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SUMMARY AND CONCLUSIONS 

I. We recorded single-unit and multi-unit activity in response 
to transient presentation of texture and grating patterns at 25 sites 
within the parafoveal representation of Vl, V2, and V3 of two 
awake monkeys trained to perform a fixation task. In grating exper- 
iments, stimuli varied in orientation, spatial frequency, or both. In 
texture experiments, stimuli varied in contrast, check size, texture 
type, or pairs of these attributes. 

2. To examine the nature and precision of temporal coding, we 
compared individual responses elicited by each set of stimuli in 
terms of two families of metrics. One family of metrics, Dspike, 
was sensitive to the absolute spike time (following stimulus onset). 
The second family of metrics, Dinrrrvnl, was sensitive to the pattern 
of interspike intervals. In each family, the metrics depend on a 
parameter 4, which expresses the precision of temporal coding. 
For 4 = 0, both metrics collapse into the “spike count” metric 
(Dcounf), which is sensitive to the number of impulses but insensi- 
tive to their position in time. 

3. Each of these metrics, with values of 4 ranging from 0 to 
512/s, was used to calculate the distance between all pairs of spike 
trains within each dataset. The extent of stimulus-specific clustering 
manifest in these pairwise distances was quantified by an informa- 
tion measure. Chance clustering was estimated by applying the 
same procedure to synthetic data sets in which responses were 
assigned randomly to the input stimuli. 

4. Of the 352 data sets, 170 showed evidence of tuning via the 
spike count (4 = 0) metric, 294 showed evidence of tuning via the 
spike time metric, 272 showed evidence of tuning via the spike inter- 
val metric to the stimulus attribute (contrast, check size, orientation, 
spatial frequency, or texture type) under study. Across the entire 
dataset, the information not attributable to chance clustering averaged 
0.042 bits for the spike count metric, 0.17 1 bits for the optimal spike 
time metric, and 0.107 bits for the optimal spike interval metric. 

5. The reciprocal of the optimal cost 9 serves as a measure of 
the temporal precision of temporal coding. In VI and V2, with 
both metrics, temporal precision was highest for contrast (ca. lo- 
30 ms) and lowest for texture type (ca. 100 ms). This systematic 
dependence of 4 on stimulus attribute provides a possible mecha- 
nism for the simultaneous representation of multiple stimulus attri- 
butes in one spike train. 

6. Our findings are inconsistent with Poisson models of spike 
trains. Synthetic data sets in which firing rate was governed by a 
time-dependent Poisson process matched to the observed poststi- 
mulus time histogram (PSTH) overestimated clustering induced 
bY D c0unt and, for low values of 4, Dsspike[ 41 and Dir’trn’crl[ q] . Syn- 
thetic data sets constructed from a modified Poisson process, which 
preserved not only the PSTH but also spike count statistics ac- 
counted for the clustering induced by D “o’4nr but underestimated the 
clustering induced by D@‘[ 41 and Di”‘emnl[ q] . 

INTRODUCTION 

The manner in which sensory signals are encoded into the 
spike discharge of a neuron is a fundamental question in 

neuroscience. One emerging theme of recent physiological 
investigations is that the temporal pattern of a cortical neu- 
ron’s discharge, and not just the number of spikes, is criti- 
cally important in transmitting information. Evidence in sup- 
port of this view has been obtained from single- and multi- 
unit studies at several levels of the visual system (Gawne 
et al. 199 1; McClurkin et al. 199 1 a; Optican and Richmond 
1987; Purpura et al. 1993; Richmond et al. 1987), the audi- 
tory system ( Abeles 1982a, 199 1; Geisler et al. 199 1; Mid- 
dlebrooks et al. 1994)) and in the olfactory system (Skarda 
and Freeman 1987). It recently has been demonstrated that, 
despite the great variability in the discharges of cortical neu- 
rons (Softky and Koch 1993 ), the spike-generating mecha- 
nisms are intrinsically very precise (Mainen and Sejnowski 
1995). Such precision is necessary for the propagation of 
information by a high-resolution temporal code. However, 
whether the timing per se of nerve impulses conveys infor- 
mation, or rather reflects the variability of neuronal inputs 
or spike-generating mechanisms, remains controversial 
(Shadlen and Newsome 1994, 1995; Softky 1995). Further- 
more, even imprecise or variable neuronal responses are 
consistent with temporal coding, provided that differences 
in responses to stimuli that share a particular attribute is 
small in comparison with the differences in responses to 
stimuli that vary along that attribute. Thus to address the 
significance of temporal coding, it is necessary to consider 
not just the intrinsic variability of responses to the same 
stimulus, but also to compare this variability with the vari- 
ability encountered as a stimulus attribute is changed. Fur- 
thermore, while temporal coding might be embodied in the 
precise (i.e., millisecond) times of occurrences of spikes, 
the degree of precision needs to be determined empirically, 
rather than assumed. 

To determine whether a set of spike discharges depends 
systematically on a set of stimuli, it is necessary to have a 
notion of similarity of spike trains, typically expressed as a 
“distance” between spike trains. Most previous approaches 
(Chee-Orts and Optican 1993; Geisler et al. 1991, McClur- 
kin et al. 199 1 a; Optican and Richmond 1987)) taking their 
cue from methods appropriate for the analysis of multivariate 
data (Fukunaga 1990)) have binned the spike trains and 
derived notions of distance from the Euclidean distance in a 
vector space. Within this vector space, principal components 
analysis ( McClurkin et al. 1991a; Optican and Richmond 
1987 ) , clustering algorithms ( Chee-Orts and Optican 1993 ) , 
or other forms of pattern analysis (Geisler, Albrecht et al. 
1991) may be applied. A practical drawback to this approach 
is that to achieve adequate time resolution (e.g., 2 ms) over 
a reasonable analysis interval (e.g., 400 ms), a very high- 
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dimensional vector space is required. Because this space is 
populated only sparsely by the existing data set, it is neces- 
sary either to synthesize artificial data to populate the space 
more densely ( Chee-Orts and Optican 1993 ) -which en- 
tails assumptions about the underlying temporal code-or 
to limit the detail of the analysis (Geisler et al. 1991). Fur- 
thermore, there are theoretical reasons to doubt whether a 
vector-space approach is appropriate for this purpose (Hop- 
field 1995 ) . 

A second kind of strategy (Middlebrooks et al. 1994) is 
to develop a neural network scheme for the classification of 
spike discharges. While such approaches in principle can 
surmount the temporal resolution problem, it is difficult for 
the investigator to gain insight into the nature of the temporal 
code from an examination of the parameters of the neural 
network. A third kind of strategy explicitly deals with spike 
trains as point processes but focuses on correlations among 
discharges (Perkel et al. 1967a,b), the pattern of interspike 
intervals (Rapp et al. 1994), or the identification of similar 
segments of spike discharges ( Abeles and Gerstein 1988), 
rather than on a global analysis of how the pattern of the 
discharge depends on the stimulus. 

The approach pursued here is a novel one (Victor and 
Purpura 1994). We retain the notion of a distance, or mea- 
sure of dissimilarity, between spike trains, so that we can 
determine whether there is a systematic dependence of the 
temporal structure of the response on stimulus parameters. 
However, the distances we define do not require binning of 
spike trains or embedding them in a vector space. Rather, 
spike trains are considered to be points in a metric space, 
and the distances between them correspond to “metrics” 
(Gaal 1964) : a topological framework substantially more 
general than a vector space with a Euclidean distance. 
Whether our constructed metrics indeed correspond to a Eu- 
clidean distance in a vector space can in principle be deter- 
mined empirically rather than assumed. 

Our plan is to consider two families of metrics, each based 
on a simple neurobiological heuristic. Each metric deter- 
mines a candidate geometry for the observed spike trains 
based on some aspect of their temporal structure. Within the 
context of each candidate geometry, we will determine to 
what extent responses show systematic stimulus-dependent 
clustering. One family of metrics, denoted D”pi”[ 41, embod- 
ies the idea that the absolute timing of individual impulses 
is significant. The rationale behind this idea is that a cortical 
neuron is not merely an integrator with a threshold; in some 
circumstances, it behaves as a coincidence detector (Abeles 
1982b; Mel 1993; Softky and Koch 1993). Thus the effect 
of a spike train on a cortical neuron will depend on the 
absolute timing of the impulses and not just on the number 
of spikes within a given interval. A second family of metrics, 
denoted D inrervui[ q ] , embodies the idea that the duration of 
the interspike intervals is significant. The rationale behind 
this idea is that, presumably as a consequence of properties 
of the N-methyl-D-aspartate receptor and Ca*’ channels, the 
effect of an action potential can depend critically on the 
length of the intervals since the previous potentials. This 
dependence can result in both short- and long-term potentia- 
tion (Bliss and Collingridge 1993)) which are known to be 
sensitive to the pattern of interspike intervals (Bliss and 

Collingridge 1993; Larson et al. 1986; Rose and Dunwiddie 
1986). 

We apply these new tools to recordings of single units 
and small clusters of units in the visual cortex of the awake 
behaving monkey in response to presentations of gratings 
and texture patches. With this approach, we identify the 
qualitative and quantitative features of temporal codes, such 
as whether there are differences between temporal coding 
in VI and V2, whether there are differences among the 
encoding of contrast, spatial frequency, orientation, and tex- 
ture, and whether temporal coding might provide a way to 
signal multiple stimulus attributes jointly. 

