron, which would be classified as
“complex” from its grating responses (F1/F0 � 0.3), had a
predominantly linear response (I sym

cart � �0.85 � 0.15, I sym
polar �

�0.75 � 0.10).

MACAQUE RECORDINGS. Figure 6A shows responses from unit
5013s, one of three units simultaneously recorded in layer IVb
of macaque V1. All three neurons were poorly oriented simple
cells (F1/F0 
 1.6) and directionally biased (0.2 � DSI � 0.6),
consistent with the preponderance of directional-selective neu-
rons in layer IVb (Hawken et al. 1988). Responses were robust,
reaching 150 impulses/s. For each pair of opposite-polarity

stimuli, the neuron responded at onset to one stimulus, and at
stimulus offset to the other. The other two neurons had largely
overlapping receptive field profiles, but differed in the sizes of
the spike waveform across the tetrode channels, and in re-
sponse dynamics. As in unit 3003t of Fig. 3A, quantitative
analysis indicated consistency of both the Cartesian and polar
responses [Ishape(L

cart, Lpolar) � 0.99 � 0.01] with a one-
pathway simplification of Fig. 4 [Ishape(L

cart, E cart) � 0.99 �
0.01, Ishape(L

polar, E polar) � 0.98 � 0.01] and an underrecti-
fying nonlinearity: I sym

cart � �0.71 � 0.04, I sym
polar � �0.69 � 0.04.

Along this penetration at the layer IVb/c border, we isolated
two units, a nonoriented complex unit 5007s (F1/F0 � 0.1) and
the narrowly tuned directionally selective (DSI � 0.8) unit
5007t (F1/F0 � 0.8) shown in Fig. 6B. Responses of 5007s to
TDH stimuli were consistent with the standard picture of a
complex cell (small L, large but nonoriented E, for both
Cartesian and polar stimuli). Corresponding to its intermediate
F1/F0 ratio, unit 5007t (Fig. 6B) responded in an excitatory
fashion to the appearance of both members of a polarity pair,
although the sizes of these responses were often not equal—
qualitatively consistent with a mixture of quasilinear and ON–

FIG. 5. PSTHs of responses of 3 simulta-
neously recorded neurons in upper layer V1/lower
V of cat VI to TDH functions. Data are displayed
as in Fig. 3. Units of A and B respond nearly
exclusively to the Cartesian stimuli; the unit of C
responds in a similar fashion to both basis sets. A,
B, and C: units 3303s, t, and u. PSTH scale bar: 75
impulses/s in A and B, 50 impulses/s in C. Range
for pseudocolor maps of filters: �6 impulses/s (A),
�8 impulses/s (B), and �5 impulses/s (C).
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OFF inputs. The filters Lcart and E cart consisted of elongated
domains consistent with the orientation preference for grating
stimuli; the orientation domains were similar [Ishape(L

cart,
E cart) � 0.88 � 0.04] but were more clearly delineated for
E cart than for Lcart. The filter Lpolar was similar to that of Lcart

[Ishape(L
cart, Lpolar) � 0.94 � 0.05] and consisted of small,

minimally elongated blobs, although the dominant orientation
of elongated components of E polar were shifted approximately
20 deg with respect to that of Ecart. [We do not calculate an
index Ishape(E

cart, E polar) because of the ambiguities in the
estimation of the E filters, as described above.] The symme-
try index was shifted modestly in the direction of greater
rectification for polar stimuli: I sym

cart � 0.39 � 0.06, I sym
polar �

0.53 � 0.06.
Near the border of layer IVc� and layer V, we isolated three

complex cells (F1/F0 ratio of 0.1 to 0.15), all of which were
highly responsive to gratings and directionally biased or direc-
tionally selective (DSI 
 0.5). Histologically, this recording
site was at the lower border of layer IVc�. However, these
response properties are more consistent with neurons in upper
layer V, which would be within the likely recording sphere of

the tetrode (Gray et al. 1995). One of these three units, 5008s
(Fig. 6C), had predominantly even-order inputs for both basis
sets: I sym

cart � 0.78 � 0.09, I sym
polar � 0.88 � 0.13. However, a

clear oriented receptive field domain consistent with this neu-
ron’s orientation tuning for gratings was seen only for E cart

(the horizontal excitatory subregion). In contrast, Lcart and
Lpolar were weak and nonoriented; E polar was strong but its
orientation was not consistent with the orientation tuning of the
grating responses. Also at the same recording site, responses
generated by unit 5008t (not shown) were partially consistent
with the standard picture of a complex cell (small L, large E for
both Cartesian and polar stimuli), but E cart and E polar differed
substantially in shape. Unit 5008u (also not shown) was the
only macaque unit that responded well to drifting gratings but
not to TDH stimuli. This was the most directionally selective
neuron we encountered (DSI  1.0).

Population summary

Above, we introduced indices derived from an extension of
the standard linear–nonlinear model to analyze the responses to

FIG. 6. PSTHs of responses of 4 neurons at sep-
arate locations in macaque V1. Data are displayed as
in Fig. 3. For the unit of A, but not for the other units,
the filters L and E deduced from the 2 basis sets are
similar. A, B, and C: units 5013s, 5007t, and 5008s.
PSTH scale bar: 150 impulses/s in A and B, 75
impulses/s in C. Range for pseudocolor maps of
filters: �60 impulses/s (A), �40 impulses/s (B), and
�50 impulses/s (C).
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Cartesian and polar TDH stimuli. The index Ishape(L
cart, Lpolar)

(Eq. 8) indicates the extent to which the linear filters that best
account for the responses to the Cartesian and polar stimuli are
similar. (An analogous index for the even-order responses is
not straightforward to calculate because of the sign ambiguities
described above in connection with Eq. 10). The indices
Ishape(L

cart, E cart) and Ishape(L
polar, E polar) (Eq. 10) determine

for responses to each basis set, to what extent the two-pathway
model of Fig. 4 reduces to a single-pathway model. The indices
Isym(Lcart, E cart) and Isym(Lpolar, E polar) (Eq. 5) determine, for
responses to each basis set, whether the response is primarily
full-wave rectifying (Isym � 1), consistent with linearity
(Isym � �1), or intermediate. We now examine the distribution
of these indices and related quantities across the population.

RECEPTIVE FIELD SHAPE. A value of 1 for the index Ishape(L
cart,

Lpolar) corresponds to equality of the estimated Cartesian and
polar filter shapes, but measurement errors would tend to bias
estimates of Ishape downward away from 1. Therefore, as
described in METHODS, we used the jackknife procedure (Efron
and Tibshirani 1998) to debias the estimates and to determine
confidence limits on them. Across the 51 neurons (Fig. 7A), the
debiased estimate of Ishape had a mean of 0.76 � 0.26, with
f0.05 � 28/51 and f0.01 � 14/51 (here and below, population
statistics are summarized as mean � SD of the debiased
estimates, along with f0.05, the fraction significantly �1 at P �
0.05, and f0.01, the fraction significantly �1 at P � 0.01).

