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One of the most critical challenges in systems neuroscience is deter-
mining the neural code. A principled framework for addressing this
can be found in information theory. With this approach, one can de-
termine whether a proposed code can account for the stimulus-response
relationship. Specifically, one can compare the transmitted information
between the stimulus and the hypothesized neural code with the trans-
mitted information between the stimulus and the behavioral response.
If the former is smaller than the latter (i.e., if the code cannot account for
the behavior), the code can be ruled out.

The information-theoretic index most widely used in this context is
Shannon’s mutual information. The Shannon test, however, is not ideal
for this purpose: while the codes it will rule out are truly nonviable, there
will be some nonviable codes that it will fail to rule out. Here we describe
a wide range of alternative indices that can be used for ruling codes out.
The range includes a continuum from Shannon information to measures
of the performance of a Bayesian decoder. We analyze the relationship
of these indices to each other and their complementary strengths and
weaknesses for addressing this problem.

1 Introduction

Information-theoretic analysis is a powerful tool to illuminate how neurons
represent the sensory world. A fundamental reason for this is that the classic
information measure, Shannon’s mutual information, places a limit on the
number of possible stimuli that can be distinguished from the output of a
neural channel. Thus, measuring mutual information can serve as a way
to determine whether the activity of a channel can account for behavioral
performance in a sensory discrimination task.
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For example, suppose one wanted to determine which features of the
activity (e.g., firing rate, interspike intervals) are critical for performing the
task. One can measure the mutual information between a given feature
and the stimulus set in the task. If the mutual information between the
feature and the stimulus set is less than the mutual information between
the stimulus set and the behavioral performance, then one can deduce that
that feature is insufficient to account for the behavior. That is, one can rule
out a neural code based solely on that feature.

Mutual information, though, is not perfect, that is, it is not a highly strin-
gent test. While any code that fails this test is guaranteed to be nonviable,
there are conditions in which nonviable codes can pass. The basic reason for
this is that information is lost when neural activity is converted into a behav-
ioral response (response discretization). By not taking this loss into account,
mutual information can fail to exclude codes that are, in fact, nonviable for
producing behavior.

Like mutual information, the best performance of a Bayesian decoder is
an index that can be used to test the viability of neural codes in a rigorous
fashion. This index takes into account the above information loss and might
therefore appear to be a more universal test. However, this measure is highly
sensitive to assumptions about the decision criterion used in performing
the behavioral task. Consequently, it also can fail to exclude nonviable codes
under some situations, but these situations are distinct from those in which
mutual information fails.

Here we show that these indices are but two of many possible choices.
In particular, they represent the extremes of a continuum of indices that
provide rigorous tests of neural codes. However, these indices differ in
their ability to test codes for a range of reasons, including differences in their
sensitivity to decision criterion, differences in their sensitivity to response
discretization, and differences in their bias and variance characteristics. In
this article, we analyze the properties of these indices, their relationships to
each other, and their complementary strengths and weaknesses.

In the main section of this article, we approach the problem of ruling
codes out assuming no knowledge of what the subject is thinking, that
is, what the subject’s priors and decision rules are. The Data Processing
Inequality (DPI) justifies this, since it places absolute limits on the behaviors
a code can support. Thus, any code that is ruled out by these indices is truly
ruled out. In the appendixes, we show how priors and decision rules can
be taken into account to allow still more codes to be ruled out.

2 Results

This article has two main components: one that focuses on general indices
of information and one that focuses on using these indices to test coding
hypotheses.
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In the first component, the ideas build on the central notion that infor-
mation represents a reduction in uncertainty. Uncertainty can be formalized
as the extent to which a probability distribution is dispersed. We therefore
begin by recognizing that there are many ways of quantifying dispersion.
We then show that for every way of quantifying dispersion, there is a corre-
sponding generalized index of transmitted information. The corresponding
index is the extent to which a distribution becomes less dispersed by making
an observation. These general indices of information include the familiar
Shannon mutual information, the performance of the best Bayesian decoder,
and many others. All of these indices satisfy the DPI and therefore provide
means to test coding hypotheses.

Then we show how these indices can be used to test coding hypotheses.
We consider several examples that illustrate how the indices differ and
identify their complementary strengths and weaknesses.

2.1 Indices of Concentration. Let P denote a probability distribution.
To quantify its dispersion, we consider its opposite, namely concentration,
as this will enable us to make use of the properties of convex functions. We
define an index of concentration f to be a convex function on a probability
distribution P and denote this by f (P).1

The range of indices of concentration is captured by two well-known
examples:

fmax(P) = max
i

(pi ), (2.1)

and

−H1(P) =
L∑

i=1

pi log pi , (2.2)

where P is a probability distribution on L symbols and pi is the probability
associated with the ith symbol. The first index, equation 2.1, is associated
with a Bayesian measure of information, as we show in the text following
equation 2.4.2 The second index, equation 2.2, is the negative of the Shannon
entropy, the quantity associated with Shannon mutual information.

These two indices have quite different properties: the Bayes index fmax,
equation 2.1, depends on only the largest probability, while the Shannon
index, equation 2.2, depends smoothly on all of the probabilities. These

1The convexity property (made explicit in equation 2.5) states that f never increases
when distributions are mixed—that the concentration of a weighted average of distribu-
tions is no greater than the weighted average of the concentrations. This justifies the use
of the term index of concentration for f.

2In the ecology literature, this is the Berger-Parker (1970) diversity index.
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dependencies put them at two ends of a continuum. Indices along the
continuum have intermediate dependence on the nonpeak probabilities.
This viewpoint is useful not only conceptually but also practically: these
intermediate indices can, under some circumstances, have advantages over
either the Bayes or Shannon indices (as we will show in the second half of
section 2).

To display formally that the Bayes and Shannon indices constitute the
ends of a continuum, we consider the function fα(P) defined by

fα(P) =
(∑

i

pα
i

) 1
α

. (2.3)

This function is convex and thus is an index of concentration.3 As α → ∞, fα
is progressively dominated by the single largest probability and approaches
the Bayes index fmax, equation 2.1. As α → 1, ( fα − 1)/(α − 1) approaches
the negative of the Shannon entropy, equation 2.2.4

2.2 For Every Index of Concentration, There Is a Generalized Index of
Transmitted Information. To construct an index of transmitted informa-
tion, I f , from any index of concentration f, we generalize the relationship
between Shannon mutual information and Shannon entropy. As is well
known, Shannon mutual information is the difference between an a priori
entropy and an a posteriori entropy, for example, the difference between
the entropy of a stimulus distribution and the entropy of that distribution
conditional on observing a response. By generalizing this relationship, we
show that any index of concentration f can be turned into an information-
theoretic quantity and can therefore be used to test codes. As we will also
show, the new indices have distinct properties that make them useful for
analyzing different kinds of behavioral experiments.

To generalize the Shannon construction, consider two random variables
X (with distribution PX) and Y (with distribution PY). We will think of X as

3Convexity of equation 2.3 is a straightforward consequence of the Minkowski in-
equality (Abramowitz & Stegun, 1970). Although equation 2.3 might suggest otherwise,
we cannot create indices of concentration fg(P) = g−1(

∑
i g(pi )) from any convex function

g. For example, g(p) = − log(p) leads to fg(P) = ∏
pi , which is not convex. Necessary

and sufficient conditions of g for convexity of fg are given in Zhao, Fang, and Li (2005).
We thank Liam Paninksi for pointing us to this literature.

4The indices fα are monotonically related to the generalized entropies of Rényi (1970)
and Tsallis (1988), but there are important distinctions that justify our focus on fα . The
negative of the Rényi entropy is not convex (Wehrl, 1978) and is therefore not an index of
concentration. The negative of the Tsallis entropy, while convex (as shown in appendix
B), is limited because of its bias properties. Specifically, since the negative of the Tsallis
entropy is a linear transformation of ( fα)α (a concave-up function), its estimators will
have greater upward bias than corresponding estimators of fα .
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the stimulus set and Y as the response set. X assumes values i ∈ {1, . . . , M}
with probability pX;i = xi , and Y assumes values j ∈ {1, . . . , N} with
probability pY; j = yj . (Here and below, we use upper-case letters such as
X to denote a random variable, PX to denote its associated probability
distribution, and pX;i , to denote the probability that X assumes a specific
value i.)

We construct an index I f (X, Y) that tells us to what extent observation of
response variable Y narrows the possibilities for X. That is, to what extent
does the a priori concentration f (X) increase when a response is observed?
The index I f (X, Y) is given by

I f (X, Y) =
N∑

j=1

pY; j f (PX|Y= j ) − f (PX), (2.4)

where PX|Y= j is the conditional distribution of X, given the observation
Y = j .

Note that for f = −H1, equation 2.4 is the familiar Shannon mutual in-
formation, which we will denote IShannon. The first term is the expected
concentration of the stimulus distribution X, given the benefit of an obser-
vation in Y. The second term is the a priori concentration of the stimulus
distribution. For f (P) = max(pi ), equation 2.4 is a corresponding Bayesian
measure. In this case, the first term of equation 2.4 is the expected fraction
correct of the Bayesian decoder that has the benefit of an observation in Y.
The second term is the fraction correct that could be achieved by choosing
the a priori most likely symbol. So, in both cases, equation 2.4 is the increase
in concentration that is achieved on the basis of the observations Y. Since
the two indices of concentration f represent the ends of a continuum, so
do their corresponding indices of transmitted information I f , with α → ∞
yielding a Bayes measure and α → 1 yielding a Shannon information.5

2.3 Properties of Indices of Transmitted Information. Here we show
that several key properties of Shannon information extend to all of the
indices I f (X, Y) as defined by equation 2.4. These properties are important
because they show the indices I f (X, Y) behave in a manner that merits
the designation “transmitted information” and because they will allow
us to use these indices to test coding hypotheses. The properties are (1)
nonnegativity: I f (X, Y) ≥ 0, with strict inequality implying that X and Y
are dependent, and I f (X, Y) = 0 whenever X and Y are independent; (2)

5Although the intermediate indices of concentration fα are monotonically related to
the generalized entropies of Renyi (via an exponential transformation) and Tsallis (via
a power law transformation), the corresponding indices of transmitted information I f
are not monotonically related to these entropies, because values of fα are combined by
addition in equation 2.4.
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refinement (Rényi, 1961): I f (X, Y) should behave in a lawful manner if the
response variable Y is refined into a more detailed representation; and (3)
the DPI: stimulus-independent processing of the response variable Y should
not increase I f (X, Y). In this section, we show that all of the I f (X, Y) have
these properties.

In addition, statistical properties of estimates of I f (X, Y) are important to
consider, because in laboratory applications, the indices must be estimated
from a finite amount of data. As is well known, naive estimates of the
Shannon mutual information are upwardly biased. Naive estimates of the
general indices I f (X, Y) are also biased. However, the nature of this bias
depends on f, as does the variance of the estimates, as we discuss at the end
of this section.

Finally, we mention that there are several properties of Shannon mutual
information that do not generalize, but these properties are not essential to
our purpose, ruling out codes. First, Shannon information is symmetric in
X and Y, but this is not true of I f in general. For this reason, we use the
term transmitted information for I f rather than mutual information. Second,
the channel coding theorem and Sanov’s theorem (large deviation approxi-
mation) (Cover & Thomas, 1991; Rieke, Warland, de Ruyter van Steveninck,
& Bialek, 1997) do not apply to the other indices. While these properties of
Shannon information are at the foundation of classical information theory
and formalize its privileged place as a tool for characterizing codes and
analyzing information flow, they are not required for eliminating codes.