METHODS 

Physiologic methods 

Data sets consisted of neural responses elicited in cortical areas 
Vl, V2, and V3 of two awake behaving rhesus monkeys. Details 
of the surgical methods for headgear and subconjunctival scleral 
search coil implantation (Judge et al. 1980; Richmond et al. 1983; 
Robinson 1963; Wurtz 1969) and extracellular recording (Crist et 
al. 1988; McClurkin et al. 1991b) are given elsewhere. All proce- 
dures involving the animals were performed in accordance with 
National Institutes of Health guidelines for the care and use of 
laboratory animals. Data were recorded from one hemisphere of 
each monkey. Of the 25 recording sites in two monkeys, 6 were 
determined to be in VI, 9 were determined to be in V2, 4 were in 
V3, and the remaining 6 sites discussed here were in either Vl or 
V2. The positions of the recording sites were reconstructed from 
histological preparation of the striate and early extrastriate cortex 
after the recording sessions and from the size and positions of the 
isolated receptive fields (Gattas et al. 1988). Ten recording sites 
yielded single-unit recordings, and the remainder yielded re- 
cordings from small clusters (2 or 3 neurons). In the analysis of 
these multi-unit data sets, the neuron of origin for each spike was 
not identified. 

Visual responses were elicited by transient presentation of stim- 
uli during a fixation task. Eye movements were monitored with 
the magnetic field search coil technique (Robinson 1963). Stimuli 
were produced by a microcomputer augmented with a Number 
Nine graphics card and displayed on a video monitor with a 60- 
Hz frame rate. Details of the methods used to generate the texture 
ensemble bit maps are available elsewhere (K. Purpura, M.-N. 
Chee-Orts, and L. M. Optican, unpublished data). A minicomputer 
recorded the timing of extracellularly recorded action potentials 
(to the nearest millisecond) as well as the monkey’s eye position 
and controlled the presentation of the visual stimuli by the micro- 
computer and reward delivery through a program running under a 
real-time UNIX-based operating system (Hays et al. 1982). A 
successful trial consisted of maintained fixation within 0.5 deg 
during stimulus presentation. 

Analysis was restricted to the neural responses that occurred 
during the 256-ms period of stimulus presentation. Stimuli con- 
sisted either of stationary sinusoidal luminance gratings or a square 
lattice of checks that were colored light and dark. Five kinds of 
parametric variation of the stimulus were used: contrast, check 
size, orientation, spatial frequency, and texture. Contrast [(L,, - 
Lnin~~~Lax + L,,)] was varied in two (0.5, 1.0)‘) six (0.04, 0.08, 
0.16, 0.24, 0.32, 0.64), or eight (0.04, 0.08, 0.12, 0.16, 0.24, 0.32, 
0.64, 0.96) steps. Check size was varied in three steps spaced by 
factors of two, which bracketed the check size which elicited the 
largest response from the unit(s) under study. Orientation (grating 
stimuli only) was varied in eight equally spaced in steps of 22.5 
deg. Spatial frequency (grating stimuli only) was varied in three 
or five values spaced by factors of two, which included the optimal 



1312 J. D. VICTOR AND K. P. PURPURA 

Cortical Area 
Recording 

Sites Contrast Check size Orientation 
Spatial 

frequency 
Texture 

type All 

Definite VI 6 15 0 20 32 30 97 
Definite V2 9 18 24 36 36 12 126 
VI or V2 6 18 0 0 0 36 54 
Total VI and V2 21 51 24 56 68 78 277 
v3 4 9 6 6 6 48 75 
Grand total 25 60 30 62 74 126 352 

spatial frequency. Texture stimuli consisted of checkerboards col- 
ored according to one of three “isodipole” (Julesz et al. 1978) 
schemes (random, even, or odd). Isodipole textures, by definition, 
are stimulus ensembles that have equal mean luminance and equal 
spatial frequency spectra but differ in higher-order statistics. For 
the texture experiments, each stimulus class consisted of many 
different examples of a single isodipole texture rather than the 
same texture sample repeated over and over. As in our previous 
work with isodipole textures (Purpura et al. 1994), the rationale 
for this is to ensure that variations of statistics of a single texture 
sample from that of the ensemble cannot account for a systematic 
difference in responses (Victor 1994). Neural mechanisms that 
discriminate between isodipole texture ensembles must be sensitive 
to visual ‘ ‘features’ ’ and not just spectral content (Victor et al. 
1995). 

Table 1 presents a summary of the experiments performed. A 
typical recording consisted of 15-20 responses to all possible com- 
binations of two of the parameters (e.g., check size and contrast) 
obtained in block-randomized order. These data were analyzed 
along each of the varied dimensions, providing a total of 352 data 
sets. 

Mathematical methods: overview 

For the reasons described in the INTRODUCTION, we constructed 
a method to analyze the temporal structure of spike trains based 
only on the bare essentials: an abstract set of points (the spike 
trains) and a self-consistent definition of distances between pairs 
of these points, known as a metric. The set of points, along with 
the metric (to be specified below), define a “metric space”. This 
is in contrast to many traditional approaches to the analysis of the 
dynamics of neural responses, in which the responses are consid- 
ered to be the elements of a vector space equipped with a Euclidean 
distance. The vector space structure is more restrictive than the 
metric space structure in that it implies a sense in which responses 
can be added together and multiplied by a scalar. However, defining 
these operations on neural responses is tantamount to making as- 
sumptions on how neural responses represent stimuli, and we 
would like to avoid making such assumptions whenever possible. 
The main justification of the Euclidean distance is that it respects 
the vector space operations of addition and scalar multiplication. 
The distances (metrics) that we consider, while well motivated by 
biological considerations, do not correspond to Euclidean distances 
in a vector space and are thus not based on assumptions about how 
responses should be scaled or combined. 

For each choice of a metric, we will determine the extent of 
stimulus-dependent clustering -i.e., to what extent responses to 
stimuli that differ along some parameter (e.g., spatial frequency) 
tend to be far apart, while responses to stimuli that share a value 
of this parameter tend to be close. 

The specific metrics that we will consider (D@‘[ s] and 
D’ ‘nrervul[ 41) depend on a parameter 4 (s -‘), which is the “cost” 
(per unit time) to “move” a spike or to change the duration of 

an interval. For 4 = 0, these metrics degenerate to a metric based 
solely on the number of spikes. Increasing values of 4 correspond 
to a progressively greater dependence of the metric on the temporal 
pattern of the impulses rather than just their number. Thus a system- 
atic dependence of the pattern of spike times or spike intervals on 
the stimulus will be manifest as increased clustering for some 
values of 4 > 0. However, sufficiently high values of 4 are antici- 
pated to result in decreases in systematic clustering, because on 
biological grounds, the infinitesimally precise timing of impulses 
or intervals cannot possibly carry information (see for example 
Fig. 2). Thus our approach will characterize temporal coding in 
two ways: the amount of systematic clustering seen with 4 > 0 
will indicate the extent to which absolute spike times ( DLvpik’[ q]) 
or spike intervals (D infema’[ ~1) depend on the stimulus, and the 
value of 4 for which the clustering is greatest will indicate the 
temporal resolution of the coding. 

Mathematical formalism 

The crucial mathematical step is to construct a metric for the 
set of spike trains so that each spike train can be regarded as a 
point in a metric space. (For an introduction to metric spaces, see 
for example Gaal 1964). A metric D is a mapping from a pair of 
points (here, the spike trains, denoted Sa, &, . . . ) to a real number 
that represents the distance between the points. The metric must 
have certain properties so that it may be regarded as a distance. 
The metric must always be positive except for the trivial case 
D(S, S) = 0, be a symmetric function [D(S,, &,) = D& SJ, 
and satisfy the triangle inequality 

D(s,, &) 5 Ws,, St,) + D(s,, s,.) (1) 

All of the metrics D that we will consider have a similar structure: 
in each case, D ( &, Sb) is defined as the minimum “cost” required 
to transform the spike train Sa into the spike train SI, via a path of 
allowed elementary steps. The cost assigned to a path of steps is 
the sum of the costs assigned to each of the allowed elementary 
steps; these costs and the set of allowed elementary steps determine 
the character of the metric. We denote the cost assigned to an 
elementary step from S to S’ by K( S, S’ ) , and require that this 
cost be always greater than or equal to zero, and that K(S, S’) = 
K( S’, S). With these preliminaries, the distance between the spike 
train SC1 and &, is given by the smallest total cost of any sequence 
of elementary steps that connects Sa with S!,. That is 

D(S,, S,) = min { K(S,, SJ + K(&, S2) + . . . 

+ K(s-2, L,) + fw,,-17 SlJ I (2) 

where ‘ ‘min’ ’ in ZQ. 2 denotes the minimum over all possible 
paths of spike trains S,, S, , S2, . . . , S,l-l, S1, that begin at S, and 
end at Sh and are connected by allowed elementary steps. 