The cat subset (mean 0.73 � 0.27, f0.05 � 21/34, f0.01 �
9/34) and the macaque subset (mean 0.81 � 0.24, f0.05 � 9/17,
f0.01 � 5/17) were similar to each other in this regard (P � 0.20
by Kruskal–Wallis test). The simple cell subset (mean 0.82 �
0.19, f0.05 � 7/10, f0.01 � 4/10) and the complex cell subset
(mean 0.75 � 0.27 f0.05 � 21/41, f0.01 � 10/41) were also not
statistically distinguishable (P � 0.20 by Kruskal–Wallis test).
There was a suggestion (P � 0.07, Kruskal–Wallis test) that

differences between the filters derived from Cartesian and
polar stimuli were more prominent in the infragranular record-
ings (mean 0.66 � 0.30, f0.05 � 14/22, f0.01 � 8/22) than in
granular (mean 0.83 � 0.19, f0.05 � 8/16, f0.01 � 3/16) or
supragranular recordings (mean 0.84 � 0.20, f0.05 � 6/13,
f0.01 � 3/13).

Thus most neurons in cat and macaque V1 showed a differ-
ence in effective filtering behavior when tested with a Carte-
sian versus a polar stimulus set, and this phenomenon was not
restricted to the input or output laminae.

The analysis of Fig. 7A and the subset analysis above used
the total number of spikes during the stimulus presentation (0
to 250 ms) as a response measure (the “ON response”). This
simple but rather gross response measure may overlook a
possibly smaller or greater degree of similarity between the
maps over the response time course. To test this, we recalcu-
lated the index Ishape(L

cart, Lpolar) for other response measures
(Fig. 7, B–E ): the number of spikes from 0 to 100 ms after
stimulus onset (the “ON transient”), the number of spikes during
the 250-ms OFF-period (the “OFF response”), the number of
spikes during the first 100 ms of the OFF-period (the “OFF

transient”), and the first principal component (“PC1”; see
Response dynamics below).

As seen from Fig. 7, the distribution of Ishape(L
cart, Lpolar)

and the number of units in which this index was significantly
�1 was similar for the first five response measures. The
significant deviations tended to occur in the same units (not
shown). The similarity across these response measures (Fig., 7
A–E ) indicates that the discrepancy between the effective
filtering properties for Cartesian and polar stimuli is not a
consequence of the temporal weighting of the response mea-
sure. As we will see below, the temporal aspects of the
responses to Cartesian and polar stimuli are nearly identical
and are heavily dominated by the first principal component,
which corroborates the essentially spatial nature of this result.

Orientation and spatial frequency. Ishape(L
cart, Lpolar) is an

omnibus index of the difference in the shapes of the maps Lcart

and Lpolar. We used this nonparametric approach because many
of the maps do not conform closely to Gabor profiles or other
shapes that are well described by a small number of parame-
ters. To seek systematic trends in how these maps change, we
now examine two parametric descriptors of the maps Lcart and
Lpolar: the orientations OR peak

cart and OR peak
polar and spatial frequen-

cies SF peak
cart and SF peak

polar of the peak in their Fourier transforms
(Fig. 8). As with Ishape(L

cart, Lpolar), 95% confidence limits on
these parameters were determined by a jackknife applied to
maps determined with single blocks of trials dropped.

Values of ORpeak were considered significant if their confi-
dence limits included less than the full range of 0 to 180 deg.
By this criterion, 35 units (of 51 total) had a significant OR peak

cart ;
25 units had a significant OR peak

polar. In the 20 units in which
OR peak

cart and OR peak
polar were both significant, they differed from

each other in 8/20 (P � 0.05, two-tailed t-test based on
jackknifed SEs). The average angular difference between
OR peak

cart and OR peak
polar was 28 deg. Within units, values of OR peak

cart

and OR peak
polar were correlated [circular correlation (Fisher 1993)

rcirc � 0.44, P � 0.02 by permutation test].
Values of SFpeak were considered significant if their confi-

dence limits did not include 0. By this criterion, 44 units had a
significant SF peak

cart ; 38 units had a significant SF peak
polar. Of the 33

units in which SF peak
cart and SF peak

polar were both significant, they

FIG. 7. Distribution of the index Ishape (Lcart, Lpolar) (Eq. 8). Values �1
indicate different effective filtering behavior for Cartesian and polar stimuli.
Portions of the histograms shaded black represent units for which values were
significantly (by jackknife) �1 at P � 0.01; portions shaded gray are signif-
icant at 0.01 at P � 0.05; unshaded portions correspond to P � 0.05. Each
panel contains calculations based on a different response measure.
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differed from each other (P � 0.05) in 18/33. There was no
significant difference of SF peak

cart versus SF peak
polar across the pop-

ulation (paired t-test), but the differences within individual
units were substantial: the average of the ratio difference {max
[(SF peak

cart /SF peak
polar), (SF peak

polar/SF peak
cart )]} was 2.1. Within units,

SF peak
cart and SF peak

polar were uncorrelated (r � 0.16, P � 0.2).
There was no significant correlation between Ishape(L

cart, Lpolar)
and the change in SFpeak or ORpeak.

In sum, this analysis suggests that changes in the depen-
dency of apparent spatial frequency on basis set are more
prominent than changes in orientation tuning. Caution must be
exercised in interpreting this result because the parametric
descriptors are not robust or complete descriptors of Lcart or
Lpolar. Nevertheless, it is worth noting a parallel to the findings
of Touryan et al. 2005), who found a very close match between
the orientation of receptive field maps obtained from noise
stimuli and natural stimuli, but modest discrepancies between
their spatial frequency tunings.

RESPONSE SIZE AND NONLINEARITY. The above analyses con-
sidered the shape of the receptive field, but ignored the overall
responsiveness to Cartesian and polar stimuli, as well as the
degree of nonlinearity. Overall responsiveness to Cartesian or
polar stimuli was quantified by

Ic–p �
��Lcart�2 � �Ecart�2	 	 ��Lpolar�2 � �Epolar�2	

�Lcart�2 � �Ecart�2 � �Lpolar�2 � �Epolar�2
(11)

This is essentially a Michelson contrast between the total
power elicited by the set of Cartesian stimuli and the total
power elicited by the set of polar stimuli. It is 1 for a unit that
responds only to Cartesian stimuli, �1 for a unit that responds
only to polar stimuli, and 0 for a unit whose overall responses
to the two classes is identical. Estimates of Ic–p were debiased
by the jackknife procedure, and two-tailed tests of significance
were used. For 13 of the 51 cells, responsiveness to Cartesian
stimuli was significantly greater than responsiveness to polar
stimuli; for eight of the 51 cells, the difference in the opposite
direction was significant (Fig. 9A). Across the population, there
was only a slight and borderline significant (P � 0.05) bias of
Ic–p in favor of Cartesian stimuli (mean 0.087 � 0.29, me-
dian � 0.041).

Similar findings were obtained with the other response
measures (Fig., 9B–E), and the units that showed these differ-

ences were similarly prevalent in cat and macaque, simple and
complex subsets, and across the laminae.

In sum, 28 of 51 units manifested a difference in receptive
field shape when studied with Cartesian and polar basis sets
(Fig. 7A), and 21 of 51 units manifested a difference in
responsiveness (Fig. 9A). Twelve units manifested both differ-
ences and only 14 of the 51 units manifested neither difference.