2.3.1 Nonnegativity. Convexity of f guarantees that I f (X, Y) ≥ 0. To see
this, we first observe that the unconditional distribution PX is a mixture
of the conditional distributions PX|Y= j . That is,

∑N
j=1 yj PX|Y= j = PX, where

yj is the probability of the jth symbol in Y. The convexity property states
that the concentration of their mixture is no greater than the weighted sum
of the concentrations of the individual components. That is, for any set of
N distributions Pn and any set of mixing weights (real numbers λn ∈ [0, 1]
that sum to 1),

N∑
n=1

λn f (Pn) ≥ f

(
N∑

n=1

λn Pn

)
. (2.5)

The conclusion that I f (X, Y) ≥ 0 follows from equation 2.5 by choosing
λ j = yj . The minimum value I f (X, Y) = 0 is achieved when X and Y are
independent (so PX|Y= j = PX).

2.3.2 Refinement. The generalized transmitted information I f obeys a
refinement rule (Rényi, 1961) that governs its behavior when the response
variable Y is “refined” into a more detailed representation Z. Suppose that
we initially analyze the relationship between a stimulus set X and a response



Indices for Testing Neural Codes 2901

set Y and only later realize that the final value Y = N actually represents R
distinguishable responses. The refinement rule dictates how the unrefined
information I f (X, Y) and the refined information I f (X, Z) are related:

I f (X, Z) = I f (X, Y) + pY;N I f (X | Y = N, Z | Y = N). (2.6)

This relationship follows from the definition 2.4 of I f , as we now show.
When Y takes on one of its first N − 1 values, then Z = Y. That is, for the
unrefined symbols j ≤ N − 1, pZ|y=k; j = δ( j, k) and PX|Y= j = PX|Z= j . When
Y takes on the final value Y = N, Z can take any value in {N, N + 1, . . . ,

N + R − 1}. For the symbols r ∈ {N, N + 1, . . . , N + R − 1} generated
by this refinement, pZ|y=N;r = pZ;r/pY;N, and pZ|y=k;r is zero for k < N.
Therefore,

I f (X, Z) =
N−1∑
j=1

pZ; j f (X | Z = j) − f (X) +
N+R−1∑

r=N

pZ;r f (X | Z = r )

=

N−1∑

j=1

pZ; j f (X | Z = j) + pY;N f (X | Y = N) − f (X)




+
N+R−1∑

r=N

pZ;r f (X | Z = r ) − pY;N f (X | Y = N)

= I f (X, Y) + pY;N

(
N+R−1∑

r=N

pZ;r
pY;N

f (X | Z = r ) − f (X | Y = N)

)

= I f (X, Y) + pY;N

(
N+R−1∑

r=N

pZ|Y=N;r f (X | Z = r ) − f (X | Y = N)

)

= I f (X, Y) + pY;N I f (X | Y = N, Z | Y = N).

2.3.3 Data Processing Inequality. The DPI, an important property of Shan-
non mutual information, states that stimulus-independent transformation
of the response variable Y into another variable Z cannot increase the
amount of information. This property is shared by the generalized trans-
mitted information I f . More formally, if X → Y → Z form a Markov chain,
then

I f (X, Z) ≤ I f (X, Y). (2.7)

We remark that if both X → Y → Z and X → Z → Y are Markov chains,
then the DPI implies that I f (X, Z) = I f (X, Y), since, in addition to
equation 2.7, I f (X, Y) ≤ I f (X, Z) must hold.
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To demonstrate the DPI, we first observe that any transformation
from Y to Z can be achieved by a sequence of simple steps Y = Y0,

Y1, . . . , Yk, . . . Ys = Z, where each step consists of one of the following kinds
of transformations: (1) symbols in Yk are relabeled in Yk+1; (2) a symbol a
in Yk splits into one of two new symbols b or c in Yk+1; or (3) two distinct
symbols in Yk , say g and h, are merged into a new symbol u in Yk+1.

We now proceed to show that none of these transformations can increase
I f (X, Yk). The relabeling transformation (transformation 1) does not affect
I f , since it merely reorders the terms in the sum of equation 2.4. The split-
ting transformation (transformation 2) does not affect I f for the following
reason. The assumption that X, Y, and Z form a Markov chain implies that
the choice of b versus c is independent of X. Therefore, the a posteriori
distributions PX|Yk=a , PX|Yk+1=b and PX|Yk+1=c are identical. Moreover, since b
and c arise only from a, the marginal probabilities pYk+1;b and pYk+1;c must
sum to pYk ;a . Together, these observations imply that transformation 2 does
not affect I f (see equation 2.4). Finally, the merging transformation, trans-
formation 3, may affect I f , but the convexity property, equation 2.5, implies
that I f cannot increase, as the following calculation shows. Since u can arise
only from g or h,

pYk+1;u = pYk ;g + pYk ;h (2.8)

and

pYk+1;u PX|Yk+1=u = PX,Yk+1=u = PX,Yk=g + PX,Yk=h

= pYk ;g PX|Yk=g + pYk ;h PX|Yk=h . (2.9)

Thus, the conditional probability PX|Yk+1=u is a mixture of the con-
ditional probabilities PX|Yk=g and PX|Yk=h , with mixing weights
λ1 = pYk ;g/(pYk ;g + pYk ;h) and λ2 = 1 − λ1 in equation 2.5. The convex-
ity property shows that the contribution of the terms of I f that involve g
and h cannot increase when they are merged into the new symbol u.

In sum, the above paragraph emphasizes the importance of convexity
for the DPI, that is, it implies the DPI. Conversely, the DPI implies con-
vexity. More formally, if (for an arbitrary f) an expression of the form of
equation 2.4 satisfies the DPI, then the function f must be convex. To demon-
strate equation 2.5, create random variables X and Y for which PY=yn = λn

and PX|Y=yn = Pn. “Processing” Y by merging all of its symbols into a sin-
gle symbol Z sets up a situation in which I f (X, Z) = 0, and I f (X, Y) ≥ 0 is
equivalent to equation 2.5.

2.3.4 Bias and Variance of Naive Estimates of the Indices. To apply the indices
I f (X, Y) to an experiment, they must be estimated from a finite quantity
of laboratory data. Therefore, we consider the bias and variance properties
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of simple estimates of the indices I f (X, Y). These are the naive (plug-in)
estimates, which consist of inserting the observed frequencies of joint ob-
servations of X and Y into the definition of I f (X, Y), equation 2.4. As we
show, these naive estimates of I f (X, Y) tend to be overestimates; they are
upwardly biased. However, depending on the choice of the concentration
index f, bias affects some kinds of data sets more than others. For Bayes-
like indices, bias is most severe when performance is at threshold (chance
performance) and minimal when performance is far from threshold (close
to perfect). For Shannon-like indices, bias is independent of the level of
performance to a first approximation.

To see how the bias properties of the indices I f (X, Y) emerge, we make
use of the fact that they are sums of indices of concentration, f. We therefore
begin by discussing the statistical behavior of estimates of f.

It is well known that the naive estimate of the Shannon entropy is down-
wardly biased (Carlton, 1969; Miller, 1955; Treves & Panzeri, 1995; Victor,
2000). Consequently, naive estimates of its negative, the Shannon index of
concentration f = −H1, are upwardly biased. As we show in appendix C,
naive estimates of all indices of concentration are upwardly biased, and,
moreover, as the sample size increases, the bias decreases monotonically.
The proof hinges on the convexity of the index of concentration, along with
the following observation: a probability distribution estimated from the fre-
quencies encountered in a data set containing N observations is a mixture of
probability distributions estimated from the N data sets, each of size N − 1,
in which one of the observations is omitted.

The specific bias behavior of the naive estimate of an index of concentra-
tion depends in a systematic fashion on the form of the index. To illustrate
this, we consider the bias behavior of fα for a range of values of the pa-
rameter α. Figure 1A considers the case of two symbols, with probability p1

and p2 = 1 − p1. The left panel shows how the true value of fα depends on
p1. For all values of α, the minimum concentration occurs when the prob-
abilities are equal (p1 = p2 = 1

2 ). As α increases, this minimum becomes
progressively sharper, approaching a singularity as α → ∞ (here, α = 16).

Column 2 of Figure 1A shows how the expected bias in the naive esti-
mate of fα depends on p1. As shown in appendix C, this expected bias is
asymptotically proportional to 1/N; we plot the proportionality constant in
the figure. In the Shannon limit (α = 1), bias is independent of p1, as is well
known (Carlton, 1969; Miller, 1955; Treves & Panzeri, 1995; Victor, 2000). For
large α, there is a large bias when the probabilities are nearly equal (near
p1 = 1

2 ) and little bias when the probabilities are very unequal.
The behavior of bias of estimates of fα can be understood intuitively

as follows. Two factors need to be considered: first, the variability in the
estimate of p, and second, how the naive estimate of fα depends on the
estimate of p. The variability in the estimate of p is determined by multi-
nomial statistics and is independent of α (i.e., it is the same for all of the
indices), so we focus on the second factor, the shape of fα . We consider
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Figure 1: Behavior of bias and variance of naive estimates of indices of concen-
tration fα . (A) Two symbols, with probabilities p1 and p2 = 1 − p1. (B) Three
symbols, with probabilities p1, p2, and p3 = 1 − p1 − p2. Column 1: fα , linearly
rescaled into the range [0, 1]. Column 2: the coefficient of 1/N in the asymptotic
bias (same normalization as column 1). Column 3: the coefficient of 1/N in the
asymptotic variance (same normalization as column 1).

first the peak in the bias near p1 = p2 = 1
2 for large α. The origin of this

peak is that fα is sharply curved at this point. In particular, as α → ∞, fα
approaches fmax. In this limit, fmax is V-shaped at this point, because it is
determined by whichever symbol happens to have the highest frequency in
the data sample. Thus, any fluctuation away from equal occurrences of the
two symbols will produce a naive estimate that is higher than the correct
value. Consequently, the bias is large. However, if p1 is far from 1

2 , fluctua-
tions in the number of occurrences of the two symbols are just as likely to
lead to an overestimate of fmax as an underestimate. Consequently, the bias
in the estimate of fmax is minimal. For small α, the sharpness of the trough of
fα is progressively smaller, and the peak in the bias is progressively smaller
and broader.6 Note that although the expected bias of naive estimators of

6It is generally stated that the bias properties of the Renyi entropies are more favorable
than that of the Shannon entropy. For example, Strong, Koberle, de Ruyter van Steveninck,



Indices for Testing Neural Codes 2905

the indices fα is generally less than that of the Shannon entropy (α = 1)
when the probabilities are far from equality, the naive estimate of the Shan-
non entropy is asymptotically less biased than that of the other indices near
p1 = p2 = 1

2 .
The third column of Figure 1A shows how the variance of the naive

estimate of fα depends on p1. For all indices fα , variance is smallest when
fα has its extreme values: at p1 = 1

2 , where fα is minimum, and at p1 = 0
and p1 = 1, where fα is maximum. However, the range of values of p1 at
which the variance in the estimate of fα is largest depends strongly on α,
with p1 near 1

2 associated with the largest variances for large α, and p1 near
0 or 1 associated with the largest variances for small α.