Metric based on spike times 

We next create a family of metrics based on spike times, denoted 
by Dsp’“‘[q], in which 4 is a parameter that expresses the relative 
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FIG. 1. A : two spike trains S, and Sh for which metrics ZF’jk’[ q] are to be 

determined. B: a path of allowed elementary steps associated with V”“[ q] 
connecting 2 spike trains S, and So. 

sensitivity of the metric to precise timing of spikes. For the 
DsPlke[ q] family of metrics, there are two kinds of allowed elemen- 
tary steps. The first kind of step consists of adding a single spike 
or deleting a single spike and is assigned the cost of 1. This serves 
to ensure that there exists at least one path between any two spike 
trains. The second kind of allowed elementary step consists of a 
shift in the time of occurrence of a single spike by an amount At 
and is assigned the cost q 1 At I. That is, the further a spike is 
shifted, the more costly the elementary step. Figure 1 shows an 
example of two spike trains and a path of allowed elementary steps 
between them. 

To gain an appreciation for this metric, it helps to consider two 
limiting cases. First, consider a cost/second q, which is zero. In 
this regime, any elementary step that shifts the position in time of 
a spike is free; costs are associated only with adding or deleting 
spikes. We can therefore calculate the metric of Eq. 2 readily. 
Given a spike train Sa = (al, a2, . . . , a,,) and a longer spike train 
Sb = (h, b2, . . . 9 h,), we construct a path in which the first m 
steps in the sequence of Eq. 2 consist of shifting the m spikes of 
& until they coincide with the first m spikes of Sb, and the last 
y2 - m steps consist of adding the last y2 - m spikes of &. The 
first m steps have no cost, and the last y1 - m steps have unit cost. 
Any other path would be necessarily at least as costly, because at 
least n - m steps would have to involve addition of a spike. Thus 
the distance between these two spike trains is the difference in the 
number of spikes. That is, by setting the parameter q to zero, we 
have recovered the “spike count” metric, to be denoted Dcounr, in 
which the only relevant aspect of a spike train is its total number 
of spikes. 

The reader may have noted that for DcnLtnr, the first condition 
is not satisfied: two spike trains S, and SI, with the same 
number of spikes have D( SU, Sb) = 0. There is a simple and 
standard formal patch for this degenerate situation. The space 
of spike trains is formally a “pseudometric space” (Gaal 
1964) and can be restructured as a metric space of “equiva- 
lence classes of spike trains”, where the equivalence class of 

spike trains that includes S is the set of spike trains whose 
distance from S is 0. The function defined by Eq. 2 now 
becomes a valid metric on equivalence classes of spike trains. 
With this formal patch, Dcounr provides a notion of a distance. 

The other extreme is that the cost/second to move a spike, q, 
is very large. Consider two spike trains, ( a ) and ( b } , each of 
which consist of only a single spike at times a and b, respectively. 
One path between these trains consists of moving the solitary spike 
from time a to time b and has a cost Q(a), (b}) = qla - bl. 
An alternate path consists of deleting the spike from Sa (to form 
an empty spike train) and then inserting a spike into the empty 
spike train at time b. This path has total cost K( { a ) , (21) + 
KC07 um = 2. The second path (deletion and insertion of a 
spike) is cheaper than the first path (moving the spike) provided 
that I a - b I > 2/q. In the limit that q is very large, the lowest- 
cost path between any two spike trains is to remove all the spikes 
from one train that are not perfectly synchronous with spikes in 
the other train and then insert spikes to complete the new train. 
That is, the distance between two spike trains Su = ( al, a2, . . . , a, ) 
and Sr, = (b,, bZ, . . . , b, ) is m + y1 - 2c, where c is the number 
of spike times in common, namely, the number of elements in 
sa n &. 

In essence, Dspike[ 0] measures distances between spike trains in 
a manner that is independent of the time of occurrence of the 
spikes, while Dspike[~] is maximally stringent. Between these two 
extremes, the family of metrics DsJ”ke[q] state that displacing a 
spike by an amount l/q is equal in cost to deleting it altogether. 
This indicates that q may be taken as a measure of the precision 
of the temporal coding, or, equivalently, that 1 /q determines how 
far a spike time can be nudged without substantially increasing the 
distance between the two trains in the metric space. 

Metric based on interspike intervals 

We also will consider a second family of metrics, DintervuL[ q] , 
which is sensitive to interspike intervals in much the same way 
that D vike [q] is sensitive to spike times. As in DsPike[q], one kind 
of allowed elementary step (Eq. 2) consists of adding a single spike 
(which subdivides a single interspike interval into two adjacent 
intervals) or deleting a single spike (which merges two adjacent 
interspike intervals into one) and has a cost of 1. The second kind 
of allowed elementary step consists of changing the length of an 
interspike interval by an amount At and is assigned the cost q I At I . 
Note that a change in the length of an interspike interval necessarily 
changes the time of occurrence of all subsequent spikes. This is 
in contrast to the elementary step of a single spike time in Dspike[ q] , 
in which exactly two intervals are modified (the intervals immedi- 
ately preceding and following the shifted spike). 

EfJicient algorithms for the calculation of metrics 

There are simple and efficient algorithms that construct the mini- 
mal path(s) required by the definition of Eq. 2 and thereby calcu- 
late the metrics Dspike[ q] and Dinfen’a’[ q] . These algorithms are 
related to the elegant algorithms introduced by Sellers ( 1974) for 
calculating the distance between two genetic sequences (i.e., a 
sequence of codons or of amino acid residues). For Dspike[ q], the 
algorithm is best understood via a geometric argument. Let us 
assume that we want to calculate the distance between the two 
spike trains Sa and Sb, shown in Fig. 1 A. At first glance, we notice 
that Sa and Sh differ in their number of spikes ( see Fig. 1 A). Thus 
there will have to be an addition of two spikes to SU to produce 
equal spike counts. The cost of adding two spikes is the entire cost 
required to transform Sa to Sh for q = 0. However, for q > 0, there 
will be additional costs incurred by moving the spikes so that the 
spike times match, and this cost may depend in a fairly complex 
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way on 4. For example, the second spike in Sa could be moved 
back in time to align it with the second spike in &. But if the cost 
4 of moving a spike is large, it might be better just to delete the 
second spike in SLI and reinsert it at an earlier time. 

Let us now assume that we have identified a path of minimum 
cost Sa = SO, S1, . . . , Srml, S, = Sb that transforms Sa to &. The 
sequence of elementary steps can be diagrammed by tracing the 
‘ ‘life history’ ’ of each spike, as shown in Fig. 1 B. Because this 
path is assumed to be of minimal cost, there are severe constraints 
on what this diagram can look like. The path cannot include both 
moving and deleting the same spike, because the cost could always 
be lowered by deleting the spike before it is moved. Thus all spike 
deletions always may be performed as the initial step(s). Similarly, 
no minimal path can include both inserting and moving the same 
spike, because the cost could be lowered by inserting the spike in 
its final position, and thus all spike insertions always may be per- 
formed as the final step ( s ) . Furthermore, no minimal path can 
include inserting and then deleting the same spike; if it did, the 
cost could be lowered by eliminating both steps, along with any 
intervening shifts of this spike. Similarly, in a minimal path, no 
spike’s trajectory ever includes both leftward and rightward shifts; 
if it did, the cost could be lowered by eliminating the redundant 
shifts. Finally, no minimal path includes a crossing of two spikes’ 
trajectories, because if it did, the cost could be lowered by un- 
crossing them. These observations force one of three alternatives: 
the last spike of spike train Sa is a spike to be deleted, the last 
spike of spike train Sh is an inserted spike, or the last spikes of 
both trains are connected by a shift. Thus a path of minimum cost 
between two spike trains So and Sb must always be one of the 
following: deletion of the last spike of SO, to form Si, along with 
a minimal path between SL and Sh; deletion of the last spike of 
Sh, to form S,‘, along with a minimal path between S,’ and Sb); or 
a minimal path between S,’ and Sd, along with a shift of the final 
spike of Sa and Sh so that they coincide. 

