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Victor, Jonathan D. and Keith P. Purpura. Spatial phase and attribute simultaneously and at least partially independently
the temporal structure of the response to gratings in V1. J. Neuro- (McClurkin and Optican 1996; McClurkin et al. 1991a,b;
physiol. 80: 554–571, 1998. We recorded single-unit activity of Purpura et al. 1993). We previously have shown (Purpura
25 units in the parafoveal representation of macaque V1 to transient et al. 1993; Victor and Purpura 1996a) that in both simple
appearance of sinusoidal gratings. Gratings were systematically and complex cells, temporal coding contributes significantlyvaried in spatial phase and in one or two of the following: contrast,

to the representation of contrast, spatial frequency, and orien-spatial frequency, and orientation. Individual responses were com-
tation, but the relationship of spatial phase to temporal cod-pared based on spike counts, and also according to metrics sensitive
ing remains largely unexplored.to spike timing. For each metric, the extent of stimulus-dependent

The extent to which the spatial phase of a grating influ-clustering of individual responses was assessed via the transmitted
information, H. In nearly all data sets, stimulus-dependent cluster- ences a neuron’s response plays a crucial role in the distinc-
ing was maximal for metrics sensitive to the temporal pattern of tion between simple and complex receptive fields (Skottun
spikes, typically with a precision of 25–50 ms. To focus on the et al. 1991; Spitzer and Hochstein 1985a,b) . In qualitative
interaction of spatial phase with other stimulus attributes, each data terms, a simple cell’s characteristic modulated response to
set was analyzed in two ways. In the ‘‘pooled phases’’ approach, a moving grating is consistent with linear combination of
the phase of the stimulus was ignored in the assessment of cluster- signals from subregions of the receptive field, leading to aing, to yield an index Hpooled . In the ‘‘individual phases’’ approach,

marked dependence of responses on spatial phase. In con-clustering was calculated separately for each spatial phase and
trast, a complex cell’s characteristic steady elevation of firingthen averaged across spatial phases to yield an index Hindiv . Hpooled
rates in response to a moving grating is typically consideredexpresses the extent to which a spike train represents contrast,
to be indicative of additive combination of signals across anspatial frequency, or orientation in a manner which is not con-

founded by spatial phase (phase-independent representation), array of rectifying subunits (Spitzer and Hochstein 1985b)
whereas Hindiv expresses the extent to which a spike train represents and would lead to responses that are independent of spatial
one of these attributes, provided spatial phase is fixed (phase- phase.
dependent representation). Here, representation means that a Thus one might expect that in simple cells, the attributes
stimulus attribute has a reproducible and systematic influence on of contrast, orientation, and spatial frequency can be signaled
individual responses, not a neural mechanism for decoding this only if spatial phase is fixed, whereas in complex cells,influence. During the initial 100 ms of the response, contrast was

these attributes are signaled in a phase-invariant manner.represented in a phase-dependent manner by simple cells but pri-
However, this conclusion (and indeed, the classification ofmarily in a phase-independent manner by complex cells. As the
cells into simple and complex types) is based on an implicitresponse evolved, simple cell responses acquired phase-indepen-
assumption that a neuron’s response is characterized by thedent contrast information, whereas complex cells acquired phase-

dependent contrast information. Simple cells represented orienta- number of spikes in some period of time—i.e., a rate, or
tion and spatial frequency in a primarily phase-dependent manner, spike count, code. It is clear that this assumption is not
but also they contained some phase-independent information in justified (McClurkin and Optican 1996; McClurkin et al.
their initial response segment. Complex cells showed primarily 1991a,b; Purpura et al. 1993; Victor and Purpura 1996a).
phase-independent representation of orientation but primarily Conceivably, simple cells might be able to exploit temporal
phase-dependent representation of spatial frequency. Joint repre- coding to signal stimulus attributes in a manner that is notsentation of two attributes (contrast and spatial frequency, contrast

confounded by spatial phase even though the firing rate enve-and orientation, spatial frequency and orientation) was primarily
lope might be strongly dependent on spatial phase. Con-phase dependent for simple cells, and primarily phase independent
versely, temporal coding of multiple stimulus attributes infor complex cells. In simple and complex cells, the variability in
the discharge of a complex cell (Victor and Purpura 1996a)the number of spikes elicited on each response was substantially
might be confounded by changes in spatial phase unless thegreater than the expectations of a Poisson process. Although some

of this variation could be attributed to the dependence of the re- putative subunits that make up a complex cell’s receptive
sponse on the spatial phase of the grating, variability was still field (Spitzer and Hochstein 1985b) combine in a temporally
markedly greater than Poisson when the contribution of spatial coherent fashion.
phase to response variance was removed. From a functional point of view, spatial phase is critically

important in extracting image features (Field 1987; Morgan
et al. 1991; Oppenheim and Lim 1981; Shapley et al. 1990;

I N T R O D U C T I O N
Tadmor and Tolhurst 1992; Victor and Conte 1996). It is

Temporal coding can, in principle, provide a way that natural to assume that spatial phase, because of its close
relationship to position, is encoded by the locus of activityindividual visual neurons can signal more than one stimulus
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were protected with contact lenses. The dura overlying V1 wasacross a population of neurons. However, to the extent that
exposed via a careful craniotomy centered at 12–15L, 12–15P. Aneurons may be regarded as local Fourier analyzers (DeVa-
portion of the dura just posterior to the lunate sulcus was removedlois and DeValois 1988; De Valois et al. 1985), spatial
under an operating microscope. After these surgical procedures,phase and spatial position are distinct entities (Ohzawa et
paralysis was induced with pancuronium bromide 1 mg iv bolus,al. 1996). From the point of view of local Fourier analyzers, 0.2–0.4 mgrkg01

rh01 iv, and anesthesia with sufentanil or urethan
features such as lines, edges, and smooth gradations are was maintained. Core temperature, monitored with a rectal thermis-
superpositions of grating patches in specific relative phases. tor, was maintained at 377C with a thermostatically controlled heat-
Changing the phase but not the position of the patches ing blanket. Ventilator settings were adjusted to maintain an end-
changes the nature of the feature, whereas changing their expiratory CO2 at 30–35 mmHg. Supplemental oxygen was admin-

istered every 6 h, and electrocardiograms and oxygenation wereposition (but not their relative phases) translates the feature.
monitored continuously. Hydration (lactated Ringer solution withThus neural representation of the nature of a feature and its
5% glucose, 2–3 mlrkg01

rh01) was maintained throughout thelocation might require more than a simple spatial code.
experiment.In our previous investigations (Victor and Purpura 1996a,

The positions of the foveae and optic disks were mapped onto1997a) in V1, and in the work investigating the temporal
a tangent screen with a modified hand-held fundus camera or directencoding of gratings in V1 and V2 (K. P. Purpura and L. M.
ophthalmoscope. Refraction was optimized for the viewing dis-Optican, unpublished results) , spatial phase was not explic- tance of 114 cm with trial lenses as determined by slit retinoscopy

itly examined in part because of the limited control of eye and confirmed or refined if necessary by optimizing responses of
position available in awake behaving animals (Creutzfeldt individual cortical cells to drifting gratings. Artificial pupils (3-
et al. 1987). In this paper, we analyze the temporal structure mm diam) were centered in front of the natural pupils.
of responses of single neurons in V1 in the anesthetized,

SINGLE-UNIT RECORDING AND PRELIMINARY CHARACTERIZA-paralyzed animals (under conditions in which spatial phase
TION. An Ainsworth tungsten-in-glass microelectrode (typical re-is controlled precisely) , to address the issues raised above. sistance, 2 MV) was advanced through a small durotomy until the

A portion of this work was presented at the 1996 meeting action potential of a single neuron was discriminated reliably by
of the Society for Neuroscience, Washington, DC (Victor a window discriminator (Winston Electronics, Millbrae, CA) either
and Purpura 1996b). alone or augmented by one or more analog ‘‘hoops’’ (Tucker-

Davis Technology, Gainesville, FL) that placed amplitude and
latency criteria on later phases of the spike waveform. The re-M E T H O D S
ceptive field was mapped onto a tangent screen and ocular domi-
nance was determined by auditory criteria. In all subsequent re-Physiological methods
cording, the nondominant eye was occluded. A first-surface mirror

We recorded single-unit activity in the parafoveal representation was adjusted to align the receptive field with the center of a com-
in cortical area V1 of 10 anesthetized, paralyzed macaque monkeys. puter-driven CRT display (mean luminance 150 cd/m2 with a green
Single units (25) were isolated and stable recordings maintained phosphor, subtending 4 1 47 at the viewing distance of 114 cm).
for sufficient time (4–6 h) for the studies reported here. All proce- This display system, a modification of the system described by
dures involving the animals were performed in accordance with Milkman et al. (1980), provides for a 2561 256-pixel raster at 270
National Institutes of Health guidelines for the care and use of Hz with look-up table correction of intensity-voltage nonlinearities.
laboratory animals. Although every attempt was made to align the center of the re-

ceptive field with the center of the display (spatial phase 0), it isGENERAL PREPARATION. Anesthesia was induced with ketamine
recognized that this alignment is to some extent arbitrary, and our15 mg/kg im potentiated by xylazine 2 mg/kg im (Rompun,
analysis strategy does not depend on absolute knowledge of spatialHaver) , supplemented as needed by methohexital boluses (0.5–1
phase.mg/kg iv) during the preparatory surgery. Pupils were dilated with