Intuitively, the behavior of the variance can be understood as the net
result of two factors. One factor is the local slope of the index fα (see Figure
1A, column 1). A large slope implies a high sensitivity to errors in the
estimates of p1, while a small slope implies insensitivity to errors in the
estimates of p1. The slope is 0 at p1 = 1

2 , and this accounts for the trough of
the variance at this point. The second factor is the behavior of the variance of
binomial distributions, which determines how accurately one can estimate
p1 from a finite sample. For N samples, the variance is given by Np1(1 − p1),
indicating that estimates of p1 are least variable at the extremes of its range.
This accounts for the minima of the variance at p1 = 0 and p1 = 1.

The case of three symbols (see Figure 1B) shows how the observa-
tions of Figure 1A (two symbols) extend to the general case. For large
α, fα has a trough where the two largest probabilities are equal (e.g.,
p1 = p2 = 2/5, p3 = 1/5), and a sharp minimum where these troughs con-
verge (p1 = p2 = p3 = 1/3). This leads to local maxima in the bias of the
naive estimator along these troughs and a global maximum at their con-
vergence. As α decreases, the sharpness of the bias distribution is blunted,
attaining uniformity in the Shannon (α = 1) case. As in the two-symbol case,
the variance of the naive estimator has a minimum at the point of equal
probabilities and at the extremes, and the largest variances occur near the
point of equal probabilities when α is large.

The properties of estimates of generalized transmitted information I f are
consequences of the bias properties of estimates of the underlying index of
concentration f. In the typical laboratory situation, the input symbols X can
be chosen by the experimenter, so that the frequencies encountered after N
trials exactly match those of the true distribution PX. In this case, only the
conditional probabilities PX|Y= j in equation 2.4 must be estimated. Naive
estimates of I f thus decrease monotonically with N, since they inherit the

and Bialek (1998) used the Ma bound (α = 2) because of this property. However, the indices
fα are exponential functions of the Renyi entropies, which makes their bias behavior less
favorable. Additionally, as Figure 1 shows, the bias behavior depends strongly on the
range of probabilities, with relatively greater bias for the Shannon entropy when the
probabilities are unequal.
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monotonically decreasing behavior of estimates of f (see appendix C). For
large α, this bias will be large when the conditional distributions have
nearly equal probabilities, while for α = 1, the bias will depend only on the
number of symbols in X and Y (Treves & Panzeri, 1995).

We caution that the above analysis hinges on the assumption that the in-
put distribution PX is known. If PX must also be estimated, then estimates
of I f may approach the true value from below rather than from above.
For example, consider estimates of I fmax in a scenario in which each of the
symbols of X occurs with equal probability and each is signaled reliably by
a corresponding symbol in Y. That is, the probabilities in the a posteriori
distributions PX|Y= j are unequal, but the probabilities in the a priori dis-
tribution PX are equal. Consequently, naive estimates of fmax(PX|Y= j ) are
nearly unbiased, but naive estimates of fmax(PX) have a large upward bias.
Therefore, their difference, the naive estimates of the Bayesian index I fmax ,
has a downward bias. This bias behavior for I fmax contrasts with the bias
behavior naive estimates of IShannon, which is always upward if all of the
co-occurrence probabilities of symbols in X and Y are nonzero (Treves &
Panzeri, 1995).

2.4 Using Indices of Concentration to Test Coding Hypotheses. Now
that we have constructed a variety of indices of transmitted information
and shown that they share many of the properties of Shannon information,
we describe how they can be used to test hypotheses about neural codes. We
consider a generic behavioral task consisting of presentation of input sym-
bols that elicit observable behavioral responses. We assume that we have
recorded from all of the neurons that provide the sensory signals relevant
to this task and that we have hypothesized a “neural code,” that is, a way
to represent these neural signals by instances of some random variable. The
question to be asked is, can the neural activity as represented in this fashion
account for the behavioral performance? If the answer to the question is no,
then (since we have assumed that we have recorded from all the relevant
neurons), we have rigorously ruled out a neural code (Nirenberg et al.,
2006). This strategy, which seeks to determine whether specific statistical
features of neuronal activity are insufficient to support a behavior, stands
in contrast to the more standard approach (Bialek, Rieke, de Ruyter van
Steveninck, & Warland, 1991; McClurkin, Optican, Richmond, & Gawne,
1991; Victor & Purpura, 1996) of identifying statistical features that might
support a behavior.

2.5 Setup. The question of whether a neural code can support a
stimulus-behavior linkage is equivalent to the question of whether the stim-
ulus set, the neural representation, and the behavior constitute a Markov
chain. In the analysis below, the stimulus is a random variable X assum-
ing one of L discrete values, characterized by a distribution PX. The neural
code is represented by a random variable Y, whose relationship to X is
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characterized by the conditional distributions PX|Y=y. Like the stimulus X,
the behavioral response Z is a discrete random variable; its relationship to
X is characterized by PX|Z=z. Our question is whether the neural code Y
can account for the observed dependence of the behavior Z on the stimulus
X. That is, we want to determine whether PX|Y=y and PX|Z=z are consistent
with a Markov chain X → Y → Z, and to do so from two sets of joint mea-
surements: stimulus and code (PX|Y=y) and stimulus and behavior (PX|Z=z).
According to the DPI, a necessary condition is that X → Y → Z constitute
a Markov chain that

I f (X, Z) ≤ I f (X, Y). (2.10)

for every generalized transmitted information I f . However, for different
choices of the index of concentration f, the above inequality places different
conditions on the neural activity Y. Our goal is to analyze this situation,
comparing the utility of different choices of I f . The main points are evident
even in the simplest scenario: two stimuli and two behavioral responses.
We thus analyze this scenario first and then describe how the analysis
generalizes to scenarios in which there are multiple stimuli or behavioral
responses.

2.6 Two Stimuli, Two Responses: The Indices Are Inequivalent. We
focus on the two-stimulus, two-response case in which both stimuli are
equally probable. This case illustrates the complementary properties of the
constraints (see equation 2.10) for different choices of the indices I f . In
our first example, the Shannon index is generally stronger. In the second
example, the Bayes index is generally stronger. But no index is guaranteed
to be the stronger in either case. The subsequent examples examine the basis
for this complementarity.

2.6.1 Example 1: Shannon Index Is Superior. In our first example (see
Figure 2) we analyze a scenario in which there are only two words in
the neural code Y, each of which signals the two stimuli with moderate re-
liability. For one of the code words (say, y1) the a posteriori probabilities of
the stimuli x1 and x2 are given by 0.75 and 0.25; for the other code word (say,
y2), the a posteriori probabilities of the stimuli are given by 0.25 and 0.75.

The inset in Figure 2 illustrates the relationship between the stimulus and
the code. Each code word y is associated with an a posteriori probability
of the two stimuli, q1 = p(x1 | y) and q2 = p(x2 | y). One can describe the
relationship between stimuli and code words by tabulating how often a
code word has a particular pair (q1, q2) of a posteriori probabilities. Since
q1 + q2 = 1 (i.e., the a posteriori probabilities for all of the stimuli must sum
to 1), for this tabulation we need to consider only q1. We call this density
ρ(q1), and it is the ordinate of the inset.
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The main portion of Figure 2 illustrates the range of possible behaviors
that is supported by code diagrammed in the inset. Since there are two
stimuli and two behavioral responses, the stimulus-response behavior is
completely specified by the probabilities that each of the two stimuli (x1 and
x2) will elicit the behavior z1. These probabilities, p(z1 | x1) and p(z1 | x2),
are the two axes of the main plot. There are four ways that the subject could
use these two neural responses; we refer to them as decision rules:

1. For any code word y, always respond with z1. That is, p(z1 | x1) =
p(z1 | x2) = 1. This results in the behavior plotted at point B1.

2. For any neural code word y, always respond with z2. That is,
p(z1 | x1) = p(z1 | x2) = 0. This results in the behavior plotted at point
B2.

3. When (and only when) y1 is present, respond with z1. That is,
p(z1 | x1) = 0.75 and p(z1 | x2) = 0.25. This results in the behavior
plotted at point B3.

4. When (and only when) y2 is present , respond with z1. That is,
p(z1 | x1) = 0.25 and p(z1 | x2) = 0.75. This results in the behavior
plotted at point B4.

The general calculation of the above probabilities from the density ρ(q1) is
detailed in appendix D.

These four behaviors (B1, . . . , B4) are the corners of a diamond-shaped
region. The interior of this diamond represents all of the behaviors that can
be supported by the code Y. The reason that the interior points are included
is that they correspond to behaviors that can be achieved by mixing the
behaviors at the corners, that is, by applying one decision rule on one trial
and another decision rule on another trial. Appendix D shows that no other
behaviors are possible.

Now that we have delineated all possible behaviors that can be sup-
ported by the code Y, we can show how the different indices allow us to
test whether this code is viable. For each index I f , we can calculate the
transmitted information available in the code Y, I f (X, Y). The data process-
ing inequality (see equation 2.10) requires that for any behavior derived
from this code, I f (X, Z) ≤ I f (X, Y). Therefore, for each index I f , we plot
the locus of behaviors for which I f (X, Z) = I f (X, Y). If we observe a be-
havior outside this locus, it would allow us to rule out that code. In other
words, that particular code Y did not carry enough information to account
for that particular behavior Z.

Note that the bounds are different for the different indices I fα . We show
the Shannon bound (α = 1) in red, the Bayes bound (α = ∞) in blue, and the
bound determined by an intermediate index (α = 2) in green. Importantly,
these bounds are not only distinct but also differ in strength.

Here is an example that illustrates this point that the bounds provided by
the different indices are both distinct and differ in strength. Suppose that we



Indices for Testing Neural Codes 2909

made the assumption that only spike count matters, but in reality, behavior
makes use of spike timing. That is, our assumed code Y is insufficient, and
the observed behavior B ′ is outside the diamond of supportable behaviors,
as in Figure 2. But although B ′ cannot be supported by Y, it is inside the
bounds of the Bayes index (α = ∞, blue). Hence, had we analyzed the
experiment using the Bayes index, the code Y would appear to be a viable
code. Importantly, though, B ′ is outside the bounds of the Shannon index
(α = 1, red). In other words, in this example, the Shannon index does rule
out the code Y, even though the Bayes index does not. Indices that are
intermediate between the Shannon and Bayes indices (e.g., α = 2) have
intermediate behavior: they succeed in ruling out the code Y for some of
the behaviors, but not for all of them.

2.6.2 Example 2: Bayes Index Is Superior. In the first example (see Figure 2),
the Shannon index provided a stronger test of the neural code Y than the
Bayes index. That is, the region of behaviors within the bounds for α = 1
(red) was smaller than the region of behaviors within the bounds for α = ∞
(blue). Here we set up a situation in which the opposite is true.

In this example, the neural code Y has many code words y (see
Figure 3, inset). Specifically, code words with all a posteriori probabilities
q1 = P(x1 | y) are represented, and all are equally likely (i.e., the density
ρ(q1) is constant). Any a posteriori probability q1 can serve as the cutoff for
a decision rule. For example, a typical decision rule chooses behavior z1 if
the a posteriori probability of x1 is sufficiently high. This decision rule is
characterized by a cutoff criterion qcut , along with the policy of choosing
behavior z1 if q1 ≥ qcut . These decision rules correspond to the behaviors
that form the curved black trajectory below the diagonal in Figure 3. There
are also behaviors that form a curved trajectory above the diagonal. These
correspond to decision rules that choose the behavior z1 if the a posteriori
probability of x1 is sufficiently low, that is, q1 ≤ qcut . All possible behaviors
that can be supported by Y are mixtures of these behaviors and correspond
to points that lie within the lens-shaped region bounded by these two curves
(proof is in appendix D).