This argument leads to an inductive algorithm for the distance 
Dspike[q] (Sa, Sb) between two spike trains Sa = ( al, a2, . . . , a,,, } 
and Sb = ( b,, b2, . . . , b, ] . We use Giy to denote the distance 
between a spike train composed of the first i spikes of S,, and the 
first j spikes of Sb, [so that Ggik,e = Dspike[ q] (S,, &,)I. The three 
possibilities above imply that ’ 

@ye = min { GfE!yj + 1, GfyFl + 1, Gf?!:Tj-I + qlai - bjl } (3) 

The operation of this algorithm can be viewed as a two-dimen- 
sional spreadsheet, in which the cell in the ith row and jth column 
contains Gry. The initial row of the spreadsheet is filled by noting 
that G-g’,” = j, and the initial column is filled by noting that 
G. spike = i. Subsequent cells are filled with the formula of Eq. 3, 
w&h depends only on the cells immediately above and to the 
left. The value that appears in the final column of the final row 
(i = m, j = n) contains Gif:E, which is the desired distance 
DLypike[q] x (Sn, &). 

~~~ D interval [q] , Sellers’ original argument (Sellers 1974) leads 
to an algorithm of the same form as Eq. 3, with the sequence of 
interspike intervals playing the role that the spike times play in 
Eq. 3. To compute the distance Gyyn“” between a spike train com- 
posed of the first i spikes of S,, and the first j spikes of &,, (so 
that GLi:““f = Dinten’af[ q] (&, &,)), we use 

internal Gii = min { Gi”l;y’ + 1, G!$y’ + 1, Gf!TF, + 41 ei -f;l} (4) 

where ei is the length of the ith interspike interva 
the length of the jth interspike interval of S b- 

.l of Sn, andJ is 

For the family of metrics Dinren’uf[q], there is a technical 
detail that arises in assigning lengths to the first and last in- 
terspike intervals, because these are bounded bY the ends of 
the data collection period. The first (and the last ) interspike 

intervals of each train have unknown lengths but must be at 
least as long as the time between the start (or end) of the data 
collection period and the first (or last) spike. In the work 
reported here, we choose the lengths of the first and last in- 
terspike intervals of each train to be the ones that minimize 
the calculated distance (Eq. 4 and hence Eq. 2). However, 
other choices (e.g., taking the first (and last) interspike inter- 
vals to be equal to the time between the first (and last) spikes 
and the start (or end) of the data collection period do not 
materially affect our findings. 

Measurement of stimulus-dependent clustering 

The next step in our analysis is to determine to what extent pairs 
of responses to the same stimulus tended to be closer to each other 
( in one of the senses of distance Dcount , Dspike[ q] , or Dintervo’[ q] ) 
than pairs of responses to distinct stimuli. That is, in the geometry 
determined by one of the candidate metrics DCoUnC, Dspike[ q] , or 
D’ ‘nfen’at[ q], to what extent did the observed neural responses show 
systematic stimulus-dependent clustering? To make as few assump- 
tions as possible about the geometry of the response space, our 
strategy was to classify responses in a manner that was a direct 
reflection of the candidate metric-a spike train was assigned to 
a particular class of responses if it was closer to these responses 
than to any other set of responses. 

More formally, our procedure for classification of a spike train 
S is as follows. First, temporarily exclude S from the set of Nlo, 
observed responses. Let us assume that S is elicited by a stimulus 
in class s,. We consider each stimulus class (including s,) in turn. 
For each stimulus class s,, we determine the average distance from 
S to each of the spike trains elicited by stimuli of class s,. We 
denote this average distance by d(S, sr), which is defined as fol- 
lows 

where ( ) denotes an average over all spike trains S’ elicited by a 
stimulus in stimulus class s,. The spike train S then is classified 
into the response class Q for which d(S, sa) is the minimum of 
all of the averaged distances d( S, s,,), as calculated from Eq. 
5. Note that distances are averaged in Eq. 5 following a power 
transformation (the exponent z). Negative values of the averaging 
exponent z bias d( S, s,) toward the shortest distance between S 
and any response elicited by s,. We have chosen z = -2-loosely 
corresponding to a “gravitational” attraction-but values of z in 
the range [ -8, -11 lead to substantially similar results. Positive 
values of the averaging exponent z bias d( S, s,) toward distances 
from the outliers and lead to significantly lower degrees of stimu- 
lus-dependent clustering. 

An interpretation of this procedure is that all of the responses 
except S are considered to be “training” runs, in which the stimu- 
lus is known, and S is classified according to which set of responses 
it most nearly matches. For binned spike data, this procedure re- 
duces to the ideal decision rule of Geisler et al. ( 1991)) because 
the probability density of a multivariate Gaussian is a monotonic 
function of the distance from its peak. 

This procedure, applied in turn to each spike train in the data set, 
subdivides the set of Nfo, observed spike trains into N( s,, rp) in- 
stances of a response in class r-0 occurring in association with a 
stimulus s,. That is, N( s,, yp) initially is set to 0 and then is incre- 
mented by 1 for each spike train elicited by s, that is closer (in the ’ 
sense of Eq. 5) to the spike trains elicited by sp than to spike trains 
elicited by any other stimulus class. In case of ties [i.e, k of the 
distances d (S, sic) , d( S, s&, . . . share the minimum], then each 
of the N(s,, Tp), N(s,, r&, . . . are incremented by l/k. 

why rp) can be considered to be a confusion matrix: the number 
of times that a stimulus from class CY is classified (on the basis of 
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the neural response) as belonging to class /?. I f  responses were 
clustered strongly, then N( s,, rP) would have large values on the 
diagonal and small values off the diagonal (i.e., stimuli rarely 
misclassified). I f  clustering were weak or nonexistent, then N( s,, 
Q) would be random and approximately uniformly distributed 
across the rows and columns of the matrix, subject only to the 
constraints on the number of stimuli presented from each class. A 
natural measure of clustering is thus the transmitted information 
(Abramson 1963) of the matrix N( s, , Q) . The transmitted infor- 
mation H is given by 

H= Say rd 1% N&x, rp) - log c N(s,, rp) 
ci 

- log c NOa 7 d + log Not I (6) 
b 

For C equally probable stimulus classes, perfect clustering 
IN &x9 qd = 0 for u # 0 and N( s, , ycy) = NJ C] corresponds to 
a maximal value of the transmitted information H, namely log C, 
while random clustering (N(s,, Q) = N,,lC2) leads to H = 0. 
Note that we use the transmitted information simply as an index 
of stimulus-dependent clustering. We do not intend to imply that 
the classification scheme we have used to derive N( s,, rP) and H 
reflect neural processes or that the estimate of H in some way 
corresponds to the information capacity of the neuron. Biological 
processes might be able to extract either more or less information 
than the above procedures for determination of distance and classi- 
fication. 

RESULTS 

Detailed analysis of individual data sets 

We present the analysis of several representative data sets 
in detail and then describe our findings across the recordings. 
Response rasters elicited from a small (ca. 3) cluster of 
neurons in Vl by random textures presented at six contrasts 
(0.04, 0.08, 0.16, 0.32, 0.64, and 0.96) are shown in Fig. 
2A. The textures (64 X 64 pixels, 2 X 2 min each) covered 
the aggregate receptive field of the cluster (0.33 X 0.4 deg). 
At each contrast, responses to 28 different random textures 
were collected in randomized order. The elements of our 
analysis, the spike trains S, are segments of the raster lines 
shown in Fig. 2A. These segments start with the stimulus 
onset, indicated in Fig. 2A by the vertical lines, and extend 
for 256 ms, which is the duration of the stimulus, as indicated 
by the solid black bars shown at the bottom of the rasters. 

We considered the spike time metric DSpjk’[q] and the 
spike interval metric DinrervuL[ 41 for a range of costs (4 = 
0.25-5 12 in steps of 2), as well as the spike count metric 
D count For each metric type and cost value, we calculated 
the degree of stimulus-dependent clustering, according to 
Eqs. 6 and 5. The thick lines in Fig. 2, B and C, show the 
results of these calculations. 

It is well known that the information estimate calculated 
by Eq. 6 is spuriously high for finite samples (Carlton 1969; 
Fagen 1978; Optican et al. 1991) . This problem is encoun- 
tered in vector-space methods because of the sparseness of 
the sampling of a high-dimensional vector space by the data 
set (Chee-Orts and Optican 1993 ) and is analogous to the 
problem of possible overfitting encountered in neural net- 
work methods (Kjaer et al. 1994) for estimation of informa- 
tion. In our approach, the extent of this upward bias might 

depend on the nature of the distance or on the parameter 4. 
Recently, Treves and Panzeri ( 1995) have found an analytic 
approximation to this bias. However, a fundamental require- 
ment of their approach is a stage in which each response is 
assigned to “bins” in a manner independent of all other 
responses. This is precisely the step that the metric-space 
approach bypasses, and our clustering algorithm features a 
strong and explicit interaction between responses. Thus this 
analytic approximation is not directly applicable to the pres- 
ent method. Indeed, were we to apply the Treves and Panzeri 
( 1995) approximation, then the resampled estimates would 
all be independent of 4 (i.e., flat lines). This is true in some 
cases (Figs. 2, B and C, and 4, B and C), but not in others 
(Fig. 3, B and C). 

For this reason, we took a more empirical approach. We 
estimated the values of H that would be expected from 
chance clusterings alone by repeating the above calculations 
for synthetic data sets, which consisted of a random reassign- 
ment of the observed responses to the stimulus categories. 