The general ranges of spatial frequency tuning, orientation tun-atropine 1% eyedrops, and flurbiprofen 2.5% (Ocufen, Allergan)
ing, and temporal tuning were estimated by rapid auditory assess-was instilled as prophylaxis against ocular inflammation. Incision
ment of the response to sinusoidal drifting gratings. Computer-sites were prepped with betadine and infiltrated with xylocaine 1%.
controlled stimulation and recording then was begun. OrientationVenous access was obtained via bilateral femoral vein cannulation.
tuning was determined by responses to gratings at each of 16The femoral artery was catheterized for continuous blood pressure
orientations (equally spaced in steps of 22.57 or, for narrowly-monitoring, and the trachea was cannulated for mechanical ventila-
tuned units, 11.257) , presented at a contrast [(Lmax 0 Lmin) / (Lmax /tion. After transfer of the animal to a stereotaxic frame, anesthesia
Lmin)] of 0.5–1.0 the spatial frequency and temporal frequency ofwas maintained with sufentanil (Sufenta, Janssen), 3 mg/kg iv
which were determined by the auditory assessment. Spatial fre-bolus, 1–6 mgrkg01

rh01 iv. A few animals were refractory to
quency tuning was determined by responses to gratings at each ofsufentanil at 6 mgrkg01

rh01 , and for these animals, urethan (400–
eight spatial frequencies (typically 0.25, 0.5, 1.0, 2.0, 3.0, 4.0, 6.0,500 mg/kg iv loading, 200 mg/kg iv every 12 h) was substituted
and 8.0 cycles/deg) at a contrast 0.5–1.0, the orientation of whichfor sufentanil. Dexamethasone 1 mg/kg iv was administered at the
was determined by the quantitative orientation tuning run, andstart of the experiment and daily thereafter to reduce cerebral
the temporal frequency of which was determined by the auditoryedema. Procaine penicillin G 25,000 U/kg im and benzathine peni-
assessment. In most units, a contrast response function also wascillin G 25,000 U/kg im (Pen BP-48, Pfizer, New York, NY) were
determined by responses to drifting gratings at contrasts of 0.0625,administered as prophylaxis against surgical infection. Gentamicin
0.125, 0.25, 0.5, and 1.0, (optimal orientation and spatial fre-(5 mg/kg im daily) was given if fever, hypoxia, increased tracheal
quency, temporal frequency determined by the auditory assess-secretions, or chest auscultation suggested the development of in-
ment) , and temporal tuning was assessed by responses to 1-, 2-,fection. Every 12–24 h, the corneas were irrigated with Ringer
4-, and 8-Hz drifting gratings at the optimal orientation, spatialand flurbiprofen was instilled. Local antibiotic (bacitracin, neomy-
frequency, and contrast. In all of these tuning runs, stimuli werecin, and polymyxin B ointment) was applied to the conjunctivae
presented in randomized order in four to eight blocks. Each stimu-if a discharge was present.

Eyelids were retracted with 6-0 chromic gut sutures and corneas lus was presented continuously for 11 s, the last 10 s of which
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FIG. 1. Layout of a spatial frequency ex-
periment. Stimuli were presented transiently
for 237 ms and grouped into runs of 16 pre-
sentations that included all spatial phases
once. From run to run, spatial frequency and
the initial spatial phase were varied in a bal-
anced fashion. In other experiments, contrast,
orientation, or two of the parameters (con-
trast, spatial frequency, orientation) were
varied from run to run, along with initial spa-
tial phase.

were Fourier analyzed at the stimulus frequency and its second the entire range of sensitivity of the neuron, was adopted to limit
the number of different stimuli and thus reduce the upward bias ofharmonic to quantify responses. In a few cases, the quantitative

characterization led to tuning functions for spatial or temporal information-theoretic measures of clustering (Carlton 1969; Treves
and Panzeri 1995). A typical experiment might thus consist offrequency that differed substantially from the auditory assessment.

In these cases, the quantitative characterization was repeated with varying the contrast between two values (e.g., 0.5 and 1.0) and
varying orientation across three values (e.g., peak, peak / 22.57,these modified values.

Cells were classified as simple or complex (Skottun et al. 1991) peak / 457) . For each of these six contrast 1 orientation pairs,
there were 16 runs (to provide each spatial phase with the opportu-on the basis of whether their response to a drifting grating of high

spatial frequency was predominantly a modulated response at the nity to be presented first) . This block of 6 1 16 Å 96 unique runs,
presented in randomized order, thus contained 16 presentations offundamental frequency (simple cells) or elevation of the mean

(complex cells) . Confidence limits for Fourier coefficients were each of the six grating stimuli at each of 16 spatial phases. For
each run, the initial spatial phase and sequence of spatial phasesdetermined by the T 2

circ statistic (Victor and Mast 1991).
was chosen in a pseudorandom fashion, so that for each contrast,LESIONS, EUTHANASIA, AND HISTOLOGY. At locations along
spatial frequency, and orientation, each spatial phase was presentedthe electrode track corresponding to recording sites and at an addi-
exactly the same number of times and presented in each serialtional location at the end of the track, lesions were made by current
position within runs exactly the same number of times. This ar-passage (3 mA 1 3 s) . At the conclusion of the experiment, the
rangement was designed to counterbalance any effects of contrastanimal was killed by rapid injection of a barbiturate (ú15 mg/
adaptation. Several ( typically 2–4) repetitions of the block ofkg methohexital iv) , exsanguinated via perfusion with phosphate-
unique runs were obtained, with the order of runs within each blockbuffered saline, and perfused with 4% paraformaldehyde in phos-
randomized. Runs were aborted if spike discrimination becamephate-buffered saline. Cryostatic sections (40 mm) were stained by
unreliable or if there was a major change in responsiveness. Spikethe Nissl method and examined under light microscopy to confirm
times were recorded with a resolution of 1.2 ms ( 1/3 of the frametrack location in V1. Nearly all units were in granular and supra-
time) by the DEC 11/93 computer that sequenced the runs andgranular layers.
controlled the visual stimulator.

EXPERIMENTAL DESIGN. Experiments to analyze the signaling of If recording stability permitted, we attempted to perform analy-
contrast, spatial frequency, and orientation were organized as dia- ses of all three attributes (contrast, spatial frequency, and orienta-
grammed in Fig. 1. Stimuli consisted of transiently-presented full- tion) in each unit either individually or in pairs. Data sets collected
field (4 1 47) stationary sinusoidal luminance gratings. Stimuli with two attributes varied were ‘‘sliced’’ into data sets for analysis
were organized into runs of 16 grating presentations (237-ms dura- of coding of a single attribute, but only the optimal value of the
tion, 710–1,026 ms between presentations) , and there were 10-s second attribute was considered for this purpose. In some cases,
gaps between runs. Between presentations of gratings within a run, we recorded two independent data sets for a single attribute (e.g.,
and in the gaps between the runs, the display returned to a uniform contrast covarying with spatial frequency in 1 data set and covary-
field at the mean luminance. Within each run, all gratings had a ing with orientation in another) , which resulted in two independent
fixed contrast, spatial frequency, and orientation (varied across data sets for the overlapping attribute in that unit. A tally of the
runs as described later) , and spatial phase was varied across 16 experiments performed and data sets analyzed is presented in Ta-
equally spaced values (in steps of 112.5 or 907) . As shown in Fig. ble 1.
1, a sequence of 16 steps of 112.57 phase increments covers the In a few experiments only four spatial phases (in steps of 907)
same phases as would steps of 22.57 but in an order that reduces were examined. These experiments are included with the 16-phase
the sense of apparent motion. experiments because reanalysis of subsets of the 16-phase experi-

In each experiment, one or two of the stimulus parameters (con- ments restricted to 4 phases yielded results similar to results of the
trast, spatial frequency, and orientation) was varied across runs. analysis of the full 16-phase experiments.
When orientation or spatial frequency was varied, it was allowed
to assume the value at which the drifting grating response was
maximal and two or more values that were clearly away from the Data analysis
peak. Spatial parameters that were not varied (i.e., orientation or
spatial frequency) were held fixed at their values at which the Our goal is to determine the extent to which spike trains elicited

by transient presentations of static gratings can represent the con-grating response was maximal. Contrast was varied across a range
consistent with the range at which the unit responded in the prelimi- trast, spatial frequency, or orientation of the grating and to what

extent this representation depends on spatial phase. We wantednary runs or was maintained at 1.0 for units with low contrast
sensitivity. This strategy, rather than an attempt to cover densely to minimize assumptions about how stimulus attributes might be
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TABLE 1. Summary of experiments performed