In contrast to the situation of Figure 2, the bounds associated with the
Bayes index (blue) are tighter than the bounds associated with the Shannon
index (red).

Note that from the insets of Figures 2 and 3, it might appear that the
critical difference between these two examples is that the former has a
discrete set of code words and the latter has a continuum of code words.
However, the critical factor is not the discreteness of the code itself. Rather,
the critical difference is that the range of certainties associated with the code
words is wider in Figure 3 than Figure 2, combined with the fact that the
behavior is discrete. We show two more examples that illustrate this point
and then turn to why it is the case.
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Figure 2: Testing a neural code in a scenario in which the Shannon index has
the advantage. The neural code has two words: y1, for which the a posteriori
probabilities of the stimuli x1 and x2 are given by 0.75 and 0.25, and y2, for which
the a posteriori probabilities of the stimuli are given by 0.25 and 0.75 (inset).
The diamond-shaped region in the main graph shows the range of behaviors
that can be supported by the code and the bounds provided by several different
indices of transmitted information. The Shannon bound (α = 1) is tighter than
the Bayes bound (α = ∞). For further details, see the text.
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Figure 3: Testing a neural code in a scenario in which the Bayes index has the
advantage. The neural code words cover the entire range of a posteriori prob-
abilities (see inset). The lens-shaped region in the main graph shows the range
of behaviors that can be supported by the code, and the bounds provided by
several different indices of transmitted information. The Bayes bound (α = ∞)
is tighter than the Shannon bound (α = 1). For further details, see the text.
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2.6.3 Further Examples: The Range of Certainty Is Crucial. To see that the
critical factor is the range of certainty (rather than whether the code has a
continuum of words), we consider a code with four code words, covering
a range of certainties. Specifically, in the code illustrated in the inset of
Figure 4, Y consists of four code words y1, y2, y3, and y4, with a posteriori
likelihoods q1 = P(x1 | y) of 1, 2/3, 1/3, and 0. That is, y1 and y2 indicate that
stimulus x1 was probably present, while y3 and y4 indicate that stimulus x2

was probably present. However, y1 and y4 are reliable, while y2 and y3 are
ambiguous.

As in Figure 2, the set of supported behaviors forms a polygonal region.
The corners of this region correspond to decision rules in which one set
of code words {y1, . . . , yc} elicits one behavior, and the complementary set
{yc+1, . . . , y4} elicits the alternative behavior. However, unlike Figure 2, the
bounds associated with the Bayes index (blue) are tighter than the bounds
associated with the Shannon index (red).

In the final example, Figure 5, the code words form a continuum (as in
Figure 3), but the certainties are tightly clustered. This happens because the
density ρ(q1) is bimodal, with modes at 0.25 and 0.75.

As in the uniformly distributed example in Figure 3, the region of sup-
portable behaviors forms a lens-shaped region. However, in contrast to the
uniformly distributed example, the Bayes index does not always provide
the strongest test. Rather, there are behaviors (e.g., B ′) that will result in
excluding the code only if the Shannon index is used.

Comparing the above examples suggests that the difference in perfor-
mance of the indices depends primarily on the range of certainty of the code
words. We now discuss why this is the case by focusing on the geometry of
the bounds corresponding to the Bayes and Shannon indices.

There are two interacting factors: the relative positions of the Bayes and
Shannon bounds and their shapes. We first consider their positions. The
Bayes bound will always make contact with the region of behaviors that
the code can support (e.g., at points B3 and B4 in Figure 2 and at the inner
arrowhead in Figure 3.) This is because the Bayes bound can always be
attained by a decision rule that maximizes the fraction of correct responses
(this decision rule chooses the stimulus with the maximum a posteriori
probability). In contrast, the Shannon bound need not make contact with the
region of supportable behaviors (see Figures 3–5). This is because converting
the neural code to a binary behavioral response causes a loss of information
about the level of certainty. In other words, the code has a greater Shannon
information than the subject can possibly transmit with a binary behavioral
decision. The difference between the Shannon information transmitted by
the code and the maximum Shannon information that can be transmitted
by processing the code into a binary behavior results in a gap between the
Shannon bound and the region of supportable behaviors (see the arrows in
Figures 3–5). This gives an advantage to the Bayes index, whose bound is
always in contact with the region of supportable behaviors.
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Figure 4: The range of uncertainties affects the choice of indices. The neural
code (see inset) has four words y1, y2, y3 and y4, two of which have high certainty
(y1 and y4) and two of which have low certainty (y2 and y3). The polygonal
region in the main graph shows the range of behaviors that can be supported
by the code and the bounds provided by several different indices of transmitted
information. The Bayes bound (α = ∞) is tighter than the Shannon bound
(α = 1). For further details, see the text.
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Figure 5: Complementary strengths of the Bayes and Shannon indices. The
neural code words cover the entire range of a posteriori probabilities but are bi-
modally distributed (see inset). The lens-shaped region in the main graph shows
the range of behaviors that can be supported by the code and the bounds pro-
vided by several different indices of transmitted information. The Bayes bound
(α = ∞) is tighter than the Shannon bound (α = 1) near its the point of tangency
to the range of supportable behaviors, but the Shannon bound is tighter than
the Bayes bound away from this point. For further details, see the text.
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We next consider the shapes of the bounds. The Bayes bound will always
be a straight line, since it is determined by linear functions of the proba-
bilities p(z1 | x1) and p(z1 | x2). In contrast, the Shannon bound will always
be curved, since it is determined by a nonlinear function of these proba-
bilities. Consequently, the Shannon bound will curve inward toward the
region of supportable behaviors, while the Bayes bound departs from it at
a tangent. Because the Shannon bound curves inward toward the region of
supportable behaviors, it can be stronger than the Bayes bound away from
the point at which the subject chooses a decision rule that maximizes the
fraction of correct responses. That is, the Shannon bound is less sensitive to
the decision criterion.

In sum, the bottom line can be stated simply: the Shannon index is
weakened by fact that information is lost when a code is converted to a
behavior, while the Bayes index is weakened if the decision rule is not
known. However, the Bayes index can be readily pushed further, since its
bound always comes into contact with the region of supportable behaviors.
For further discussion, see appendix A.

2.7 Multiple Stimuli, Multiple Responses. The above examples con-
sidered scenarios with two stimuli and two behavioral responses. Here we
show the implications of the analysis for scenarios in which there are more
than two stimuli or more than two behavioral responses. As in the above
analysis, the first step is to construct the set of supportable behaviors. When
there are L stimuli and N behaviors, this is a space of (L − 1)N dimensions.
This is because each of the N behaviors corresponds to an a posteriori dis-
tribution of the L stimuli, for which there are L − 1 degrees of freedom
(dimensions). Above, L = N = 2, so the supportable behaviors constituted
a region in the plane. But here, the space of supportable behaviors has a
higher dimension.

As in the simpler L = N = 2 scenario, the set of supportable behaviors
must be a convex region within this space. Its boundary will have a more
complex shape, parameterized by partitions of the space of a posteriori
probabilities (this characterization is demonstrated in appendix D).

The Shannon index provides a bound that is curved inward and thus has
the potential to follow the boundary of the complex shape closely. However,
it is typically offset from the supportable behaviors because of conversion
of the code into one of N possible behaviors.

In contrast, the Bayes index provides a bound that is a hyperplane tan-
gent to the set of supportable behaviors. It is thus optimal at this point of
tangency, but it is increasingly suboptimal away from that point.

Thus, as in the two-stimulus, two-response case, the Shannon index
is weakened by the loss of information about certainty when the code is
reduced to a behavior, while the Bayes index is weakened if the decision
rule is not known exactly.

It is therefore straightforward to construct examples in which the Bayes
index fails, or the Shannon index fails, or both. For larger values of L (the
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number of stimuli) and N (the number of behavioral responses), there are
separate factors that favor each of the two kinds of indices, so their comple-
mentary nature persists. As L increases, a factor that favors the Bayes index
is that the dimensionality of the set of a posteriori probabilities associated
with each code word is L − 1. Thus, there is an increasing information loss
resulting from discretization of this high-dimensional characterization of
uncertainty to one of N discrete responses. This loss due to discretization
puts the Shannon index at an increasing disadvantage. But other factors
favor Shannon-type indices. As N increases, the effect of response dis-
cretization decreases because more responses are available. Moreover, as
both L and N increase, the variety of decision rules increases (see appendix
D). Thus, sensitivity to the decision rule (which weakens the Bayes index)
is an increasingly important factor. Related to this, as L or N increases, the
possibility of near misses increases—that is, the possibility that a subject
responds with an answer that is close to the correct answer but wrong.
The Bayes index gives no credit for these close answers, only for correct
answers. The Shannon index (as well as the intermediate indices) gives
credit for answers that are systematic but wrong. When wrong answers are
systematic, Shannon-like indices can provide a stronger test of a coding
hypothesis than Bayes-like indices.

2.8 Other Indices of Concentration and Transmitted Information.
Above, we have focused on the Shannon index, the Bayes index, and a nat-
ural continuum of indices for which they represent the extremes. However,
this continuum does not exhaust the realm of useful indices. Moreover, these
other indices have specific behavioral interpretations and are particularly
useful when the subject’s decision rule is known (see appendix A).

Any index of concentration can be modified by applying a nonneg-
ative set of weights �w = (w1, . . . , wL ) to the probabilities. That is, if
f (P) = f (p1, . . . , pL ) is an index of concentration, then so is

�w f (P) ≡ f (w1 p1, . . . , wL pL ). (2.11)

In the Bayes limit ( �w fmax), the index of transmitted information correspond-
ing to equation 2.11 measures the improvement in performance of a decoder
that associates unequal values with each stimulus.

A second kind of generalization is useful for multi-alternative behavioral
paradigms. When there are three or more possible behaviors (N ≥ 3 in
the above), a subject’s pattern of errors may indicate a greater level of
knowledge about the stimulus than merely the fraction of correct responses
(Thomson & Kristan, 2005). This kind of systematic behavior captured by
the index of concentration is f (k)

max, the sum of the k largest values of pi :

f (k)
max(P) = max

i1,...,ik

(∑
k

pik

)
(all ik distinct). (2.12)
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In particular, the index of transmitted information corresponding to
equation 2.12 is the improvement in the performance of a Bayesian decoder
that is allowed k attempts at a correct answer.

3 Discussion

Information theory has been enormously useful for characterizing spike
trains and proposing neural codes (reviewed in Dayan & Abbott, 2001; Rieke
et al., 1997). Any feature of neural responses that depends systematically
on the stimulus is a carrier of information and, in principle, a candidate
neural code. Given that the ultimate goal is to reduce the space of candidate
codes, that is, to close in on which codes the animal could actually be using,
a logical next step is to consider whether any of these candidates can be
eliminated (Nirenberg et al., 2006). Shannon’s information works for this,
but it is a loose bound, and it turns out that there are many related quantities
that can be tighter bounds—that is, they can rule out more codes than can
be eliminated by Shannon information. This is the focus of our article: the
existence of these measures, their relationships to each other, and their
properties for eliminating codes.

It is worth mentioning that using information to eliminate codes is
distinct from using it to identify and characterize candidate codes. As a
result, the properties that the indices must have are different. This is why
the indices we discuss lack some of the properties of Shannon information
associated with characterizing codes (Cover & Thomas, 1991; Rieke
et al., 1997). However, these indices all retain one key property: the DPI.
Consequently, they provide equally valid tests for the elimination of a code
as provided by Shannon information, and in some cases, stronger tests.