Comparison of tuning within each basis set. Overall respon-
siveness to the members of the two basis sets and selectivity of
responses within each basis set need not covary. For example,
a neuron might have generally larger responses Cartesian
stimuli than to polar stimuli, but might be tuned very sharply to
specific polar stimuli. Thus we next determine the extent to
which V1 neurons are selectively tuned to the stimuli within
the two basis sets. A natural measure of the narrowness of
tuning within each basis set is the kurtosis of the distribution of
the responses to each of the stimuli. This measure has the
advantage that it does not require an assumption about the
nature of the tuning. Additionally, this measure (Olshausen and
Field 1997; Vinje and Gallant 2000, 2002) can be taken as a
measure of the sparseness of the responses to either stimulus
set. With R(S) denoting the response to the stimulus S (as
before), the kurtosis � is defined as

� �
��R�S	 	 �R�S	�	4�

��R�S	 	 �R�S	�	2�2 	 3 (12)

where � � indicates an average over all stimuli in one of the two
basis sets (and their contrast-inverses).

Taking the spike count during stimulus presentation as the
response measure, we found �c � 4.8 � 6.5 and �p � 5.1 �
8.4 for Cartesian and polar stimuli, respectively (mean � SD,
across N � 51 neurons, estimates for each unit debiased by the
jackknife). As seen in Fig. 10, the distribution of the kurtosis
across the population was very similar for the two basis sets.
The kurtosis as measured with the two stimulus sets were

FIG. 8. Best orientation (deg) (A) and spatial frequency (c/deg) (B) as
determined by Fourier transformation of the maps of the spatial filters Lcart and
Lpolar. Error bars are 95% confidence limits determined by jackknife, and data
are plotted only for units in which there was a well-defined best orientation or
spatial frequency. There was a modest (rcirc � 0.44, P � 0.02) correlation
between estimate the best orientation and no correlation between the estimated
best spatial frequencies. See text for details.

FIG. 9. Distribution of relative responsiveness to Cartesian and polar stim-
uli, Ic-p (Eq. 11). Values �0 indicate larger responses to Cartesian stimuli;
values �0 indicate larger responses to polar stimuli. Significance levels
calculated by jackknife and are shown as in Fig. 7. Each panel contains
calculations based on a different response measure.
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highly correlated (r � 0.72, P � 0.001). There was no
significant difference between the means of these distributions
(P � 0.3, paired t-test) or their shape (P � 0.5, Kolmogorov–
Smirnov test), and no significant dependency on the simple/
complex distinction, cat versus monkey, or laminar location.
Similar results were obtained for response measures consisting
of the ON-transient or the size of the first principal component
of the response.

Thus although individual neurons typically had different
degrees of responsiveness to the two stimulus sets, neurons that
were highly tuned to the Cartesian stimuli tended to be highly
tuned to the polar stimuli (and vice versa). Moreover, there was
no population difference in the size or sparseness of the
responses to these two sets.

Linear and nonlinear, simple and complex. The relative
sizes of the linear and nonlinear components of the response
(i.e., contributions of the two pathways of the model of Fig. 4)
were similar for the two basis sets. In particular, the indices
Isym(Lcart, E cart) and Isym(Lpolar, E polar) were significantly dif-
ferent at P � 0.05 (two-tailed) in only nine of the 51 units.
There were no significant differences (P � 0.05) between cat
and macaque subpopulations, nor between the supragranular,
infragranular, or granular compartments.

However, there were significant differences between simple
and complex cells. For simple cells, Isym(Lcart, E cart) �
�0.36 � 0.33 but for complex cells, Isym(Lcart, E cart) � 0.24 �
0.53. Polar indices behaved similarly: Isym(Lpolar, E polar) �
�0.34 � 0.46 for simple cells; Isym(Lpolar, E polar) � 0.26 �
0.55 for complex cells. Both differences were significant at
P � 0.005. This is not very surprising considering that the

simple versus complex classification of cells was based on the
F1/F0 ratio, an index of the nonlinearity of the grating re-
sponses. Additionally, the correlation between Isym(Lcart, E cart)
and the F1/F0 ratio itself is just as strong within simple and
complex classes, as across the entire population (Fig., 11A and
B), at least for the Cartesian index. For Isym(Lcart, E cart), r �
�0.63 for all units (P � 0.001), r � �0.81 within the simple
cell subset (P � 0.005), and r � �0.50 within the complex cell
subset (P � 0.001). Thus, the correlation between Isym(L, E)
and F1/F0 likely reflects the relationship between the two
measures per se, rather than the simple versus complex dichot-
omy. Finally (Fig. 11, C and D), there is no evidence for a
bimodal distribution of Isym(Lcart, E cart) or Isym(Lpolar, E polar).

The correlation between Isym(Lpolar, E polar) and the F1/F0
ratio is somewhat weaker, but as with Isym(Lcart, E cart), is
consistent with a relationship between Isym(Lpolar, E polar) and
the F1/F0 ratio per se, and not between Isym(Lpolar, E polar) and
the simple versus complex dichotomy: r � �0.55 for all units
(P � 0.001), r � �0.43 within the simple cell subset (P �
0.2), and r � �0.41 within the complex cell subset (P � 0.01).

CONSISTENCY WITH A SIMPLE LN MODEL? The model of Fig. 4
generalizes the standard linear–nonlinear model, and reduces
to the latter if the spatial profiles of the L and E filters are
similar, i.e., if Ishape(L

cart, E cart) and Ishape(L
polar, E polar) are

close to 1. Both indices were significantly different from 1 in
about half of the units (Fig. 12). For the index based on the
ON-response (Fig. 12A), Ishape(L

cart, E cart) � 0.83 � 0.28, and
was significantly �1 at P � 0.05 in f0.05 � 24/51 of the
neurons, and significantly less than 1 at P � 0.01 in f0.01 �

FIG. 10. Distribution of kurtosis of responses to the Cartesian and polar
stimuli, �c and �p (Eq. 12). These distributions are not significantly different
by parametric or nonparametric tests, indicating the absence of an overall
tendency for neurons to be more narrowly tuned to one stimulus set or the
other.

FIG. 11. Relationship of indices of overall nonlinearity Isym(L, E) (Eq. 5)
determined from Cartesian (A) and polar (B) responses to the F1/F0 ratio used
to classify cells as simple and complex. For both Cartesian and polar mea-
surements, units with Isym close to 1 tended to have small values (“complex”)
of the F1/F0 ratio. C and D: distribution of these indices across the population.
The distributions for Cartesian and polar responses are similar.
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13/51 of the neurons. The distribution was similar for the polar
index (Fig. 12D): Ishape(L

polar, E polar) � 0.79 � 0.32, with f0.05
� 28/51 and f0.01 � 19/51. There were no noteworthy differ-
ences across the subsets considered above (simple vs. complex,
macaque vs. cat, and laminar location). Similar results were
obtained for response measures based on the transient compo-
nents of the response (not shown).

In contrast to the discrepancies between the shapes of the
filters as determined from Cartesian and polar basis sets (Fig.
7), very few neurons showed large deviations from the LN
model on the basis of Ishape(L

cart, E cart) or Ishape(L
polar, E polar)

(i.e., values of these indices �0.5). Moreover, there was no
correlation between the degree of consistency with the single-
pathway LN model within one basis set (i.e., the indices in Fig.
12) and the degree of consistency of the filters between basis
sets (i.e., the indices in Fig. 7). That is, there were neurons
whose responses for one basis set was consistent with the
single-pathway LN model, but not across basis sets, such as
that of unit 3003u (Fig. 3C). Conversely, there were neurons
that were inconsistent with the LN model for both basis sets
(i.e., required L and E filters of different shapes), but did not
show a significant change in these filter shapes across basis
sets.