Units* Data Sets†

Paradigm Simple Complex Total Simple Complex Total

Contrast 13 10 23 17 15 32
Spatial frequency 11 8 19 13 12 25
Orientation 11 8 19 13 11 24

Contrast, spatial frequency 9 7 16 9 8 17
Contrast, orientation 7 6 13 8 7 15
Spatial frequency, orientation 2 1 3 2 1 3
Any two parameters 14 10 24 19 16 35

Total units 14 11 25

Summary of the experiments performed and the resulting data sets. * Number of units for which each analysis was performed. † Total number of data
sets of each type. Entries under data sets can be greater than the corresponding entries under Units if two independent analyses of a particular type were
performed on the same unit.

represented, both in terms of the relevant features of a spike train, count metric D count . The first step in data analysis thus consists of
calculation of the distances between all pairs of individual re-and the mapping between these features and the parameterization

of the stimulus. For example, the attribute of contrast naturally sponses, for each of the candidate metrics (D count and D spike[q] ,
for q ranging from 1 to 512 s01 in octave steps) .runs monotonically from 0 to 1, but one cannot assume that spike

counts represent this attribute in a linear fashion, and there may STIMULUS-DEPENDENT CLUSTERING. The second step of the
be a contribution to the representation of contrast from bursts, analysis is a determination of the extent to which each metric
latency changes, or other temporal features. Representation of spa- induces stimulus-dependent clustering. The experimental set-up de-
tial attributes raises additional issues. For example, the attribute of fines a set of stimulus classes s1 , s2 , . . . , sC, (e.g., one for each
spatial frequency runs monotonically from low to high, but a typi- spatial frequency). Based solely on the calculated pairwise dis-
cal neuron produces the largest response at an intermediate spatial tances, one can cluster the recorded spike trains into response
frequency, and responses to spatial frequencies significantly below classes r1 , r2 , . . . , rC, (Victor and Purpura 1996a, 1997a). In
or above this optimum might have far fewer spikes. The time essence, the clustering algorithm puts each spike train into the class
courses of these off-peak responses might (or might not) have that corresponds to the stimulus that elicited the closest set of
consistent differences. Thus although in a formal sense spatial observed responses in the other trials. Application of the clustering
frequency is a monotonic variable, there is certainly no reason to algorithm to each response yields a partition of the Ntot observed
assume that this attribute is represented in a ‘‘linear’’ fashion, and spike trains into an array N(sa , rb) that tallies the number of times
it is even unclear whether it is represented in a monotonic fashion. that a response in class rb was elicited by a stimulus in class sa .

To minimize assumptions concerning the neural representation Maximal stimulus-dependent clustering corresponds to an array
of the stimulus space, we based our analysis on the metric-space N(sa , rb) that is nonzero only on the diagonal–that is, no stimuli are
approach we recently introduced (Victor and Purpura (1996a, misclassified. The other extreme, an absence of stimulus-dependent
1997a) and describe briefly here. We consider a series of candidates clustering, corresponds to an array N(sa , rb) that is randomly filled.
for the notion of a ‘‘metric’’ (distance or dissimilarity) between Between these extremes, the array N(sa , rb) is larger on the diago-
spike trains. Our primary assumption is that if a candidate metric nal than off—corresponding to a situation in which individual
reflects the manner in which stimuli are represented by neural responses to each stimulus form partially overlapping clouds (as
discharges, then distances between individual responses to the same illustrated in Victor and Purpura 1997a, Figs. 9 and 13). A dimen-
stimulus will be small, whereas distances between individual re- sionless quantity to quantify clustering is the ‘‘transmitted informa-
sponses to distinct stimuli will be large. Thus for each candidate tion’’ H (Abramson 1963) of the matrix N(sa , rb) . H is given by
metric, the analysis breaks into two stages: a calculation of dis-
tances between response pairs and an assessment of the extent to H Å 1

Ntot
∑
a,b

N(sa , rb)[ log N(sa , rb) 0 log ∑
a

N(sa , rb)
which these distances indicate stimulus-dependent clustering. Each
metric is a way of comparing individual responses with each other;

0 log ∑
b

N(sa , rb) / log Ntot ] (1)the clustering calculation examines the relationship between stimuli
and these individual responses.

where logarithms are taken to the base 2. Perfect clustering of CMETRICS. The metrics we consider include comparisons based
equally probable stimulus classes corresponds to H Å log C , andsolely on the number of spikes (called the ‘‘spike count’’ metric,
random clustering corresponds to HÅ 0. We stress that we interpretD count ) , as well as a family of distances (parameterized by a quan-
the transmitted information H merely as an index of stimulus-tity q) that are sensitive to the temporal pattern of the spikes
dependent clustering. The calculation of H is in no way intended(‘‘spike time’’ metrics, D spike[q]) . The parameter q (s01) indicates
to be optimal (for this would entail additional assumptions concern-the sensitivity of the distance to the precise timing of spikes. For
ing the nature of stimulus encoding and response variability) norspike trains to be seen as similar in the sense of D spike[q] , they
to reflect how biological processes extract information from spikemust have a similar number of spikes and the times of these spikes
trains.must agree to within 1/q . More precisely, the distance between

two spike trains Sa and Sb in the sense of D spike[q] is defined as BIASES DUE TO FINITE SAMPLES. For finite data samples, the in-
formation estimate H given by Eq. 1 is upwardly biased (Carltonthe minimal cost required to transform Sa into Sb via a sequence

of any of the following transformations: insertion of a spike, which 1969; Panzeri and Treves 1996; Treves and Panzeri 1995). Thus we
estimated conservatively (Panzeri and Treves 1996) the upward biasentails a cost of 1; deletion of a spike, which entails a cost of 1;

and shifting a spike by an amount of time Dt , which entails a cost of the estimate (Eq. 1) for H by repeating the above calculations for
synthetic data sets that consisted of a random reassignment of theof qDt . For q Å 0, the metric D spike[q] collapses into the spike
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observed responses to the stimulus categories. The mean of 10 such COMPARISON WITH ASSESSMENT OF TUNING. To assess tuning,
one chooses a measure of response size, such as the spike countcalculations will be denoted by H0 , and all comparisons that we

present will be based on the empirically corrected value H 0 H0 , or a particular Fourier component, and asks how this measure
depends on one or more stimulus parameters. Here we examine arather than H. A formula that asymptotically estimates the upward

bias has recently been developed (Panzeri and Treves 1996; Treves set of measures of the dissimilarity (or difference) between two
responses and ask how these measures depend on the choice ofand Panzeri 1995). Strictly speaking, this formula is not applicable

here, because our clustering procedure violates the ‘‘independent- stimuli. This is a more general strategy. A measure of response
size always can be turned into a measure of dissimilarity—forbinning’’ assumption required for its derivation. Nevertheless for a

few example data sets, comparison of our empiric estimate of the example, D count is the difference in the number of spikes contained
in the two trains that it compares. However, measures of dissimilar-bias by resampling and the analytic formula were similar. Finally,

the similarity of results across 16- and 4-phase data sets was further ity need not correspond to measures of response size, as in the
case of D spike[q] for q ú 0.evidence that our results were not merely due to sample-size biases

in the estimates of H . In laboratory application of either technique, it is often necessary
to sample discrete values of a parameter that conceptually spans aThe measured value of H does not reflect the intrinsic coding

capacity of the neuron but rather depends on the range of stimulus continuous range (e.g., contrast, spatial phase, spatial frequency).
The implicit assumption is that the sampling captures the mainparameters explored. However, bias in the estimate of H increases

in approximate proportion to the number of stimulus categories features of what is fundamentally a continuous correspondence
between stimuli and responses. In the ‘‘tuning’’ approach, this(Treves and Panzeri 1995). Because the overall aim of the study

is to determine whether or not representation of stimulus parame- assumption is supported by the smooth appearance of tuning
curves. For the present approach, this assumption is supportedters is disrupted by spatial phase, we chose a wide, but sparsely

sampled, range of stimulus parameters (as described earlier) to by the lawful behavior of multidimensional scaling based on the
response metrics (Victor and Purpura 1997a; Victor et al. 1997).make H large but to keep its bias small.

Our rationale for choosing this more general approach is thatRELEVANCE OF H . The clustering measure H specifies the extent
we are interested in a neuron’s role in suprathreshold vision notto which stimuli that differ in one or more attributes lead to re-
just detection tasks. For the latter, it could be argued that it issponses that have systematic differences. That is, statistically sig-
sufficient to consider measures of response size. But to understandnificant values of H imply a systematic representation of a stimulus
suprathreshold vision (e.g., discrimination tasks and neural repre-attribute in the spike train (i.e., that it has been encoded) but do
sentation), consideration of response dissimilarity appears thenot necessarily imply that the visual system has the capacity to
more natural approach.decode it.