3.1 Complementary Strengths and Weaknesses. We have shown that
the indices we describe have complementary strengths and weaknesses:
Shannon-like indices fail to exclude nonviable codes in scenarios in which
the neural code words differ substantially in certainty, because these differ-
ences are suppressed (i.e., information is lost) when the code is reduced to
a behavior (see Figures 3 and 4). Bayes-like indices yield stronger tests than
Shannon-like indices in these scenarios, but the advantage may depend on
knowing the decision rule precisely (see Figure 5). In addition, Bayes-like
indices cannot take into account systematic error patterns. Systematic error
patterns are particularly important in behavioral paradigms with multiple
stimuli and multiple behaviors (Thomson & Kristan, 2005), such as the near
misses that are likely to occur with reaching and eye movement tasks, or
letter identification.

3.2 Indices Differ in Statistical Properties. The focus of this article is on
the idealized case—that is, on the performance of an index when there are
sufficient data so that its value can be determined exactly. In this limit, using
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the index to test a code based on the DPI is rigorous, and the properties
of the index depend in a simple way on the distribution of certainty of the
responses, the number of behaviors, and the range of likely decision rules.
In application to laboratory data, this limit may not be reached, and the
statistical properties (i.e., the bias and variance of estimates of these indices)
must also be taken into account. We do not analyze this in detail here because
of the variety of approaches available to estimate information-theoretic
quantities (Kennel, Shlens, Abarbanel, & Chichilnisky, 2005; Nemenman,
Bialek, & de Ruyter van Steveninck, 2004; Nirenberg, Carcieri, Jacobs, &
Latham, 2001; Paninski, 2004; Shlens, Kennel, Abarbanel, & Chichilnisky,
2007) and the many kinds of behavioral scenarios in which they might be
applied. However, we do point out (see Figure 1) that these indices differ
systematically in their bias and variance properties when naive (i.e., plug-in)
estimates are used. Estimates of Bayes-like indices tend to have greater bias
and variance for close-to-threshold responses than Shannon-like indices
(see Figure 1), but smaller bias and variance away from threshold.

3.3 Eliminating Codes Versus Inferring Interaction Networks. A com-
parison of the problem studied here to the general problem of identifying
interaction networks among several variables (Nemenman, 2004) provides
further insight into the reason that non-Shannon quantities are useful for
eliminating codes. For the problem of inferring interaction networks among
genes, an approach based on Shannon mutual information outperforms
Bayesian methods (Margolin et al., 2006). Yet for eliminating codes, Bayes-
like indices can outperform Shannon-like indices.

There are two reasons for this difference: the goal of the analysis and
the nature of the data. In the analysis of interaction networks, the goal is
to identify the simplest, or most likely, relationship graph. Here, we have
a different goal: in effect, we ask whether a particular relationship graph
can be excluded. The second difference is that our problem lacks some of
the symmetry of the interaction network problem: the three variables play
distinguishable roles. The stimulus variable X is distinguished in that we
know how it is correlated with each of the other two variables, but we do not
necessarily know how the other two variables are correlated with each other.
Moreover, the code variable Y and the behavior variable Z are distinguished
from each other in that we are interested in whether the code can account for
behavior, not vice versa. These asymmetries lead to the utility of measures
I f (X, Y) and I f (X, Z) that are not symmetric in their arguments.

Appendix A: Taking into Account What the Subject Knows About the
Task

In the main section of this article, we approached the problem of ruling out
neural codes without making assumptions as to what the subject is thinking
(e.g., what priors it is using for the task and what rules it is using for making
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decisions). The DPI allows us to do this, since it places absolute limits on
performance: any code that is ruled out by one of the indices I f is truly
ruled out, provided, of course, that the estimated value of the index I f is
accurate. However, it is intuitive that knowledge of the decision rule can
allow us to take this approach a step further and allow even more codes
to be ruled out. (This makes direct contact with ideal observer analysis;
Geisler, 1989). Here, we show how this can be done. As in the main text,
we focus on the two-stimulus, two-response scenario that we used in the
examples of Figures 2 to 5. A hypothetical code Y has a limited range of
behaviors that it can support: the diamond- or lens-shaped region in the
main portion of each figure. Our task is to determine whether an observed
behavior is inside this region. If it is not, our assumed code can be ruled
out. That is, for a code to be viable, the observed behavior must be inside
all of the tangents to this region.

We begin by showing that the tangents represent decision rules, and
that each tangent also corresponds to a weighted Bayesian index (see
equation 2.11). Thus, if the subject’s decision rule is known, we can choose
a specific index that is optimal for testing codes. To show this, we start
by specifying the decision rule itself. Suppose that the subject makes a
decision—to optimize the expected value of a response. So he assigns a
value v(xj , zk) to producing a behavior zk in response to a stimulus xj .
The expected value is a linear combination of the quantities v(xj , zk), each
weighted by the probability p(xj , zk) that the combination of the stimulus
xj and the behavior zk occur together. Since p(xj , zk) = p(zk | xj )p(xj ) and
p(xj ) is constant, the expected value is a linear function of the coordinates
p(z1 | xj ). That is, the points that share the same expected value,

E =
∑

j,k

v(xj , zk)p(xj , zk), (A.1)

fall on a line in the (p(z1 | x1), p(z1 | x2))-plane, and the lines corresponding
to different values of E are parallel. The line that maximizes E must be
tangent to the region of supportable behaviors, since if it entered the interior
of this region, then another line with a higher value of E could be positioned
between this line and the boundary.

We next show that each such tangent line corresponds to a DPI test for
an index �w Imax, where �w Imax is the index of transmitted information that
corresponds to a weighted Bayes-like index of concentration �w fmax (see
equation 2.11). To accomplish this, we first find a set of weights �w for which
the index �w Imax is constant on line segments parallel to the desired tangent,
and then we show that the criterion line �w Imax(X, Z) = �w Imax(X, Y) contacts
the region of behaviors that can be supported by the code.

To determine the weights �w for an index that is constant on lines par-
allel to a given tangent, we use definition 2.4 to write out the index �w Imax
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corresponding to �w fmax:

�w Imax(X, Z) =
2∑

k=1

p(zk) max(w1 p(x1 | zk), w2 p(x2 | zk))

− max (w1 p(x1), w2 p(x2)) . (A.2)

With the usual rules for conditional probabilities and p(z2 | xj ) = 1 −
p(z1 | xj ), this can be rewritten as

�w Imax(X, Z) = max(w1 p(x1)p(z1 | x1), w2 p(x2)p(z1 | x2))

+ max(w1 p(x1)(1 − p(z1 | x1)), w2 p(x2)(1 − p(z1 | x2)))

− max(w1 p(x1), w2 p(x2)). (A.3)

Equation A.3 is a piecewise linear function of the coordinates p(z1 | xj ).
When p(z1 | x1) is sufficiently large and p(z1 | x2) is sufficiently small (or
vice versa), it is constant along a line of slope m = w1 p(x1)/w2 p(x2). Thus, to
ensure that the locus for which �w Imax(X, Z) = C contains a line segment of
the desired slope m, we choose the weights so that w1/w2 = mp(x2)/p(x1). To
see that this segment is tangent to the region of supportable behaviors (i.e.,
that �w Imax(X, Z) = �w Imax(X, Y) can be achieved), we choose a decision rule
that selects z1 whenever w1 p(x1 | y) ≥ w2 p(x2 | y), and z2 otherwise. This is
the decision rule that an ideal observer would use to maximize the expected
value (see equation A.1) with priors p(x1) = p(x2) and v(xj , zk) = δ jkw j .

In sum, then, what we have shown are three related facts: (1) the tan-
gents represent decision rules; (2) when we know a decision rule, we know
what the ideal observer would do, given that decision rule; and (3) the
tangents also correspond to weighted Bayesian indices. Thus, if we known
the subject’s decision rule, we can choose the index corresponding to ideal
observer’s behavior.

The significance of this is that when we know the decision rule, we
do not have to deal with the problem of using many indices and face the
potential problems of multiple comparisons—instead we can cut to the
chase and choose the index that compares behavior with the ideal observer
limit. Note that in the main text, we avoid the multiple-comparison problem
by other means—choosing a test that leads to a curved bound; here we are
describing how knowledge of the decision rule also provides a way to avoid
the problem.

Finally, when there are multiple stimuli and multiple behavioral re-
sponses, the correspondence between ideal-observer analysis and tests
based on indices becomes more complex. There are two reasons for this.
First, there are extreme behaviors (i.e., points on the boundary of the set of
supportable behaviors) that do not correspond to optimal decision rules for
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any set of values. This is shown in appendix D. Second, the set of optimal de-
cision rules is larger. As a consequence, one must look beyond the weighted
Bayesian indices to find the equivalent test based on the DPI. For example, a
decision rule that maximizes the expected value of a second guess requires
an index derived from equation 2.12 to provide the equivalent DPI test.

Appendix B: The Direct Approach: The Problem of Multiple
Comparisons

The reader may wonder why we do not take a more direct approach to the
problem of ruling out codes. By “direct,” we mean the following: having
determined the range of behaviors that can be supported by a code (as in
Figures 2–5), why not simply ask whether the observed behavior lies within
this convex set?

While at first glance the direct approach might appear the most straight-
forward, it in fact has a substantial disadvantage: it leads to a problem of
multiple comparisons. To be sure that a behavior is inside the convex set,
one must test whether it is on the correct side of each tangent to the set (as
discussed in appendix A). Each tangent therefore corresponds to a separate
statistical test that must be satisfied. That is, determining “directly” whether
a behavior can be supported by a code is, implicitly, a multiple-comparison
problem. This problem is exacerbated when there are more than two be-
haviors or more than two stimuli, since the region of supportable behaviors
is high-dimensional (see appendix D).

The multiple-comparison problem is particularly difficult because
the individual comparisons are highly interdependent but nevertheless
distinct. That is, most, but not all, of the codes that are excluded by one
test are also excluded by another. In the main text, we circumvent the
multiple-comparison problem by choosing a single index. When this
strategy is taken, Shannon-like indices, which do not correspond to any
decision rule, can be more effective than Bayes-like indices (e.g., Figures 2
and 5), since their bounds curve inward. In appendix A, we describe
another way to solve the multiple-comparison problem: if the subject’s
decision rule is known, then a single Bayes-like index becomes more
effective: in fact, it becomes nearly ideal.

One might also hope to avoid the multiple-comparisons problem by for-
mulating a single “compound” hypothesis to test whether the behavior lies
within the convex set supported by a putative code. That is, if we had a
priori knowledge of the shape of the convex set, we could formulate a single
test statistic that would accurately indicate whether the behavior was inside
the convex set. The problem with this approach is that in typical experimen-
tal situations, the shape of the convex set is not known in advance. Rather,
as illustrated in Figures 2 to 5, its shape is determined by the fraction of
code words y with each ratio of a posteriori probabilities p(x1 | y)/p(x2 | y).
Thus, a multiple-comparisons problem has been avoided, but it has been
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replaced by an equivalent problem: the estimation of the number of code
words with each a posteriori probability ratio.

Appendix C: Properties of Naive Estimators of Indices of Concentration
and Transmitted Information

In this appendix, we (1) show that naive estimators of indices of concentra-
tion are upwardly biased, (2) show that the bias decreases monotonically as
sample size increases, (3) develop asymptotic expressions for their bias and
variance, and (4) discuss how these results extend to estimators of trans-
mitted information. The analysis of the bias of naive estimates of indices of
concentration hinges on the convexity property, equation 2.5.