Response dynamics

The similarity of the findings concerning the shape index
Ishape(L

cart, Lpolar) for five response measures (Fig., 7A–E )
indicates that the choice of response measure was not crucial to
our results, and that the two stimulus sets yield generally
similar response profiles with a stereotypical temporal profile.
The failure to find significant differences based on the second

principal component (not shown) is also consistent with this
idea because a single stereotypical temporal profile would
result in only a small amount of power in higher principal
components, and consequently poor ability to estimate values
of the shape index reliably. We next test this interpretation
directly.

Considering responses to each basis set separately, we ex-
tracted the first four principal components of the PSTHs
elicited by each stimulus, after binning at 10-ms resolution.
Figure 13A shows the first principal component obtained from
each unit, and the averages within preparations. There is a
notable transient response after stimulus appearance and a
smaller transient of same polarity after stimulus disappearance.
However, there is no difference in the waveform across the two
basis sets. Figure 13B shows the grand average across prepa-
rations of the first four principal components. The second
principal component has transients of opposite polarity follow-
ing stimulus appearance and stimulus disappearance (also seen
in the individual responses and the averages within each
preparation) but, as is the case for the first principal compo-
nent, the time courses of the components derived from re-
sponses to the two basis sets were nearly identical. Third and
fourth principal components, although somewhat noisier, show
mixtures of these behaviors, but also nearly identical wave-
forms for the two basis sets. Averaged across all units, the first
principal component accounted for 53% of the variance for the
Cartesian responses and 50% of the variance for the polar
responses.

If all responses had an identical time course, then further
principal components would not contribute systematically to
the response waveform. Thus, the amount of variance ex-
plained by the higher additional principal components is a
measure of the degree of spatiotemporal inseparability mani-
fest in the responses, and their waveforms indicate how

FIG. 12. Distribution of the indices Ishape(L
cart, E cart) and Ishape(L

polar,
E polar) (Eq. 10). Values near 1 indicate consistency with a single-pathway
linear–nonlinear (LN) model; significant departures from 1 indicate that spatial
differences in the 2 filters L and E of Fig. 4 are required to account for the data
within a single basis set. Significance levels (for Ishape �1) indicated as in Fig.
7. Each column contains calculations based on a different response measure.

FIG. 13. Principal components analysis of response dynamics. A: first
principal component in response to Cartesian (top row) and polar (bottom row)
stimuli. Analyses are carried out separately for each unit and superimposed.
Heavy lines in the top 2 rows are the averages within each preparation; the 3rd
row compares these averages (Cartesian: black; polar: gray). B: first 4 principal
components, averaged across all preparations, displayed as in the 3rd row of A.
Although there is much cell-to-cell and preparation-to-preparation variation in
the time course of the responses, the time course of the responses elicited by
Cartesian and polar stimuli are nearly identical, as seen by the near-superpo-
sition of their principal components.
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changes in spatial pattern modulate the response time course.
The second principal component accounted for an additional
8% of the variance for each basis set (i.e., 16% of the remain-
ing variance). The third and fourth principal components each
accounted for an additional 3.5 to 4% of the total variance.

Thus, the responses elicited by the two stimulus sets have
nearly identical time courses and degrees of spatiotemporal
inseparability.

Energy models

The generalized LN model above, although providing a
convenient way to interpret the responses to the Cartesian and
polar stimuli and consistent with some views of cortical neu-
rons, does not have a form that is likely to generate phase-
invariant responses often considered typical of complex cells
(Movshon et al. 1978b). Such behavior is captured by “energy
models” (Adelson and Bergen 1985) and their variants (e.g.,
David et al. 2004). As we now show, properties of the TDH
functions lead to tests of these models based on indices
identical or closely related to Isym.

SEPARATE POSITIVE AND NEGATIVE RECTIFICATION. We first
show that the model of Fig. 4 subsumes models that include a
linear filter G and two nonlinear pathways in parallel, one of
which consists of linear filtering (by, say, H�), followed by
positive half-wave rectification, and the other of which consists
of linear filtering (by, say, H�) followed by negative half-wave
rectification. By positive half-wave rectification, we mean the
function

�u�� � �u, u  0
0, u � 0

(13)

by negative half-wave rectification, we mean the function

�u�� � � 0, u 
 0
	 u, u � 0

(14)

Thus this model is formally specified by

R�S	 � Rm �� S�x, y	G�x, y	dxdy � �� S�x, y	H��x, y	dxdy��

� �� S�x, y	H��x, y	dxdy��

(15)

To reduce this to the model of Fig. 4, we note that �u�� �
1⁄2(u � �u�) and �u�� � 1⁄2(�u � �u�). With these relationships
and the substitutions

	 L � G �
1

2
�H� 	 H�	

E �
1

2
�H� � H�	

(16)

Equation 15 reduces to Eq. 1. As a special case (see above),
pure half-wave rectification (G � 0, H� � 0) corresponds, by
Eq. 16, to L � E. More generally, this analysis shows that
exclusion of the model of Fig. 4 necessarily excludes models
with separate branches for positive and negative rectification,
even though the three filters needed to characterize such
models (G, H�, H�) cannot be uniquely determined from our
data (Eq. 16).

We next make use of the fact (see APPENDIX) that each TDH
function is the Fourier transform of itself, other than a scale
factor that depends only on the rank. For the even-rank func-
tions, this scale factor is real, and the imaginary (“sine”)
portions of the Fourier transforms of TDH functions are zero.
For the odd-rank functions, this scale factor is imaginary, and
the real (“cosine”) portions of the Fourier transforms of TDH
functions are zero. Thus our entire analysis is symmetric under
interchange of space and spatial frequency. In particular, be-
cause we can exclude models in which the filters H� and H�

are localized to single points in space, we can also exclude
models in which these filters extract single spatial frequencies.
This class of models includes the “phase-separated” model of
David et al. (2004) (which is a model that is linear in the
half-rectified Fourier components), provided that only a single
spatial frequency enters into the nonlinearities.

PREDICTIONS OF “TRUE ENERGY” MODELS. In a “true energy”
model (Adelson and Bergen 1985), the frequency-domain
nonlinearities are quadratic, in contrast to the rectification of
the phase-separated model (David et al. 2004). As we next
show, the fact that the Cartesian and polar TDH stimuli are
related by an orthogonal transformation (Victor and Knight
2003) leads to a simple test of these models, independent of the
bandwidth of the energy operators.

We consider a model that applies local quadratic nonlineari-
ties in the space domain

R�S	 � Rm �� S�x, y	L�x, y	dxdy �� 
S�x, y	�2Q�x, y	dxdy (17)

Because none of the quadratic terms influences the difference
between the response to a stimulus and its contrast-inverse, the
prediction of the model of Fig. 4 that the Cartesian and polar
estimates of L based on Eq. 4 apply here as well. However, the
energy model makes different predictions concerning the even-
order components of the response and how they relate to Q.