However, the biological relevance of H is no more tenuous than
measures based on spike counts and histograms. H is influenced

R E S U L T Sby both spike counts and, to an extent that depends on q , temporal
patterns of spikes. Overall firing rate is known to be biologically Interaction of spatial phase with contrast, spatial
relevant (Salzman et al. 1990), but direct electrical stimulation frequency, and orientationnecessarily induces a change in the temporal pattern of spikes as
well. Conversely (Roelfsema et al. 1994), there are functional We will begin by presenting an analysis of several data
correlates associated with changes in temporal pattern of spikes, sets in detail and then will present a summary of our findingseven when there is no change in overall firing rate.

across the recorded units. The detailed presentation also willThe reader might be concerned by the apparently sophisticated
help clarify our approach to the analysis of how the encodingmathematical operations that this approach is unlikely to be rele-
of contrast, spatial frequency, and orientation interacted withvant to neurophysiologic processes. But the sophistication of the
spatial phase. We will develop two clustering measures:mathematics does not reflect an assumption that the nervous system
Hpooled , in which responses from all spatial phases are pooled,performs analogous calculations; rather, it is required by a loosen-
and Hindiv , in which each spatial phase is treated individually.ing of assumptions about how neurons work. The relationship of

our approach to traditional approaches like counting spikes and These information-theoretic measures indicate the extent to
accumulating histograms is similar to the relationship of nonpara- which the spike discharge represents ( i.e., has the potential
metric statistics (such as the median) to parametric statistics (such to signal) a particular spatial attribute in a context in which
as the arithmetic mean). The median is harder to compute than spatial phase is allowed to vary (Hpooled ) or held fixed
the arithmetic mean and cannot be described as readily in terms of (Hindiv ) . As we have pointed out above, these quantities are
the elementary mathematical operations. However, the arithmetic not used as absolute measures of information, and we will
mean makes the assumption that the measured values of the param- focus on comparing them, comparing their evolution overeter have a linear relationship to the quantities of interest, whereas

time, and comparing their dependence on the stimulus pa-the median only assumes that rank order is significant. In this
rameter of interest.context, the use of spike counts and response histograms carries the

implicit assumption of a linear, additive structure for the response SAMPLE DATA SET 1: SPATIAL FREQUENCY ENCODING IN A
measure. Although this might be adequate for certain idealized SIMPLE CELL. Responses of a simple cell to gratings at three
neuron models, the real neurons are not linear, and are sensitive spatial frequencies (0.5, 2, and 4 cycles/deg) are shown in
to coincidences (Softky and Koch 1993) among their inputs. The Fig. 2. This simple cell was directional and orientationally
relevant time scale of these coincidences (and thus of the temporal tuned and had a spatial frequency cutoff of 6 cycles/deg,structure of spike trains) may range from submillisecond to many and the illustrated responses were collected at its optimalmilliseconds, depending on the biophysical mechanisms involved

orientation. At each spatial frequency, systematic phase de-(Bourne and Nicoll 1993; Softky 1994). Our approach explicitly
pendence of the response is evident. For example, at 0.5recognizes these possibilities and uses appropriate mathematical
cycles/deg, the largest responses occur for spatial phases inmethods, including nonparametric elements, to address them. In
the range 157.5–2707, and responses to gratings with spatialview of the ongoing debate concerning the relevance of detailed
phases near 07 are minimal. At 2 cycles/deg, the largestfiring patterns (Shadlen and Newsome 1995; Softky 1995), we

consider this to be an appropriately conservative strategy. responses occur for spatial phases 247.5–337.57, and re-
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FIG. 2. Responses of a V1 simple cell to gratings that vary in spatial frequency (rows: 0.5, 2, and 4 cycles/deg) and
spatial phase (columns: steps of 22.57) . Stimulus onset is at time 0 . Vertical line at 237 ms marks the disappearance of the
stimulus. Contrast: 0.5. Orientation: 907 (preferred). Unit 21/2.

sponses to gratings with spatial phases in the range 112.5– and a contrast of 1.0 (D–F) . In all analyses, Hindiv exceeds
1807 are small. At this spatial frequency, a prominent off- Hpooled , both for the spike count metric (plotted at q Å 0)
discharge also is present when the on-response is large. At and nearly all the spike time metrics. For most of the analy-
4 cycles/deg, responses are smaller, and the dependence of ses (all but Fig. 3E) , the maximal clustering is achieved for
response on spatial phase is less marked, but there is still a q ú 0. This indicates that stimulus-dependent clustering is
response maximum for phases in the range 45–1357. Be- more prominent when the temporal structure of the spike
cause of the joint dependence of response size on spatial train is taken into account (and spike trains are compared
frequency and spatial phase, the size of the response does via D spike[q]) than when it is ignored (and spike trains are
not necessarily indicate the spatial frequency of the grating. compared only on the basis of the number of spikes they
For example, a moderate response could either indicate the contain) .
presence of an 0.5 cycles/deg grating near a null spatial The value of q that provides optimal clustering typically
phase or a 4 cycles/deg stimulus near the peak spatial phase. ranges from 16 to 64 s01 , corresponding to a temporal preci-
This intuitive analysis, namely that spatial frequency and sion (1/q) ofÇ15–60 ms. As q increases beyond this point,
spatial phase are jointly encoded, is supported by the quanti- Hindiv decreases, eventually to chance levels. This indicates
tative analysis we now describe. that the pattern of spikes at a higher temporal resolution

First the data set was analyzed independently of spatial (õ15 ms) does not appear to depend in a systematic way
phase. That is, the 48 different stimuli (16 spatial phases on the stimulus. Other data sets show a drop in values ofand 3 spatial frequencies) were pooled into three classes, Hindiv and Hpooled at lower values of q , indicating a proportion-ignoring the differences in spatial phase. Stimulus-dependent

ately more coarse temporal resolution. This timescale for theclustering for this pooled analysis, denoted by Hpooled , was
‘‘informative’’ precision of a spike agrees with our previoustaken to be the corrected value of the transmitted information
findings in recordings in the awake macaque (Victor andH 0 H0 . Hpooled was calculated for the spike count metric
Purpura 1996a) and results of others (Heller et al. 1995)D count and each of the spike time metrics D spike[q] (for q
using a different analytic technique. It shows that there is aranging from 1 to 512 s01 in octave steps) . Second, the data
substantial difference between the informative precision ofset was partitioned into 16 subsets, 1 for each spatial phase.
a spike and the intrinsic precision of the neural spike-gener-Within each of these 16 subsets, stimulus-dependent cluster-
ating mechanism (Mainen and Sejnowski 1995; Reich et al.ing was assessed by a calculation of H0H0 . For this calcula-
1997).tion, each stimulus class consisted of a single spatial fre-

Hindiv and Hpooled have different patterns of evolution inquency at a single spatial phase, and the only responses used
time. Hindiv is distinctly above zero even for an analysisto calculate H or H0 were responses obtained at that spatial
restricted to the initial response segment (the first 100 ms;phase. The resulting 16 values of H 0 H0 , one for each
Fig. 3, A and D) , but Hpooled is only significantly greater thanspatial phase, were averaged, to obtain Hindiv . In essence,
zero when the entire response (the first 256 ms; Fig. 3, B andHindiv indicates the extent to which the spike trains represent
E) is analyzed. The initial portion of the response representsspatial frequency in a context in which spatial phase is held
spatial frequency in a phase-dependent manner, as would befixed, whereas Hpooled indicates the extent to which the spike
expected from a linear receptive field with uniform dynam-trains represent spatial frequency in a context in which spa-

tial phase is allowed to vary. ics. The response then evolves over time to include a repre-
Separate calculations of Hindiv and Hpooled were performed sentation of spatial frequency that is independent of spatial

for the first 100 ms of each response, the first 256 ms, and phase, suggesting inputs from other kinds of receptive field
the first 473 ms, and for each of the two contrast levels elements (see DISCUSSION). Inclusion of the off-component
studied. A comparison of these quantities is shown in Fig. of the response does not produce a major change either in

Hindiv and Hpooled (Fig. 3, C and F) . However, there is a3 for the three analysis intervals at a contrast of 0.5 (A–C)
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FIG. 3. Analysis of encoding of spatial
frequency for the data set of Fig. 2. ●, Hpooled

(a measure of the representation of spatial
frequency, in the context that spatial phase is
allowed to vary). h, Hindiv (a measure of the
representation of spatial frequency, in the
context that spatial phase is held fixed). A–
C : contrast 0.5, with data analysis restricted
to the first 100 ms (A) , the first 256 ms (B) ,
and the first 473 ms (C) . D–F : contrast 1.0,
with data analysis restricted to the first 100
ms (D) , the first 256 ms (E) , and the first
473 ms (F) . Hpooled and Hindiv have been cor-
rected for estimated bias via a resampling
procedure and have been calculated for a
range of spike time metrics D spike[q] , as well
as the spike count metric D count , plotted at
q Å 0. Missing symbols indicate that the cal-
culated values of H did not exceed the value
expected by chance.

of the grating, and the rasters (not shown) suggest that theygreater separation between Hindiv and Hpooled , suggesting that
are not systematically present (i.e., noise).the off-response is strongly phase dependent in this cell.