C.1 Upward Bias of Naive Estimates of Indices of Concentration. The
naive estimate is formed in the following way. Suppose that N observations
�x = (x1, . . . , xN) are drawn from a discrete distribution P on L symbols
Each of the samples of �x is one of the discrete symbols 1, . . . , L . From the
set of observations �x, we construct an empirical distribution P�x , in which
the probabilities match the observed frequencies in �x. That is, in P�x , the
probability assigned to the kth symbol (1 ≤ k ≤ L) is ck(�x)/N, where ck(�x)
is the count of occurrences of the symbol k in �x. By definition, the naive
estimate of f (P) is f (P�x).

The expected value of the naive estimate from data sets of size N is

EN( f ) =
∑

�x=(x1,...,xN)

P(�x) f (P�x), (C.1)

where P(�x) denotes the probability of the set of observations �x in the true
distribution P:

P(�x) =
N∏

n=1

pxn . (C.2)

The true distribution P is a mixture of the empirical distributions P�x ,
each weighted by their probabilities P(�x):

∑
�x=(x1,...,xN)

P(�x)P�x = P. (C.3)

Therefore, with weights λ chosen to be the probabilities P(�x), the convexity
property, equation 2.5, implies that EN( f ) ≥ f (P). That is, that the expected
value of the naive estimator is greater than the true value of the index of
concentration.
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C.2 Expected Values of Estimators Decrease Monotonically with Sam-
ple Size. Having shown that naive estimates are upwardly biased, we now
prove the stronger statement that as the number of observations N increases,
the expected value of the naive estimate descends monotonically to its final
value. Specifically, we show that EN( f ), equation C.1 is a nonincreasing
function of N.

The argument hinges on the observation that an empirical probabil-
ity distribution P�x derived from N observations �x is a mixture of proba-
bility distributions derived from N − 1 observations, that is, probability
distributions with one observation missing. We use �x(n) to denote the
sequence of observations of �x with the nth observation missing, namely,
�x(n) = (x1, . . . , xn−1, xn+1, . . . , xN). Then,

P�x = 1
N

N∑
n=1

P�x(n), (C.4)

where P�x is the empirical probability distribution formed from the full data
set, and P�x(n) is the empirical probability distribution formed from the data
set with the nth observation missing.

Equation C.4 follows from a simple counting argument. The probability
assigned to the kth symbol in P�x is P�x(k) = ck(�x)/N, where ck(�x) is the
count of occurrences of the symbol k in �x. The probability assigned to the
kth symbol in P�x(n) is P�x(n)(k) = ck(�x(n))/(N − 1). After multiplication by
N(N − 1), equation C.4 is equivalent to

(N − 1)ck(�x) =
N∑

n=1

ck(�x(n)). (C.5)

Equation C.5 holds because each occurrence of k in the full data set �x
(say, xr = k) corresponds to an occurrence in all of the missing-observation
data sets �x(n) except �x(r ). So each contribution to ck(�x) is counted N − 1
times.

Combining the convexity property equation 2.5 (with λn = 1/N) and
equation C.4 yields

∑
�x=(x1,...,xN)

N∑
n=1

1
N

P(�x) f (P�x(n)) ≥
∑

�x=(x1,...,xN)

P(�x) f (P�x). (C.6)

The right-hand side of equation C.6 is EN( f ). We will show that the
left-hand side is EN−1( f ). To do this, we simplify the left-hand side by
(1) interchanging the order of summation, (2) breaking the sum over �x into
a component that depends on only the N − 1 retained observations �x(n) and
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an inner sum that depends on only the value of missing observation k = xn,
(3) noting that if the omitted nth value xn is k, then P(�x) = pk P(�x(n)), and
(4) noting that

∑L
k=1 pk = 1. That is,

∑
�x=(x1,...,xN)

N∑
n=1

1
N

P(�x) f (P�x(n)) =
N∑

n=1

∑
�x(n)

L∑
k=1

1
N

P(�x(n)) f (P�x(n))pk

=
N∑

n=1

∑
�x(n)

1
N

P(�x(n)) f (P�x(n)). (C.7)

The final expression of equation C.7 is a sum over N replicas of the same
quantity, since, across all full data sets �x, the collection of omitted-sample
data sets will be independent of which sequential sample n is omitted. Thus,

∑
�x=(x1,...,xN)

N∑
n=1

1
N

P(�x) f (P�x(n)) =
∑

�y=(y1,...,yN−1)

P(�y) f (P�y) = EN−1( f ). (C.8)

Finally, combining equations C.6 and C.8 yields

EN−1( f ) ≥ EN( f ). (C.9)

Moreover, the above argument shows that inequality C.9 is strict (i.e., that
the sequence EN( f ) is strictly decreasing) whenever there is at least some
pair of distributions P�x and P�y for which the inequality of equation C.6 is
strict. This is typical of any nontrivial index of concentration.

For the indices of concentration considered in the main text, it is straight-
forward to show that the expected value of the naive estimate EN( f ) con-
verges to the true value f (P).

C.3 Asymptotic Analysis. We can gain insight into the qualitative
behavior of the bias of naive estimates by expanding f (Q) = f (q1, . . . , qL )
as a Taylor series for Q = P�x near P:7

f (Q) = f (P) +
L∑

k=1

∂ f
∂pk

(qk − pk)

+1
2

L∑
k=1

L∑
m=1

∂2 f
∂pk∂pm

(qk − pk)(qm − pm) + · · ·. (C.10)

7For the Taylor expansion, we consider the arguments q1, . . . , qL of f to be indepen-
dent, not constrained to sum to unity. This constraint is expressed by the fact that the
covariance matrix, equation C.11, is singular.
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Here, qk is the naive estimate of pk derived from the observations
�x = (x1, . . . , xN). That is, qk = ck(�x)/N, where ck(�x) is the number of occur-
rences of the symbol k in �x. The first-derivative term does not contribute to
the bias, since the expected value of qk is pk . Bias arises from the second term,
since the covariance of two estimates qk and qm is nonzero. In particular,
from just a single trial (N = 1), the covariances of the counts ck(�x) are

C =




p1(1 − p1) −p1 p2 . . . −p1 pL

−p2 p1 p2(1 − p2) . . . −p2 pL

...
...

. . .
...

−pL p1 −pL p2 . . . pL (1 − pL )


 . (C.11)

Since successive observations are independent, the covariance matrix of
the counts on N trials is C N, and the covariance matrix of the probability
estimates qk = ck(�x)/N is C N/N2 = C/N. It now follows from equation
C.10 that the bias of EN( f ) = 〈

f (Q)
〉

may be estimated by

〈 f (Q)〉 − f (P) ≈ 1
2

L∑
k=1

L∑
m=1

∂2 f
∂pk∂pm

〈(qk − pk)(qm − pm)〉

= 1
2N

L∑
k=1

L∑
m=1

∂2 f
∂pk∂pm

Ckm. (C.12)

For fmax,

∂2 fmax

∂pk∂pm
= 0 if pk = pm, (C.13)

so the asymptotic bias, equation C.12, is zero when all of the pk ’s are distinct.
In the Shannon limit, fShannon(P) = limα→1

fα (P)−1
α−1 = − H1(P) =∑L

i=1 pi log pi (see equation 2.2),

∂2 fShannon

∂pk∂pm
= 0 if k = m and

∂2 fShannon

∂p2
k

= 1
pk

. (C.14)

This recovers from equation C.12 the well-known result (Carlton, 1969;
Miller, 1955; Treves & Panzeri, 1995; Victor, 2000) that the bias is asymptot-
ically independent of the probabilities pk :

〈 f (Q)〉 − f (P) ≈ L − 1
2N

. (C.15)

The customary factor of log 2 is missing from the denominator since the
quantities are calculated with natural logs, not bits.
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The Taylor expansion, equation C.10, also provides an asymptotic esti-
mate for the variance of the estimate EN( f ):

〈( f (Q) − 〈 f (Q)〉)2〉 ≈ 1
N

L∑
k=1

L∑
m=1

∂ f
∂pk

∂ f
∂pm

Ckm. (C.16)

Figure 1 shows the behavior of the coefficient of 1/N in the bias (see equa-
tion C.12) and variance (see equation C.16) of estimators of indices fα (see
equation 2.3).

C.4 Estimators of Generalized Transmitted Information. The analysis
in sections C.1 and C.2 extends to the first term in the definition (see equation
2.4) of the transmitted information I f , namely, the sum over the conditional
probabilities:

N∑
j=1

pY; j f (PX|Y= j ). (C.17)

As above, we relate estimates from a data set containing N observations to
estimates from N data sets containing N − 1 observations. To do this, we
drop the rth observation from the larger data set and compare the estimates
of expression C.17 to the estimates obtained from the resulting smaller data
sets. Say that for the rth observation, �yr = k. Dropping this observation does
not change any of the estimates involving the probabilities conditioned by
the other values j = k in Y. That is, estimates of f (PX|Y= j ) are unchanged,
for j = k. For f (PX|Y=k), the above arguments (applied to the subset within
the N observations that have Y = k) imply that the bias of this term is
positive and decreases when the rth observation with �yr = k is included.
Thus, estimators of expression C.17 have a positive bias that decreases
monotonically with sample size.

However, I f (X, Y) is the difference between expression C.17 and the
concentration f (X). If X is known exactly, then so is f (X), and the statistical
properties of estimators of I f (X, Y) are determined by the properties of
estimators of expression C.17 as described in the above paragraph. But if
X must be determined from the sample, the statistics of estimators of f (X)
also have to be considered. In this case, the bias of naive estimates I f (X, Y)
are not guaranteed to be monotonic decreasing.

Appendix D: The Range of Behaviors That Can Be Supported
by a Neural Code

In this appendix, we determine the range of stimulus-behavior relation-
ships that can be supported by a given neural code. We show that the
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stimulus-behavior relationships that can be supported by a code form a
convex set (as illustrated in Figures 2–5), and we characterize the boundary
of this set in terms of the decision rules that generate these behaviors—the
“extreme” decision rules. Surprisingly, although many extreme decision
rules can be described in terms of optimizing the “value” of a behavior,
not all extreme decision rules can be described in this fashion when the
number of stimuli and behaviors is sufficiently large.

D.1 Extreme Decision Rules Correspond to Convex Polyhedral Par-
titions. We consider scenarios in which the stimulus set X has L discrete
elements, and the behavioral response set Z has N discrete elements. The
neural code Y can be either discrete or continuous. Our goal is to determine
the range of stimulus-behavior relationships PZ|X that can be supported by
a given X, Y, and PX|Y=y.

A stimulus-behavior relationship is the net result of an encoding process
that transforms the stimuli X into the neural code Y and a decision rule that
generates behaviors Z from the code words of Y. In general, the decision rule
may be probabilistic, that is, it is specified by the conditional probability
distributions PZ|Y. The decision rule PZ|Y and the encoding process PY|X
together determine the stimulus-behavior relationship PZ|X:

PZ|X=x;z =
∑

y

PZ|Y=y;z PY|X=x;y. (D.1)

Equation D.1 states that the stimulus-behavior relationship PZ|X is a linear
transformation of the decision rule PZ|Y.

Note that even though individual decision rules may be highly nonlinear,
decision rules can be considered to combine in a linear fashion—by mixture.
That is, a mixture of two decision rules is a decision rule in which the subject
uses one decision rule on some fraction of the trials and another decision
rule on the rest of the trials. In this sense, decision rules form a convex set.