We isolate this relationship by averaging the responses to
each stimulus and its contrast-inverse. For stimuli fk belonging
to either the Cartesian or polar TDH functions

R�fk	 � R� 	 fk	

2
	 Rm �� 
 fk�x, y	�2Q�x, y	dxdy (18)

Note that the left-hand side of Eq. 18 is �Ek� (Eq. 4), the
coordinate of the E filter determined by fitting the model of
Fig. 4 to the responses from one basis set.

Because the Cartesian and polar TDH stimuli within each
rank are related by an orthogonal transformation (Victor and
Knight 2003), we can write

f b
polar�x, y	 � �

rank� fa	�n

Tab f a
cart�x, y	 (19)

where T is an orthogonal matrix (¥b TabTa�b � �aa�). As a
consequence

�
rank� fb	�n


 f b
polar�x, y	�2 � �

rank� fa	�n


 f a
cart�x, y	�2 (20)

where the summation is over all stimuli of a particular rank.
Combining Eqs. 4, 18, and 20. and denoting the common sum
of Eq. 20 by Pn(x, y) yields a prediction of the local energy
model (Eq. 17:) the sum
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�
rank� fk	�n

�Ek� �� Pn�x, y	Q�x, y	dxdy (21)

must be independent of the choice of orthogonal basis set.

TEST OF “TRUE ENERGY” MODELS. To test this prediction, we use
an index similar to that of Eq. 11, in which squaring has been
replaced by absolute value, and the L filter contributions have
been removed

Jc–p �
��E k

cart� 	 ��E k
polar�

� �E k
cart� � ��E k

polar�
(22)

In essence, Jc–p quantifies whether the neuron reports unequal
amounts of power in response to the two basis sets. Consis-
tency with a pure energy model implies that Jc–p � 0, within
each rank (or across any combination of ranks). Here we
examine the index calculated across all ranks and, in view of
the results described in Response dynamics focus on the “ON-
response” measure.

Results of this analysis, with significance levels determined
as above by a jackknife procedure, are shown in Fig. 14. Of
fifty-one cells, 26 falsify the model prediction Jc–p � 0 at P �
0.05 (two-tailed). Similar proportions of this discrepancy are
seen for simple (7/10) and complex (19/41) cells. For 15 units,
the polar responses are too large compared to the Cartesian
stimuli for consistency with an energy model (Jc–p � 0); for 11
units, responses to the Cartesian stimuli are too large (Jc–p �
0). These differences included several units for which Jc–p was
near �1 or 1, indicating nearly a complete failure of the energy
model for these stimuli.

Not surprisingly, there was substantial overlap (15 units,
P � 0.03, �2) between these 26 units with Jc–p � 0 and the 21
units for which quadratic measures of the overall response size
to these stimulus sets (Eq. 11) differed (Ic–p/0, see above).
There was also substantial overlap (16 units, P � 0.02, �2)
between these 26 units and units for which quadratic measures
of the even-order response differed (Eq. 11 with L-terms
removed, data not shown). We also recalculated Jc–p including
only ranks 3, 4, and 5, or only ranks 6 and 7. (Each of these
subsets contains 15 stimuli; the lower-rank stimuli are shared,
either entirely or in part, between Cartesian and polar basis
sets.) This analysis did not yield trends, suggesting that viola-
tions of the prediction Jc–p � 0 was equally attributable to
low-rank or high-rank responses.

RELATED MODELS. The above analysis has two immediate
extensions. First, it applies to modified energy models that
contain local half-squarers (Heeger 1992b)

R�S	 � Rm �� S�x, y	L�x,y	dxdy �� ��S�x, y	��	2Q��x, y	dxdy

�� ��S�x, y	��	2Q��x, y	dxdy (23)

(This equation differs from that of Eq. 15 in that the nonlin-
earity is local, rather than after spatial integration.) The reason
for this is that at each point (x, y), �S(x, y)�� � �S(x, y)� for one
of {fk, f�k} and �S(x, y)�� � 0 for the other. A similar
observation holds for �S(x, y)��. Thus, the average of the
responses to the two stimuli is

R�fk	 � R� 	 fk	

2
	 Rm �� 
fk�x, y	�2 Q��x, y	 � Q��x, y	

2
dxdy (24)

Thus, the prediction Jc–p � 0 holds for this model as well, with
Q replaced by (Q� � Q�)/2 in the above analysis.

Finally, we note that our analysis also excludes models
based on squaring and half-squaring that are local in the
frequency domain. This is because the TDH functions are each
Fourier transforms of themselves; so the above expressions
(Eqs. 17–24) can all be reinterpreted with x and y representing
spatial frequencies, rather than points. Such models are equiv-
alent to the phase-separated model of David et al. (2004), but
with quadratic nonlinearities or half-squares replacing the half-
wave rectifiers, and in addition allow for a parallel linear filter.

D I S C U S S I O N

Summary

We describe here the responses of V1 neurons to simple
localized visual stimuli, the two-dimensional Hermite func-
tions (TDHs). These stimuli are intermediate between two
kinds of stimuli traditionally used for receptive field analysis:
spots, which are spatially highly localized but spectrally broad,
and gratings, which are spatially uniform but spectrally narrow.
The TDH functions are positioned precisely halfway between
these extremes. Their formal definition is symmetric in space
and spatial frequency (Victor and Knight 2003) and each
function is its own Fourier transform (see APPENDIX). Moreover,
they can be organized into independent basis sets (the Carte-
sian and polar sets used here are just two examples) and each
basis set can be used to characterize a neuron’s receptive field
characteristics. Because these basis sets differ in their two-
dimensional spatial organization but are matched in many other
respects, this approach provides a systematic way to probe
spatial processing by visual neurons.

Our main finding is that most neurons (37/51) showed
differences in apparent receptive field size and shape, when
studied with the two basis sets. Some neurons also showed a
difference in the apparent degree of nonlinearity. It is highly
unlikely that these differences arose from eye movements or
response instability during the course of the recording because
stimuli from the two basis sets were randomly interleaved, and
we frequently encountered clusters of neurons (e.g., Figs. 3 and
5) in which some showed dramatic effects, whereas others,
recorded simultaneously, showed no differences.

FIG. 14. Distribution of response size index Jc-p (Eq. 22). Values �0
indicate that the response to Cartesian stimuli (relative to polar stimuli) is
greater than predicted by an energy model; values �0 indicate the opposite.
Significance levels calculated and shown as in Fig. 9.
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To compare responses to the two basis sets, we made use of
a model that incorporates the standard LN model: a parallel
combination of a linear and a nonlinear component (Fig. 4).
This model fits responses exactly if either basis set is consid-
ered in isolation, but not if both basis sets are considered
together. Although this approach postulates a specific form for
the nonlinearity (full-wave rectification), we have shown above
that our analysis generalizes to models with separate positive
and negative half-wave rectification. Moreover, comparable
findings emerged (Sharpee, unpublished results) when the data
were analyzed according to the MID approach (Sharpee et al.
2004), in which the nonlinearity is free to vary. In particular,
our findings cannot be attributed to our choice of a specific
form for the nonlinearity; were that the case, the MID analysis
would have identified this nonlinearity and deduced the same
spatial filters for both the Cartesian and polar basis sets.