The formal analysis of phase-independent and phase-de-
SAMPLE DATA SET 2: ORIENTATION ENCODING IN A COMPLEX pendent clustering is shown in Fig. 5. For the three analysis
CELL. Figure 4 shows the responses of a complex cell to intervals, Hpooled exceeds Hindiv for all metrics considered.
gratings that varied in orientation and spatial phase. As seen Hpooled is near its maximal value within the first 100 ms (Fig.
in the figure, the complex cell was tuned orientationally in 5A) but Hindiv increases between 100 and 256 ms (Fig. 5B) .
response to static presentations of gratings, as was demon- Hindiv increases further when the off-discharge is included
strated for neurons in both V1 and V2 in the study by K. P. (Fig. 5, C compared with B) . As in the example of Fig. 3,
Purpura and L. M. Optican (unpublished results). Responses maximal clustering is achieved for a nonzero value of q , in
to drifting gratings (not shown) were tuned to the same orien- the range 16–64 s01 . But in this case, the increase of Hpooled
tation and were direction selective as well. This unit had a for q ú 0 over Hpooled for a spike count code (q Å 0) is
spatial frequency cutoff of 2 cycles/deg, and the illustrated small, indicating that there is only a minimal contribution
responses were collected at 1 cycles/deg near its optimum. of the temporal structure of the response to the representation
As is seen from the response histograms, there is a maximal of orientation. Additionally, this increment is only seen for
response at an orientation of 907, with smaller responses often the higher of the information curves (Hpooled ) and not for
present at the neighboring orientation of 112.57, and smaller Hindiv . That is, for this unit, a spike count code is superior
still at 67.57. Although some dependence on spatial phase is for representing orientation provided that each orientation is
present, these three orientations contained the largest re- presented at a single spatial phase. The major finding, that
sponses at each spatial phase. At most spatial phases, the Hpooled exceeds Hindiv , confirms the intuition that for this unit,
largest response was at 907. Although some spikes are present the representation of orientation is phase independent. Hindiv

during presentations of orientations that are removed from is clearly not zero, but the fact that it is smaller than Hpooled

indicates that there is no confounding of spatial phase andthis peak, these spikes typically do not occur during the onset
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FIG. 4. Responses of a V1 supragranular complex cell to gratings that vary in orientation (rows: steps of 22.57) and
spatial phase (columns: steps of 22.57) . Responses to orientations of 0, 22.5, and 157.57 contained very few spikes and are
not shown. Stimulus onset is at time 0 . Vertical line at 237 ms marks the disappearance of the stimulus. Contrast: 1.0. Spatial
frequency: 1 cycles/deg. Unit 20/1.

orientation, in contrast to the interaction between spatial sponse feature responsible for this increase in stimulus-de-
phase and spatial frequency analyzed in Figs. 2 and 3. pendent clustering: a cessation of the firing rate Ç100 ms

after the removal of the stimulus, most prominent for stimu-SAMPLE DATA SETS 3 AND 4: CONTRAST ENCODING. Figure
lus contrasts of 1.0, and present at most spatial phases.6 shows the responses of a complex cell to gratings that

The final data set, illustrated in Fig. 8, consists of thevaried in contrast. The unit was orientationally tuned and
responses of a simple cell to gratings that varied in contrast.direction selective. The illustrated responses were collected
The unit was tuned orientationally but not direction selective.at 1.0 cycles/deg, near its spatial cutoff and at the preferred
It had a spatial frequency cutoff of 1 cycles/deg, and theorientation of 1357. Responses are somewhat noisy, and there
illustrated responses were collected at 0.5 cycles/deg, nearis little dependence of response size on spatial phase.
its tuning peak, at the preferred orientation of 1357. At theIn the first two intervals analyzed (0–100 ms and 0–256
two highest contrasts, there is a clear dependence of responsems), Hindiv and Hpooled are comparable, as shown in Fig. 7,
size on spatial phase, less-obvious at the lowest contrastA and B. Hindiv slightly exceeds Hpooled for initial portion of
because of small responses overall. Additionally, this unit’sthe response (Fig. 7A) . Both quantities increase somewhat
peak response is relatively prolonged, with response onsetfor the full stimulus-on period, with Hpooled slightly exceeding
occurring at Ç70 ms and peaking at Ç180 ms.Hindiv for the full on response (Fig. 7B) . That is, contrast-

In the initial (0–100 ms) analysis interval, Hindiv exceedsdependent clustering is comparable, whether or not spatial
Hpooled (Fig. 9A) , which is not above chance. For the longerphase is held fixed—consistent with the notion that complex
analysis intervals (Fig. 9, B and C) , Hpooled exceeds Hindivcells respond in a phase-invariant manner (Skottun et al.
but this difference is minimal. Additionally, for the shortest1991). However, as opposed to the previous data sets, the
analysis interval (Fig. 9A) , simply counting spikes provideseffect of temporal coding is dramatic: Hpooled and Hindiv are
the largest value of H . However, in the longer analysis inter-near zero for the spike count code (q Å 0) and only become
vals (Fig. 9, B and C) , both Hpooled and Hindiv achieve theirsubstantial for distances that are sensitive to the temporal
maximal values for a nonzero value of q ( in the range 8–pattern of spikes (D spike[q] , for q in the range 8–32 s01) .
32 s01) . The dependence on q is relatively small and ofThere is an additional aspect of this unit’s response worth
unclear significance.noting that was not a common feature of the other recordings.

Inspection of Fig. 8 shows, not surprisingly, that theIn most units, there is little change in Hpooled or Hindiv when
largest responses require not only a large contrast but alsothe off-discharge is taken into account, but in this unit, there
particular spatial phases. Intermediate responses are elicitedis a near-doubling of Hpooled (cf. Fig. 7, C with B) . Inspection

of the response histograms (Fig. 6) suggests the likely re- either by a high contrast stimulus at a near-null spatial phase
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encoding evolves over time. Averages for each attribute were
separately normalized because our experimental protocol
(different numbers and ranges of contrasts, spatial frequen-
cies, and orientations) would confound a comparison of ab-
solute values across modalities. The averaged, normalized
values of Hpooled and Hindiv are presented in Fig. 10.

For representation of contrast (Fig. 10A) within the stimu-
lus-on period (the first 100 or 256 ms), Hindiv is greater than
Hpooled for simple cells, consistent with the idea that a simple
cell’s response is phase dependent. That is, a single simple
cell’s discharge can only be considered to represent contrast
if spatial phase is held fixed. For complex cells, within the
first 100 ms, Hpooled is ( just barely) greater than Hindiv , consis-
tent with the idea that a complex cell’s response is phase
independent, and thus contrast can be represented reliably
without a confound by spatial phase. However, later in the
on response, complex cells apparently behave in a phase-
dependent manner that confounds the representation of con-
trast—that is, Hindiv is greater than Hpooled for an analysis of
the first 256 ms. Finally, when the off response is included
(°473 ms), Hindiv is comparable with Hpooled for simple and
complex cells, indicating phase-independent representation
in both cell populations. This is primarily a result of an
increase in Hpooled , indicating that the off response is rela-
tively phase independent. Additionally, Hindiv decreases
somewhat for both cell types. The significance of this de-
crease is unclear, but it may indicate that the contrast depen-
dence of the off response is distinct from that of the on
response and hence confounds the representation of contrast
when it is included in the response.

For spatial frequency (Fig. 10B) , the picture is more
straightforward. For both simple and complex cells, Hindiv is
greater than Hpooled for all analysis intervals, indicating that
variations in spatial phase interact with (i.e., confound) theFIG. 5. Analysis of encoding of orientation for the dataset of Fig. 4. ●,

Hpooled ; h, Hindiv , plotted as in Fig. 3. Analyses are performed on the re- representation of spatial frequency. Regarded in this way,
sponses restricted to the first 100 ms (A) , the first 256 ms (B) , and the both simple and complex cells’ responses are phase depen-
first 473 ms (C) . dent. For orientation (Fig. 10C) , a similar confounding ef-

fect of spatial phase is seen for simple cells. However, for
(e.g., a contrast of 1.0 at a spatial phase of 907) or by a complex cells, Hpooled is greater than Hindiv at all analysis
lower contrast stimulus in an optimal phase (e.g., a contrast intervals, indicating that representation of orientation is rela-
of 0.5 at a spatial phase of 337.57) . What this analysis shows tively independent of variations in spatial phase.
is that despite this coupling, contrast can be effectively repre-
sented even when spatial phase is ignored. However, this Joint encoding of two stimulus parameters
distinction requires more than the initial part of the response:

The preceding analysis investigated the extent to whichat 100 ms, Hindiv exceeds Hpooled , which is not significantly
the output of a neuron in primary visual cortex can representdifferent from 0 (Fig. 9A) , whereas at 256 ms, Hpooled ex-
a single stimulus attribute. However, contrast, spatial fre-ceeds Hindiv (Fig. 9B) .
quency, and orientation interact to determine a neuron’s re-SUMMARY ACROSS DATA SETS. To collate the observations
sponse. Next, we examine data sets in which two parametersin individual data sets across the population of units recorded
were varied in addition to spatial phase to determine to what(Table 1), we proceeded as follows. For each data set, we
extent joint representation of multiple attributes is affectedidentified peak values of Hpooled and Hindiv (as a function of
by variations in spatial phase.q) for each analysis period (the first 100, 256, and 473 ms).