Because decision rules form a convex set, the linearity of equation D.1
implies that the set of supportable stimulus-behavior relationships is also
convex. We therefore focus on determining the boundaries of this set. These
are the “extreme” stimulus-behavior relationships—those for which there
is no (nontrivial) decomposition as a mixture:

PZ|X =
N∑

n=1

λn PZn|X. (D.2)

The linear relationship D.1 maps a mixture of decision rules into a mix-
ture of behaviors. Therefore, extreme stimulus-behavior relationships must
have extreme decision rules—decision rules that are not mixtures of other
rules.



2926 J. Victor and S. Nirenberg

Extreme decision rules must be deterministic. This is because nonde-
terministic decision rules are mixtures of deterministic ones. To see this,
suppose that some code word y0 can lead to several behaviors z1, . . . , zm,
each with nonzero probability pZ|Y=y0;zn . These nonzero probabilities can be
viewed as weights λn = pZ|Y=y0;zn , which express PZ|Y as a convex mixture
of rules PZn|Y that are deterministic for y = y0 and match PZ|Y for y = y0.
Conversely, a decision rule that is deterministic for code word y cannot be
a nontrivial mixture (since the mixing process implies that a single neural
symbol y ∈ Y can map to more than one behavior in Z).

To sum up, all supportable behaviors are mixtures of extreme behaviors,
and extreme behaviors correspond to extreme decision rules, which are
necessarily deterministic. We now show that it suffices to consider only a
small subset of deterministic rules.

To determine this subset, we introduce a parameterization of decision
rules. A decision rule (the probability of choosing a behavior z, given the
code word y) can be thought of as acting on the a posteriori distribution
PX|Y=y rather than on the identity y of the code word. A decision rule is
therefore characterized by the (possibly stochastic) mapping from each a
posteriori distribution �q to the behaviors in Z. We denote this mapping
by r (�q , z), where �q ranges over all a posteriori distributions PX|Y=y, and z
ranges over all behaviors Z. That is, given a code word y with a posteriori
distribution �q = PX|Y=y, r (�q , z) is the probability that the behavioral
outcome is z. When there are L input symbols, an a posteriori distribution
PX|Y=y is a list of L probabilities, that is, a vector �q = (q1, . . . , qL ) whose
components are nonnegative and sum to 1. A decision rule is completely
described by mappings from such vectors to behaviors in Z, namely, r (�q , z).

We next rewrite equation D.1, the stimulus-behavior relationship, in
terms of r (�q , z). To do this, we introduce ρY|X=xj (�q ) to represent the proba-
bility that a trial with stimulus xj will produce any code word in Y for which
PX|Y=y = �q . Since all of these symbols lead to behaviors as determined by
r (�q , z), we may rewrite equation D.1 as

PZ|X=xj ;z =
∫

�q∈J
ρY|X=xj (�q )r (�q , z) d�q , (D.3)

where J is the space of a posteriori probabilities, �q = (q1, . . . , qL ) When the
set of code words Y is discrete, then so is the density ρY|X=xj (�q ), and the
integral, equation D.3, becomes a sum.

Equation D.3 can be put into a form that avoids the stimulus condition-
ing in the density ρY|X=xj (�q ). To begin, let ρY(�q ) be the probability that any
trial will produce a code word y for which PX|Y=y = �q . (In the text exam-
ples, ρY(�q ) = ρ(q1), the quantity plotted in the insets of Figures 2–5.) We
now relate ρY(�q ) to ρY|X=xj (�q ). The joint probability of a stimulus xj and a
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code word y ∈ Y with PX|Y=y = �q is ρY(�q ) · q j , since this expression is the
probability that such a code word y was present (ρY(�q )), times the condi-
tional probability of xj given this code word (q j ). But this joint probability
can also be calculated from the product of the conditional density ρY|X=xj (�q )
and the a priori probability of xj (p j ). Thus,

p jρY|X=xj (�q ) = q jρY(�q ). (D.4)

Substitution of equation D.4 into equation D.3 yields

PZ|X=xj ;z = 1
p j

∫
�q∈J

q jρY(�q )r (�q , z) d�q . (D.5)

The above equations are linear in r (�q , z), so linear combinations of r corre-
spond to linear combinations of the stimulus-behavior relationship. We are
now set up to characterize the extreme stimulus-behavior relationships in
terms of r.

As we have seen above, for extreme stimulus-behavior relationships, the
decision rule is deterministic. For a deterministic rule, r (�q , z) is concentrated
on a single value in Z for each �q ∈ J . We use J (z) to denote the “indicator
region” for z, namely, the region of J for which r (�q , z) = 1. Equation D.5 can
be then be rewritten as

PZ|X=xj ;z = 1
p j

∫
�q∈J (z)

q jρY(�q ) d�q . (D.6)

Appendix E shows, based on this representation, that any extreme
stimulus-behavior relationship is the result of a rule in which each J (z)
is convex. That is, extreme stimulus-behavior relationships correspond to
partitions of the space J into convex indicator regions J (z). In the main
portions of Figures 2 to 5, the region of behaviors that can be supported by
each code is derived from equation D.6, with indicator regions J (z1) and
J (z2) that consist of partitions of the interval [0, 1] into disjoint convex sets,
namely, [0, q ) and [q , 1].

The partitioning of the domain J into convex regions J (z j ) has an
intuitive interpretation. Imagine that on a single trial, the decision process
is uncertain as to whether a trial resulted in neural symbol ya or yc (with
a posteriori probabilities �qa = PX|Y=ya and �qc = PX|Y=yc ), but that both
neural symbols are in the same indicator region J (z j ). Even though the
subject is uncertain about the a posteriori probabilities, the subject is
nevertheless sure that they lie somewhere on the line between �qa and �qc .
The convexity property states that under these circumstances, the decision
rule yields the output symbol z j . That is, if the subject is uncertain as to
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J(z3)
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Figure 6: Geometric characterization of extreme stimulus-behavior relation-
ships in scenarios with L stimuli and N behavioral responses. The extreme
stimulus-behavior relationships are parameterized by the partitions of the
L − 1-dimensional space of a posteriori probabilities into N convex subsets.

which of two neural symbols was present but either would have resulted
in the same behavior z j , then that behavioral response will always be
produced.

Since any two adjacent indicator regions J (z j ) and J (zk) within this
partition are both convex, their mutual border must be flat (e.g., a straight
line segment or a region of a hyperplane). Consequently, for any extreme
decision rule, the domain J is partitioned into convex polyhedrons J (z j ), one
for each output symbol z j . This is a much stronger condition than merely
requiring that r is deterministic, since deterministic rules can have arbitrary
shapes for the indicator regions J (z).

In sum, the boundary of the stimulus-behavior relationships PZ|X that
can be supported by a neural code Y is determined by the “extreme” deci-
sion rules, which are in turn parameterized by the partitions of the space J
of a posteriori probabilities into convex polyhedral indicator regions J (z j ).
Examples of partitions of J with L stimuli in X and N behaviors in Z are
shown in Figure 6.

D.2 Optimal Decision Rules. The above framework readily provides
for a characterization of “optimal” decision rules: decision rules that maxi-
mize the expected value of a behavior. But as the examples below will show,
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extreme decision rules need not be “optimal” in this sense. This somewhat
surprising result underscores the point that the range of systematic strate-
gies that a subject might choose is very large.

Optimal decision rules are characterized by convex polyhedral indicator
regions. We consider an optimal decision rule for a set of values v(xj , zk)
associated with producing a behavior zk when the stimulus is xj . Given a
neural response y with a posteriori probabilities �q , the expected value Vk(�q )
associated with a behavior zk is

Vk(�q ) =
L∑

j=1

v(xj , zk)q j . (D.7)

Maximizing the expected value of the behavior corresponds to choosing
the behavior zk that maximizes Vk(�q ).

Each Vk(�q ) is a linear function on the domain J of �q . At a typical point
�q in J, one of the Vk(�q ) will be larger than all other Vm(�q ). For each k, the
set of points for which Vk(�q ) is larger than all other Vm(�q ) constitutes the
interior of J (zk), the indicator region of J on which the response symbol zk

is chosen. The boundary between two indicator regions is the points of J
at which two (or more) of the Vk(�q ) are identical. Since Vk(�q ) = Vm(�q ) is a
linear relationship among the �q ’s, these boundaries will be flat.

D.3 Examples. We now consider how this analysis applies to scenarios
in which there are a specific number of stimuli L in X and a specific number
of behaviors N in Z. When there are only two stimuli, or only two behaviors,
the optimal decision rules and the extreme decision rules are identical. But
in general, there are extreme decision rules that do not correspond to any
optimal decision rule.

The set J of all possible a posteriori probabilities �q consists of all L-
element vectors �q = (q1, . . . , qL ) with nonnegative components that sum
to 1. For example, with L = 2 symbols, J is a line segment. With L = 3
stimuli, J is the set of three-element vectors �q = (q1, q2, q3) in the triangle
with vertices at (0, 0, 1), (0, 1, 0), and (1, 0, 0). To characterize the extreme
stimulus-behavior relationships, we need to determine the ways that we
can partition this space into N convex subsets.

D.3.1 Two Stimuli, Two or More Responses. For two stimuli (L = 2), J is
the set of two-element vectors �q = (q1, q2) on the line segment from (0, 1)
to (1, 0), Convex subsets of J consist of shorter segments that it contains.
Therefore, extreme decision rules with N behavioral responses correspond
to partitions of the unit line segment into N smaller segments (see Figure
6, top row). Any such partition corresponds to a choice of N − 1 cutpoints,
followed by an assignment of the resulting N segments to the N behavioral
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J(z1) J(z2)J(z3) J(z4)J(z5)

1( )V q

q

2( )V q
3( )V q

4( )V q

5( )V q

Figure 7: Correspondence between extreme rules and optimal rules for scenar-
ios with L = 2 stimuli. The case of N = 5 behavioral responses is shown. The
expected value associated with each behavior z1, . . ., z5 is a linear function V of
the a posteriori probabilities �q . Each of these linear functions is maximal over a
different interval of the range of a posteriori probabilities.

responses. Note that the symbols can be assigned in any order (as illustrated
in the example for L = 2, N = 5). For any such partition, it is possible to find
a corresponding set of stimulus-behavior values v(xj , zk)—a set of values
v(xj , zk) for which the corresponding expected values Vk(�q ) (see equation
D.7) intersect at these cutpoints, as illustrated in Figure 7.

Note that for all values of N, many choices of the values v(xj , zk) will
lead to the same cutpoints, since the cutpoints are determined solely by
the values of �q at which the Vk(�q ) intersect. The slopes of the successive
Vk(�q ) must be monotonically increasing, but they are otherwise free to
vary.