ENERGY MODELS. We have also shown that, although our data
cannot fully specify the components of an energy model, the
discrepancies observed in response to the two basis sets cannot
be accounted for by energy models and many of their variants.
We have rigorously excluded “true energy” models (Adelson
and Bergen 1985) with a quadratic nonlinearity and arbitrary
frequency or spatial dependency, as well as generalizations that
include half-squarers and parallel linear pathways. These mod-
els predict that the sum of the absolute values of the coeffi-
cients of the E filters is independent of basis set, in contrast to
our observations (Fig. 14). Another variant is the phase-
separated energy model (David et al. 2004) in which each
positive and negative real and imaginary parts of each Fourier
component of the stimulus is separately subjected to half-wave
rectification. Although we cannot rigorously exclude this
model in its full generality, it is unlikely to provide a robust
account for our results. To the extent that the half-wave
rectification can be approximated by a half-squarer, the model
can be rigorously excluded (with arbitrary frequency depen-
dency) because it is a generalized energy model of the sort
described above. Approximation of half-wave rectification by
half-squarers is least likely to be valid if there is only a single
frequency channel (so that the effects of the cusp are not
smoothed over by mixing with responses from other channels),
but this extreme (half-wave rectification within a single fre-
quency channel) can also be rigorously excluded because of the
self-transform property of the TDH functions.

In general, a nonlinear transformation can be approximated
arbitrarily well by a sufficient number of parallel linear and LN
components (Wiener 1958). We have argued above that our
data exclude a variety of special cases of this structure. Within
this feedforward framework, the simplest models that we
cannot exclude have two or more parallel components, and the
linear front ends must be restricted (but not to a single point),
in both space and spatial frequency, and these front ends must
differ sufficiently in their characteristics so that they cannot be
merged into a single pathway. Thus whereas it is possible that
multichannel feedforward models deduced from noise stimuli
(Rust et al. 2005; Touryan et al. 2005) can provide an account
for our findings, it is at present unclear whether such models
have the appropriate nonlinear characteristics to do so.

SYMMETRY. The Cartesian and polar basis sets are but two
choices among a continuum of possible choices of bases within
the two-dimensional Hermite functions. Within each rank, any

linear combination of these functions will have the same
degree of confinement in space and spatial frequency—al-
though they will lack the symmetry of the Cartesian or the
polar stimuli. Even though the symmetries that characterize the
Cartesian and polar stimuli ensure that these sets are qualita-
tively different, it is unlikely that the observed discrepancies in
apparent receptive field shape are specific to these two basis
sets. One reason is that if symmetry per se were crucial, then
only neurons that were perfectly lined up would manifest such
discrepancies. However, this is not what is observed. Substan-
tial differences between Cartesian and polar filter estimates
were seen for neurons that were well centered (Figs. 3C and
5A) and for neurons that are measurably off-center but still
within the common envelope of the TDH stimuli (Figs. 5B and
6C). [Conversely, the subset of cells for which L and E filters
were consistent across basis sets also includes neurons that
were well centered (Fig. 3B) and neurons that were not (Fig.
5C).] The lack of alignment of receptive field shapes with
either Cartesian or polar basis sets (Fig. 10) is additional
evidence that the symmetry properties of these basis sets do not
play an important role in the phenomena observed. However,
because we did not study the dependency of responses of
individual neurons on spatial shifts of the stimuli, we cannot
rigorously characterize neurons as being preferentially respon-
sive to Cartesian versus polar stimuli per se—even though,
fortuitously, one unit with nearly complete Cartesian selectiv-
ity was well centered (Fig. 5A), whereas another such unit
recorded at the same location (Fig. 5B) was not.

Possible physiologic mechanisms

Although the data presented here do not allow one to deduce
the neural basis of the discrepancies between the Cartesian and
polar responses, they do provide some helpful evidence. The
wide laminar distribution of neurons that show such discrep-
ancies makes it unlikely that these discrepancies arise in V2
(Hegde and Van Essen 2000, 2003, 2004) or later visual areas
(Gallant et al. 1993, 1996), and are seen in V1 only as a
consequence of extrastriate processing. Our findings are fun-
damentally spatial. There is virtually no difference in the time
course of the responses to the two basis sets, and the observed
differences in spatial properties are robust across multiple
different response measures (Fig. 13). That these discrepancies
are just as prominent in the transient portion of the response as
in the entire ON-period response (Fig. 7A) supports this infer-
ence, although feedback from V2 can be quite rapid (Bullier
and Nowak 1995; Nowak et al. 1995). Thus we consider
possible physiologic mechanisms intrinsic to V1.

THE NONCLASSICAL RECEPTIVE FIELD. It is increasingly recog-
nized that the linear–nonlinear model is at best a caricature for
V1 neurons and thus it is not very surprising that, when tested
with a novel stimulus set, V1 responses fail to conform to this
model. However, the nature and functional implications of
these deviations is incompletely understood. Generally, the
main deviations are considered to be gain controls and modu-
latory influences from the nonclassical receptive field (Albright
and Stoner 2002; Freeman et al. 2001) that adjust neuronal
contrast-response functions based on spatiotemporal context
(Cavanaugh et al. 2002a; Ohzawa et al. 1985; Reid et al. 1992;
Sceniak et al. 1999). Although such mechanisms are likely to
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be active during stimulation with the patterns used here, they
are unlikely to account for the basic phenomena we observed
because 1) all elements in the two basis sets have identical
contrast and 2) corresponding ranks within each basis set are
identical in spatial coverage. These two characteristics make
our study significantly unlike previous studies of Cartesian and
polar stimuli in V1 (Mahon and De Valois 2001), and recom-
mend these stimuli as tools to study the neural analysis of
shape in extrastriate cortex. Characteristic 1) allows us to
exclude nonspecific mechanisms and characteristic 2) allows
for precise predictions from simple models.

The phenomena described here depend on the detailed spa-
tial organization of the stimuli and not just their overall size,
contrast, or spatial power spectra. This may be consistent with
some degree of spatial selectivity within the nonclassical re-
ceptive field (Bair et al. 2003; Cavanaugh et al. 2002b; Free-
man et al. 2001). However, the effects of such nonclassical
inputs, which would have to include shift in orientation tuning,
or an overall difference in the level of responsiveness to
Cartesian and polar basis sets as a whole, go beyond the
phenomena that have been reported: namely, overall changes
in receptive field size and sensitivity (Bair et al. 2003; Ca-
vanaugh et al. 2002a, b; Freeman et al. 2001; Sceniak et al.
1999) and the degree of orientation selectivity (Chen et al.
2005).

LOCAL HETEROGENEITY AND FEEDBACK. Because our data im-
ply that a satisfactory mechanistic account will require more
than a minor “tweak” of a feedforward model such as a
linear–nonlinear cascade, we consider the consequences of the
recurrent interactions that feature heavily in the recent cortical
models of Chance et al. (1999) and Tao et al. (McLaughlin et
al. 2000; Tao et al. 2004). Fundamental neuronal properties
such as orientation tuning (Shapley 2004; Shapley et al. 2003;
Somers et al. 1995; Sompolinsky and Shapley 1997) and the
simple versus complex categorization (Chance et al. 1999; Tao
et al. 2004) likely arise from an interaction of feedforward
signals with intracortical feedback. One concrete way in which
these interactions might account for our observations is as
follows. For neurons whose feedforward orientation tuning is
similar to that of the local intracortical signals that it receives,
orientation tuning will be relatively independent of the balance
of these signals. However, the orientation tunings of neighbor-
ing neurons are not identical (DeAngelis et al. 1999; Hubel and
Wiesel 1977) and a mismatch between the tuning of feedfor-
ward signal and the intracortical signals of 
20 deg is conse-
quently inevitable in some neurons. In neurons with such
mismatches, the apparent receptive field shape will depend
strongly on the balance of these signals. This balance is likely
to be sensitive to the two-dimensional organization of the
stimulus because two distinct orientation tunings (that of the
neuron and that of the population) are relevant.