These maximum values of H were averaged separately for DATA SET IN DETAIL. Figure 11 shows responses of an ori-
ented, directionally selective V1 simple cell to gratings atsimple cells and complex cells and for each attribute (con-

trast, spatial frequency, or orientation) that was studied. Av- three contrasts and two orientations, the preferred orientation
(Fig. 11A) , and an off-peak orientation (Fig. 11B) . Thiseraged values were normalized by the maximal average

value achieved for that attribute (for Hpooled and Hindiv , any unit had a spatial frequency cutoff of 6 cycles/deg, and
the responses illustrated were recorded with 2 cycles/degof the 3 analysis periods, and either cell type) . The rationale

for this normalization is to compare encoding with spatial gratings. This is one of the most clear-cut ‘‘simple’’ cells
we encountered: responses are strongly dependent on spatialphase held fixed to encoding with spatial phase allowed to

vary, in simple and complex cells, and to examine how phase. There was a sufficiently high maintained discharge
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FIG. 6. Responses of a V1 supragranular complex cell to gratings that vary in contrast (rows: 0.125, 0.25, 0.5, and 1.0)
and spatial phase (columns: steps of 22.57) . Stimulus onset is at time 0 . Vertical line at 237 ms marks the disappearance of
the stimulus. Spatial frequency: 1.0 cycles/deg. Orientation: 1357 (preferred). Unit 19/2.

so that one could see a reduction in firing accompanying a tively few experiments with each pair of parameters (Table
1), all two-parameter experiments were pooled (Fig. 10D) .stimulus 1807 away from the peak spatial phase. Orientation

and phase interact (cf. the 2 orientations and the spatial Although the degree of clustering in simple cells is higher,
simple cells show a confounding effect of spatial phasephases of 90 and 2707) but (within each phase) orientation

tuning did not depend on contrast. The clustering analysis (Hindiv greater than Hpooled for all analysis intervals) , whereas
complex cells do not (Hpooled greater than Hindiv for all analy-(Fig. 12) reflects this interaction of spatial phase with orien-

tation in that Hindiv exceeds Hpooled for each of the analysis sis intervals) .
intervals.

The maximal response is elicited at a contrast of 0.5, an
Contribution of spatial phase to response variabilityorientation of 67.57, and a spatial phase of 907. Submaximal

responses are elicited by changing spatial phase, contrast, or Several authors have reported that the variability in a sin-
orientation. There appears to be a subtle change in response gle neuron’s response is greater than that expected from a
dynamics elicited by an off-peak orientation (112.57, Fig. Poisson process (Holt et al. 1996; Softky and Koch 1993;
11B) : at optimal spatial phase (1807) , the response has a Tolhurst et al. 1981, 1983; Victor and Purpura 1996a). One
gradual buildup during the last half of the presentation of possible contributing factor to this (especially in studies in
the grating; at other phases, the response is primarily con- awake animals) is that small fluctuations in eye position
tained in a transient just after stimulus onset. At the preferred effectively lead to changes in spatial phase, and hence,
orientation (67.57, Fig. 11A) , high-contrast responses are greater variability (Gur and Snodderly 1987). Thus reliable
primarily transient, and responses to the lowest contrast are but phase-dependent responses might be mistaken for re-
relatively sustained, a result seen for many different types sponses with intrinsically high variability. We investigated
of transiently presented stimuli in the work of K. P. Purpura this possibility directly by comparing response statistics with
and L. M. Optican (unpulished results) . No responses in and without explicit variation of spatial phase.
Fig. 11A show the buildup seen at the off-peak orientation. For this purpose, we examined responses obtained during
This difference in responses to preferred and nonpreferred the first 256 ms after the presentation of a grating of optimum
gratings is reflected in an increase in clustering for metrics contrast, spatial frequency, and orientation. We only consid-
that are sensitive to temporal structure: maximal values of ered data sets in which responses to 16 spatial phases were
Hindiv are achieved for D spike[q] with q in the range of 16– recorded and in which there was a clear systematic depen-
64. However, this change in temporal structure is phase dence of the response on spatial phase. Additionally, data
dependent, and thus there is no corresponding increase in sets in which inspection of the rasters showed a change
Hpooled . That is, the strongly phase-dependent nature of this in overall firing rate from the beginning to the end of the
simple cell’s response confounds the representation of con- experimental run were excluded, as were data sets in which
trast and orientation, unless spatial phase is fixed. individual rasters contained a long run of ‘‘spikes,’’ sugges-

tive of possible artifact. With these restrictions, analysis wasSUMMARY ACROSS DATA SETS. Observations from individ-
ual data sets were collated as described above for the single- focused on nine simple cells and four complex cells (Tables

2 and 3).parameter experiments. However, because there were rela-
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This analysis shows that firing is not governed by a Pois-
son process but does not characterize the nature of the devia-
tion. To characterize the nature of the deviation, we exam-
ined the variance in the number of spikes per trial (Table
3). If firing were governed by a Poisson process (even one
whose mean rate varied with time), then the variance in the
number of spikes in a trial should be equal to the average
number of spikes. For processes that are more regular than
Poisson (e.g., integrate and fire) , the variance/mean ratio
will be õ1. A refractory period also will tend to decrease
the variance/mean ratio because it ‘‘regularizes’’ the spike
train. For processes that are more irregular than Poisson
(e.g., more ‘‘bursty’’) , the variance/mean ratio will be ú1.
With responses pooled across spatial phases, this ratio was
ú1 for all cells examined (minimum: 1.85, maximum, 5.42,
geometric mean: 3.05), and there was no significant differ-
ence (P ú 0.05 by t-test) between simple cells (geometric
mean 3.05) and complex cells (geometric mean 3.04). To
determine the extent to which variation of spatial phase con-
tributed to this excess variance, the same responses were
analyzed with each spatial phase considered individually.
The variance/mean ratio decreased—from 3.05 to 2.63 (P
õ 0.01 by paired t-test) for simple cells and from 3.04 to
2.31 (Põ 0.05 by paired t-test) for complex cells. However,
after the removal of the variance due to spatial phase, the
variance/mean ratio was stillú1 for all cells examined (min-
imum 1.58, maximum 4.80, geometric mean 2.53), and
again, there was no significant difference (P ú 0.05 by t-
test) between simple cells (geometric mean 2.63) and com-
plex cells (geometric mean 2.31). (The lack of a difference
between simple and complex cells does not imply that there
is no difference in the dependence of responses on spatial
phase between simple and complex cells in general—as
noted earlier, this analysis only included data from either

FIG. 7. Analysis of encoding of contrast for the data set of Fig. 6. ●, cell class recorded under conditions in which a phase depen-
Hpooled ; h, Hindiv , plotted as in Fig. 3. Analyses are performed on the re- dence was apparent.) Across all data sets, variation in spikesponses restricted to the first 100 ms (A) , the first 256 ms (B) , and the

count due to variation in spatial phase accounted for anfirst 473 ms (C) .
average of 14% of the variance (range: 2–30 { 8%, mean
{ SD), but this source of variance was not nearly enough toOne way of comparing our data with the expectations of
account for the excess variance compared with the expecteda Poisson process is to examine the fraction of trials that
variance of a Poisson process.contained specific numbers of spikes. For a Poisson process,

In sum, although variation in spatial phase does contributethe fraction of responses with exactly n spikes should be
to the variability in the response of simple and complex cellsgiven by f (n) Å (Nn /n!)e0N , where N is the mean number
to gratings in random positions, this source of variation isof spikes per trial. For each data set, this distribution was
relatively small. Even when it is removed, firing statistics ofcompared with the observed fraction of trials with n spikes
simple and complex cells show substantially greater variancevia the x 2 test (Table 2). When responses to all spatial
than would be expected from a Poisson process. The amountphases were pooled, all data sets deviated in a highly signifi-
of excess variance we observed was comparable with thecant manner (Põ 0.001) from the expectations of a Poisson
threefold excess observed by others (Tolhurst et al. 1981,process. When responses to each spatial phase were consid-
1983), further indicating that changes in spatial phase areered individually, 73% of the data sets (85% of those derived
at most a minor contributor to response variability in corticalfrom simple cells, 44% of those derived from complex cells)
neurons.had a response distribution that deviated in a highly signifi-

cant manner (P õ 0.001) from Poisson expectations. To
ensure that these findings were not the result of inclusion of