The results of these calculations (mean t 2 SE as derived 
from 10 resamplings) are shown by the thin lines in Fig. 2, 
B and C. As is seen for either Dspjk’[ 91 or Dint’n’a’[ 91, there 
is little dependence of chance values of H on 4 for both 
classes of distances. This is important, because it indicates 
that the dependence of H on 4 and on the class of distance 
that we observe for the original (unresampled) dataset re- 
flects structure in the data itself rather than intrinsic proper- 
ties of the distances. 

We caution the reader that the t2 SE lines in Fig. 2, B and 
C, represent confidence limits for the mean of the resampled 
values and are only appropriate for comparison among dif- 
ferent resampled estimates. To estimate the probability that 
the measured (unresampled) value of H could have come 
from this population, a t2 SD criterion should be used. 
Because we used 10 resamplings, the standard deviation is 
ho = 3.2 times the SE. 

For the spike count metric (which corresponds to 4 = 
0 for either Dspjke[q] or Dinrrmul[q]), there was significant 
stimulus-dependent clustering, as seen by a calculated infor- 
mation H = 0.36 bits, approximately twice that obtained 
from the resampled dataset. This is not at all surprising; it is 
simply a nonparametric measure of the fact that this neuron 
cluster’s overall firing rate depended systematically on stim- 
ulus contrast. The behavior of information H calculated from 
Dspike[ 4] and D intend [q] for 4 > 0 reveals to what extent 
there is a systematic dependence of the temporal firing pat- 
tern on contrast. For DLTpjke[ 41, ti rises to a maximum value 
of -1.0 bits at 4 = 64. Recall that, according to the metrics 
considered here, a shift in time by an amount 2/q is equiva- 
lent in cost to deleting the spike altogether and reinserting it 
elsewhere. Thus 2/q reflects the temporal blur of the metric. 
Spikes that differ in time by more than this amount are 
regarded as different, whereas spikes separated by this 
amount or less are regarded as progressively more similar. 
Thus the peak of H at q = 64 means that, to within a 
precision of -31 ms (0.031 =2/64), the time of arrival of 
spikes depends systematically on stimulus contrast. In other 
words, a decoding mechanism that is sensitive not only to 
the number of spikes but also to their time of occurrence 
(with a precision in the range of 32 ms) could, in principle, 
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provide a more informative representation of stimulus con- 
trast than one that merely counted spikes. However, the time 
of occurrence of spikes depends on the stimulus only up to 
a limited precision. For higher values of 4, H descends, 
which indicates that the timing of individual spikes does not 
systematically depend on the stimulus at higher spike time 
resolutions. One expects that for sufficiently high 4, Ii will 
eventually become lower than the value measured for the 
spike count metric. This is because it is biologically implau- 
sible that the precise (e.g., on a microsecond scale) time 
of spikes conveys stimulus-specific information, and thus a 
metric that regarded two spikes as unrelated, even if their 
times of occurrence differed by minuscule amounts, would 
not be likely to represent a stimulus. In this dataset, H, as 
measured from D sl’ike [LJ], descends below the value mea- 
sured for the spike count metric at 9 = 5 12. This means that 
a decoding mechanism that attached significance to spike 
times with a 4-ms precision (0.004 x2/512) would be infe- 
rior to a decoding mechanism that simply counted spikes. 
We will use qmLlx to denote the value of q for which H reaches 
its maximum value and, given the rationale described above, 
consider 2 / qiimax to be an index of the precision of the tempo- 
ral code. 

The analysis for Dir’renvr’[q] reveals a similar, but less 
marked, dependence on the cost q. The maximum value 
achieved by II is 0.66 bits (at qmctx = 32), and H descends 
below the value measured for the spike count metric at q = 
5 12. This means that a decoding mechanism that is sensitive 
to the pattern of spike intervals with a precision in the range 
of 63 ms (0.063 x2/32) could, in principle, provide a more 
precise representation of stimulus contrast than one that 
merely counted spikes. However, the gains in information 
seen for the spike interval metric are less marked than the 
gains in information seen for the spike time metric. 

Response rasters elicited from an isolated neuron in VI 
by gratings presented at eight orientations (0- 157.5 deg in 
22.5-deg steps) are shown in Fig. 3A. The gratings had a 
contrast of 1.0 and a spatial frequency of 21 c/deg, and 
covered the unit’s receptive field (0.59 X 0.46 deg). Re- 
sponses ( 15) to each of the eight orientations were collected 
in randomized order. The spatial frequency optimum for this 
neuron, as measured by the number of spikes elicited, was 
5 c/deg. The spatial frequency studied in Fig. 3 is far from 
the “best” spatial frequency in terms of spike counts. There 
was no significant stimulus-dependent clustering in the spike 
count metric (q = 0), as is seen from the fact that the 
calculated values of information were not higher than what 
would be expected from chance alone. However, for q > 0, 
there was a progressive increase in the information-theoretic 
measure of clustering, with t-I reaching a maximum value 
of 0.49 bits for D*‘pike [q] and 0.39 bits for Di”ten’ul[ q] , both 
at qmx = 64. For D.‘pike [q] , this was significantly higher than 
the distribution of values obtained from the resampled data 
sets, but for Dir’tenal [q] , the peak information value was 
within two standard deviations of this distribution. This data- 
set shows that the spike time metric can reveal significant 
stimulus-dependent clustering, even when there is little evi- 
dence of tuning in the traditional spike-count sense. 

Response rasters elicited from an isolated neuron in V3 
by even and odd isodipole textures are shown in Fig. 4A. 
Textures had a contrast of 0.32 and a check size of 4 X 4 

min and covered nearly all of the unit’s receptive field (4.9 
X 4.5 deg). Responses to 32 different examples of each 
texture were collected in randomized order. The spike count 
metric (q = 0) showed some significant stimulus-dependent 
clustering (H = 0.14 bits, small but far in excess of the value 
of 0.03 bits that would be expected from chance alone). For 
D”‘ke[q] (Fig. 4B), this measure was substantially larger 
(0.24 bits) at qmuvx = 16. For Dintenu’[q] (Fig. 4C), H re- 
mained above that expected for chance alone, but not sig- 
nificantly so. 

These three detailed analyses all reveal a rise in the infor- 
mation-theoretic measure of clustering H for moderate val- 
ues of q > 0 for D@‘[q], with qmnwr in the range 16-64, 
followed by a descent below the clustering seen for the spike 
count metric at still higher values of q (typically > 128). 
For D i~ltUVd[ q  ] , similar behavior is seen, but the increase in 
H is typically less marked and less often significant (as 
judged by a comparison with resampled data sets). 

Summary across all data 

In all, we performed the above calculations on 352 data 
sets (Table 1) . In 170 of these data sets, the information- 
theoretic measure of clustering was greater than chance for 
the spike count (q = 0) metric, and the average value of H 
was 0.176 bits across all data sets. When analyzed by the 
spike time metric, 294 of the 352 data sets led to a greater- 
than-chance value of H, and the average value of H was 
0.287. For the spike interval metric, 272 of the 352 data sets 
showed a greater-than-chance value of H, and the average 
value of H was 0.227 bits. Similar results were obtained 
when the analysis was restricted to the first 100 ms after 
stimulus onset: there was significant clustering in 15 1 data 
sets via the spike count metric, 270 data sets via the spike 
time metric, and 232 data sets via the spike interval metric. 

Of the 170 data sets in which neural responses showed 
significant tuning based on spike counts (over the full 256- 
ms stimulus period), 113 showed evidence of additional 
temporal coding in the spike time metric and 109 showed 
evidence of additional temporal coding in the spike interval 
metric. 

Across the entire collection of data sets, the information 
not attributable to chance clustering averaged 0.042 bits for 
the spike count metric, 0.17 1 bits for the optimal spike time 
metric, and 0.107 bits for the optimal spike interval metric. 
There was a very large amount of scatter in the estimated 
information values, even when normalized for experimental 
design (see Fig. 5 below), likely reflecting the presence of 
many data sets for which there was little neural response. 

We did not note any systematic difference between analy- 
ses of single- and multi-unit data, but this may well be 
related to our recording method, which does not label spikes 
according to neuron of origin. The manner in which spike 
trains from multiple neurons combine to transmit informa- 
tion is a matter of great interest, but not one that we address 
here. 

Table 2 shows a .breakdown of the temporal coding analy- 
sis by stimulus modality. The table is restricted to recordings 
from VI and V2 because of the small number of experiments 
performed in V3. Because we did not find significant or 
consistent differences in comparing analyses from single- 



TEMPORAL CODES IN SPIKE TRAINS 1319 

a111 II I II I I 

ml II I II I I I 

III Ill I I I I 

I111 11 I I I I 

1111 II I II I I I I 

II Ill I Ill1 I I II I I 

IUII I I I I I II I 

III 111 I I II II II I I 

lull II I I I II I I 

II I I I I I I 

I II I I I I I I I 

Ill II IllI II I II I 

YIII Y I I I II I I 

Ill1 II I II I II I II I 

IIII III I I I II I I 

II I I I II I II I I I MI I I 

Ull I I II II I II I 

II I Ill I 

III I I I II I II I II I I 

Ill IUI I Ill I II I I I I 

mill 4 II I I I I I 

II Ull III I I II II I 

Ill1 I I I I 

Ml I I I I I I I I 

I III11 I I I I I I 

III II III I I I 

Ill I III I IIIIII I I III 

ItI II II I I 

Ill II II I I 

111111 I I II I I I 

II I III II I I I 