Implications

PREDICTION OF RESPONSES OF V1 NEURONS. Characterizations of
V1 neurons deduced from analytically convenient stimuli, such
as m-sequences and gratings, fail to predict responses to more
natural stimuli, such as vignetted real-world movies, though
qualitative correspondences are typically present (David et al.
2004; Smyth et al. 2003; Touryan et al. 2005). Because V1

neurons are nonlinear, even a catalog of responses to a com-
plete basis set can generate out-of-set predictions only if
incorporated into a nonlinear model. At present, such nonlinear
models consist of one (or occasionally more) linear–nonlinear
cascades, perhaps accompanied by modulatory influences
driven by overall contrast, or parametric in the ambient power
spectrum (David et al. 2004; Rust et al. 2003, 2005; Simoncelli
et al. 2004; Touryan et al. 2005). This failure of predictions
based on such models implies that there are aspects of natural
scenes that are not well captured by such stimuli, and the
deviations in actual responses from those predicted by these
models reveals the presence of more specific kinds of spatial
nonlinearities.

The two-dimensional Hermite functions explore local spatial
patterns in a systematic fashion and, like features such as edges
and corners in natural images, are local in space and in spatial
frequency (Morrone and Burr 1988). As we have shown
directly, linear–nonlinear cascades fail to account for the dif-
ferences between responses to the Cartesian and polar basis
sets. More elaborate models of the sort used to make out-of-set
predictions of natural scene responses will likely fail as well
because the Cartesian and polar basis sets are matched for
contrast and power spectrum, and this will neutralize the effect
of the modulatory additions to the cascade models. While this
does not imply that the failure of predictions of natural scene
responses is explained by the same mechanism(s) that underlie
the discrepancy between responses to the Cartesian and polar
basis sets, it does mean that the failure of the prediction of
responses to natural scenes reveals a more general failing: our
current understanding of V1 receptive fields is not sufficiently
complete to account for responses to images with two-dimen-
sional structure. Moreover, stimuli such as the two-dimen-
sional Hermite functions may have an important role to play in
this regard because their properties allow one to separate
nonspecific influences based on overall contrast and spectrum
from that of specific local features.

ORIENTATION: A SPECIAL CASE OF SHAPE. Our findings contain
an interesting negative result. Though there are many neurons
that respond more strongly to Cartesian stimuli than to polar
stimuli, and vice versa, there is only a slight bias across all
neurons (mean, 9%; median, 4%) in favor of overall respon-
siveness toward the Cartesian set, as measured by Ic–p. Thus,
once stimuli are equated for contrast, spread, and spectral
content, overall differences across the population’s responses
to Cartesian and polar stimuli are minimal if any (cf. Mahon
and Devalois 2001), even though differences within individual
units are widespread.

Moreover, the distribution of the kurtosis of each unit’s
responses to the two sets, �c and �p, was nearly identical, in
both mean and shape. Note that the latter comparison has little
relationship to nonlinear response modulations but, rather, is a
measure of the sparseness of the response distribution within
each basis set (Olshausen and Field 1997; Vinje and Gallant
2000, 2002). For example, �c � �p would hold for a linear
neuron whose receptive field profile was well matched to a
single Cartesian basis function. This is because each Cartesian
function typically requires two or more polar basis functions
for reconstruction as a linear combination. Conversely, the
meaning of the similarity of �c and �p is that, across the
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population, receptive field shapes were equally well matched
by the Cartesian basis functions and the polar basis functions.

This has important theoretical implications. The two-dimen-
sional Hermite functions represent a sequence of functions that
gradually increase in size and bandwidth. The product of these
quantities (size measured in degrees, bandwidth measured in
cycles per degree) is a dimensionless quantity, which we call
the (space-bandwidth) aperture. The rank 0 function, the most
localized in aperture, is a circularly symmetric Gaussian, which
does not have any orientation. The rank 1 functions are the next
most localized. In essence, their aperture is sufficiently small
so that only one spatial frequency can be resolved.

The higher-rank functions constitute a set of shapes that
become increasingly complex, as additional Fourier compo-
nents can be resolved within their aperture. A conceivable
(perhaps even anticipated) outcome of our studies would have
been that to the extent that more than one Fourier component
is required to define a receptive field shape, these multiple
Fourier components would all have similar orientation. Were
this the case, we would have found that the higher-order
Cartesian stimuli, on average, are better matched to receptive
field shapes than the higher-order polar stimuli. This is because
only the Cartesian stimuli contain multiple spatial frequencies
along the same orientation. Instead, we did not detect any
biases in the kinds of receptive field shapes encountered in V1
neurons, given the limits set by their apertures.

Tuning to orientation is universally recognized as a preem-
inent feature of spatial processing by V1 neurons (Hubel and
Wiesel 1968, 1977; Somers et al. 1995; Sompolinsky and
Shapley 1997). All orientations are equally represented in V1
(Blasdel 1992; Dragoi et al. 2000; Sirovich and Uglesich
2004), at least to a first approximation (Li et al. 2003). As
argued above, orientation tuning can also be viewed as a
necessary geometrical consequence of enlarging the aperture of
a receptive field just beyond that of a blob—it is the only kind
of shape tuning possible for an aperture that admits only one
spatial frequency. Thus, our results suggest that in V1, the
representation of orientation is part of a more general even-
handedness that applies to shapes of higher space-bandwidth
aperture. Beyond V1, the more obvious and intricate shape
tuning (Brincat and Connor 2004; Gallant et al. 1993, 1996;
Hegde and Van Essen 2000, 2003, 2004) requires a further
increase in space-bandwidth aperture. Whether this evenhand-
edness persists or, alternatively, how it becomes biased to
specific kinds of shapes, remains to be seen.

A P P E N D I X : D E T A I L E D D E S C R I P T I O N A N D

P R O P E R T I E S O F T H E T W O - D I M E N S I O N A L

H E R M I T E F U N C T I O N S

Definitions, examples, and basic properties

Each two-dimensional Hermite function (Fig. 1) is a polynomial
function in the spatial coordinates x and y, multiplied by a two-
dimensional Gaussian envelope. The TDH of rank 0 is this Gaussian
envelope and is common to the Cartesian and polar basis sets

C0,0, ��x, y	 �
K

��2�
exp��

x2 � y2

4�2 � (A1)

Cartesian TDH functions of higher rank are products of this envelope
and one-dimensional Hermite polynomials of degree j in x and k in y

Cj, k, ��x, y	 �
K

��2�j!k!
hj�x

�
�hk�y

�
� exp�� x2 � y2

4�2 � (A2)

Here, hj(u) and hk(u) denote one-dimensional Hermite polynomials
orthogonal with respect to a Gaussian of unit SD and with unit leading
coefficient. hn(u) satisfies (Abramowitz and Stegun 1964) the gener-
ating function relationship

�
n�0

� zn

n!
hn�x	 � exp�xz 	

z2

2
� (A3)

For example, h0(u) � 1, h1(u) � u,h2(u) � u2 � 1, and h3(u) �
u3 � 3u.