D I S C U S S I O N
a small number of outliers, this analysis was repeated after
exclusion of the responses that were in the upper quartile of Summary of results
the spike count distribution. This truncated distribution was

Our major aim was to analyze how spatial phase interactedcompared with a similarly truncated Poisson distribution.
with contrast, spatial frequency, and orientation to produceAgain, all pooled data sets were inconsistent (P õ 0.001)
changes in the temporal pattern of spike discharges in thewith Poisson expectations, as were most phase-specific data

sets (78% at P õ 0.05, 60% at P õ 0.001). transient response. We use the term ‘‘phase independent’’
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FIG. 8. Responses of a V1 simple cell to gratings that vary in contrast (rows: 0.25, 0.5, and 1.0) and spatial phase
(columns: steps of 22.57) . Stimulus onset is at time 0 . Vertical line at 237 ms marks the disappearance of the stimulus.
Spatial frequency: 0.5 cycles/deg. Orientation: 1357 (preferred). Unit 26/2.

to refer to the representation of a particular attribute if, in a response even if spatial phase is not fixed. (A phase-indepen-
dent representation may be the result of phase-invariant re-statistical sense, the representation of the attribute of interest

in the temporal pattern of the response is not degraded by sponses. But phase-independent representations also can
arise if the stimulus attribute of interest and spatial phaseincluding the responses to gratings with different spatial

phases. That is, with phase-independent representation, the both influence the response but in a manner in which the
effects of spatial phase do not constitute a confound.) Con-value of the attribute can be determined from the neural
versely, we use the term phase dependent to refer to the
representation of a particular attribute if the spatial phase
must be fixed to determine the value of the attribute from
the neural response. For contrast (Fig. 10A) , representation
was strongly phase dependent in simple cells. Complex cells
represented contrast in a phase-independent manner in the
initial response segment (the first 100 ms), but the full on
response (256 ms) depended jointly on contrast and spatial
phase. For spatial frequency (Fig. 10B) , representation was
phase dependent in simple and complex cells. For orientation
(Fig. 10C) , representation was phase dependent in simple
cells but phase independent in complex cells. Finally, al-
though changes in spatial phase influence grating responses
in most neurons, it is not the source of the supra-Poisson
variability across trials reported by us and by others (Tol-
hurst et al. 1981, 1983).

One rationale for transient stimulation was that it provides
a convenient means to follow the pattern of evolution of the
response over time. Steady-state stimulation protocols might
have yielded other results—including a reduction or elimi-
nation of temporal coding (Mechler et al. 1997). However,
transient presentation more closely mimics the time course
of retinal stimulation that occurs during a sequence of physi-
ological visual fixations (Viviani 1990). Moreover, the use
of drifting gratings in these experiments necessarily would
have induced a technical confound between spatial phase
and time lags in neural circuits, because changing the initial
spatial phase of a drifting grating is the same as shifting it
in time.

Implications for receptive field organization
FIG. 9. Analysis of encoding of contrast for the data set of Fig. 8. ●, The classification (Skottun et al. 1991) of simple andHpooled ; h, Hindiv , plotted as in Fig. 3. Analyses are performed on the re-

complex cells on the basis of whether their responses weresponses restricted to the first 100 ms (A) , the first 256 ms (B) , and the
first 473 ms (C) . phase dependent or not might lead to the expectation that in
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FIG. 10. Summary across data sets. Normalized
values of Hpooled (● and j) and Hindiv (s and h) are
plotted as a function of the length of the analysis
interval, for simple cells (j and h) and complex cells
(● and s) . Averaging is carried out for contrast ex-
periments (A) , spatial frequency experiments (B) ,
orientation experiments (C) , and experiments in
which 2 parameters were varied (D) . D pools results
from contrast 1 spatial frequency experiments,
contrast 1 orientation experiments, and spatial fre-
quency 1 orientation experiments.

simple cells all attributes are represented in a phase-depen- Finally, our analysis shows that the balance between
phase-dependent and phase-independent representationsdent manner, whereas in complex cells, all attributes are

represented in a phase-independent manner. As described evolves over time (Fig. 10). As a cortical neuron’s response
evolves, its inputs include contributions both from intrinsicabove, our data do not conform to this expectation. There

are several factors that likely underlie this departure. First, cortical circuitry and feedback pathways between cortical
areas (Bullier and Nowak 1995). K. P. Purpura and L. M.the classification of simple and complex cells is not dichoto-
Optican (unpublished results) found that the initial 50 msmous. Many cells show both phase-dependent and phase-
after stimulus onset carried measurable amounts of informa-independent behavior (Pollen et al. 1988; Spitzer and
tion about the orientation and spatial frequency of transientlyHochstein 1985a): a cell may be classified as complex be-
presented sinewave gratings. There was a rapid rise in infor-cause of its phase-invariant responses at high spatial frequen-
mation between 50 and 100 ms followed by a slower risecies yet may display prominent phase-dependent responses
during the following 100 ms. This suggested that the rise inat low spatial frequencies. Thus especially in experiments
information between 100 and 200 ms was due to local recur-that compare responses across a range of spatial frequencies,
rent and feedback circuits and that the prolonged tonic activ-complex cells may display hallmarks of phase dependence.
ity in feedforward pathways may contribute to temporal en-Second, the simple/complex classification implicitly ig-
coding through the activation of and interaction with mem-nores the possible informative value of the temporal pattern
brane components in cortical neurons that produce bursts andof responses. Phase-independent representation of visual at-
other temporal patterns. In sum, whereas the initial visualtributes might appear to be phase dependent if timing were
response reflects the geniculocalcarine connections in aignored. This can occur if a particular pattern of spikes (or
straightforward way, the remainder of the response is influ-the number of spikes within a brief interval) represents the
enced heavily by inputs from other cortical neurons. Weattribute of interest, but these spikes might comprise only a
showed (Fig. 10A) that for complex cells, the initial 100small portion of the total discharge, the bulk of which could
ms represents contrast in a phase-independent manner, butbe phase dependent. We did not see this phenomenon in
the full on response shows substantial phase dependence.most of the recorded cells. The converse, however, was a
The initial component may well be explained by a superpo-prominent finding: representation that is phase dependent
sition of feedforward nonlinear receptive field subunitscould appear to be phase independent if timing were ignored.
(Spitzer and Hochstein 1985b); we hypothesize that theAn example of this shown in Fig. 7, A and B, in which
later, phase-dependent components represent the influenceHpooled ú Hindiv for the spike count metric D spike[0] , but
of intrinsic cortical activity.Hindiv ú Hpooled (Fig. 7A) or Hindiv É Hpooled (Fig. 7B) for

the optimal spike time metric D spike[q] . That is, that number To the extent that simple cells can be considered as ap-
proximately linear, the interdependence of spatial phase andof spikes in the response to a grating may be relatively

independent of spatial phase, even though their timing is the other stimulus parameters is easy to understand. For
linear receptive fields, the average response (across all spa-strongly dependent on phase.
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FIG. 11. Responses of a V1 simple cell
to gratings that vary in contrast (rows:
0.125, 0.25, and 0.5) , orientation (A : 67.57,
the preferred orientation; B : 112.57) and
spatial phase (columns: steps of 907) .
Stimulus onset is at time 0 . Vertical line
at 237 ms marks the disappearance of the
stimulus. Spatial frequency: 2 cycles/deg.
Unit 28/5.

tial phases) to gratings of any chosen contrast, spatial fre- of which can be modified by the spatial pattern. An ‘‘insepa-
rable’’ receptive field, which could be constructed by sum-quency, and orientation must be zero. That is, any change

in the mean firing rate can always be mitigated by a change ming together two separable components, can produce re-
sponse profiles with a shape, as well as overall size, thatin spatial phase. Consequently, a linear representation of a

stimulus attribute without a confound by spatial phase must depends on the spatial pattern.] In our population of simple
cells, representation was primarily phase dependent, indicat-use the dependence of the temporal structure of the response.

In other words, for a linear receptive field structure, phase- ing that, in a functional sense, simple cells behaved as if
they were predominantly linear and separable. However,independent representation requires spatiotemporal insepara-

bility and would only be seen for metrics that are sensitive there were indications that inseparability and nonlinearity
did contribute to phase-independent representation. The evi-to temporal pattern. [A ‘‘separable’’ receptive field is one

with a spatiotemporal sensitivity profile that can be ex- dence for inseparability is that phase-independent clustering,
when present, was generally higher for the spike time metricspressed as a single spatial function multiplied by a single

temporal function. In response to pattern appearance, such (D spike[q] , q ú 0) than for the spike count metric D count Å
D spike[0] (e.g., Fig. 3) . This indicates that phase-indepen-receptive fields generate a stereotyped temporal response the

overall amplitude, but not shape (timecourse of activation), dent representation exploits the time course of the response,
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phases) must be zero, a phase-independent representation
that is manifest in the overall firing rate implies a significant
contribution from a receptive-field nonlinearity—in this
case, the absence of a maintained discharge.