III1 I I I III II II I I 

DIIIIIII I II I Ill1 I I II I II I 

111 1011 I I I I I I 

InI I II II I II II II I 

mill I I Ml I I I II II 

111 I I I I I I Ill1 WI 

Ill IlU I I I I I I I 

II01 I I I II II I I I 

I rnll I II I I I II Ill a I 

II II II I II I II 

I lllll I I I II II I 

ll1lllllI Ill1 I I II I I 

lllllIII I I I I I II 

III I111 I II II I I I 

I I Ill II I I I II I I I I 

IINI I I I I I I II I I 

UI1IIIl I  I  I  I I  I  I  I  

IIIU I  I I  I I  I  II I 

I I I I I I Ill II I I I  I  I I I I I  I (  I  II 

I I 

II I 

I I II II 

I I 

I 

II I 

I 

I I 

I I I II 

I I 

I I  

I 

I I I III I I I I I III I I I 

I11 I I I II I 1 Ill I I 

IllI II II I I illI I III II I  I  

III II I III I I I I I I I 

luYIYIIIII I I I II I II I I I 

Yllllll I I I II Ill I I II I I 

Ill1 II I I I I I I I 

IIY I I I I I II II I I I I II I I 

YlIIlI l I  II I I  I  I  I  

IIIIYY I I I I II ill I I I II I Ill I I 

II II II I II I I I I II I I I 

Ullll I I Ill II I I I I I 

111 II II I I II I I II I 

I)llllI II IIII I I I I I I 

Ill1 I Y I I I I I II 

llllllll I I II I1111 I I I II II I I II II I 

256 ms 

Spike Time 

E 0.1 

s 
= .- 0 L---J=+ ’ 

0 1 10 100 1000 

B cost (9) 

Spike Interval 

- I, 0.3 - 

.E o-2 l 

0 1 10 100 1000 

C cost &I) 

FIG. 4. A : response rasters elicited from a V3 neuron by even and odd isodipole textures. Contrast, 0.32; check size, 4 
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in B; recording : H 1407 1. 
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TABLE 2. Fraction of data sets in which the information-theoretic measure of clustering H was greater than by chance 

Fraction of Data Sets with Greater-Than-Chance Values of H 

Contrast Check size Orientation 
Spatial 

frequency 
Texture 

type All 

Definite VI 
Spike count 
Spike time 
Spike interval 

Definite V2 
Spike count 
Spike time 
Spike interval 

Total Vl and V2 
Spike count 
Spike time 
Spike interval 

0.73 0.65 0.72 0.20 0.55 
0.93 0.80 0.88 0.53 0.76 
0.87 0.80 0.84 0.47 0.72 

0.44 0.38 0.44 0.50 0.25 0.43 
1 .oo 1 .oo 0.92 0.89 0.75 0.92 
0.89 0.92 0.94 0.83 0.83 0.89 

0.7 1 0.38 0.52 0.60 0.22 0.48 
0.98 1 .oo 0.88 0.88 0.60 0.83 
0.90 0.92 0.89 0.84 0.55 0.79 

and multi-unit recordings, they are pooled. In all cases, anal- 
ysis of neural responses via the spike time metric and the 
spike distance metric showed evidence of tuning (i.e., 
greater-than-chance values of clustering, as measured by H) 
more often than did analyses via the spike count metric. The 
largest differences were seen for the texture experiments, in 
which the number of recordings that would have been classi- 
fied as “tuned” more than doubled. There was little consis- 
tent difference in the number of recordings that were tuned 
as classified by the spike time metric versus the spike interval 
metric. 

Figure 5 shows a more detailed comparison of the extent 
of stimulus-dependent clustering by the spike time and the 
spike interval metric. All VI and V2 experiments are pre- 
sented. To compare values of ti across modalities, we have 
normalized their values by dividing them by log,(N), where 
N is the number of conditions in each experiment. (Thus 
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normalized t-i in spike time metric 

A comparison across stimulus modalities of clustering induced .m 
by the spike time metric DsprKe [ y ] and the spike interval metric D'nrrn'a'[ q] 
for all recordings in VI and V2. The information-theoretic measure of 
clustering H has been normalized by logarithm of number of stimuli in 
each data set, so that maximum possible value of H is 1. 

the maximum value of this normalized H in any dataset is 
1, independent of the number of conditions). There is a clear 
tendency for recordings to show greater evidence of tuning 
in the spike time metric, for contrast (P < 0.00001 ), check 
size (P < 0.006), orientation (P < 0.004), and spatial 
frequency (P < 0.0001) (two-tailed paired t-test for each 
modality). However, there was no statistically significant 
difference between the clustering induced by these metrics 
in the texture-type experiments (P w 0.9, two-tailed paired 
t-test). 

Figure 6 compares the temporal precision of the optimal 
spike time metric (Fig. 6, A and B) and the optimal spike 
interval metric (Fig. 6, C and 0) across stimulus modality 
for recordings in VI and V2. For both metrics, contrast is 
encoded with the highest temporal precision and texture type 
and spatial frequency are encoded with the lowest temporal 
precision. Both VI and V2 show these trends, but the trend 
is stronger in VI for the spike interval metric (compare Fig. 
6, A with C) and is stronger in V2 for the spike time metric 
(compare Fig. 6, B with 0). Note that precision, as measured 
by qtmm is not the degree of stimulus-dependent clustering 
or the amount of information transmitted, but rather, it is a 
characterization of the nature of the coding. For example, 
the fivefold higher value of q,1,c17y for DLvpikr from Vl to V2 
does not imply that a fivefold greater amount of information 
is present, but rather that the structure of the code has 
changed to one that relies more critically on spike times. 
Similarly, even though qnlux is higher in VI for Di’2tc’*““’ than 
for D spike $ the amount of information transmitted by spike- 
time encoding is greater than that transmitted for spike inter- 
val coding. 

Poisson hypothesis 

Perhaps the above results could be accounted for by the 
hypothesis that neurons fired in a Poisson fashion with the 
rate of the Poisson process varying in time in a stimulus- 
dependent manner. If this were the case, this hypothetical 
envelope function (the underlying stimulus-dependent func- 
tion that governs the mean rate) would be the source of 
temporal coding, and although the time of occurrence of 
individual spikes might convey information, individual spike 
times would be significant only to the extent that they helped 
to establish this envelope. 
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FIG. 6. A comparison across stimulus modalities of temporal precision qmns for maximal clustering. Geometric means 
and SE (following logarithmic transformation) are shown. Recording sites shown in Vl (A) and V2 (B) as clustered by 
spike time metric Spike [q] and in Vl ( C) and V2 (D) as clustered by spike interval metric Dirrrer”u’[ q] . 

To address this possibility, we repeated the above metric- 
space analysis on synthetic data derived from experimental 
data in the following fashion. We begin (for example) with 
the contrast dataset illustrated in Fig. 7A, in which we re- 
corded 30 responses of a V2 neuron to random textures 
presented at each of six contrasts. For each of the six con- 
trasts, the times of occurrence (relative to stimulus onset) 
of all recorded spikes were placed in a single set. Then, 
each of these spike times was assigned randomly (without 
repetition) to any of 30 responses. This maneuver preserves 
the average poststimulus time histogram (PSTH), and, in- 
deed, uses the PSTH as the best estimate of the underlying 
Poisson process. Thus if spikes were indeed generated in 
a time-dependent Poisson fashion, the synthetic data sets 
obtained by shuffling spike times among the responses 
should demonstrate the same kind of temporal coding as the 
original data. Results of the Poisson resampling analysis are 
shown in Fig. 7B. The synthetic data sets indeed show an 
increase in information for Dspik’[ q] and a similar value of 
4 However, there are two discrepancies between the ac- 
ttzhata and the synthetic data. The first is that for q > 32, 
the synthetic data sets show less evidence of temporal coding 
via the spike time metric as manifest by a lower value of 
H. For example, for D L’pike[64], H was 0.770 bits for the 
original data, but 0.650 t 0.096 bits (mean t 2 SD). This 
indicates (at least for this data set) that the degree of cluster- 
ing seen in the original data is more than can be explained 
by rate-dependent Poisson firing. While it could be argued 
that our use of the PSTH as an estimate of the underlying 
envelope necessarily leads to an estimate of the histogram 
whose peaks are too sharp, any smoothing of this histogram 
would be tantamount to using a lower value of q. 

The second discrepancy is that for low values of q, the 

resampled data sets show a higher level of stimulus-depen- 
dent clustering as manifest by a larger value of H calculated 
from the synthetic data sets. In this data set, for DLypike[O] = 
D count H was 0.163 bits for the original data, but 0.266 t 
0.132’bits (mean t 2 SD) for the synthetic data sets. This 
increase in information with resampling is not statistically 
significant by itself, but a similar trend, significant at P < 
0.001, was seen across all the single- and multi-unit data 
(see Table 3 and discussion below). 

This observation is at first counter-intuitive because it indi- 
cates that the application of a stimulus-independent randomiza- 
tion of the data results in an increase in the amount of apparent 
information. However, one effect of this randomization is that 
it forces the spike count statistics to be Poisson. In the real 
data, the distribution of the number of spikes elicited by each 
presentation of a stimulus has a higher variance than a Poisson 
process of equal mean -in the data set illustrated in Fig. 7, 
the variance of the spike counts recorded in response to the 
six contrasts ranged from 1.6 to 2.7times the mean. Because 
the resampling procedure forces the spike count statistics to be 
Poisson but leaves unchanged the mean number of spikes elic- 
ited by each stimulus type, the original data set will have a 
larger variance than the synthetic data sets. If this more-than- 
Poisson variance is due to influences unrelated to the stimulus, 
then its removal will increase the amount of information. In- 
deed, we see that the synthetic data sets have a larger value of 
ti not just for the spike count code ( Dspik”[q] for q = 0), but 
also for those spike time codes dominated by the spike count 
component (q close to 0). Additionally, analysis of Dinfemu’[ q] 