D.3.2 Two Responses, Two or More Stimuli. For L stimuli, J is a simplex
of dimension L − 1 with vertices at (1, 0, . . . , 0), . . . , (0, . . . , 0, 1). Extreme
decision rules with N = 2 behavioral responses correspond to partitions of J
into two convex sets—to all the hyperplanes that intersect J (first column of
Figure 6). As in the above case of two stimuli, it is possible to find many sets
of stimulus-behavior values v(xj , zk) that lead to this partition. To do this, it
suffices to choose v(xj , zk)so that the equation of the separating hyperplane
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between J (z1) and J (z2) is given by

L∑
j=1

(
v(xj , z1) − v(xj , z2)

)
q j = 0. (D.8)

D.3.3 More Than Two Stimuli and More Than Two Behavioral Responses.
This situation is noteworthy because it is no longer the case that partitions
of J into N convex sets necessarily correspond to an optimal decision rule
for some set of values v(xj , zk). To demonstrate this, we show that there
are more degrees of freedom required to specify the partition than can be
supported by the number of degrees of freedom provided by choices of
the values v(xj , zk). Let us assume that any partition can be generated by
optimizing the expected value Vk(�q ) derived from some set of values. Con-
sider the partitions for (L = 3, N = 3) and (L = 3, N = 4) in Figure 6. For
the (L = 3, N = 3) partition, the boundaries between each pair of indicator
regions correspond to the condition that two expected values are equal:
V1(�q ) = V2(�q ), V1(�q ) = V3(�q ), and V2(�q ) = V3(�q ). The point at which all three
indicator regions meet is determined by V1(�q ) = V2(�q ) = V3(�q ). The config-
uration shown for (L = 3, N = 4) is derived from the configuration from
(L = 3, N = 3) in the following manner. First, the point at which the three
indicator regions meet is replaced by a small triangle, J (z4). Second, the line
segments that form the boundaries of the first three indicator regions are
shifted by arbitrary small amounts, since (because of the presence of J (z4))
they are no longer constrained to meet at a point. Thus, the (L = 3, N = 4)
configuration has four more degrees of freedom than the (L = 3, N = 3)
configuration: for (L = 3, N = 4), the coordinates of the corners of J (z4)
must be specified (6 degrees of freedom), while for the (L = 3, N = 3) con-
figuration, the coordinates of vertex common to J (z1), J (z2), and J (z3) must
be specified. This process can be continued indefinitely, adding an indicator
region by replacing a vertex with a triangle and allowing the positions of
its corners to vary slightly. Each new indicator region thus adds 4 degrees
of freedom. However, adding a new behavior allows only three additional
values: v(x1, zN), v(x2, zN), and v(x3, zN). Consequently, for a sufficiently
large number of behaviors N, at least some configuration cannot be realized
as any optimal decision rule. For L = 3, this point is reached at N = 4,
since 9 degrees of freedom are required to specify a polygonal partition (2
degrees of freedom for each of the three internal intersections, 1 degree of
freedom for each of the points on the edges), while at most L N − L − 1 = 8
degrees of freedom are available from the choices of values.8

8The array of values v(xj , zk ) has NL parameters, but some sets of values result in the
same decision rules. This results in a loss of L + 1 degrees of freedom for the decision
rules: the hyperplanes determined by equation D.8 are unchanged if an arbitrary constant
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The existence of extreme decision rules that are not optimal decision
rules also occurs for L > 3 stimuli. Once a sufficient number of indicator
regions are present, addition of a new indicator region (a new behavior)
replaces a point common to L indicator regions with a small new simplex.
The L vertices of the new simplex can be independently specified in the
(L − 1)-dimensional domain J, gaining L(L − 1) degrees of freedom. But
since the new simplex covered up the common point, the L − 1 degrees of
freedom required to specify the coordinates of the common point are lost.
Thus, there is a net gain of L(L − 1) − (L − 1) = (L − 1)2 degrees of freedom.
Since adding a new behavior allows only L additional values v(xj , zN+1), the
number of degrees of freedom required to specify a convex partition will
eventually exceed the number of degrees of freedom available to specify an
optimum decision rule via a set of values.

Appendix E: Convexity of Indicator Regions for Extreme Decision
Rules

Here we prove, as required for appendix D, that any extreme stimulus-
behavior relationship can be represented by a decision rule in which each
J (z) is convex. We argue by contradiction. Assume we have an extreme
stimulus-behavior relationship for which the sets J (z) that characterize
the deterministic rule are not convex. We show how this implies that the
behavior is a nontrivial mixture. In particular, assume that we have a rule
described by a deterministic r (�q , z) with a nonconvex indicator region J (z1)
(see Figure 8). That is, we assume that there are points �qa and �qc in J (z1)
and an intermediate point �qb in a distinct region J (z2). We will construct a
mixture of a trio of deterministic rules r [m](�q , z) (m = 1, 2, 3) that yields the
same behavior as r (�q , z) via equation D.5. The strategy is to shift some of
the mass in J (z2) at �qb to one of the flanking points �qa or �qc (see Figure 8).

Since the behaviors corresponding to the rules r [m](�q , z) (via equation D.5)
are distinct, we have exhibited the assumed extreme behavior r (�q , z) as a
mixture—and therefore have derived a contradiction from the assumed
existence of an intermediate point �qb in a distinct region J (z2).

In order for this shift to leave the stimulus-behavior linkage unchanged,
r [m](�q , z) and their mixture weights wm (with

∑3
m=1 wm = 1) need to satisfy

1
p j

∑
h=a ,b,c

qh, jρY(�qh)r (�qh, z) = 1
p j

3∑
m=1

wm

( ∑
h=a ,b,c

qh, jρY(�qh)r [m](�qh, z)

)
,

(E.1)

c j is added to each v(xj , zk ) or if all of the v(xj , zk ) are multiplied by a positive constant.
Thus, at most NL − L − 1 degrees of freedom are available for the number of optimal
decision rules.
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qa qc

qb

J(z2)

J(z1)
qcqa qb

Y(q)

qa qcqb

qa qcqb

qa qcqb

=

w1

w2

w3

+

+

A B

Figure 8: Diagram illustrating shifting of mass for proof of characterization of
extreme decision rules (see appendix E). (A) A decision rule r with a nonconvex
indicator region J (z1). (B) At the code words with a posteriori probabilities �qa ,
�qb , and �qc , r can be represented as a weighted sum of three decision rules r [1],
r [2], and r [3]. The heights of the bars indicate the density ρ(�q ), and the shading
indicates assignment to J (z1) (open) or J (z2) (filled).

where r (�qa , z1) = 1 and r (�qc, z1) = 1 (since �qa and �qc are in J (z1)), and
r (�qb, z2) = 1 (since �qb is in J (z2)), and all other r (�qh, z) = 0. This follows
from the discrete version of equation D.6.

At all points z other than z1 or z2, equation E.1 is readily satisfied by
choosing r [m](�q , z) = 0 unless z = z1 or z = z2. For z = z1 or z = z2, equation
E.1 represents L pairs of equations, with one pair for each coordinate j in Q:

qa , jρY(�qa ) + qc, jρY(�qc) =
3∑

m=1

wm

∑
h=a ,b,c

qh, jρY(�qh)r [m](�qh, z1) (E.2)

and

qb, jρY(�qb) =
3∑

m=1

wm

∑
h=a ,b,c

qh, jρY(�qh)r [m](�qh, z2). (E.3)

However, these L pairs of equations are highly degenerate because �qb is
between �qa and �qc on a line. That is, we can write qh, j = qa , j + µ(qc, j − qa , j ),
with µ = 0 for �qa , µ = 1 for �qc , and some µ = λ for �qb , with 0 < λ < 1. With
these substitutions and matching the coefficients of µ0 and µ1, the L pairs
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of equations, E.2 and E.3 (one for each j), reduce to four equations:

ρY(�qa ) + ρY(�qc) =
3∑

m=1

wm

∑
h=a ,b,c

ρY(�qh)r [m](�qh, z1), (E.4)

ρY(�qc) = λρY(�qb)
3∑

m=1

wmr [m](�qb, z1) + ρY(�qc)
3∑

m=1

wmr [m](�qc, z1),

(E.5)

ρY(�qb) =
3∑

m=1

wm

∑
h=a ,b,c

ρY(�qh)r [m](�qh, z2), (E.6)

λρY(�qb) = λρY(�qb)
3∑

m=1

wmr [m](�qb, z2) + ρY(�qc)
3∑

m=1

wmr [m](�qc, z2).

(E.7)

Without loss of generality, we may assume that

λρY(�qa ) ≥ (1 − λ)ρY(�qc), (E.8)

since if not, it suffices to reverse the roles of a and c.
To find weights in [0, 1] that solve equations E.4 to E.7, we make the

following assignments for the deterministic rules r [m](�q , z): r [1] chooses re-
sponse z1 at all �qh , r [2] chooses response z1 at �qa but z2 at �qb and �qc , and r [3]

chooses z2 at all �qh (see the shading in Figure 8B). That is,

r [1](�qa , z1) = r [1](�qb, z1) = r [1](�qc, z1) = 1

r [2](�qa , z1) = r [2](�qb, z2) = r [2](�qc, z2) = 1

r [3](�qa , z2) = r [3](�qb, z2) = r [3](�qc, z2) = 1

(E.9)

with all other values r [m](�qh, z) = 0. These choices reduce equations E.4 to
E.7 to

ρY(�qa ) + ρY(�qc) =w1 (ρY(�qa ) + ρY(�qb) + ρY(�qc)) + w2ρY(�qa ), (E.10)

ρY(�qc) = λw1ρY(�qb) + w1ρY(�qc), (E.11)

ρY(�qb) = (w2 + w3) (ρY(�qb) + ρY(�qc)) + w3ρY(�qa ), (E.12)

λρY(�qb) = (w2 + w3) (λρY(�qb) + ρY(�qc)) . (E.13)
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Straightforward algebra verifies that the choices

w1 = ρY(�qc)
λρY(�qb) + ρY(�qc)

w2 = ρY(�qb)
ρY(�qa )

λρY(�qa ) − (1 − λ)ρY(�qc)
λρY(�qb) + ρY(�qc)

(E.14)

w3 = ρY(�qb)
ρY(�qa )

(1 − λ)ρY(�qc)
λρY(�qb) + ρY(�qc)

satisfy equations E.10 through E.13 and that
∑3

m=1 wm = 1. Since (via equa-
tion E.8) all of the wm ≥ 0, it also follows that wm ≤ 1.
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Rényi, A. (1970). Probability theory. Amsterdam: Elsevier North-Holland.
Rieke, F., Warland, D., de Ruyter van Steveninck, R. R., & Bialek, W. (1997). Spikes:

Exploring the neural code. Cambridge, MA: MIT Press.
Shlens, J., Kennel, M. B., Abarbanel, H. D., & Chichilnisky, E. J. (2007). Estimating

information rates with confidence intervals in neural spike trains. Neural Comput.,
19(7), 1683–1719.

Strong, S. P., Koberle, R., de Ruyter van Steveninck, R. R., & Bialek, W. (1998). Entropy
and information in neural spike trains. Phys. Rev. Lett., 80(1), 197–200.

Thomson, E. E., & Kristan, W. B. (2005). Quantifying stimulus discriminability: A
comparison of information theory and ideal observer analysis. Neural Comput.,
17(4), 741–778.

Treves, A., & Panzeri, S. (1995). The upward bias in measures of information derived
from limited data samples. Neural Comput., 7, 399–407.

Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys.,
52, 479–487.

Victor, J. D. (2000). Asymptotic bias in information estimates and the exponential
(Bell) polynomials. Neural Comput., 12(12), 2797–2804.

Victor, J. D., & Purpura, K. P. (1996). Nature and precision of temporal cod-
ing in visual cortex: A metric-space analysis. J. Neurophysiol., 76(2), 1310–
1326.

Wehrl, A. (1978). General properties of entropy. Reviews of Modern Physics, 50(2),
221–260.

Zhao, Y.-B., Fang, S.-C., & Li, D. (2005). Constructing generalized mean func-
tions using convex functions with regularity conditions. Available online at
http://www.optimization-online.org/DB FILE/2005/06/1164.pdf.

Received October 29, 2007; accepted February 12, 2008.