For complex cells, the subunit model proposed by Spitzer
and Hochstein in the cat (1985b) accounts readily for the
interdependence of spatial phase and spatial frequency on
the basis of the phase-dependent responses of the subunits.
However, this model also predicts a comparable interdepen-
dence of spatial phase and orientation. These predictions
hold if the signals within elongated subunits (Szulborski and
Palmer 1990) are summed before rectification (as originally
proposed by Spitzer and Hochstein 1985b) or if there is
a local rectification within these elongated regions as well
(Purpura et al. 1994; Victor and Conte 1991). Although
there is some evidence that the orientation specificity of
cortical cells in Layer IV is determined by their subcortical
inputs (Ferster 1987; Reid and Alonso 1995), there is also
evidence that intracortical processing plays a substantial role
in orientation tuning (Bonds 1989; Morrone et al. 1982;
Sillito 1975; Sillito and Jones 1996), particularly as the
response evolves in time (Ringach et al. 1997; Volgushev
et al. 1995; K. P. Purpura and L. M. Optican, unpublished
data) . Orientation-specific inputs from other cortical neurons
(either excitatory or inhibitory) can lead to the phase-inde-
pendent representation of orientation that we observe, pro-
vided that these inputs act as nonlinear subunits or have
distinctive time courses. (Otherwise, their impact would
merely be to change the effective sensitivity profile of the
receptive field.) To remain consistent with our findings that
spatial-frequency representation is phase dependent, we pos-
tulate that these subunit inputs span a broad range of spatial

FIG. 12. Analysis of encoding of contrast for the dataset of Fig. 11. ●,
scales and thus do not contribute to spatial frequency tuning.Hpooled ; h, Hindiv , plotted as in Fig. 3. Analyses are performed on the re-
In this way, intracortical connectivity among cells that sharesponses restricted to the first 100 ms (A) , the first 256 ms (B) , and the

first 473 ms (C) . a common orientation could provide a mechanism for phase-
independent representation of orientation but not spatial fre-

and not just amplitude. The evidence for a contribution of quency.
response nonlinearity is that in some cases (as in the analysis The existence of a system of intracortical connections in
of contrast in Fig. 7) , a modest phase-independent represen- V1 that primarily involves neurons of similar orientation
tation was present for D count Å D spike[0] . Because for linear preferences but different spatial frequency tunings is sup-

ported by independent experimental studies. Connections be-receptive fields the average response (across all spatial

TABLE 2. Fraction of analyses inconsistent with Poisson statistics

Spatial Phases Pooled Spatial Phases Treated Individually

P õ 0.05 P õ 0.01 P õ 0.001 P õ 0.05 P õ 0.01 P õ 0.001

All units
All trials 1.00 1.00 1.00 0.79 0.76 0.73
Outliers excluded 1.00 1.00 1.00 0.78 0.68 0.60

Simple cells
All trials 1.00 1.00 1.00 0.92 0.90 0.85
Outliers excluded 1.00 1.00 1.00 0.92 0.84 0.76

Complex cells
All trials 1.00 1.00 1.00 0.50 0.47 0.44
Outliers excluded 1.00 1.00 1.00 0.47 0.33 0.25

Comparison of spike count statistics with expectations derived from a Poisson process. For each data set (9 simple cells, 4 complex cells), the fraction
of trials containing 0, 1, 2, 3, etc. spikes was compared with the fraction expected from a Poisson process with the same average number of spikes per
trial via the x2 statistics. This analysis was performed pooling responses to all spatial phases (1 analysis per cell) and considering each spatial phase
individually (16 analyses per cell, except for 2 cells, in which 1 spatial phase was excluded because there was only 1 spike). The analysis also was
performed after exclusion of trials with a spike count that was in the upper quartile (labelled as ‘‘outliers excluded’’). The table indicates the fraction
of those analyses in which the deviation of the observed probabilities from Poisson expectations was statistically significant at P Å 0.05, 0.01, and
0.001.
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TABLE 3. Comparison of descriptive statistics with Poisson expectations

Spatial Phases Pooled Spatial Phases Treated Individually

Mean Variance Variance/Mean Mean Variance Variance/Mean

All units
Mean 3.97 13.76** 3.25*** 3.98 11.72** 2.70***
Geometric mean 3.30 10.08*** 3.05*** 3.32 8.67*** 2.53***
SD 2.31 11.47 1.17 2.30 9.52 1.03
Minimum 0.84 1.74 1.85 0.84 1.50 1.58
Maximum 8.47 45.92 5.42 8.47 38.92 4.80

Simple cells
Mean 4.10 13.02* 3.24* 4.11 11.21* 2.76*
Geometric mean 3.69 11.27** 3.05** 3.69 9.93** 2.63**

Complex cells
Mean 3.66 15.42 3.28* 3.69 12.89 2.57*
Geometric mean 2.57 7.84* 3.04 2.62 6.38* 2.31

Parametric analysis of deviation of spike count statistics from a Poisson process. For each data set of Table 2, the mean and variance of the number
of spikes per trial were calculated as well as the variance/mean ratio (columns). The behavior of these descriptive statistics across the population of units
is summarized in the rows of the Table. Descriptive statistics obtained with spatial phases pooled were compared to descriptive statistics obtained with
spatial phases treated individually by paired t-tests. * P õ 0.05; ** P õ 0.01; *** P õ 0.001. There is a significant reduction in variance when variability
due to spatial phase is removed, but the variance/mean ratio remains substantially ú1. There were no significant differences between simple and complex
cells (by unpaired t-tests).

tween neurons of like orientation preference were demon- at every spatial location, a full complement of cortical neu-
rons that behaved as local Fourier analyzers subserving everystrated by a cross-correlation method (Ts’o et al. 1986).

Interactions of oriented subunits that span a range of spatial orientation, spatial frequency, spatial phase, and bandwidth
would be highly redundant. The Gabor-like spatial structurescales was shown to be the crucial computational element

required to account for isodipole texture selectivity (Purpura of simple cortical cell receptive field profiles is well recog-
nized (Kulikowski and Vidyasagar 1986; Kulikowski et al.et al. 1994).

A neuron with a receptive field built from nonlinear sub- 1982; Ohzawa et al. 1996), and theorists have advanced
arguments for a variety of evolutionary and developmentalunits with a common orientation tuning but a range of spatial

frequency tunings could function as a feature detector for pressures that favor this kind of structure (Atick 1992; Daug-
man 1990; Field 1987; Olshausen and Field 1996) as a com-specific nonsinusoidal one-dimensional profiles, such as

edges. These profiles have Fourier components that share a promise between the demands of analyses localized in space
and analyses localized in the Fourier domain.common orientation but span a wide range of spatial frequen-

cies. If the relative phases of these Fourier components A similar tension exists between spatial phase and spatial
position. For some purposes, spatial phase is a crucial stimu-match those of the corresponding subunits, a large response

would result. lus attribute. For example, a superposition of sinusoidal com-
ponents forms an edge (or any other local feature) only ifCells classified as simple and complex have both phase-

dependent and -independent response features that evolve over the phase relationships are appropriate. Another example is
stereopsis, the neural mechanism of which appears to relytime (Fig. 10, A–C). This is not a statement that the simple/

complex distinction has no value. Rather the analysis of tem- critically on spatial phase (Ohzawa et al. 1996). For other
purposes, orientation and spatial position are key but spatialporal pattern adds to the understanding of this classification

and the receptive-field structures that might underlie it. phase can be ignored. For example, an object’s boundary
can be demarcated by a thin line or an edge (luminanceOur finding (Fig. 10D) that complex cells can represent

at least two spatial parameters in the face of variations in step) . From the point of view of a local analyzer centered
at this boundary, a thin line would appear to have cosinespatial phase provides additional evidence that their re-

ceptive field structure is functionally elaborate. Within the phase (or antiphase, depending on polarity) , whereas the
edge would appear to have rising or falling sine phase (de-framework of a subunit model, representation of two attri-

butes independently requires that the subunits themselves pending on the direction of the luminance gradient) . Each
of these local features has distinct phase characteristics, butare spatiotemporally inseparable and that the subunit signals

combine in a temporally coherent fashion. once they have been extracted for image segmentation, only
their orientations and positions are important.

It has been suggested that the visual system meets theSpatial phase, spatial frequency, and location
need to analyze both spatial phase and spatial position by

Early cortical circuitry must process visual information limiting the spatial phases represented at each point to a
for a variety of purposes. For some purposes (e.g., resolu- stereotyped few—i.e., even- and odd-symmetric receptive
tion), point-like receptive fields represent information in the fields or quadrature pairs (Emerson 1997; Emerson and Hu-
most immediately useful form, while for other purposes ang 1997; Field and Tolhurst 1986; Liu et al. 1992;
(e.g., texture analysis) , receptive fields that are tuned to Rentschler and Treutwein 1985). Our data support another
specific spatial frequencies represent information in the most strategy to resolve the conflicting demands of phase-inde-

pendent and phase-dependent representation. As summa-immediately useful form. However, a cortex that contained,
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