(lower portion of Fig. 7B) revealed a reduction in Ei for all 
values of q, implying that the more-than-Poisson variance of 
the original data set was the dominating influence for this 
family of metrics. 
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This analysis suggests another hypothesis: perhaps firing 
times are governed in part by a time-dependent Poisson pro- 
cess, but this spike rate envelope is modulated (i.e., 
multiplied) by a slowly varying influence unrelated to the 
stimulus. This additional factor would account for the more- 
than-Poisson variance we observe and perhaps account for 
the clustering detected by Dsl’jke[ q] or Dintervul[ q] . To test 
this hypothesis, we introduced a second statistical transfor- 
mation of the data. We randomly selected two spikes from 
different responses to the same stimulus and exchanged them 
so that the spike that actually occurred in one response was 
now placed into the other response and vice versa. Many 
such exchanges (more than 4 times the number of spikes) 
were performed so that the particular responses in which 
each spike occurred were scrambled thoroughly. However, 
because each exchange introduces no new spike times and 

FIG. 7. A : analysis of stimulus-dependent clustering induced by 
D spike[ 4 ]  and D infend [q] for responses of a single neuron in V2 to random 
textures (64 x 64 pixels). Contrasts: 0.04, 0.08, 0.16, 0.32, 0.64, and 0.96; 
check size: 4 x 4 min. Thick line: H calculated from observed responses. 
Thin lines: means 5 2 SE of distribution of values of H calculated from 
synthetic data sets in which responses were reassigned arbitrarily to stimuli. 
B: comparison of H calculated from observed responses (thick lines, as in 
A) with distribution of values of H calculated from synthetic data sets in 
which spikes are assumed to be generated by a time-dependent Poisson 
process whose poststimulus time histogram (PSTH) for each condition is 
identical to that of data ( “Poisson resampling” -see text for further de- 
tails). C: comparison of H calculated from observed responses (thick lines, 
as in A) with distribution of values of H calculated from synthetic data sets 
whose PSTH for each condition is identical to that of data and whose spike 
count statistics are identical to that of data ( ‘ ‘exchange resampling” -see 
text for further details). As in Figs. 2-4, the 52 SE lines are appropriate 
for comparison among different resampled estimates. To estimate probabil- 
ity that measured (unresampled) value of H could have come from this 

population, a +2 SD criterion (JlO = 3.2 times SE) should be used. 

also results in no net change in the number of spikes in each 
response, it retains not only the observed PSTH but also the 
observed spike count statistics. Under the modified Poisson 
hypothesis, synthetic data generated by exchange resampling 
should behave in a manner identical to the original data. 

Figure 7C shows the analysis of exchange resampling 
applied to this dataset. For the spike count metric (q = 0), 
Ei must be unaffected by the exchange resampling, because 
the number of spikes in each response are unchanged. For 
Dsprkr[ q] , there is significantly more clustering in the actual 
data set than in the synthetic data sets for q 2 16. For 
D’ ‘nrrrvul[ q] , the level of stimulus-dependent clustering identi- 
fied in the actual data set is similar to that in the synthetic 
data sets. 

Table 3 shows a summary of this analysis across all of 
the data sets. The reduction in spike count variance due 



TEMPORAL CODES IN SPIKE TRAINS 1323 

TABLE 3. Effects of Poisson resampling and exchange resampling on the information-theoretic measure of clustering H 

Poisson Resampling Exchange Resampling 
Original Data 

n Mean H Mean H Difference P Mean H Difference P 

Single-unit data 
Spike count 
Spike time 
Spike interval 

Multi-unit data 
Spike count 
Spike time 
Spike interval 

Pooled 
Spike count 
Spike time 
Spike interval 

152 

201 

352 

0.158 0.210 0.052 <o.oo 1 0.158 
0.299 0.286 -0.014 0.083 0.247 
0.215 0.202 -0.013 0.111 0.168 

0.189 0.267 0.078 <O.OOl 0.189 t 
0.278 0.300 0.02 1 0.027 0.249 -0.029 
0.236 0.255 0.020 0.020 0.203 -0.032 

0.176 0.243 0.067 <O.OOl 0.176 
0.287 0.294 0.006 0.336 0.249 
0.227 0.232 0.005 0.367 0.188 

t t 
-0.052 <O.OOl 
-0.047 <O.OOl 

t 
-0.039 
-0.039 

<O.OOl 
<O.OOl 

t 
<o.oo 1 
<O.OOl 

Levels of significance were calculated by paired t-tests within data sets. t For these conditions, the shuffling operation preserves H exactly. 

to Poisson resampling resulted in a greater information- 
theoretic measure of clustering in the synthetic data with 
the average H rising from 0.176 bits (pooled data) to 
0.243 bits (Poisson resampled data) for DC”““‘. There was 
no change, on the average, in the maximum information 
calculated from DsPike[ 91 or DinrervaL[ q] . This appears to 
be the result of an overall increase in ZY associated with 
the decrease in spike count variance and a decrease in H 
Ilear qmax l 

The exchange resampling process, which elimi- 
nates the change in spike count statistics, leads to synthetic 
data sets in which clustering is significantly reduced, for 
both Dspike[ q] and Dinrervaz[ q] . 

The rise in H with Poisson resampling, and the fall in H 
with exchange resampling, was seen for all stimulus modalities 
and in all cortical regions studied. However, there was a sugges- 
tion of a significant difference between the single- and the 
multi-unit recordings. For the single-unit recordings, Poisson 
resampling led to a small and borderline-significant reduction 
in L! for Dspik[q] and Dinrena [q] despite the increase in H for 
D count For the multi-unit data, there was an increase in H for 
Poisson resampling for all three metrics, although this increase 
was much greater for DC*““‘. Thus in single unit responses, the 
temporal structure produces an increase in H that is larger than 
the penalty incurred by the large variance (as is illustrated for 
Dspike[q] in Fig. 7B), but this temporal structure is less evident 
in the multi-unit responses because of the intermingling of 
responses from multiple units without separate identification. 
That is, in addition to the more-than-Poisson scatter in spike 
counts, there is internal structure in the discharges of single 
units, which is masked when multiple single-unit discharges 
are superimposed. 

In summary, a Poisson model cannot account for our ob- 
servations: if spike count statistics are assumed to be Poisson 
across trials, then H is overestimated for D”“““‘; if empirical 
spike count statistics across trials are preserved so that D”“““’ 
is accounted for, then H is underestimated for Dspike[ q] and 

interval D . [41 

DISCUSSION 

The aim of this paper is to learn about the nature and 
precision of temporal coding in the primate visual cortex. 
The approach is based upon introducing several notions of 

the “distance” between two spike trains (D”““‘, Dspike[ q] , 
and D interval [q] ) and a determination of the extent to which, 
in the sense of these distances, the observed neural responses 
cluster in a stimulus-dependent fashion. D”“““’ corresponds 
to the traditional notion of a spike count, or spike rate, code: 
the “distance” between two spike trains is the difference in 
the number of spikes. The other notions of distance, Dspike[ q] 
and D interva’[ q ] , are sensitive to the temporal structure of the 
response -the time of occurrence of the impulses 
( Dspike[ q]) and the pattern of interspike intervals 
CD Ln*ervaL[ q]). The cost parameter q in the metrics Dspike[ q] 
and D interval [q ] expresses the precision of temporal coding, 
in that spike times, or spike intervals, separated by >2/q 
are regarded as ‘ ‘different’ ’ , whereas spike times or spike 
intervals separated by 5 2/q or are regarded as similar. 

One major distinction between the present approach and 
most previous approaches is that there is no reliance on 
embedding responses in a vector space and no assumption 
of a Euclidean (or near-Euclidean) geometry for the set of 
spike trains. This strategy has both practical and theoretical 
advantages. On a practical level, the dimension of the em- 
bedded vector space is equal to the duration of each data 
segment divided by the width of the time bin. Thus a vector- 
space embedding that retained even lo-ms resolution would 
be of very high dimension and necessarily would be only 
very sparsely populated by the data. There are computation- 
ally intensive algorithmic solutions available that confront 
the problem of sampling in high-dimensional vector spaces 
( Chee-Orts and Optican 1993), but the present approach 
enables us to examine the data with high precision directly 
and with a lower computational burden. On a theoretical 
level, the metric-space approach avoids imposing a priori 
notions of the geometry of the response space, which, as has 
been emphasized recently (Hopfield 1995), is unlikely to 
be Euclidean. 

Qualitative and quantitative 
macaque visual cortex 

features of temporal codes zn 

Our analysis of neural responses in macaque Vl and V2 
demonstrates that each of the stimulus attributes studied 
(contrast, check size, orientation, spatial frequency, and tex- 
ture) systematically change not only the absolute number of 
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spikes, but also their temporal pattern. Indeed, -30% of 
recordings (Table 2) would be regarded as showing a lack 
of dependence on the stimulus attribute under study if one 
only considered spike count but demonstrated substantial 
tuning when temporal pattern was taken into consideration. 
In most recordings, the time of occurrence of spikes, rather 
than the interspike intervals per se (see below), showed the 
most systematic dependence on stimulus attributes (Fig. 5). 

Although strong evidence for temporal coding was seen 
for all stimulus attributes, there were significant differences 
in the nature of this dependence, as characterized by qrnclx, 
the value of the cost parameter q that maximizes stimulus- 
dependent clustering. As seen in Fig. 6, contrast was associ- 
ated with the highest value of qlllN.\. and texture was associated 