The rank n of the two-dimensional Hermite function Cj,k,� in Eq. A2
is the sum of the degrees of the one-dimensional polynomials, n � j �
k. Thus, there are n � 1 Cartesian TDH functions of rank n, with
indices (j, k) � (n, 0), (n � 1, 1), . . . , (0, n). As shown in the left half
of Fig. 1, the TDH functions Cn,0,� (left edge of the triangular array)
are of constant sign in the y-direction and have n � 1 alternating lobes
of bright and dark in the x-direction. The TDH functions C0,n,� (right
edge of the triangular array) are of constant sign in the x-direction and
have n � 1 alternating lobes of bright and dark in the y-direction.
TDH functions Cj,k,� with both indices nonzero (interior of the array)
have the appearance of a vignetted checkerboard, with j � 1 “checks”
in the x-direction, and k � 1 “checks” in the y-direction.

Polar TDH functions are generically paired (a “cosine” function
A�,�,�

cos and a “sine” function A�,�,�
sin ), corresponding to the left and right

sides of the right half of Fig. 1. For TDH functions of rank n, n � � �
2�. As seen in Fig. 1, a polar TDH A�,�,�

cos or A�,�,�
sin has � � 1

alternating bands along any radius, and 2� sectors of alternating light
and dark in each of these circular bands. With x � R cos � and y �
R sin �, the polar TDH functions take the form

A�, �, �
cos �R, �	 �

K

��2��2���� � �	!�!
cos ���	�R/�	�P�, ��R

2/�2	

� exp� 	 R2/4�2	 (A4)

and

A�, �, �
sin �R, �	 �

K

��2��2���� � �	!�!
sin ���	�R/�	�P�, ��R

2/�2	

� exp� 	 R2/4�2	 (A5)

For even ranks, there is an unpaired targetlike polar TDH A0,n/2,�

defined in like manner. The radial polynomials P in the above
equations are defined by

P�, ��r	 � �
p�0

�

� 	 2	��p �� � �	!�!

�� � p	!p!�� 	 p	!
r p (A6)

Thus, there are n � 1 polar TDH functions of rank n. If n is odd, there
are (n � 1)/2 (cosine, sine) pairs, for � � 0, 1, . . . , (n � 1)/2; if n is
even, there are n/2 pairs, for � � 0, 1, . . . , (n/2) � 1, and one
unpaired function A0,n/2,� that has no angular dependency.

Further details on the above can be found in Victor and Knight
(2003). The correspondence is as follows: Eq. A2 is derived from Eqs.
2.24, 2.26, 2.27, and 2.29 (in Victor and Knight 2003) in the limit
c3 �, d � ��2c, b � �1/�	�c/2. Orthonormality of the functions
Cj,k,� for K � 1 follows from the relationship of the Hermite
polynomials hn of Eq. A3 to the standard Hermite polynomials Hn (Eq.
2.17). Equations A4 and A5 represent the real and imaginary parts of
Eq. 2.48. Equation A6 corresponds to Eq. 2.49. Orthonormality of the
functions A�,�,� for K � 1 follows from Eq. 2.62.

The dependency of the Cartesian TDH functions along a coordinate
axis resembles a Gabor function (Gabor 1946), but Gabor functions
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are trigonometric functions under a Gaussian envelope, whereas TDH
functions are polynomials under a Gaussian envelope. The Gaussian
derivative functions used by Wilson et al. (Lin and Wilson 1996) are
also polynomials under a Gaussian envelope, but for Gaussian deriv-
atives, the envelope is narrower by a factor of �2. Consequently, the
TDH functions have much heavier side lobes than the Gaussian
derivatives. A second consequence of envelope width is that the TDH
functions form an orthogonal set, whereas Gabor functions and Gaussian
derivatives do not. This follows from the orthogonality of the polynomial
portions of the Hermite functions with respect to the weight

W�R	 �
1

2�� 2 exp�� R2

2�2�
� 
 1

�2��
exp�� x2

2�2��
 1

�2��
exp�� y2

2�2�� (A7)

This weight is the square of the Gaussian envelope in Eq. A1, and has
a standard deviation � along each axis. Were we to replace the
Gaussian envelope in Eq. A1 by its square (Eq. A7), the Gaussian
derivatives would be obtained.

Another important property of the TDH functions is that the
Cartesian and polar functions of each rank are linear combinations of
each other. For example, the threefold symmetric polar stimulus A3,0

cos

(the circled example of rank 3 in Fig. 1) is given by A3,0
cos �

1/2C3,0 	 ��3/2	C1,2 and the targetlike polar stimulus A0,2 (the
circled example of rank 4 in Fig. 1) is given by A0,2 � ��6/4	C4,0 �

1/2C2,2 � ��6/4	C0,4. General formulae for these linear combinations
are given in Victor and Knight (2003).

The self-transform property

Each TDH function is the Fourier transform of itself, other than a
scale factor that depends on rank. To show this, we consider the
Fourier transforms of the one-dimensional orthonormalized Hermite
functions with unit SD (� � 1). These functions are defined by

Hj�x	 �
1

�4 2�j!
hj�x	 exp�� x2

4
� (A8)

and, from the generating function for hn(x) (Eq. A3), it follows that

�
n�0

� zn

�n!
Hn�x	 �

1

�4 2�
exp�� x2

4
� xz 	

z2

2
� (A9)

The Fourier transforms of the one-dimensional Hermite functions are
defined by

H̃n��	 ��
��

�

exp� 	 i�x	Hn�x	dx (A10)

We calculate the Fourier transforms (Eq. A10) by the generating
function (Eq. A9).
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where the third equality results from completing the square in x, and the fourth
equality results from the substitution u � x � 2z � 2i�. The final definite
integral is standard, and is equal to 2�� (Abramowitz and Stegun 1964). This
leads to

�
n�0

� zn

�n!
H̃n��	 � �2 � �4 2� exp���2�2i�z �

z2

2
�

� 2�� �
1

�4 2�
exp���2�2i�z �

z2

2
�

� 2�� �
n�0

� � 	 iz	n

�n!
Hn�2�	 (A12)

where the second equality is an algebraic rearrangement and the third equality
follows from the generating function (Eq. A9). Equating coefficients of zn in
the above leads to the desired relationship between a one-dimensional Hermite
function and its Fourier transform

H̃n��	 � 2��� 	 i	nHn�2�	 (A13)

The above relationship immediately demonstrates the self-transform property
for the Cartesian TDHs because the Cartesian functions of rank n (Eq. A2) can
be written as

Cj,k,��x, y	 �
K

�
Hj�x

�
�Hk�y

�
� (A14)

with j � k � n. Consequently

C̃j,k,���x, �y	 � 4����i	nCj,k,1/��2�x, 2�y	 (A15)

Because the polar functions are linear combinations of the Cartesian functions
of the same rank, the self-transform property holds for them as well.
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