with the lowest values of q,,,Cl.y. This does not necessarily 
mean that temporal pattern plays a greater role in signalling 
contrast than texture. Rather, it means that for contrast, the 
systematic dependence of spike (or interval) times on the 
stimulus is manifest with a greater precision (lo-30 ms) 
than for texture (ca. 100 ms ) ; precision for the other modal- 
ities studied was between these extremes. Heller and col- 
leagues (Heller et al. 1995) obtained a similar value (ca. 25 
ms) for overall precision of temporal coding in response to 
Walsh patterns but did not identify a dependence of precision 
on stimulus attribute. Additionally, Gawne and coworkers 
( 199 1 ), in LGN recordings, found evidence for temporal 
multiplexing of stimulus attributes. They observed, via prin- 
cipal components analysis, that luminance was selectively 
encoded in the transient component of the response. This is 
analogous to our findings, but distinct in two ways: we exam- 
ined contrast, not luminance, and we examined temporal 
precision, not response waveform. 

This finding suggests the possibility that multiple modal- 
ities can be represented simultaneously in a spike train with 
some degree of independence-the firing pattern, viewed 
with high temporal resolution, might represent contrast, 
while the same pattern, viewed with a substantially lower 
resolution, might represent texture or another correlate of 
visual form. This conclusion is supported by a study of 
steady state field potential recordings in the primary visual 
cortex of the anesthetized, paralyzed macaque with a com- 
pletely different stimulation and analysis strategy (Victor et 
al. 1994). Fourier components of the population response 
to abrupt pattern interchange carried contrast information at 
high harmonics. Spatial frequency and orientation informa- 
tion were carried at somewhat lower harmonics, and texture 
information was carried at the lowest harmonics. Yet a third 
line of evidence for temporal coding in primary visual cortex 
recently has been obtained from intracellular recordings in 
cat visual cortex (Volgushev et al. 1995 ) : although the pre- 
ferred orientation was unchanged in the first 100 ms after 
stimulus presentation, orientation tuning generally increased 
with time. This finding suggests that the circuitry within 
primary visual cortex leads to a neural response whose initial 
transient is influenced more strongly by contrast and whose 
subsequent components are influenced more strongly by ori- 
entation -i.e., multiplexing of contrast and form informa- 
tion. A similar conclusion was reached by an analysis of 
temporal coding in spike trains based on a vector-space em- 
bedding (Purpura et al. 1993). Together, these observations 
extend the original identification of temporal coding in extra- 

striate visual cortex (Optican and Richmond 1987; Rich- 
mond et al. 1987) to the earliest stages of cortical processing. 

Not consistent with Poisson spike trains 

It might be suggested that our findings could be explained 
on the basis of neurons that fire in a Poisson fashion, but 
the rate of this Poisson process varies with time in a stimulus- 
dependent manner. This view permits temporal multi- 
plexing - for example, different modalities could be repre- 
sented in different frequency bands or principal components 
of the envelope. In this view, spike times carry information, 
but only insofar as they report the shape of the underlying 
envelope. Furthermore, the Poisson model would account 
for the finding that clustering in D ‘@‘[q] typically exceeded 
clustering in D’ znrervur[q] (Fig. 5 and Table 2), because in a 
variable-rate Poisson model, spike times have significance 
in that they serve to mark peaks in the underlying rate enve- 
lope, but spike intervals have significance only inasmuch as 
they are consequences of neighboring peaks in the envelope. 

However, a more detailed analysis (Fig. 7 and Table 3) 
indicates that time-dependent Poisson firing cannot account 
for our observations: Poisson models cannot simultaneously 
account for the variability of the spike counts and the high 
degree of stimulus-dependent clustering seen at qmcrx. Thus 
one cannot regard the time of occurrence of individual spikes 
simply as “a random instantiation of the average synaptic 
activity” (Shadlen and Newsome 1995), and one is forced 
to the alternative that patterns in the spike train are both 
reproducible and stimulus dependent. 

Decoding and propagation 

In contrast to studies of the processing of temporal pat- 
terns in the sensory input (Bialek et al. 199 1) , the temporal 
pattern in the response to a simple stimulus appearance does 
not directly represent the input, and thus presumably, needs 
to be decoded. One can take the view that a decoding opera- 
tion, as such, is not necessary for perception because the 
similarities and differences in responses, by themselves, rep- 
resent the perceptual space (Edelman and Cutzu 1995 ) . Nev- 
ertheless a kind of decoding is necessary to propagate infor- 
mation from one set of neurons to another. Our experiments 
do not address how temporal patterns in spike trains might 
be propagated or decoded, but work by a number of investi- 
gators indicates that the cortical circuitry indeed possesses 
the requisite machinery. In our analysis, the “absolute” time 
of occurrence of a nerve impulse is determined with refer- 
ence to stimulus onset; any implementation of spike time 
coding requires a neural signal that corresponds to stimulus 
onset. In these experiments, stimulus onset consisted of the 
abrupt appearance of a stationary pattern; in natural circum- 
stances, stimulus onset is more likely to correspond to an 
abrupt change in the inputs to a neuron’s receptive field due 
to an eye movement. In either case, stimulus onset corre- 
sponds to a burst of excitatory input to visual cortex, which 
can be viewed as a resetting or synchronization event for its 
intrinsic circuitry (M.-N. Chee-Orts, K. P. Purpura, and 
L. M. Optican, unpublished data; Purpura and Schiff 1996. 
After this synchronization event, propagation of information 
based on spike times is likely to be based on coincidences 
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across neurons. Coincidence detection with high temporal 
precision appears necessary to account for the variability 
observed in cortical discharges ( Softky and Koch 1993 ) , 
and multiple candidate mechanisms exist for coincidence 
detection with a wide range of temporal precision (Bourne 
and Nicoll 1993). Furthermore, it recently has been shown 
that the spike generation mechanisms of cortical neurons are 
capable of millisecond precision (Mainen and Sejnowski 
1995), so that temporal coding, once generated at this scale, 
can be propagated. 

Spike times, spike intervals, and other metrics 

Spike times determine the interspike intervals (and vice 
versa, with the notion that the first “interspike interval” is 
the interval between the onset of data collection and the first 
spike). However, it is not true that the distance between two 
spike trains in the sense of Dinrrr-“al determines the distance 
between the trains in the sense of Dspike, or vice versa, and 
there is no built-in reason that clustering in the sense of one 
metric will determine clustering in the sense of the other. 
[Indeed, the topologies induced by these metrics are inequiv- 
alent, with Daypike ‘ ‘stronger’ ’ than D intervcr’ ( Gaal 1964 ) ] . 
Thus in principle, one could find strong evidence of temporal 
coding in Dspikr but not in D i”tervul. For example, if the main 
source of variability was that spikes were deleted at random, 
then the times of the surviving spikes would still be capable 
of encoding stimulus-dependent information, but the inter- 
vals might be nearly random. Conversely, Di’*rewn’[ q] can 
distinguish a neuron whose firing pattern consists of intervals 
with a chaotic nonlinear recursion or a grammar (Rapp et 
al. 1994) from one whose firing pattern is determined by a 
renewal process with equal interval statistics; DL’l’ike[ q] can- 
not make this distinction. 

Hopfield ( 1995) recently has proposed a specific hypothe- 
sis for how sensory information might be represented in, 
and propagated by, spike trains. This proposal is not limited 
to the representation of temporal information (Bialek et al. 
1991) and features a non-Euclidean distance between spike 
trains, but one that does not directly correspond to the met- 
rics considered here. In this view, temporal coding is embod- 
ied in the pattern of intervals between spikes that occur 
during successive oscillations and thus would be manifest 
more strongly in D i”t”7’a’ than in DsJ’ike. However, the main 
role of the oscillations is to provide a synchronization; their 
periodicity is less crucial. If the oscillations were replaced 
by aperiodic synchronizing pulses related to stimulus onset, 
one would expect stronger encoding in the sense of Ds*‘ike (K. 
Purpura, M.-N. Chee-Orts, and L. M. Optican, unpublished 
observations). 

We stress that we make no claims to have found the 
optimal metric. We have only explored two families of met- 
rics, chosen because of their simplicity and the biological 
motivations discussed in the INTRODUCTION. It is easy to 
generate many other metrics, for example, by adding other 
kinds of allowed elementary steps (e.g., involving spike clusters 
(Abeles 1982a,b; Dayhoff and Gerstein 1983a,b), altering the 
cost function, or permitting the metrics to be time-dependent. 
Furthermore, the present analysis does not examine the relation- 
ship of temporal patterns within a single neuron’s discharge 
and temporal patterns across neurons ( Aertsen et al. 1989). 

Additional investigations will provide additional insights con- 
cerning temporal coding, but it is unlikely that they will dispute 
the relevance of measures of temporal precision or our finding 
that temporal precision is modality dependent and thus provides 
a substrate for temporal multiplexing even in the face of the 
apparently high variability that is common in cortical neurons. 
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